1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* NTP adjusted clock multiplier */ 29 u32 mult; 30 /* The shift value of the current clocksource. */ 31 int shift; 32 33 /* Number of clock cycles in one NTP interval. */ 34 cycle_t cycle_interval; 35 /* Number of clock shifted nano seconds in one NTP interval. */ 36 u64 xtime_interval; 37 /* shifted nano seconds left over when rounding cycle_interval */ 38 s64 xtime_remainder; 39 /* Raw nano seconds accumulated per NTP interval. */ 40 u32 raw_interval; 41 42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ 43 u64 xtime_nsec; 44 /* Difference between accumulated time and NTP time in ntp 45 * shifted nano seconds. */ 46 s64 ntp_error; 47 /* Shift conversion between clock shifted nano seconds and 48 * ntp shifted nano seconds. */ 49 int ntp_error_shift; 50 51 /* The current time */ 52 struct timespec xtime; 53 /* 54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 56 * at zero at system boot time, so wall_to_monotonic will be negative, 57 * however, we will ALWAYS keep the tv_nsec part positive so we can use 58 * the usual normalization. 59 * 60 * wall_to_monotonic is moved after resume from suspend for the 61 * monotonic time not to jump. We need to add total_sleep_time to 62 * wall_to_monotonic to get the real boot based time offset. 63 * 64 * - wall_to_monotonic is no longer the boot time, getboottime must be 65 * used instead. 66 */ 67 struct timespec wall_to_monotonic; 68 /* time spent in suspend */ 69 struct timespec total_sleep_time; 70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ 71 struct timespec raw_time; 72 73 /* Seqlock for all timekeeper values */ 74 seqlock_t lock; 75 }; 76 77 static struct timekeeper timekeeper; 78 79 /* 80 * This read-write spinlock protects us from races in SMP while 81 * playing with xtime. 82 */ 83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 84 85 86 /* flag for if timekeeping is suspended */ 87 int __read_mostly timekeeping_suspended; 88 89 90 91 /** 92 * timekeeper_setup_internals - Set up internals to use clocksource clock. 93 * 94 * @clock: Pointer to clocksource. 95 * 96 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 97 * pair and interval request. 98 * 99 * Unless you're the timekeeping code, you should not be using this! 100 */ 101 static void timekeeper_setup_internals(struct clocksource *clock) 102 { 103 cycle_t interval; 104 u64 tmp, ntpinterval; 105 106 timekeeper.clock = clock; 107 clock->cycle_last = clock->read(clock); 108 109 /* Do the ns -> cycle conversion first, using original mult */ 110 tmp = NTP_INTERVAL_LENGTH; 111 tmp <<= clock->shift; 112 ntpinterval = tmp; 113 tmp += clock->mult/2; 114 do_div(tmp, clock->mult); 115 if (tmp == 0) 116 tmp = 1; 117 118 interval = (cycle_t) tmp; 119 timekeeper.cycle_interval = interval; 120 121 /* Go back from cycles -> shifted ns */ 122 timekeeper.xtime_interval = (u64) interval * clock->mult; 123 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval; 124 timekeeper.raw_interval = 125 ((u64) interval * clock->mult) >> clock->shift; 126 127 timekeeper.xtime_nsec = 0; 128 timekeeper.shift = clock->shift; 129 130 timekeeper.ntp_error = 0; 131 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 132 133 /* 134 * The timekeeper keeps its own mult values for the currently 135 * active clocksource. These value will be adjusted via NTP 136 * to counteract clock drifting. 137 */ 138 timekeeper.mult = clock->mult; 139 } 140 141 /* Timekeeper helper functions. */ 142 static inline s64 timekeeping_get_ns(void) 143 { 144 cycle_t cycle_now, cycle_delta; 145 struct clocksource *clock; 146 147 /* read clocksource: */ 148 clock = timekeeper.clock; 149 cycle_now = clock->read(clock); 150 151 /* calculate the delta since the last update_wall_time: */ 152 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 153 154 /* return delta convert to nanoseconds using ntp adjusted mult. */ 155 return clocksource_cyc2ns(cycle_delta, timekeeper.mult, 156 timekeeper.shift); 157 } 158 159 static inline s64 timekeeping_get_ns_raw(void) 160 { 161 cycle_t cycle_now, cycle_delta; 162 struct clocksource *clock; 163 164 /* read clocksource: */ 165 clock = timekeeper.clock; 166 cycle_now = clock->read(clock); 167 168 /* calculate the delta since the last update_wall_time: */ 169 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 170 171 /* return delta convert to nanoseconds. */ 172 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 173 } 174 175 /* must hold write on timekeeper.lock */ 176 static void timekeeping_update(bool clearntp) 177 { 178 if (clearntp) { 179 timekeeper.ntp_error = 0; 180 ntp_clear(); 181 } 182 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic, 183 timekeeper.clock, timekeeper.mult); 184 } 185 186 187 /** 188 * timekeeping_forward_now - update clock to the current time 189 * 190 * Forward the current clock to update its state since the last call to 191 * update_wall_time(). This is useful before significant clock changes, 192 * as it avoids having to deal with this time offset explicitly. 193 */ 194 static void timekeeping_forward_now(void) 195 { 196 cycle_t cycle_now, cycle_delta; 197 struct clocksource *clock; 198 s64 nsec; 199 200 clock = timekeeper.clock; 201 cycle_now = clock->read(clock); 202 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 203 clock->cycle_last = cycle_now; 204 205 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, 206 timekeeper.shift); 207 208 /* If arch requires, add in gettimeoffset() */ 209 nsec += arch_gettimeoffset(); 210 211 timespec_add_ns(&timekeeper.xtime, nsec); 212 213 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 214 timespec_add_ns(&timekeeper.raw_time, nsec); 215 } 216 217 /** 218 * getnstimeofday - Returns the time of day in a timespec 219 * @ts: pointer to the timespec to be set 220 * 221 * Returns the time of day in a timespec. 222 */ 223 void getnstimeofday(struct timespec *ts) 224 { 225 unsigned long seq; 226 s64 nsecs; 227 228 WARN_ON(timekeeping_suspended); 229 230 do { 231 seq = read_seqbegin(&timekeeper.lock); 232 233 *ts = timekeeper.xtime; 234 nsecs = timekeeping_get_ns(); 235 236 /* If arch requires, add in gettimeoffset() */ 237 nsecs += arch_gettimeoffset(); 238 239 } while (read_seqretry(&timekeeper.lock, seq)); 240 241 timespec_add_ns(ts, nsecs); 242 } 243 244 EXPORT_SYMBOL(getnstimeofday); 245 246 ktime_t ktime_get(void) 247 { 248 unsigned int seq; 249 s64 secs, nsecs; 250 251 WARN_ON(timekeeping_suspended); 252 253 do { 254 seq = read_seqbegin(&timekeeper.lock); 255 secs = timekeeper.xtime.tv_sec + 256 timekeeper.wall_to_monotonic.tv_sec; 257 nsecs = timekeeper.xtime.tv_nsec + 258 timekeeper.wall_to_monotonic.tv_nsec; 259 nsecs += timekeeping_get_ns(); 260 /* If arch requires, add in gettimeoffset() */ 261 nsecs += arch_gettimeoffset(); 262 263 } while (read_seqretry(&timekeeper.lock, seq)); 264 /* 265 * Use ktime_set/ktime_add_ns to create a proper ktime on 266 * 32-bit architectures without CONFIG_KTIME_SCALAR. 267 */ 268 return ktime_add_ns(ktime_set(secs, 0), nsecs); 269 } 270 EXPORT_SYMBOL_GPL(ktime_get); 271 272 /** 273 * ktime_get_ts - get the monotonic clock in timespec format 274 * @ts: pointer to timespec variable 275 * 276 * The function calculates the monotonic clock from the realtime 277 * clock and the wall_to_monotonic offset and stores the result 278 * in normalized timespec format in the variable pointed to by @ts. 279 */ 280 void ktime_get_ts(struct timespec *ts) 281 { 282 struct timespec tomono; 283 unsigned int seq; 284 s64 nsecs; 285 286 WARN_ON(timekeeping_suspended); 287 288 do { 289 seq = read_seqbegin(&timekeeper.lock); 290 *ts = timekeeper.xtime; 291 tomono = timekeeper.wall_to_monotonic; 292 nsecs = timekeeping_get_ns(); 293 /* If arch requires, add in gettimeoffset() */ 294 nsecs += arch_gettimeoffset(); 295 296 } while (read_seqretry(&timekeeper.lock, seq)); 297 298 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 299 ts->tv_nsec + tomono.tv_nsec + nsecs); 300 } 301 EXPORT_SYMBOL_GPL(ktime_get_ts); 302 303 #ifdef CONFIG_NTP_PPS 304 305 /** 306 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 307 * @ts_raw: pointer to the timespec to be set to raw monotonic time 308 * @ts_real: pointer to the timespec to be set to the time of day 309 * 310 * This function reads both the time of day and raw monotonic time at the 311 * same time atomically and stores the resulting timestamps in timespec 312 * format. 313 */ 314 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 315 { 316 unsigned long seq; 317 s64 nsecs_raw, nsecs_real; 318 319 WARN_ON_ONCE(timekeeping_suspended); 320 321 do { 322 u32 arch_offset; 323 324 seq = read_seqbegin(&timekeeper.lock); 325 326 *ts_raw = timekeeper.raw_time; 327 *ts_real = timekeeper.xtime; 328 329 nsecs_raw = timekeeping_get_ns_raw(); 330 nsecs_real = timekeeping_get_ns(); 331 332 /* If arch requires, add in gettimeoffset() */ 333 arch_offset = arch_gettimeoffset(); 334 nsecs_raw += arch_offset; 335 nsecs_real += arch_offset; 336 337 } while (read_seqretry(&timekeeper.lock, seq)); 338 339 timespec_add_ns(ts_raw, nsecs_raw); 340 timespec_add_ns(ts_real, nsecs_real); 341 } 342 EXPORT_SYMBOL(getnstime_raw_and_real); 343 344 #endif /* CONFIG_NTP_PPS */ 345 346 /** 347 * do_gettimeofday - Returns the time of day in a timeval 348 * @tv: pointer to the timeval to be set 349 * 350 * NOTE: Users should be converted to using getnstimeofday() 351 */ 352 void do_gettimeofday(struct timeval *tv) 353 { 354 struct timespec now; 355 356 getnstimeofday(&now); 357 tv->tv_sec = now.tv_sec; 358 tv->tv_usec = now.tv_nsec/1000; 359 } 360 361 EXPORT_SYMBOL(do_gettimeofday); 362 /** 363 * do_settimeofday - Sets the time of day 364 * @tv: pointer to the timespec variable containing the new time 365 * 366 * Sets the time of day to the new time and update NTP and notify hrtimers 367 */ 368 int do_settimeofday(const struct timespec *tv) 369 { 370 struct timespec ts_delta; 371 unsigned long flags; 372 373 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 374 return -EINVAL; 375 376 write_seqlock_irqsave(&timekeeper.lock, flags); 377 378 timekeeping_forward_now(); 379 380 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec; 381 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec; 382 timekeeper.wall_to_monotonic = 383 timespec_sub(timekeeper.wall_to_monotonic, ts_delta); 384 385 timekeeper.xtime = *tv; 386 timekeeping_update(true); 387 388 write_sequnlock_irqrestore(&timekeeper.lock, flags); 389 390 /* signal hrtimers about time change */ 391 clock_was_set(); 392 393 return 0; 394 } 395 396 EXPORT_SYMBOL(do_settimeofday); 397 398 399 /** 400 * timekeeping_inject_offset - Adds or subtracts from the current time. 401 * @tv: pointer to the timespec variable containing the offset 402 * 403 * Adds or subtracts an offset value from the current time. 404 */ 405 int timekeeping_inject_offset(struct timespec *ts) 406 { 407 unsigned long flags; 408 409 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 410 return -EINVAL; 411 412 write_seqlock_irqsave(&timekeeper.lock, flags); 413 414 timekeeping_forward_now(); 415 416 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts); 417 timekeeper.wall_to_monotonic = 418 timespec_sub(timekeeper.wall_to_monotonic, *ts); 419 420 timekeeping_update(true); 421 422 write_sequnlock_irqrestore(&timekeeper.lock, flags); 423 424 /* signal hrtimers about time change */ 425 clock_was_set(); 426 427 return 0; 428 } 429 EXPORT_SYMBOL(timekeeping_inject_offset); 430 431 /** 432 * change_clocksource - Swaps clocksources if a new one is available 433 * 434 * Accumulates current time interval and initializes new clocksource 435 */ 436 static int change_clocksource(void *data) 437 { 438 struct clocksource *new, *old; 439 unsigned long flags; 440 441 new = (struct clocksource *) data; 442 443 write_seqlock_irqsave(&timekeeper.lock, flags); 444 445 timekeeping_forward_now(); 446 if (!new->enable || new->enable(new) == 0) { 447 old = timekeeper.clock; 448 timekeeper_setup_internals(new); 449 if (old->disable) 450 old->disable(old); 451 } 452 timekeeping_update(true); 453 454 write_sequnlock_irqrestore(&timekeeper.lock, flags); 455 456 return 0; 457 } 458 459 /** 460 * timekeeping_notify - Install a new clock source 461 * @clock: pointer to the clock source 462 * 463 * This function is called from clocksource.c after a new, better clock 464 * source has been registered. The caller holds the clocksource_mutex. 465 */ 466 void timekeeping_notify(struct clocksource *clock) 467 { 468 if (timekeeper.clock == clock) 469 return; 470 stop_machine(change_clocksource, clock, NULL); 471 tick_clock_notify(); 472 } 473 474 /** 475 * ktime_get_real - get the real (wall-) time in ktime_t format 476 * 477 * returns the time in ktime_t format 478 */ 479 ktime_t ktime_get_real(void) 480 { 481 struct timespec now; 482 483 getnstimeofday(&now); 484 485 return timespec_to_ktime(now); 486 } 487 EXPORT_SYMBOL_GPL(ktime_get_real); 488 489 /** 490 * getrawmonotonic - Returns the raw monotonic time in a timespec 491 * @ts: pointer to the timespec to be set 492 * 493 * Returns the raw monotonic time (completely un-modified by ntp) 494 */ 495 void getrawmonotonic(struct timespec *ts) 496 { 497 unsigned long seq; 498 s64 nsecs; 499 500 do { 501 seq = read_seqbegin(&timekeeper.lock); 502 nsecs = timekeeping_get_ns_raw(); 503 *ts = timekeeper.raw_time; 504 505 } while (read_seqretry(&timekeeper.lock, seq)); 506 507 timespec_add_ns(ts, nsecs); 508 } 509 EXPORT_SYMBOL(getrawmonotonic); 510 511 512 /** 513 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 514 */ 515 int timekeeping_valid_for_hres(void) 516 { 517 unsigned long seq; 518 int ret; 519 520 do { 521 seq = read_seqbegin(&timekeeper.lock); 522 523 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 524 525 } while (read_seqretry(&timekeeper.lock, seq)); 526 527 return ret; 528 } 529 530 /** 531 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 532 */ 533 u64 timekeeping_max_deferment(void) 534 { 535 unsigned long seq; 536 u64 ret; 537 do { 538 seq = read_seqbegin(&timekeeper.lock); 539 540 ret = timekeeper.clock->max_idle_ns; 541 542 } while (read_seqretry(&timekeeper.lock, seq)); 543 544 return ret; 545 } 546 547 /** 548 * read_persistent_clock - Return time from the persistent clock. 549 * 550 * Weak dummy function for arches that do not yet support it. 551 * Reads the time from the battery backed persistent clock. 552 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 553 * 554 * XXX - Do be sure to remove it once all arches implement it. 555 */ 556 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 557 { 558 ts->tv_sec = 0; 559 ts->tv_nsec = 0; 560 } 561 562 /** 563 * read_boot_clock - Return time of the system start. 564 * 565 * Weak dummy function for arches that do not yet support it. 566 * Function to read the exact time the system has been started. 567 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 568 * 569 * XXX - Do be sure to remove it once all arches implement it. 570 */ 571 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 572 { 573 ts->tv_sec = 0; 574 ts->tv_nsec = 0; 575 } 576 577 /* 578 * timekeeping_init - Initializes the clocksource and common timekeeping values 579 */ 580 void __init timekeeping_init(void) 581 { 582 struct clocksource *clock; 583 unsigned long flags; 584 struct timespec now, boot; 585 586 read_persistent_clock(&now); 587 read_boot_clock(&boot); 588 589 seqlock_init(&timekeeper.lock); 590 591 ntp_init(); 592 593 write_seqlock_irqsave(&timekeeper.lock, flags); 594 clock = clocksource_default_clock(); 595 if (clock->enable) 596 clock->enable(clock); 597 timekeeper_setup_internals(clock); 598 599 timekeeper.xtime.tv_sec = now.tv_sec; 600 timekeeper.xtime.tv_nsec = now.tv_nsec; 601 timekeeper.raw_time.tv_sec = 0; 602 timekeeper.raw_time.tv_nsec = 0; 603 if (boot.tv_sec == 0 && boot.tv_nsec == 0) { 604 boot.tv_sec = timekeeper.xtime.tv_sec; 605 boot.tv_nsec = timekeeper.xtime.tv_nsec; 606 } 607 set_normalized_timespec(&timekeeper.wall_to_monotonic, 608 -boot.tv_sec, -boot.tv_nsec); 609 timekeeper.total_sleep_time.tv_sec = 0; 610 timekeeper.total_sleep_time.tv_nsec = 0; 611 write_sequnlock_irqrestore(&timekeeper.lock, flags); 612 } 613 614 /* time in seconds when suspend began */ 615 static struct timespec timekeeping_suspend_time; 616 617 /** 618 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 619 * @delta: pointer to a timespec delta value 620 * 621 * Takes a timespec offset measuring a suspend interval and properly 622 * adds the sleep offset to the timekeeping variables. 623 */ 624 static void __timekeeping_inject_sleeptime(struct timespec *delta) 625 { 626 if (!timespec_valid(delta)) { 627 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 628 "sleep delta value!\n"); 629 return; 630 } 631 632 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta); 633 timekeeper.wall_to_monotonic = 634 timespec_sub(timekeeper.wall_to_monotonic, *delta); 635 timekeeper.total_sleep_time = timespec_add( 636 timekeeper.total_sleep_time, *delta); 637 } 638 639 640 /** 641 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 642 * @delta: pointer to a timespec delta value 643 * 644 * This hook is for architectures that cannot support read_persistent_clock 645 * because their RTC/persistent clock is only accessible when irqs are enabled. 646 * 647 * This function should only be called by rtc_resume(), and allows 648 * a suspend offset to be injected into the timekeeping values. 649 */ 650 void timekeeping_inject_sleeptime(struct timespec *delta) 651 { 652 unsigned long flags; 653 struct timespec ts; 654 655 /* Make sure we don't set the clock twice */ 656 read_persistent_clock(&ts); 657 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) 658 return; 659 660 write_seqlock_irqsave(&timekeeper.lock, flags); 661 662 timekeeping_forward_now(); 663 664 __timekeeping_inject_sleeptime(delta); 665 666 timekeeping_update(true); 667 668 write_sequnlock_irqrestore(&timekeeper.lock, flags); 669 670 /* signal hrtimers about time change */ 671 clock_was_set(); 672 } 673 674 675 /** 676 * timekeeping_resume - Resumes the generic timekeeping subsystem. 677 * 678 * This is for the generic clocksource timekeeping. 679 * xtime/wall_to_monotonic/jiffies/etc are 680 * still managed by arch specific suspend/resume code. 681 */ 682 static void timekeeping_resume(void) 683 { 684 unsigned long flags; 685 struct timespec ts; 686 687 read_persistent_clock(&ts); 688 689 clocksource_resume(); 690 691 write_seqlock_irqsave(&timekeeper.lock, flags); 692 693 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 694 ts = timespec_sub(ts, timekeeping_suspend_time); 695 __timekeeping_inject_sleeptime(&ts); 696 } 697 /* re-base the last cycle value */ 698 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); 699 timekeeper.ntp_error = 0; 700 timekeeping_suspended = 0; 701 write_sequnlock_irqrestore(&timekeeper.lock, flags); 702 703 touch_softlockup_watchdog(); 704 705 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 706 707 /* Resume hrtimers */ 708 hrtimers_resume(); 709 } 710 711 static int timekeeping_suspend(void) 712 { 713 unsigned long flags; 714 struct timespec delta, delta_delta; 715 static struct timespec old_delta; 716 717 read_persistent_clock(&timekeeping_suspend_time); 718 719 write_seqlock_irqsave(&timekeeper.lock, flags); 720 timekeeping_forward_now(); 721 timekeeping_suspended = 1; 722 723 /* 724 * To avoid drift caused by repeated suspend/resumes, 725 * which each can add ~1 second drift error, 726 * try to compensate so the difference in system time 727 * and persistent_clock time stays close to constant. 728 */ 729 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time); 730 delta_delta = timespec_sub(delta, old_delta); 731 if (abs(delta_delta.tv_sec) >= 2) { 732 /* 733 * if delta_delta is too large, assume time correction 734 * has occured and set old_delta to the current delta. 735 */ 736 old_delta = delta; 737 } else { 738 /* Otherwise try to adjust old_system to compensate */ 739 timekeeping_suspend_time = 740 timespec_add(timekeeping_suspend_time, delta_delta); 741 } 742 write_sequnlock_irqrestore(&timekeeper.lock, flags); 743 744 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 745 clocksource_suspend(); 746 747 return 0; 748 } 749 750 /* sysfs resume/suspend bits for timekeeping */ 751 static struct syscore_ops timekeeping_syscore_ops = { 752 .resume = timekeeping_resume, 753 .suspend = timekeeping_suspend, 754 }; 755 756 static int __init timekeeping_init_ops(void) 757 { 758 register_syscore_ops(&timekeeping_syscore_ops); 759 return 0; 760 } 761 762 device_initcall(timekeeping_init_ops); 763 764 /* 765 * If the error is already larger, we look ahead even further 766 * to compensate for late or lost adjustments. 767 */ 768 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, 769 s64 *offset) 770 { 771 s64 tick_error, i; 772 u32 look_ahead, adj; 773 s32 error2, mult; 774 775 /* 776 * Use the current error value to determine how much to look ahead. 777 * The larger the error the slower we adjust for it to avoid problems 778 * with losing too many ticks, otherwise we would overadjust and 779 * produce an even larger error. The smaller the adjustment the 780 * faster we try to adjust for it, as lost ticks can do less harm 781 * here. This is tuned so that an error of about 1 msec is adjusted 782 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 783 */ 784 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 785 error2 = abs(error2); 786 for (look_ahead = 0; error2 > 0; look_ahead++) 787 error2 >>= 2; 788 789 /* 790 * Now calculate the error in (1 << look_ahead) ticks, but first 791 * remove the single look ahead already included in the error. 792 */ 793 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1); 794 tick_error -= timekeeper.xtime_interval >> 1; 795 error = ((error - tick_error) >> look_ahead) + tick_error; 796 797 /* Finally calculate the adjustment shift value. */ 798 i = *interval; 799 mult = 1; 800 if (error < 0) { 801 error = -error; 802 *interval = -*interval; 803 *offset = -*offset; 804 mult = -1; 805 } 806 for (adj = 0; error > i; adj++) 807 error >>= 1; 808 809 *interval <<= adj; 810 *offset <<= adj; 811 return mult << adj; 812 } 813 814 /* 815 * Adjust the multiplier to reduce the error value, 816 * this is optimized for the most common adjustments of -1,0,1, 817 * for other values we can do a bit more work. 818 */ 819 static void timekeeping_adjust(s64 offset) 820 { 821 s64 error, interval = timekeeper.cycle_interval; 822 int adj; 823 824 /* 825 * The point of this is to check if the error is greater than half 826 * an interval. 827 * 828 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 829 * 830 * Note we subtract one in the shift, so that error is really error*2. 831 * This "saves" dividing(shifting) interval twice, but keeps the 832 * (error > interval) comparison as still measuring if error is 833 * larger than half an interval. 834 * 835 * Note: It does not "save" on aggravation when reading the code. 836 */ 837 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); 838 if (error > interval) { 839 /* 840 * We now divide error by 4(via shift), which checks if 841 * the error is greater than twice the interval. 842 * If it is greater, we need a bigadjust, if its smaller, 843 * we can adjust by 1. 844 */ 845 error >>= 2; 846 /* 847 * XXX - In update_wall_time, we round up to the next 848 * nanosecond, and store the amount rounded up into 849 * the error. This causes the likely below to be unlikely. 850 * 851 * The proper fix is to avoid rounding up by using 852 * the high precision timekeeper.xtime_nsec instead of 853 * xtime.tv_nsec everywhere. Fixing this will take some 854 * time. 855 */ 856 if (likely(error <= interval)) 857 adj = 1; 858 else 859 adj = timekeeping_bigadjust(error, &interval, &offset); 860 } else if (error < -interval) { 861 /* See comment above, this is just switched for the negative */ 862 error >>= 2; 863 if (likely(error >= -interval)) { 864 adj = -1; 865 interval = -interval; 866 offset = -offset; 867 } else 868 adj = timekeeping_bigadjust(error, &interval, &offset); 869 } else /* No adjustment needed */ 870 return; 871 872 if (unlikely(timekeeper.clock->maxadj && 873 (timekeeper.mult + adj > 874 timekeeper.clock->mult + timekeeper.clock->maxadj))) { 875 printk_once(KERN_WARNING 876 "Adjusting %s more than 11%% (%ld vs %ld)\n", 877 timekeeper.clock->name, (long)timekeeper.mult + adj, 878 (long)timekeeper.clock->mult + 879 timekeeper.clock->maxadj); 880 } 881 /* 882 * So the following can be confusing. 883 * 884 * To keep things simple, lets assume adj == 1 for now. 885 * 886 * When adj != 1, remember that the interval and offset values 887 * have been appropriately scaled so the math is the same. 888 * 889 * The basic idea here is that we're increasing the multiplier 890 * by one, this causes the xtime_interval to be incremented by 891 * one cycle_interval. This is because: 892 * xtime_interval = cycle_interval * mult 893 * So if mult is being incremented by one: 894 * xtime_interval = cycle_interval * (mult + 1) 895 * Its the same as: 896 * xtime_interval = (cycle_interval * mult) + cycle_interval 897 * Which can be shortened to: 898 * xtime_interval += cycle_interval 899 * 900 * So offset stores the non-accumulated cycles. Thus the current 901 * time (in shifted nanoseconds) is: 902 * now = (offset * adj) + xtime_nsec 903 * Now, even though we're adjusting the clock frequency, we have 904 * to keep time consistent. In other words, we can't jump back 905 * in time, and we also want to avoid jumping forward in time. 906 * 907 * So given the same offset value, we need the time to be the same 908 * both before and after the freq adjustment. 909 * now = (offset * adj_1) + xtime_nsec_1 910 * now = (offset * adj_2) + xtime_nsec_2 911 * So: 912 * (offset * adj_1) + xtime_nsec_1 = 913 * (offset * adj_2) + xtime_nsec_2 914 * And we know: 915 * adj_2 = adj_1 + 1 916 * So: 917 * (offset * adj_1) + xtime_nsec_1 = 918 * (offset * (adj_1+1)) + xtime_nsec_2 919 * (offset * adj_1) + xtime_nsec_1 = 920 * (offset * adj_1) + offset + xtime_nsec_2 921 * Canceling the sides: 922 * xtime_nsec_1 = offset + xtime_nsec_2 923 * Which gives us: 924 * xtime_nsec_2 = xtime_nsec_1 - offset 925 * Which simplfies to: 926 * xtime_nsec -= offset 927 * 928 * XXX - TODO: Doc ntp_error calculation. 929 */ 930 timekeeper.mult += adj; 931 timekeeper.xtime_interval += interval; 932 timekeeper.xtime_nsec -= offset; 933 timekeeper.ntp_error -= (interval - offset) << 934 timekeeper.ntp_error_shift; 935 } 936 937 938 /** 939 * logarithmic_accumulation - shifted accumulation of cycles 940 * 941 * This functions accumulates a shifted interval of cycles into 942 * into a shifted interval nanoseconds. Allows for O(log) accumulation 943 * loop. 944 * 945 * Returns the unconsumed cycles. 946 */ 947 static cycle_t logarithmic_accumulation(cycle_t offset, int shift) 948 { 949 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; 950 u64 raw_nsecs; 951 952 /* If the offset is smaller than a shifted interval, do nothing */ 953 if (offset < timekeeper.cycle_interval<<shift) 954 return offset; 955 956 /* Accumulate one shifted interval */ 957 offset -= timekeeper.cycle_interval << shift; 958 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift; 959 960 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift; 961 while (timekeeper.xtime_nsec >= nsecps) { 962 int leap; 963 timekeeper.xtime_nsec -= nsecps; 964 timekeeper.xtime.tv_sec++; 965 leap = second_overflow(timekeeper.xtime.tv_sec); 966 timekeeper.xtime.tv_sec += leap; 967 } 968 969 /* Accumulate raw time */ 970 raw_nsecs = timekeeper.raw_interval << shift; 971 raw_nsecs += timekeeper.raw_time.tv_nsec; 972 if (raw_nsecs >= NSEC_PER_SEC) { 973 u64 raw_secs = raw_nsecs; 974 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 975 timekeeper.raw_time.tv_sec += raw_secs; 976 } 977 timekeeper.raw_time.tv_nsec = raw_nsecs; 978 979 /* Accumulate error between NTP and clock interval */ 980 timekeeper.ntp_error += ntp_tick_length() << shift; 981 timekeeper.ntp_error -= 982 (timekeeper.xtime_interval + timekeeper.xtime_remainder) << 983 (timekeeper.ntp_error_shift + shift); 984 985 return offset; 986 } 987 988 989 /** 990 * update_wall_time - Uses the current clocksource to increment the wall time 991 * 992 */ 993 static void update_wall_time(void) 994 { 995 struct clocksource *clock; 996 cycle_t offset; 997 int shift = 0, maxshift; 998 unsigned long flags; 999 1000 write_seqlock_irqsave(&timekeeper.lock, flags); 1001 1002 /* Make sure we're fully resumed: */ 1003 if (unlikely(timekeeping_suspended)) 1004 goto out; 1005 1006 clock = timekeeper.clock; 1007 1008 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1009 offset = timekeeper.cycle_interval; 1010 #else 1011 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1012 #endif 1013 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec << 1014 timekeeper.shift; 1015 1016 /* 1017 * With NO_HZ we may have to accumulate many cycle_intervals 1018 * (think "ticks") worth of time at once. To do this efficiently, 1019 * we calculate the largest doubling multiple of cycle_intervals 1020 * that is smaller than the offset. We then accumulate that 1021 * chunk in one go, and then try to consume the next smaller 1022 * doubled multiple. 1023 */ 1024 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); 1025 shift = max(0, shift); 1026 /* Bound shift to one less than what overflows tick_length */ 1027 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1028 shift = min(shift, maxshift); 1029 while (offset >= timekeeper.cycle_interval) { 1030 offset = logarithmic_accumulation(offset, shift); 1031 if(offset < timekeeper.cycle_interval<<shift) 1032 shift--; 1033 } 1034 1035 /* correct the clock when NTP error is too big */ 1036 timekeeping_adjust(offset); 1037 1038 /* 1039 * Since in the loop above, we accumulate any amount of time 1040 * in xtime_nsec over a second into xtime.tv_sec, its possible for 1041 * xtime_nsec to be fairly small after the loop. Further, if we're 1042 * slightly speeding the clocksource up in timekeeping_adjust(), 1043 * its possible the required corrective factor to xtime_nsec could 1044 * cause it to underflow. 1045 * 1046 * Now, we cannot simply roll the accumulated second back, since 1047 * the NTP subsystem has been notified via second_overflow. So 1048 * instead we push xtime_nsec forward by the amount we underflowed, 1049 * and add that amount into the error. 1050 * 1051 * We'll correct this error next time through this function, when 1052 * xtime_nsec is not as small. 1053 */ 1054 if (unlikely((s64)timekeeper.xtime_nsec < 0)) { 1055 s64 neg = -(s64)timekeeper.xtime_nsec; 1056 timekeeper.xtime_nsec = 0; 1057 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; 1058 } 1059 1060 1061 /* 1062 * Store full nanoseconds into xtime after rounding it up and 1063 * add the remainder to the error difference. 1064 */ 1065 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >> 1066 timekeeper.shift) + 1; 1067 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec << 1068 timekeeper.shift; 1069 timekeeper.ntp_error += timekeeper.xtime_nsec << 1070 timekeeper.ntp_error_shift; 1071 1072 /* 1073 * Finally, make sure that after the rounding 1074 * xtime.tv_nsec isn't larger than NSEC_PER_SEC 1075 */ 1076 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) { 1077 int leap; 1078 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC; 1079 timekeeper.xtime.tv_sec++; 1080 leap = second_overflow(timekeeper.xtime.tv_sec); 1081 timekeeper.xtime.tv_sec += leap; 1082 } 1083 1084 timekeeping_update(false); 1085 1086 out: 1087 write_sequnlock_irqrestore(&timekeeper.lock, flags); 1088 1089 } 1090 1091 /** 1092 * getboottime - Return the real time of system boot. 1093 * @ts: pointer to the timespec to be set 1094 * 1095 * Returns the wall-time of boot in a timespec. 1096 * 1097 * This is based on the wall_to_monotonic offset and the total suspend 1098 * time. Calls to settimeofday will affect the value returned (which 1099 * basically means that however wrong your real time clock is at boot time, 1100 * you get the right time here). 1101 */ 1102 void getboottime(struct timespec *ts) 1103 { 1104 struct timespec boottime = { 1105 .tv_sec = timekeeper.wall_to_monotonic.tv_sec + 1106 timekeeper.total_sleep_time.tv_sec, 1107 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec + 1108 timekeeper.total_sleep_time.tv_nsec 1109 }; 1110 1111 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1112 } 1113 EXPORT_SYMBOL_GPL(getboottime); 1114 1115 1116 /** 1117 * get_monotonic_boottime - Returns monotonic time since boot 1118 * @ts: pointer to the timespec to be set 1119 * 1120 * Returns the monotonic time since boot in a timespec. 1121 * 1122 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1123 * includes the time spent in suspend. 1124 */ 1125 void get_monotonic_boottime(struct timespec *ts) 1126 { 1127 struct timespec tomono, sleep; 1128 unsigned int seq; 1129 s64 nsecs; 1130 1131 WARN_ON(timekeeping_suspended); 1132 1133 do { 1134 seq = read_seqbegin(&timekeeper.lock); 1135 *ts = timekeeper.xtime; 1136 tomono = timekeeper.wall_to_monotonic; 1137 sleep = timekeeper.total_sleep_time; 1138 nsecs = timekeeping_get_ns(); 1139 1140 } while (read_seqretry(&timekeeper.lock, seq)); 1141 1142 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec, 1143 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs); 1144 } 1145 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1146 1147 /** 1148 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1149 * 1150 * Returns the monotonic time since boot in a ktime 1151 * 1152 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1153 * includes the time spent in suspend. 1154 */ 1155 ktime_t ktime_get_boottime(void) 1156 { 1157 struct timespec ts; 1158 1159 get_monotonic_boottime(&ts); 1160 return timespec_to_ktime(ts); 1161 } 1162 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1163 1164 /** 1165 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1166 * @ts: pointer to the timespec to be converted 1167 */ 1168 void monotonic_to_bootbased(struct timespec *ts) 1169 { 1170 *ts = timespec_add(*ts, timekeeper.total_sleep_time); 1171 } 1172 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1173 1174 unsigned long get_seconds(void) 1175 { 1176 return timekeeper.xtime.tv_sec; 1177 } 1178 EXPORT_SYMBOL(get_seconds); 1179 1180 struct timespec __current_kernel_time(void) 1181 { 1182 return timekeeper.xtime; 1183 } 1184 1185 struct timespec current_kernel_time(void) 1186 { 1187 struct timespec now; 1188 unsigned long seq; 1189 1190 do { 1191 seq = read_seqbegin(&timekeeper.lock); 1192 1193 now = timekeeper.xtime; 1194 } while (read_seqretry(&timekeeper.lock, seq)); 1195 1196 return now; 1197 } 1198 EXPORT_SYMBOL(current_kernel_time); 1199 1200 struct timespec get_monotonic_coarse(void) 1201 { 1202 struct timespec now, mono; 1203 unsigned long seq; 1204 1205 do { 1206 seq = read_seqbegin(&timekeeper.lock); 1207 1208 now = timekeeper.xtime; 1209 mono = timekeeper.wall_to_monotonic; 1210 } while (read_seqretry(&timekeeper.lock, seq)); 1211 1212 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1213 now.tv_nsec + mono.tv_nsec); 1214 return now; 1215 } 1216 1217 /* 1218 * The 64-bit jiffies value is not atomic - you MUST NOT read it 1219 * without sampling the sequence number in xtime_lock. 1220 * jiffies is defined in the linker script... 1221 */ 1222 void do_timer(unsigned long ticks) 1223 { 1224 jiffies_64 += ticks; 1225 update_wall_time(); 1226 calc_global_load(ticks); 1227 } 1228 1229 /** 1230 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1231 * and sleep offsets. 1232 * @xtim: pointer to timespec to be set with xtime 1233 * @wtom: pointer to timespec to be set with wall_to_monotonic 1234 * @sleep: pointer to timespec to be set with time in suspend 1235 */ 1236 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1237 struct timespec *wtom, struct timespec *sleep) 1238 { 1239 unsigned long seq; 1240 1241 do { 1242 seq = read_seqbegin(&timekeeper.lock); 1243 *xtim = timekeeper.xtime; 1244 *wtom = timekeeper.wall_to_monotonic; 1245 *sleep = timekeeper.total_sleep_time; 1246 } while (read_seqretry(&timekeeper.lock, seq)); 1247 } 1248 1249 /** 1250 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1251 */ 1252 ktime_t ktime_get_monotonic_offset(void) 1253 { 1254 unsigned long seq; 1255 struct timespec wtom; 1256 1257 do { 1258 seq = read_seqbegin(&timekeeper.lock); 1259 wtom = timekeeper.wall_to_monotonic; 1260 } while (read_seqretry(&timekeeper.lock, seq)); 1261 1262 return timespec_to_ktime(wtom); 1263 } 1264 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1265 1266 1267 /** 1268 * xtime_update() - advances the timekeeping infrastructure 1269 * @ticks: number of ticks, that have elapsed since the last call. 1270 * 1271 * Must be called with interrupts disabled. 1272 */ 1273 void xtime_update(unsigned long ticks) 1274 { 1275 write_seqlock(&xtime_lock); 1276 do_timer(ticks); 1277 write_sequnlock(&xtime_lock); 1278 } 1279