1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 63 /* flag for if timekeeping is suspended */ 64 int __read_mostly timekeeping_suspended; 65 66 /* Flag for if there is a persistent clock on this platform */ 67 bool __read_mostly persistent_clock_exist = false; 68 69 static inline void tk_normalize_xtime(struct timekeeper *tk) 70 { 71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) { 72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift; 73 tk->xtime_sec++; 74 } 75 } 76 77 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 78 { 79 struct timespec64 ts; 80 81 ts.tv_sec = tk->xtime_sec; 82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift); 83 return ts; 84 } 85 86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 87 { 88 tk->xtime_sec = ts->tv_sec; 89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift; 90 } 91 92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 93 { 94 tk->xtime_sec += ts->tv_sec; 95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift; 96 tk_normalize_xtime(tk); 97 } 98 99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 100 { 101 struct timespec64 tmp; 102 103 /* 104 * Verify consistency of: offset_real = -wall_to_monotonic 105 * before modifying anything 106 */ 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 108 -tk->wall_to_monotonic.tv_nsec); 109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 110 tk->wall_to_monotonic = wtm; 111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 112 tk->offs_real = timespec64_to_ktime(tmp); 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 114 } 115 116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 117 { 118 tk->offs_boot = ktime_add(tk->offs_boot, delta); 119 } 120 121 /** 122 * tk_setup_internals - Set up internals to use clocksource clock. 123 * 124 * @tk: The target timekeeper to setup. 125 * @clock: Pointer to clocksource. 126 * 127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 128 * pair and interval request. 129 * 130 * Unless you're the timekeeping code, you should not be using this! 131 */ 132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 133 { 134 cycle_t interval; 135 u64 tmp, ntpinterval; 136 struct clocksource *old_clock; 137 138 old_clock = tk->tkr.clock; 139 tk->tkr.clock = clock; 140 tk->tkr.read = clock->read; 141 tk->tkr.mask = clock->mask; 142 tk->tkr.cycle_last = tk->tkr.read(clock); 143 144 /* Do the ns -> cycle conversion first, using original mult */ 145 tmp = NTP_INTERVAL_LENGTH; 146 tmp <<= clock->shift; 147 ntpinterval = tmp; 148 tmp += clock->mult/2; 149 do_div(tmp, clock->mult); 150 if (tmp == 0) 151 tmp = 1; 152 153 interval = (cycle_t) tmp; 154 tk->cycle_interval = interval; 155 156 /* Go back from cycles -> shifted ns */ 157 tk->xtime_interval = (u64) interval * clock->mult; 158 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 159 tk->raw_interval = 160 ((u64) interval * clock->mult) >> clock->shift; 161 162 /* if changing clocks, convert xtime_nsec shift units */ 163 if (old_clock) { 164 int shift_change = clock->shift - old_clock->shift; 165 if (shift_change < 0) 166 tk->tkr.xtime_nsec >>= -shift_change; 167 else 168 tk->tkr.xtime_nsec <<= shift_change; 169 } 170 tk->tkr.shift = clock->shift; 171 172 tk->ntp_error = 0; 173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 174 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 175 176 /* 177 * The timekeeper keeps its own mult values for the currently 178 * active clocksource. These value will be adjusted via NTP 179 * to counteract clock drifting. 180 */ 181 tk->tkr.mult = clock->mult; 182 tk->ntp_err_mult = 0; 183 } 184 185 /* Timekeeper helper functions. */ 186 187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 188 static u32 default_arch_gettimeoffset(void) { return 0; } 189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 190 #else 191 static inline u32 arch_gettimeoffset(void) { return 0; } 192 #endif 193 194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 195 { 196 cycle_t cycle_now, delta; 197 s64 nsec; 198 199 /* read clocksource: */ 200 cycle_now = tkr->read(tkr->clock); 201 202 /* calculate the delta since the last update_wall_time: */ 203 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 204 205 nsec = delta * tkr->mult + tkr->xtime_nsec; 206 nsec >>= tkr->shift; 207 208 /* If arch requires, add in get_arch_timeoffset() */ 209 return nsec + arch_gettimeoffset(); 210 } 211 212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 213 { 214 struct clocksource *clock = tk->tkr.clock; 215 cycle_t cycle_now, delta; 216 s64 nsec; 217 218 /* read clocksource: */ 219 cycle_now = tk->tkr.read(clock); 220 221 /* calculate the delta since the last update_wall_time: */ 222 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask); 223 224 /* convert delta to nanoseconds. */ 225 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift); 226 227 /* If arch requires, add in get_arch_timeoffset() */ 228 return nsec + arch_gettimeoffset(); 229 } 230 231 /** 232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 233 * @tk: The timekeeper from which we take the update 234 * @tkf: The fast timekeeper to update 235 * @tbase: The time base for the fast timekeeper (mono/raw) 236 * 237 * We want to use this from any context including NMI and tracing / 238 * instrumenting the timekeeping code itself. 239 * 240 * So we handle this differently than the other timekeeping accessor 241 * functions which retry when the sequence count has changed. The 242 * update side does: 243 * 244 * smp_wmb(); <- Ensure that the last base[1] update is visible 245 * tkf->seq++; 246 * smp_wmb(); <- Ensure that the seqcount update is visible 247 * update(tkf->base[0], tk); 248 * smp_wmb(); <- Ensure that the base[0] update is visible 249 * tkf->seq++; 250 * smp_wmb(); <- Ensure that the seqcount update is visible 251 * update(tkf->base[1], tk); 252 * 253 * The reader side does: 254 * 255 * do { 256 * seq = tkf->seq; 257 * smp_rmb(); 258 * idx = seq & 0x01; 259 * now = now(tkf->base[idx]); 260 * smp_rmb(); 261 * } while (seq != tkf->seq) 262 * 263 * As long as we update base[0] readers are forced off to 264 * base[1]. Once base[0] is updated readers are redirected to base[0] 265 * and the base[1] update takes place. 266 * 267 * So if a NMI hits the update of base[0] then it will use base[1] 268 * which is still consistent. In the worst case this can result is a 269 * slightly wrong timestamp (a few nanoseconds). See 270 * @ktime_get_mono_fast_ns. 271 */ 272 static void update_fast_timekeeper(struct timekeeper *tk) 273 { 274 struct tk_read_base *base = tk_fast_mono.base; 275 276 /* Force readers off to base[1] */ 277 raw_write_seqcount_latch(&tk_fast_mono.seq); 278 279 /* Update base[0] */ 280 memcpy(base, &tk->tkr, sizeof(*base)); 281 282 /* Force readers back to base[0] */ 283 raw_write_seqcount_latch(&tk_fast_mono.seq); 284 285 /* Update base[1] */ 286 memcpy(base + 1, base, sizeof(*base)); 287 } 288 289 /** 290 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 291 * 292 * This timestamp is not guaranteed to be monotonic across an update. 293 * The timestamp is calculated by: 294 * 295 * now = base_mono + clock_delta * slope 296 * 297 * So if the update lowers the slope, readers who are forced to the 298 * not yet updated second array are still using the old steeper slope. 299 * 300 * tmono 301 * ^ 302 * | o n 303 * | o n 304 * | u 305 * | o 306 * |o 307 * |12345678---> reader order 308 * 309 * o = old slope 310 * u = update 311 * n = new slope 312 * 313 * So reader 6 will observe time going backwards versus reader 5. 314 * 315 * While other CPUs are likely to be able observe that, the only way 316 * for a CPU local observation is when an NMI hits in the middle of 317 * the update. Timestamps taken from that NMI context might be ahead 318 * of the following timestamps. Callers need to be aware of that and 319 * deal with it. 320 */ 321 u64 notrace ktime_get_mono_fast_ns(void) 322 { 323 struct tk_read_base *tkr; 324 unsigned int seq; 325 u64 now; 326 327 do { 328 seq = raw_read_seqcount(&tk_fast_mono.seq); 329 tkr = tk_fast_mono.base + (seq & 0x01); 330 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr); 331 332 } while (read_seqcount_retry(&tk_fast_mono.seq, seq)); 333 return now; 334 } 335 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 336 337 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 338 339 static inline void update_vsyscall(struct timekeeper *tk) 340 { 341 struct timespec xt, wm; 342 343 xt = timespec64_to_timespec(tk_xtime(tk)); 344 wm = timespec64_to_timespec(tk->wall_to_monotonic); 345 update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult, 346 tk->tkr.cycle_last); 347 } 348 349 static inline void old_vsyscall_fixup(struct timekeeper *tk) 350 { 351 s64 remainder; 352 353 /* 354 * Store only full nanoseconds into xtime_nsec after rounding 355 * it up and add the remainder to the error difference. 356 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 357 * by truncating the remainder in vsyscalls. However, it causes 358 * additional work to be done in timekeeping_adjust(). Once 359 * the vsyscall implementations are converted to use xtime_nsec 360 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 361 * users are removed, this can be killed. 362 */ 363 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1); 364 tk->tkr.xtime_nsec -= remainder; 365 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift; 366 tk->ntp_error += remainder << tk->ntp_error_shift; 367 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift; 368 } 369 #else 370 #define old_vsyscall_fixup(tk) 371 #endif 372 373 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 374 375 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 376 { 377 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 378 } 379 380 /** 381 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 382 */ 383 int pvclock_gtod_register_notifier(struct notifier_block *nb) 384 { 385 struct timekeeper *tk = &tk_core.timekeeper; 386 unsigned long flags; 387 int ret; 388 389 raw_spin_lock_irqsave(&timekeeper_lock, flags); 390 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 391 update_pvclock_gtod(tk, true); 392 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 393 394 return ret; 395 } 396 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 397 398 /** 399 * pvclock_gtod_unregister_notifier - unregister a pvclock 400 * timedata update listener 401 */ 402 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 403 { 404 unsigned long flags; 405 int ret; 406 407 raw_spin_lock_irqsave(&timekeeper_lock, flags); 408 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 409 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 410 411 return ret; 412 } 413 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 414 415 /* 416 * Update the ktime_t based scalar nsec members of the timekeeper 417 */ 418 static inline void tk_update_ktime_data(struct timekeeper *tk) 419 { 420 s64 nsec; 421 422 /* 423 * The xtime based monotonic readout is: 424 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 425 * The ktime based monotonic readout is: 426 * nsec = base_mono + now(); 427 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 428 */ 429 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 430 nsec *= NSEC_PER_SEC; 431 nsec += tk->wall_to_monotonic.tv_nsec; 432 tk->tkr.base_mono = ns_to_ktime(nsec); 433 434 /* Update the monotonic raw base */ 435 tk->base_raw = timespec64_to_ktime(tk->raw_time); 436 } 437 438 /* must hold timekeeper_lock */ 439 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 440 { 441 if (action & TK_CLEAR_NTP) { 442 tk->ntp_error = 0; 443 ntp_clear(); 444 } 445 446 tk_update_ktime_data(tk); 447 448 update_vsyscall(tk); 449 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 450 451 if (action & TK_MIRROR) 452 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 453 sizeof(tk_core.timekeeper)); 454 455 update_fast_timekeeper(tk); 456 } 457 458 /** 459 * timekeeping_forward_now - update clock to the current time 460 * 461 * Forward the current clock to update its state since the last call to 462 * update_wall_time(). This is useful before significant clock changes, 463 * as it avoids having to deal with this time offset explicitly. 464 */ 465 static void timekeeping_forward_now(struct timekeeper *tk) 466 { 467 struct clocksource *clock = tk->tkr.clock; 468 cycle_t cycle_now, delta; 469 s64 nsec; 470 471 cycle_now = tk->tkr.read(clock); 472 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask); 473 tk->tkr.cycle_last = cycle_now; 474 475 tk->tkr.xtime_nsec += delta * tk->tkr.mult; 476 477 /* If arch requires, add in get_arch_timeoffset() */ 478 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift; 479 480 tk_normalize_xtime(tk); 481 482 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift); 483 timespec64_add_ns(&tk->raw_time, nsec); 484 } 485 486 /** 487 * __getnstimeofday64 - Returns the time of day in a timespec64. 488 * @ts: pointer to the timespec to be set 489 * 490 * Updates the time of day in the timespec. 491 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 492 */ 493 int __getnstimeofday64(struct timespec64 *ts) 494 { 495 struct timekeeper *tk = &tk_core.timekeeper; 496 unsigned long seq; 497 s64 nsecs = 0; 498 499 do { 500 seq = read_seqcount_begin(&tk_core.seq); 501 502 ts->tv_sec = tk->xtime_sec; 503 nsecs = timekeeping_get_ns(&tk->tkr); 504 505 } while (read_seqcount_retry(&tk_core.seq, seq)); 506 507 ts->tv_nsec = 0; 508 timespec64_add_ns(ts, nsecs); 509 510 /* 511 * Do not bail out early, in case there were callers still using 512 * the value, even in the face of the WARN_ON. 513 */ 514 if (unlikely(timekeeping_suspended)) 515 return -EAGAIN; 516 return 0; 517 } 518 EXPORT_SYMBOL(__getnstimeofday64); 519 520 /** 521 * getnstimeofday64 - Returns the time of day in a timespec64. 522 * @ts: pointer to the timespec to be set 523 * 524 * Returns the time of day in a timespec (WARN if suspended). 525 */ 526 void getnstimeofday64(struct timespec64 *ts) 527 { 528 WARN_ON(__getnstimeofday64(ts)); 529 } 530 EXPORT_SYMBOL(getnstimeofday64); 531 532 ktime_t ktime_get(void) 533 { 534 struct timekeeper *tk = &tk_core.timekeeper; 535 unsigned int seq; 536 ktime_t base; 537 s64 nsecs; 538 539 WARN_ON(timekeeping_suspended); 540 541 do { 542 seq = read_seqcount_begin(&tk_core.seq); 543 base = tk->tkr.base_mono; 544 nsecs = timekeeping_get_ns(&tk->tkr); 545 546 } while (read_seqcount_retry(&tk_core.seq, seq)); 547 548 return ktime_add_ns(base, nsecs); 549 } 550 EXPORT_SYMBOL_GPL(ktime_get); 551 552 static ktime_t *offsets[TK_OFFS_MAX] = { 553 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 554 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 555 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 556 }; 557 558 ktime_t ktime_get_with_offset(enum tk_offsets offs) 559 { 560 struct timekeeper *tk = &tk_core.timekeeper; 561 unsigned int seq; 562 ktime_t base, *offset = offsets[offs]; 563 s64 nsecs; 564 565 WARN_ON(timekeeping_suspended); 566 567 do { 568 seq = read_seqcount_begin(&tk_core.seq); 569 base = ktime_add(tk->tkr.base_mono, *offset); 570 nsecs = timekeeping_get_ns(&tk->tkr); 571 572 } while (read_seqcount_retry(&tk_core.seq, seq)); 573 574 return ktime_add_ns(base, nsecs); 575 576 } 577 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 578 579 /** 580 * ktime_mono_to_any() - convert mononotic time to any other time 581 * @tmono: time to convert. 582 * @offs: which offset to use 583 */ 584 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 585 { 586 ktime_t *offset = offsets[offs]; 587 unsigned long seq; 588 ktime_t tconv; 589 590 do { 591 seq = read_seqcount_begin(&tk_core.seq); 592 tconv = ktime_add(tmono, *offset); 593 } while (read_seqcount_retry(&tk_core.seq, seq)); 594 595 return tconv; 596 } 597 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 598 599 /** 600 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 601 */ 602 ktime_t ktime_get_raw(void) 603 { 604 struct timekeeper *tk = &tk_core.timekeeper; 605 unsigned int seq; 606 ktime_t base; 607 s64 nsecs; 608 609 do { 610 seq = read_seqcount_begin(&tk_core.seq); 611 base = tk->base_raw; 612 nsecs = timekeeping_get_ns_raw(tk); 613 614 } while (read_seqcount_retry(&tk_core.seq, seq)); 615 616 return ktime_add_ns(base, nsecs); 617 } 618 EXPORT_SYMBOL_GPL(ktime_get_raw); 619 620 /** 621 * ktime_get_ts64 - get the monotonic clock in timespec64 format 622 * @ts: pointer to timespec variable 623 * 624 * The function calculates the monotonic clock from the realtime 625 * clock and the wall_to_monotonic offset and stores the result 626 * in normalized timespec format in the variable pointed to by @ts. 627 */ 628 void ktime_get_ts64(struct timespec64 *ts) 629 { 630 struct timekeeper *tk = &tk_core.timekeeper; 631 struct timespec64 tomono; 632 s64 nsec; 633 unsigned int seq; 634 635 WARN_ON(timekeeping_suspended); 636 637 do { 638 seq = read_seqcount_begin(&tk_core.seq); 639 ts->tv_sec = tk->xtime_sec; 640 nsec = timekeeping_get_ns(&tk->tkr); 641 tomono = tk->wall_to_monotonic; 642 643 } while (read_seqcount_retry(&tk_core.seq, seq)); 644 645 ts->tv_sec += tomono.tv_sec; 646 ts->tv_nsec = 0; 647 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 648 } 649 EXPORT_SYMBOL_GPL(ktime_get_ts64); 650 651 #ifdef CONFIG_NTP_PPS 652 653 /** 654 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 655 * @ts_raw: pointer to the timespec to be set to raw monotonic time 656 * @ts_real: pointer to the timespec to be set to the time of day 657 * 658 * This function reads both the time of day and raw monotonic time at the 659 * same time atomically and stores the resulting timestamps in timespec 660 * format. 661 */ 662 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 663 { 664 struct timekeeper *tk = &tk_core.timekeeper; 665 unsigned long seq; 666 s64 nsecs_raw, nsecs_real; 667 668 WARN_ON_ONCE(timekeeping_suspended); 669 670 do { 671 seq = read_seqcount_begin(&tk_core.seq); 672 673 *ts_raw = timespec64_to_timespec(tk->raw_time); 674 ts_real->tv_sec = tk->xtime_sec; 675 ts_real->tv_nsec = 0; 676 677 nsecs_raw = timekeeping_get_ns_raw(tk); 678 nsecs_real = timekeeping_get_ns(&tk->tkr); 679 680 } while (read_seqcount_retry(&tk_core.seq, seq)); 681 682 timespec_add_ns(ts_raw, nsecs_raw); 683 timespec_add_ns(ts_real, nsecs_real); 684 } 685 EXPORT_SYMBOL(getnstime_raw_and_real); 686 687 #endif /* CONFIG_NTP_PPS */ 688 689 /** 690 * do_gettimeofday - Returns the time of day in a timeval 691 * @tv: pointer to the timeval to be set 692 * 693 * NOTE: Users should be converted to using getnstimeofday() 694 */ 695 void do_gettimeofday(struct timeval *tv) 696 { 697 struct timespec64 now; 698 699 getnstimeofday64(&now); 700 tv->tv_sec = now.tv_sec; 701 tv->tv_usec = now.tv_nsec/1000; 702 } 703 EXPORT_SYMBOL(do_gettimeofday); 704 705 /** 706 * do_settimeofday - Sets the time of day 707 * @tv: pointer to the timespec variable containing the new time 708 * 709 * Sets the time of day to the new time and update NTP and notify hrtimers 710 */ 711 int do_settimeofday(const struct timespec *tv) 712 { 713 struct timekeeper *tk = &tk_core.timekeeper; 714 struct timespec64 ts_delta, xt, tmp; 715 unsigned long flags; 716 717 if (!timespec_valid_strict(tv)) 718 return -EINVAL; 719 720 raw_spin_lock_irqsave(&timekeeper_lock, flags); 721 write_seqcount_begin(&tk_core.seq); 722 723 timekeeping_forward_now(tk); 724 725 xt = tk_xtime(tk); 726 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec; 727 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec; 728 729 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 730 731 tmp = timespec_to_timespec64(*tv); 732 tk_set_xtime(tk, &tmp); 733 734 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 735 736 write_seqcount_end(&tk_core.seq); 737 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 738 739 /* signal hrtimers about time change */ 740 clock_was_set(); 741 742 return 0; 743 } 744 EXPORT_SYMBOL(do_settimeofday); 745 746 /** 747 * timekeeping_inject_offset - Adds or subtracts from the current time. 748 * @tv: pointer to the timespec variable containing the offset 749 * 750 * Adds or subtracts an offset value from the current time. 751 */ 752 int timekeeping_inject_offset(struct timespec *ts) 753 { 754 struct timekeeper *tk = &tk_core.timekeeper; 755 unsigned long flags; 756 struct timespec64 ts64, tmp; 757 int ret = 0; 758 759 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 760 return -EINVAL; 761 762 ts64 = timespec_to_timespec64(*ts); 763 764 raw_spin_lock_irqsave(&timekeeper_lock, flags); 765 write_seqcount_begin(&tk_core.seq); 766 767 timekeeping_forward_now(tk); 768 769 /* Make sure the proposed value is valid */ 770 tmp = timespec64_add(tk_xtime(tk), ts64); 771 if (!timespec64_valid_strict(&tmp)) { 772 ret = -EINVAL; 773 goto error; 774 } 775 776 tk_xtime_add(tk, &ts64); 777 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 778 779 error: /* even if we error out, we forwarded the time, so call update */ 780 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 781 782 write_seqcount_end(&tk_core.seq); 783 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 784 785 /* signal hrtimers about time change */ 786 clock_was_set(); 787 788 return ret; 789 } 790 EXPORT_SYMBOL(timekeeping_inject_offset); 791 792 793 /** 794 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 795 * 796 */ 797 s32 timekeeping_get_tai_offset(void) 798 { 799 struct timekeeper *tk = &tk_core.timekeeper; 800 unsigned int seq; 801 s32 ret; 802 803 do { 804 seq = read_seqcount_begin(&tk_core.seq); 805 ret = tk->tai_offset; 806 } while (read_seqcount_retry(&tk_core.seq, seq)); 807 808 return ret; 809 } 810 811 /** 812 * __timekeeping_set_tai_offset - Lock free worker function 813 * 814 */ 815 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 816 { 817 tk->tai_offset = tai_offset; 818 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 819 } 820 821 /** 822 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 823 * 824 */ 825 void timekeeping_set_tai_offset(s32 tai_offset) 826 { 827 struct timekeeper *tk = &tk_core.timekeeper; 828 unsigned long flags; 829 830 raw_spin_lock_irqsave(&timekeeper_lock, flags); 831 write_seqcount_begin(&tk_core.seq); 832 __timekeeping_set_tai_offset(tk, tai_offset); 833 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 834 write_seqcount_end(&tk_core.seq); 835 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 836 clock_was_set(); 837 } 838 839 /** 840 * change_clocksource - Swaps clocksources if a new one is available 841 * 842 * Accumulates current time interval and initializes new clocksource 843 */ 844 static int change_clocksource(void *data) 845 { 846 struct timekeeper *tk = &tk_core.timekeeper; 847 struct clocksource *new, *old; 848 unsigned long flags; 849 850 new = (struct clocksource *) data; 851 852 raw_spin_lock_irqsave(&timekeeper_lock, flags); 853 write_seqcount_begin(&tk_core.seq); 854 855 timekeeping_forward_now(tk); 856 /* 857 * If the cs is in module, get a module reference. Succeeds 858 * for built-in code (owner == NULL) as well. 859 */ 860 if (try_module_get(new->owner)) { 861 if (!new->enable || new->enable(new) == 0) { 862 old = tk->tkr.clock; 863 tk_setup_internals(tk, new); 864 if (old->disable) 865 old->disable(old); 866 module_put(old->owner); 867 } else { 868 module_put(new->owner); 869 } 870 } 871 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 872 873 write_seqcount_end(&tk_core.seq); 874 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 875 876 return 0; 877 } 878 879 /** 880 * timekeeping_notify - Install a new clock source 881 * @clock: pointer to the clock source 882 * 883 * This function is called from clocksource.c after a new, better clock 884 * source has been registered. The caller holds the clocksource_mutex. 885 */ 886 int timekeeping_notify(struct clocksource *clock) 887 { 888 struct timekeeper *tk = &tk_core.timekeeper; 889 890 if (tk->tkr.clock == clock) 891 return 0; 892 stop_machine(change_clocksource, clock, NULL); 893 tick_clock_notify(); 894 return tk->tkr.clock == clock ? 0 : -1; 895 } 896 897 /** 898 * getrawmonotonic - Returns the raw monotonic time in a timespec 899 * @ts: pointer to the timespec to be set 900 * 901 * Returns the raw monotonic time (completely un-modified by ntp) 902 */ 903 void getrawmonotonic(struct timespec *ts) 904 { 905 struct timekeeper *tk = &tk_core.timekeeper; 906 struct timespec64 ts64; 907 unsigned long seq; 908 s64 nsecs; 909 910 do { 911 seq = read_seqcount_begin(&tk_core.seq); 912 nsecs = timekeeping_get_ns_raw(tk); 913 ts64 = tk->raw_time; 914 915 } while (read_seqcount_retry(&tk_core.seq, seq)); 916 917 timespec64_add_ns(&ts64, nsecs); 918 *ts = timespec64_to_timespec(ts64); 919 } 920 EXPORT_SYMBOL(getrawmonotonic); 921 922 /** 923 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 924 */ 925 int timekeeping_valid_for_hres(void) 926 { 927 struct timekeeper *tk = &tk_core.timekeeper; 928 unsigned long seq; 929 int ret; 930 931 do { 932 seq = read_seqcount_begin(&tk_core.seq); 933 934 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 935 936 } while (read_seqcount_retry(&tk_core.seq, seq)); 937 938 return ret; 939 } 940 941 /** 942 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 943 */ 944 u64 timekeeping_max_deferment(void) 945 { 946 struct timekeeper *tk = &tk_core.timekeeper; 947 unsigned long seq; 948 u64 ret; 949 950 do { 951 seq = read_seqcount_begin(&tk_core.seq); 952 953 ret = tk->tkr.clock->max_idle_ns; 954 955 } while (read_seqcount_retry(&tk_core.seq, seq)); 956 957 return ret; 958 } 959 960 /** 961 * read_persistent_clock - Return time from the persistent clock. 962 * 963 * Weak dummy function for arches that do not yet support it. 964 * Reads the time from the battery backed persistent clock. 965 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 966 * 967 * XXX - Do be sure to remove it once all arches implement it. 968 */ 969 void __weak read_persistent_clock(struct timespec *ts) 970 { 971 ts->tv_sec = 0; 972 ts->tv_nsec = 0; 973 } 974 975 /** 976 * read_boot_clock - Return time of the system start. 977 * 978 * Weak dummy function for arches that do not yet support it. 979 * Function to read the exact time the system has been started. 980 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 981 * 982 * XXX - Do be sure to remove it once all arches implement it. 983 */ 984 void __weak read_boot_clock(struct timespec *ts) 985 { 986 ts->tv_sec = 0; 987 ts->tv_nsec = 0; 988 } 989 990 /* 991 * timekeeping_init - Initializes the clocksource and common timekeeping values 992 */ 993 void __init timekeeping_init(void) 994 { 995 struct timekeeper *tk = &tk_core.timekeeper; 996 struct clocksource *clock; 997 unsigned long flags; 998 struct timespec64 now, boot, tmp; 999 struct timespec ts; 1000 1001 read_persistent_clock(&ts); 1002 now = timespec_to_timespec64(ts); 1003 if (!timespec64_valid_strict(&now)) { 1004 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1005 " Check your CMOS/BIOS settings.\n"); 1006 now.tv_sec = 0; 1007 now.tv_nsec = 0; 1008 } else if (now.tv_sec || now.tv_nsec) 1009 persistent_clock_exist = true; 1010 1011 read_boot_clock(&ts); 1012 boot = timespec_to_timespec64(ts); 1013 if (!timespec64_valid_strict(&boot)) { 1014 pr_warn("WARNING: Boot clock returned invalid value!\n" 1015 " Check your CMOS/BIOS settings.\n"); 1016 boot.tv_sec = 0; 1017 boot.tv_nsec = 0; 1018 } 1019 1020 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1021 write_seqcount_begin(&tk_core.seq); 1022 ntp_init(); 1023 1024 clock = clocksource_default_clock(); 1025 if (clock->enable) 1026 clock->enable(clock); 1027 tk_setup_internals(tk, clock); 1028 1029 tk_set_xtime(tk, &now); 1030 tk->raw_time.tv_sec = 0; 1031 tk->raw_time.tv_nsec = 0; 1032 tk->base_raw.tv64 = 0; 1033 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1034 boot = tk_xtime(tk); 1035 1036 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1037 tk_set_wall_to_mono(tk, tmp); 1038 1039 timekeeping_update(tk, TK_MIRROR); 1040 1041 write_seqcount_end(&tk_core.seq); 1042 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1043 } 1044 1045 /* time in seconds when suspend began */ 1046 static struct timespec64 timekeeping_suspend_time; 1047 1048 /** 1049 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1050 * @delta: pointer to a timespec delta value 1051 * 1052 * Takes a timespec offset measuring a suspend interval and properly 1053 * adds the sleep offset to the timekeeping variables. 1054 */ 1055 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1056 struct timespec64 *delta) 1057 { 1058 if (!timespec64_valid_strict(delta)) { 1059 printk_deferred(KERN_WARNING 1060 "__timekeeping_inject_sleeptime: Invalid " 1061 "sleep delta value!\n"); 1062 return; 1063 } 1064 tk_xtime_add(tk, delta); 1065 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1066 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1067 tk_debug_account_sleep_time(delta); 1068 } 1069 1070 /** 1071 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 1072 * @delta: pointer to a timespec delta value 1073 * 1074 * This hook is for architectures that cannot support read_persistent_clock 1075 * because their RTC/persistent clock is only accessible when irqs are enabled. 1076 * 1077 * This function should only be called by rtc_resume(), and allows 1078 * a suspend offset to be injected into the timekeeping values. 1079 */ 1080 void timekeeping_inject_sleeptime(struct timespec *delta) 1081 { 1082 struct timekeeper *tk = &tk_core.timekeeper; 1083 struct timespec64 tmp; 1084 unsigned long flags; 1085 1086 /* 1087 * Make sure we don't set the clock twice, as timekeeping_resume() 1088 * already did it 1089 */ 1090 if (has_persistent_clock()) 1091 return; 1092 1093 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1094 write_seqcount_begin(&tk_core.seq); 1095 1096 timekeeping_forward_now(tk); 1097 1098 tmp = timespec_to_timespec64(*delta); 1099 __timekeeping_inject_sleeptime(tk, &tmp); 1100 1101 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1102 1103 write_seqcount_end(&tk_core.seq); 1104 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1105 1106 /* signal hrtimers about time change */ 1107 clock_was_set(); 1108 } 1109 1110 /** 1111 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1112 * 1113 * This is for the generic clocksource timekeeping. 1114 * xtime/wall_to_monotonic/jiffies/etc are 1115 * still managed by arch specific suspend/resume code. 1116 */ 1117 static void timekeeping_resume(void) 1118 { 1119 struct timekeeper *tk = &tk_core.timekeeper; 1120 struct clocksource *clock = tk->tkr.clock; 1121 unsigned long flags; 1122 struct timespec64 ts_new, ts_delta; 1123 struct timespec tmp; 1124 cycle_t cycle_now, cycle_delta; 1125 bool suspendtime_found = false; 1126 1127 read_persistent_clock(&tmp); 1128 ts_new = timespec_to_timespec64(tmp); 1129 1130 clockevents_resume(); 1131 clocksource_resume(); 1132 1133 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1134 write_seqcount_begin(&tk_core.seq); 1135 1136 /* 1137 * After system resumes, we need to calculate the suspended time and 1138 * compensate it for the OS time. There are 3 sources that could be 1139 * used: Nonstop clocksource during suspend, persistent clock and rtc 1140 * device. 1141 * 1142 * One specific platform may have 1 or 2 or all of them, and the 1143 * preference will be: 1144 * suspend-nonstop clocksource -> persistent clock -> rtc 1145 * The less preferred source will only be tried if there is no better 1146 * usable source. The rtc part is handled separately in rtc core code. 1147 */ 1148 cycle_now = tk->tkr.read(clock); 1149 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1150 cycle_now > tk->tkr.cycle_last) { 1151 u64 num, max = ULLONG_MAX; 1152 u32 mult = clock->mult; 1153 u32 shift = clock->shift; 1154 s64 nsec = 0; 1155 1156 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, 1157 tk->tkr.mask); 1158 1159 /* 1160 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1161 * suspended time is too long. In that case we need do the 1162 * 64 bits math carefully 1163 */ 1164 do_div(max, mult); 1165 if (cycle_delta > max) { 1166 num = div64_u64(cycle_delta, max); 1167 nsec = (((u64) max * mult) >> shift) * num; 1168 cycle_delta -= num * max; 1169 } 1170 nsec += ((u64) cycle_delta * mult) >> shift; 1171 1172 ts_delta = ns_to_timespec64(nsec); 1173 suspendtime_found = true; 1174 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1175 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1176 suspendtime_found = true; 1177 } 1178 1179 if (suspendtime_found) 1180 __timekeeping_inject_sleeptime(tk, &ts_delta); 1181 1182 /* Re-base the last cycle value */ 1183 tk->tkr.cycle_last = cycle_now; 1184 tk->ntp_error = 0; 1185 timekeeping_suspended = 0; 1186 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1187 write_seqcount_end(&tk_core.seq); 1188 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1189 1190 touch_softlockup_watchdog(); 1191 1192 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 1193 1194 /* Resume hrtimers */ 1195 hrtimers_resume(); 1196 } 1197 1198 static int timekeeping_suspend(void) 1199 { 1200 struct timekeeper *tk = &tk_core.timekeeper; 1201 unsigned long flags; 1202 struct timespec64 delta, delta_delta; 1203 static struct timespec64 old_delta; 1204 struct timespec tmp; 1205 1206 read_persistent_clock(&tmp); 1207 timekeeping_suspend_time = timespec_to_timespec64(tmp); 1208 1209 /* 1210 * On some systems the persistent_clock can not be detected at 1211 * timekeeping_init by its return value, so if we see a valid 1212 * value returned, update the persistent_clock_exists flag. 1213 */ 1214 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1215 persistent_clock_exist = true; 1216 1217 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1218 write_seqcount_begin(&tk_core.seq); 1219 timekeeping_forward_now(tk); 1220 timekeeping_suspended = 1; 1221 1222 /* 1223 * To avoid drift caused by repeated suspend/resumes, 1224 * which each can add ~1 second drift error, 1225 * try to compensate so the difference in system time 1226 * and persistent_clock time stays close to constant. 1227 */ 1228 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1229 delta_delta = timespec64_sub(delta, old_delta); 1230 if (abs(delta_delta.tv_sec) >= 2) { 1231 /* 1232 * if delta_delta is too large, assume time correction 1233 * has occured and set old_delta to the current delta. 1234 */ 1235 old_delta = delta; 1236 } else { 1237 /* Otherwise try to adjust old_system to compensate */ 1238 timekeeping_suspend_time = 1239 timespec64_add(timekeeping_suspend_time, delta_delta); 1240 } 1241 1242 timekeeping_update(tk, TK_MIRROR); 1243 write_seqcount_end(&tk_core.seq); 1244 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1245 1246 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 1247 clocksource_suspend(); 1248 clockevents_suspend(); 1249 1250 return 0; 1251 } 1252 1253 /* sysfs resume/suspend bits for timekeeping */ 1254 static struct syscore_ops timekeeping_syscore_ops = { 1255 .resume = timekeeping_resume, 1256 .suspend = timekeeping_suspend, 1257 }; 1258 1259 static int __init timekeeping_init_ops(void) 1260 { 1261 register_syscore_ops(&timekeeping_syscore_ops); 1262 return 0; 1263 } 1264 device_initcall(timekeeping_init_ops); 1265 1266 /* 1267 * Apply a multiplier adjustment to the timekeeper 1268 */ 1269 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1270 s64 offset, 1271 bool negative, 1272 int adj_scale) 1273 { 1274 s64 interval = tk->cycle_interval; 1275 s32 mult_adj = 1; 1276 1277 if (negative) { 1278 mult_adj = -mult_adj; 1279 interval = -interval; 1280 offset = -offset; 1281 } 1282 mult_adj <<= adj_scale; 1283 interval <<= adj_scale; 1284 offset <<= adj_scale; 1285 1286 /* 1287 * So the following can be confusing. 1288 * 1289 * To keep things simple, lets assume mult_adj == 1 for now. 1290 * 1291 * When mult_adj != 1, remember that the interval and offset values 1292 * have been appropriately scaled so the math is the same. 1293 * 1294 * The basic idea here is that we're increasing the multiplier 1295 * by one, this causes the xtime_interval to be incremented by 1296 * one cycle_interval. This is because: 1297 * xtime_interval = cycle_interval * mult 1298 * So if mult is being incremented by one: 1299 * xtime_interval = cycle_interval * (mult + 1) 1300 * Its the same as: 1301 * xtime_interval = (cycle_interval * mult) + cycle_interval 1302 * Which can be shortened to: 1303 * xtime_interval += cycle_interval 1304 * 1305 * So offset stores the non-accumulated cycles. Thus the current 1306 * time (in shifted nanoseconds) is: 1307 * now = (offset * adj) + xtime_nsec 1308 * Now, even though we're adjusting the clock frequency, we have 1309 * to keep time consistent. In other words, we can't jump back 1310 * in time, and we also want to avoid jumping forward in time. 1311 * 1312 * So given the same offset value, we need the time to be the same 1313 * both before and after the freq adjustment. 1314 * now = (offset * adj_1) + xtime_nsec_1 1315 * now = (offset * adj_2) + xtime_nsec_2 1316 * So: 1317 * (offset * adj_1) + xtime_nsec_1 = 1318 * (offset * adj_2) + xtime_nsec_2 1319 * And we know: 1320 * adj_2 = adj_1 + 1 1321 * So: 1322 * (offset * adj_1) + xtime_nsec_1 = 1323 * (offset * (adj_1+1)) + xtime_nsec_2 1324 * (offset * adj_1) + xtime_nsec_1 = 1325 * (offset * adj_1) + offset + xtime_nsec_2 1326 * Canceling the sides: 1327 * xtime_nsec_1 = offset + xtime_nsec_2 1328 * Which gives us: 1329 * xtime_nsec_2 = xtime_nsec_1 - offset 1330 * Which simplfies to: 1331 * xtime_nsec -= offset 1332 * 1333 * XXX - TODO: Doc ntp_error calculation. 1334 */ 1335 tk->tkr.mult += mult_adj; 1336 tk->xtime_interval += interval; 1337 tk->tkr.xtime_nsec -= offset; 1338 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1339 } 1340 1341 /* 1342 * Calculate the multiplier adjustment needed to match the frequency 1343 * specified by NTP 1344 */ 1345 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1346 s64 offset) 1347 { 1348 s64 interval = tk->cycle_interval; 1349 s64 xinterval = tk->xtime_interval; 1350 s64 tick_error; 1351 bool negative; 1352 u32 adj; 1353 1354 /* Remove any current error adj from freq calculation */ 1355 if (tk->ntp_err_mult) 1356 xinterval -= tk->cycle_interval; 1357 1358 tk->ntp_tick = ntp_tick_length(); 1359 1360 /* Calculate current error per tick */ 1361 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1362 tick_error -= (xinterval + tk->xtime_remainder); 1363 1364 /* Don't worry about correcting it if its small */ 1365 if (likely((tick_error >= 0) && (tick_error <= interval))) 1366 return; 1367 1368 /* preserve the direction of correction */ 1369 negative = (tick_error < 0); 1370 1371 /* Sort out the magnitude of the correction */ 1372 tick_error = abs(tick_error); 1373 for (adj = 0; tick_error > interval; adj++) 1374 tick_error >>= 1; 1375 1376 /* scale the corrections */ 1377 timekeeping_apply_adjustment(tk, offset, negative, adj); 1378 } 1379 1380 /* 1381 * Adjust the timekeeper's multiplier to the correct frequency 1382 * and also to reduce the accumulated error value. 1383 */ 1384 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1385 { 1386 /* Correct for the current frequency error */ 1387 timekeeping_freqadjust(tk, offset); 1388 1389 /* Next make a small adjustment to fix any cumulative error */ 1390 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1391 tk->ntp_err_mult = 1; 1392 timekeeping_apply_adjustment(tk, offset, 0, 0); 1393 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1394 /* Undo any existing error adjustment */ 1395 timekeeping_apply_adjustment(tk, offset, 1, 0); 1396 tk->ntp_err_mult = 0; 1397 } 1398 1399 if (unlikely(tk->tkr.clock->maxadj && 1400 (tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) { 1401 printk_once(KERN_WARNING 1402 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1403 tk->tkr.clock->name, (long)tk->tkr.mult, 1404 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj); 1405 } 1406 1407 /* 1408 * It may be possible that when we entered this function, xtime_nsec 1409 * was very small. Further, if we're slightly speeding the clocksource 1410 * in the code above, its possible the required corrective factor to 1411 * xtime_nsec could cause it to underflow. 1412 * 1413 * Now, since we already accumulated the second, cannot simply roll 1414 * the accumulated second back, since the NTP subsystem has been 1415 * notified via second_overflow. So instead we push xtime_nsec forward 1416 * by the amount we underflowed, and add that amount into the error. 1417 * 1418 * We'll correct this error next time through this function, when 1419 * xtime_nsec is not as small. 1420 */ 1421 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) { 1422 s64 neg = -(s64)tk->tkr.xtime_nsec; 1423 tk->tkr.xtime_nsec = 0; 1424 tk->ntp_error += neg << tk->ntp_error_shift; 1425 } 1426 } 1427 1428 /** 1429 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1430 * 1431 * Helper function that accumulates a the nsecs greater then a second 1432 * from the xtime_nsec field to the xtime_secs field. 1433 * It also calls into the NTP code to handle leapsecond processing. 1434 * 1435 */ 1436 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1437 { 1438 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift; 1439 unsigned int clock_set = 0; 1440 1441 while (tk->tkr.xtime_nsec >= nsecps) { 1442 int leap; 1443 1444 tk->tkr.xtime_nsec -= nsecps; 1445 tk->xtime_sec++; 1446 1447 /* Figure out if its a leap sec and apply if needed */ 1448 leap = second_overflow(tk->xtime_sec); 1449 if (unlikely(leap)) { 1450 struct timespec64 ts; 1451 1452 tk->xtime_sec += leap; 1453 1454 ts.tv_sec = leap; 1455 ts.tv_nsec = 0; 1456 tk_set_wall_to_mono(tk, 1457 timespec64_sub(tk->wall_to_monotonic, ts)); 1458 1459 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1460 1461 clock_set = TK_CLOCK_WAS_SET; 1462 } 1463 } 1464 return clock_set; 1465 } 1466 1467 /** 1468 * logarithmic_accumulation - shifted accumulation of cycles 1469 * 1470 * This functions accumulates a shifted interval of cycles into 1471 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1472 * loop. 1473 * 1474 * Returns the unconsumed cycles. 1475 */ 1476 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1477 u32 shift, 1478 unsigned int *clock_set) 1479 { 1480 cycle_t interval = tk->cycle_interval << shift; 1481 u64 raw_nsecs; 1482 1483 /* If the offset is smaller then a shifted interval, do nothing */ 1484 if (offset < interval) 1485 return offset; 1486 1487 /* Accumulate one shifted interval */ 1488 offset -= interval; 1489 tk->tkr.cycle_last += interval; 1490 1491 tk->tkr.xtime_nsec += tk->xtime_interval << shift; 1492 *clock_set |= accumulate_nsecs_to_secs(tk); 1493 1494 /* Accumulate raw time */ 1495 raw_nsecs = (u64)tk->raw_interval << shift; 1496 raw_nsecs += tk->raw_time.tv_nsec; 1497 if (raw_nsecs >= NSEC_PER_SEC) { 1498 u64 raw_secs = raw_nsecs; 1499 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1500 tk->raw_time.tv_sec += raw_secs; 1501 } 1502 tk->raw_time.tv_nsec = raw_nsecs; 1503 1504 /* Accumulate error between NTP and clock interval */ 1505 tk->ntp_error += tk->ntp_tick << shift; 1506 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1507 (tk->ntp_error_shift + shift); 1508 1509 return offset; 1510 } 1511 1512 /** 1513 * update_wall_time - Uses the current clocksource to increment the wall time 1514 * 1515 */ 1516 void update_wall_time(void) 1517 { 1518 struct timekeeper *real_tk = &tk_core.timekeeper; 1519 struct timekeeper *tk = &shadow_timekeeper; 1520 cycle_t offset; 1521 int shift = 0, maxshift; 1522 unsigned int clock_set = 0; 1523 unsigned long flags; 1524 1525 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1526 1527 /* Make sure we're fully resumed: */ 1528 if (unlikely(timekeeping_suspended)) 1529 goto out; 1530 1531 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1532 offset = real_tk->cycle_interval; 1533 #else 1534 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock), 1535 tk->tkr.cycle_last, tk->tkr.mask); 1536 #endif 1537 1538 /* Check if there's really nothing to do */ 1539 if (offset < real_tk->cycle_interval) 1540 goto out; 1541 1542 /* 1543 * With NO_HZ we may have to accumulate many cycle_intervals 1544 * (think "ticks") worth of time at once. To do this efficiently, 1545 * we calculate the largest doubling multiple of cycle_intervals 1546 * that is smaller than the offset. We then accumulate that 1547 * chunk in one go, and then try to consume the next smaller 1548 * doubled multiple. 1549 */ 1550 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1551 shift = max(0, shift); 1552 /* Bound shift to one less than what overflows tick_length */ 1553 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1554 shift = min(shift, maxshift); 1555 while (offset >= tk->cycle_interval) { 1556 offset = logarithmic_accumulation(tk, offset, shift, 1557 &clock_set); 1558 if (offset < tk->cycle_interval<<shift) 1559 shift--; 1560 } 1561 1562 /* correct the clock when NTP error is too big */ 1563 timekeeping_adjust(tk, offset); 1564 1565 /* 1566 * XXX This can be killed once everyone converts 1567 * to the new update_vsyscall. 1568 */ 1569 old_vsyscall_fixup(tk); 1570 1571 /* 1572 * Finally, make sure that after the rounding 1573 * xtime_nsec isn't larger than NSEC_PER_SEC 1574 */ 1575 clock_set |= accumulate_nsecs_to_secs(tk); 1576 1577 write_seqcount_begin(&tk_core.seq); 1578 /* 1579 * Update the real timekeeper. 1580 * 1581 * We could avoid this memcpy by switching pointers, but that 1582 * requires changes to all other timekeeper usage sites as 1583 * well, i.e. move the timekeeper pointer getter into the 1584 * spinlocked/seqcount protected sections. And we trade this 1585 * memcpy under the tk_core.seq against one before we start 1586 * updating. 1587 */ 1588 memcpy(real_tk, tk, sizeof(*tk)); 1589 timekeeping_update(real_tk, clock_set); 1590 write_seqcount_end(&tk_core.seq); 1591 out: 1592 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1593 if (clock_set) 1594 /* Have to call _delayed version, since in irq context*/ 1595 clock_was_set_delayed(); 1596 } 1597 1598 /** 1599 * getboottime - Return the real time of system boot. 1600 * @ts: pointer to the timespec to be set 1601 * 1602 * Returns the wall-time of boot in a timespec. 1603 * 1604 * This is based on the wall_to_monotonic offset and the total suspend 1605 * time. Calls to settimeofday will affect the value returned (which 1606 * basically means that however wrong your real time clock is at boot time, 1607 * you get the right time here). 1608 */ 1609 void getboottime(struct timespec *ts) 1610 { 1611 struct timekeeper *tk = &tk_core.timekeeper; 1612 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 1613 1614 *ts = ktime_to_timespec(t); 1615 } 1616 EXPORT_SYMBOL_GPL(getboottime); 1617 1618 unsigned long get_seconds(void) 1619 { 1620 struct timekeeper *tk = &tk_core.timekeeper; 1621 1622 return tk->xtime_sec; 1623 } 1624 EXPORT_SYMBOL(get_seconds); 1625 1626 struct timespec __current_kernel_time(void) 1627 { 1628 struct timekeeper *tk = &tk_core.timekeeper; 1629 1630 return timespec64_to_timespec(tk_xtime(tk)); 1631 } 1632 1633 struct timespec current_kernel_time(void) 1634 { 1635 struct timekeeper *tk = &tk_core.timekeeper; 1636 struct timespec64 now; 1637 unsigned long seq; 1638 1639 do { 1640 seq = read_seqcount_begin(&tk_core.seq); 1641 1642 now = tk_xtime(tk); 1643 } while (read_seqcount_retry(&tk_core.seq, seq)); 1644 1645 return timespec64_to_timespec(now); 1646 } 1647 EXPORT_SYMBOL(current_kernel_time); 1648 1649 struct timespec get_monotonic_coarse(void) 1650 { 1651 struct timekeeper *tk = &tk_core.timekeeper; 1652 struct timespec64 now, mono; 1653 unsigned long seq; 1654 1655 do { 1656 seq = read_seqcount_begin(&tk_core.seq); 1657 1658 now = tk_xtime(tk); 1659 mono = tk->wall_to_monotonic; 1660 } while (read_seqcount_retry(&tk_core.seq, seq)); 1661 1662 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 1663 now.tv_nsec + mono.tv_nsec); 1664 1665 return timespec64_to_timespec(now); 1666 } 1667 1668 /* 1669 * Must hold jiffies_lock 1670 */ 1671 void do_timer(unsigned long ticks) 1672 { 1673 jiffies_64 += ticks; 1674 calc_global_load(ticks); 1675 } 1676 1677 /** 1678 * ktime_get_update_offsets_tick - hrtimer helper 1679 * @offs_real: pointer to storage for monotonic -> realtime offset 1680 * @offs_boot: pointer to storage for monotonic -> boottime offset 1681 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1682 * 1683 * Returns monotonic time at last tick and various offsets 1684 */ 1685 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot, 1686 ktime_t *offs_tai) 1687 { 1688 struct timekeeper *tk = &tk_core.timekeeper; 1689 unsigned int seq; 1690 ktime_t base; 1691 u64 nsecs; 1692 1693 do { 1694 seq = read_seqcount_begin(&tk_core.seq); 1695 1696 base = tk->tkr.base_mono; 1697 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift; 1698 1699 *offs_real = tk->offs_real; 1700 *offs_boot = tk->offs_boot; 1701 *offs_tai = tk->offs_tai; 1702 } while (read_seqcount_retry(&tk_core.seq, seq)); 1703 1704 return ktime_add_ns(base, nsecs); 1705 } 1706 1707 #ifdef CONFIG_HIGH_RES_TIMERS 1708 /** 1709 * ktime_get_update_offsets_now - hrtimer helper 1710 * @offs_real: pointer to storage for monotonic -> realtime offset 1711 * @offs_boot: pointer to storage for monotonic -> boottime offset 1712 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1713 * 1714 * Returns current monotonic time and updates the offsets 1715 * Called from hrtimer_interrupt() or retrigger_next_event() 1716 */ 1717 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot, 1718 ktime_t *offs_tai) 1719 { 1720 struct timekeeper *tk = &tk_core.timekeeper; 1721 unsigned int seq; 1722 ktime_t base; 1723 u64 nsecs; 1724 1725 do { 1726 seq = read_seqcount_begin(&tk_core.seq); 1727 1728 base = tk->tkr.base_mono; 1729 nsecs = timekeeping_get_ns(&tk->tkr); 1730 1731 *offs_real = tk->offs_real; 1732 *offs_boot = tk->offs_boot; 1733 *offs_tai = tk->offs_tai; 1734 } while (read_seqcount_retry(&tk_core.seq, seq)); 1735 1736 return ktime_add_ns(base, nsecs); 1737 } 1738 #endif 1739 1740 /** 1741 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1742 */ 1743 int do_adjtimex(struct timex *txc) 1744 { 1745 struct timekeeper *tk = &tk_core.timekeeper; 1746 unsigned long flags; 1747 struct timespec64 ts; 1748 s32 orig_tai, tai; 1749 int ret; 1750 1751 /* Validate the data before disabling interrupts */ 1752 ret = ntp_validate_timex(txc); 1753 if (ret) 1754 return ret; 1755 1756 if (txc->modes & ADJ_SETOFFSET) { 1757 struct timespec delta; 1758 delta.tv_sec = txc->time.tv_sec; 1759 delta.tv_nsec = txc->time.tv_usec; 1760 if (!(txc->modes & ADJ_NANO)) 1761 delta.tv_nsec *= 1000; 1762 ret = timekeeping_inject_offset(&delta); 1763 if (ret) 1764 return ret; 1765 } 1766 1767 getnstimeofday64(&ts); 1768 1769 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1770 write_seqcount_begin(&tk_core.seq); 1771 1772 orig_tai = tai = tk->tai_offset; 1773 ret = __do_adjtimex(txc, &ts, &tai); 1774 1775 if (tai != orig_tai) { 1776 __timekeeping_set_tai_offset(tk, tai); 1777 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1778 } 1779 write_seqcount_end(&tk_core.seq); 1780 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1781 1782 if (tai != orig_tai) 1783 clock_was_set(); 1784 1785 ntp_notify_cmos_timer(); 1786 1787 return ret; 1788 } 1789 1790 #ifdef CONFIG_NTP_PPS 1791 /** 1792 * hardpps() - Accessor function to NTP __hardpps function 1793 */ 1794 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 1795 { 1796 unsigned long flags; 1797 1798 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1799 write_seqcount_begin(&tk_core.seq); 1800 1801 __hardpps(phase_ts, raw_ts); 1802 1803 write_seqcount_end(&tk_core.seq); 1804 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1805 } 1806 EXPORT_SYMBOL(hardpps); 1807 #endif 1808 1809 /** 1810 * xtime_update() - advances the timekeeping infrastructure 1811 * @ticks: number of ticks, that have elapsed since the last call. 1812 * 1813 * Must be called with interrupts disabled. 1814 */ 1815 void xtime_update(unsigned long ticks) 1816 { 1817 write_seqlock(&jiffies_lock); 1818 do_timer(ticks); 1819 write_sequnlock(&jiffies_lock); 1820 update_wall_time(); 1821 } 1822