xref: /openbmc/linux/kernel/time/timekeeping.c (revision 63dc02bd)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* NTP adjusted clock multiplier */
29 	u32	mult;
30 	/* The shift value of the current clocksource. */
31 	int	shift;
32 
33 	/* Number of clock cycles in one NTP interval. */
34 	cycle_t cycle_interval;
35 	/* Number of clock shifted nano seconds in one NTP interval. */
36 	u64	xtime_interval;
37 	/* shifted nano seconds left over when rounding cycle_interval */
38 	s64	xtime_remainder;
39 	/* Raw nano seconds accumulated per NTP interval. */
40 	u32	raw_interval;
41 
42 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 	u64	xtime_nsec;
44 	/* Difference between accumulated time and NTP time in ntp
45 	 * shifted nano seconds. */
46 	s64	ntp_error;
47 	/* Shift conversion between clock shifted nano seconds and
48 	 * ntp shifted nano seconds. */
49 	int	ntp_error_shift;
50 
51 	/* The current time */
52 	struct timespec xtime;
53 	/*
54 	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56 	 * at zero at system boot time, so wall_to_monotonic will be negative,
57 	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 	 * the usual normalization.
59 	 *
60 	 * wall_to_monotonic is moved after resume from suspend for the
61 	 * monotonic time not to jump. We need to add total_sleep_time to
62 	 * wall_to_monotonic to get the real boot based time offset.
63 	 *
64 	 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 	 * used instead.
66 	 */
67 	struct timespec wall_to_monotonic;
68 	/* time spent in suspend */
69 	struct timespec total_sleep_time;
70 	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 	struct timespec raw_time;
72 
73 	/* Seqlock for all timekeeper values */
74 	seqlock_t lock;
75 };
76 
77 static struct timekeeper timekeeper;
78 
79 /*
80  * This read-write spinlock protects us from races in SMP while
81  * playing with xtime.
82  */
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
84 
85 
86 /* flag for if timekeeping is suspended */
87 int __read_mostly timekeeping_suspended;
88 
89 
90 
91 /**
92  * timekeeper_setup_internals - Set up internals to use clocksource clock.
93  *
94  * @clock:		Pointer to clocksource.
95  *
96  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
97  * pair and interval request.
98  *
99  * Unless you're the timekeeping code, you should not be using this!
100  */
101 static void timekeeper_setup_internals(struct clocksource *clock)
102 {
103 	cycle_t interval;
104 	u64 tmp, ntpinterval;
105 
106 	timekeeper.clock = clock;
107 	clock->cycle_last = clock->read(clock);
108 
109 	/* Do the ns -> cycle conversion first, using original mult */
110 	tmp = NTP_INTERVAL_LENGTH;
111 	tmp <<= clock->shift;
112 	ntpinterval = tmp;
113 	tmp += clock->mult/2;
114 	do_div(tmp, clock->mult);
115 	if (tmp == 0)
116 		tmp = 1;
117 
118 	interval = (cycle_t) tmp;
119 	timekeeper.cycle_interval = interval;
120 
121 	/* Go back from cycles -> shifted ns */
122 	timekeeper.xtime_interval = (u64) interval * clock->mult;
123 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
124 	timekeeper.raw_interval =
125 		((u64) interval * clock->mult) >> clock->shift;
126 
127 	timekeeper.xtime_nsec = 0;
128 	timekeeper.shift = clock->shift;
129 
130 	timekeeper.ntp_error = 0;
131 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
132 
133 	/*
134 	 * The timekeeper keeps its own mult values for the currently
135 	 * active clocksource. These value will be adjusted via NTP
136 	 * to counteract clock drifting.
137 	 */
138 	timekeeper.mult = clock->mult;
139 }
140 
141 /* Timekeeper helper functions. */
142 static inline s64 timekeeping_get_ns(void)
143 {
144 	cycle_t cycle_now, cycle_delta;
145 	struct clocksource *clock;
146 
147 	/* read clocksource: */
148 	clock = timekeeper.clock;
149 	cycle_now = clock->read(clock);
150 
151 	/* calculate the delta since the last update_wall_time: */
152 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
153 
154 	/* return delta convert to nanoseconds using ntp adjusted mult. */
155 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
156 				  timekeeper.shift);
157 }
158 
159 static inline s64 timekeeping_get_ns_raw(void)
160 {
161 	cycle_t cycle_now, cycle_delta;
162 	struct clocksource *clock;
163 
164 	/* read clocksource: */
165 	clock = timekeeper.clock;
166 	cycle_now = clock->read(clock);
167 
168 	/* calculate the delta since the last update_wall_time: */
169 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
170 
171 	/* return delta convert to nanoseconds. */
172 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
173 }
174 
175 /* must hold write on timekeeper.lock */
176 static void timekeeping_update(bool clearntp)
177 {
178 	if (clearntp) {
179 		timekeeper.ntp_error = 0;
180 		ntp_clear();
181 	}
182 	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
183 			 timekeeper.clock, timekeeper.mult);
184 }
185 
186 
187 /**
188  * timekeeping_forward_now - update clock to the current time
189  *
190  * Forward the current clock to update its state since the last call to
191  * update_wall_time(). This is useful before significant clock changes,
192  * as it avoids having to deal with this time offset explicitly.
193  */
194 static void timekeeping_forward_now(void)
195 {
196 	cycle_t cycle_now, cycle_delta;
197 	struct clocksource *clock;
198 	s64 nsec;
199 
200 	clock = timekeeper.clock;
201 	cycle_now = clock->read(clock);
202 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
203 	clock->cycle_last = cycle_now;
204 
205 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
206 				  timekeeper.shift);
207 
208 	/* If arch requires, add in gettimeoffset() */
209 	nsec += arch_gettimeoffset();
210 
211 	timespec_add_ns(&timekeeper.xtime, nsec);
212 
213 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
214 	timespec_add_ns(&timekeeper.raw_time, nsec);
215 }
216 
217 /**
218  * getnstimeofday - Returns the time of day in a timespec
219  * @ts:		pointer to the timespec to be set
220  *
221  * Returns the time of day in a timespec.
222  */
223 void getnstimeofday(struct timespec *ts)
224 {
225 	unsigned long seq;
226 	s64 nsecs;
227 
228 	WARN_ON(timekeeping_suspended);
229 
230 	do {
231 		seq = read_seqbegin(&timekeeper.lock);
232 
233 		*ts = timekeeper.xtime;
234 		nsecs = timekeeping_get_ns();
235 
236 		/* If arch requires, add in gettimeoffset() */
237 		nsecs += arch_gettimeoffset();
238 
239 	} while (read_seqretry(&timekeeper.lock, seq));
240 
241 	timespec_add_ns(ts, nsecs);
242 }
243 
244 EXPORT_SYMBOL(getnstimeofday);
245 
246 ktime_t ktime_get(void)
247 {
248 	unsigned int seq;
249 	s64 secs, nsecs;
250 
251 	WARN_ON(timekeeping_suspended);
252 
253 	do {
254 		seq = read_seqbegin(&timekeeper.lock);
255 		secs = timekeeper.xtime.tv_sec +
256 				timekeeper.wall_to_monotonic.tv_sec;
257 		nsecs = timekeeper.xtime.tv_nsec +
258 				timekeeper.wall_to_monotonic.tv_nsec;
259 		nsecs += timekeeping_get_ns();
260 		/* If arch requires, add in gettimeoffset() */
261 		nsecs += arch_gettimeoffset();
262 
263 	} while (read_seqretry(&timekeeper.lock, seq));
264 	/*
265 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
266 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
267 	 */
268 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
269 }
270 EXPORT_SYMBOL_GPL(ktime_get);
271 
272 /**
273  * ktime_get_ts - get the monotonic clock in timespec format
274  * @ts:		pointer to timespec variable
275  *
276  * The function calculates the monotonic clock from the realtime
277  * clock and the wall_to_monotonic offset and stores the result
278  * in normalized timespec format in the variable pointed to by @ts.
279  */
280 void ktime_get_ts(struct timespec *ts)
281 {
282 	struct timespec tomono;
283 	unsigned int seq;
284 	s64 nsecs;
285 
286 	WARN_ON(timekeeping_suspended);
287 
288 	do {
289 		seq = read_seqbegin(&timekeeper.lock);
290 		*ts = timekeeper.xtime;
291 		tomono = timekeeper.wall_to_monotonic;
292 		nsecs = timekeeping_get_ns();
293 		/* If arch requires, add in gettimeoffset() */
294 		nsecs += arch_gettimeoffset();
295 
296 	} while (read_seqretry(&timekeeper.lock, seq));
297 
298 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
299 				ts->tv_nsec + tomono.tv_nsec + nsecs);
300 }
301 EXPORT_SYMBOL_GPL(ktime_get_ts);
302 
303 #ifdef CONFIG_NTP_PPS
304 
305 /**
306  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
307  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
308  * @ts_real:	pointer to the timespec to be set to the time of day
309  *
310  * This function reads both the time of day and raw monotonic time at the
311  * same time atomically and stores the resulting timestamps in timespec
312  * format.
313  */
314 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
315 {
316 	unsigned long seq;
317 	s64 nsecs_raw, nsecs_real;
318 
319 	WARN_ON_ONCE(timekeeping_suspended);
320 
321 	do {
322 		u32 arch_offset;
323 
324 		seq = read_seqbegin(&timekeeper.lock);
325 
326 		*ts_raw = timekeeper.raw_time;
327 		*ts_real = timekeeper.xtime;
328 
329 		nsecs_raw = timekeeping_get_ns_raw();
330 		nsecs_real = timekeeping_get_ns();
331 
332 		/* If arch requires, add in gettimeoffset() */
333 		arch_offset = arch_gettimeoffset();
334 		nsecs_raw += arch_offset;
335 		nsecs_real += arch_offset;
336 
337 	} while (read_seqretry(&timekeeper.lock, seq));
338 
339 	timespec_add_ns(ts_raw, nsecs_raw);
340 	timespec_add_ns(ts_real, nsecs_real);
341 }
342 EXPORT_SYMBOL(getnstime_raw_and_real);
343 
344 #endif /* CONFIG_NTP_PPS */
345 
346 /**
347  * do_gettimeofday - Returns the time of day in a timeval
348  * @tv:		pointer to the timeval to be set
349  *
350  * NOTE: Users should be converted to using getnstimeofday()
351  */
352 void do_gettimeofday(struct timeval *tv)
353 {
354 	struct timespec now;
355 
356 	getnstimeofday(&now);
357 	tv->tv_sec = now.tv_sec;
358 	tv->tv_usec = now.tv_nsec/1000;
359 }
360 
361 EXPORT_SYMBOL(do_gettimeofday);
362 /**
363  * do_settimeofday - Sets the time of day
364  * @tv:		pointer to the timespec variable containing the new time
365  *
366  * Sets the time of day to the new time and update NTP and notify hrtimers
367  */
368 int do_settimeofday(const struct timespec *tv)
369 {
370 	struct timespec ts_delta;
371 	unsigned long flags;
372 
373 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
374 		return -EINVAL;
375 
376 	write_seqlock_irqsave(&timekeeper.lock, flags);
377 
378 	timekeeping_forward_now();
379 
380 	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
381 	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
382 	timekeeper.wall_to_monotonic =
383 			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
384 
385 	timekeeper.xtime = *tv;
386 	timekeeping_update(true);
387 
388 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
389 
390 	/* signal hrtimers about time change */
391 	clock_was_set();
392 
393 	return 0;
394 }
395 
396 EXPORT_SYMBOL(do_settimeofday);
397 
398 
399 /**
400  * timekeeping_inject_offset - Adds or subtracts from the current time.
401  * @tv:		pointer to the timespec variable containing the offset
402  *
403  * Adds or subtracts an offset value from the current time.
404  */
405 int timekeeping_inject_offset(struct timespec *ts)
406 {
407 	unsigned long flags;
408 
409 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
410 		return -EINVAL;
411 
412 	write_seqlock_irqsave(&timekeeper.lock, flags);
413 
414 	timekeeping_forward_now();
415 
416 	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
417 	timekeeper.wall_to_monotonic =
418 				timespec_sub(timekeeper.wall_to_monotonic, *ts);
419 
420 	timekeeping_update(true);
421 
422 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
423 
424 	/* signal hrtimers about time change */
425 	clock_was_set();
426 
427 	return 0;
428 }
429 EXPORT_SYMBOL(timekeeping_inject_offset);
430 
431 /**
432  * change_clocksource - Swaps clocksources if a new one is available
433  *
434  * Accumulates current time interval and initializes new clocksource
435  */
436 static int change_clocksource(void *data)
437 {
438 	struct clocksource *new, *old;
439 	unsigned long flags;
440 
441 	new = (struct clocksource *) data;
442 
443 	write_seqlock_irqsave(&timekeeper.lock, flags);
444 
445 	timekeeping_forward_now();
446 	if (!new->enable || new->enable(new) == 0) {
447 		old = timekeeper.clock;
448 		timekeeper_setup_internals(new);
449 		if (old->disable)
450 			old->disable(old);
451 	}
452 	timekeeping_update(true);
453 
454 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
455 
456 	return 0;
457 }
458 
459 /**
460  * timekeeping_notify - Install a new clock source
461  * @clock:		pointer to the clock source
462  *
463  * This function is called from clocksource.c after a new, better clock
464  * source has been registered. The caller holds the clocksource_mutex.
465  */
466 void timekeeping_notify(struct clocksource *clock)
467 {
468 	if (timekeeper.clock == clock)
469 		return;
470 	stop_machine(change_clocksource, clock, NULL);
471 	tick_clock_notify();
472 }
473 
474 /**
475  * ktime_get_real - get the real (wall-) time in ktime_t format
476  *
477  * returns the time in ktime_t format
478  */
479 ktime_t ktime_get_real(void)
480 {
481 	struct timespec now;
482 
483 	getnstimeofday(&now);
484 
485 	return timespec_to_ktime(now);
486 }
487 EXPORT_SYMBOL_GPL(ktime_get_real);
488 
489 /**
490  * getrawmonotonic - Returns the raw monotonic time in a timespec
491  * @ts:		pointer to the timespec to be set
492  *
493  * Returns the raw monotonic time (completely un-modified by ntp)
494  */
495 void getrawmonotonic(struct timespec *ts)
496 {
497 	unsigned long seq;
498 	s64 nsecs;
499 
500 	do {
501 		seq = read_seqbegin(&timekeeper.lock);
502 		nsecs = timekeeping_get_ns_raw();
503 		*ts = timekeeper.raw_time;
504 
505 	} while (read_seqretry(&timekeeper.lock, seq));
506 
507 	timespec_add_ns(ts, nsecs);
508 }
509 EXPORT_SYMBOL(getrawmonotonic);
510 
511 
512 /**
513  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
514  */
515 int timekeeping_valid_for_hres(void)
516 {
517 	unsigned long seq;
518 	int ret;
519 
520 	do {
521 		seq = read_seqbegin(&timekeeper.lock);
522 
523 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
524 
525 	} while (read_seqretry(&timekeeper.lock, seq));
526 
527 	return ret;
528 }
529 
530 /**
531  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
532  */
533 u64 timekeeping_max_deferment(void)
534 {
535 	unsigned long seq;
536 	u64 ret;
537 	do {
538 		seq = read_seqbegin(&timekeeper.lock);
539 
540 		ret = timekeeper.clock->max_idle_ns;
541 
542 	} while (read_seqretry(&timekeeper.lock, seq));
543 
544 	return ret;
545 }
546 
547 /**
548  * read_persistent_clock -  Return time from the persistent clock.
549  *
550  * Weak dummy function for arches that do not yet support it.
551  * Reads the time from the battery backed persistent clock.
552  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
553  *
554  *  XXX - Do be sure to remove it once all arches implement it.
555  */
556 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
557 {
558 	ts->tv_sec = 0;
559 	ts->tv_nsec = 0;
560 }
561 
562 /**
563  * read_boot_clock -  Return time of the system start.
564  *
565  * Weak dummy function for arches that do not yet support it.
566  * Function to read the exact time the system has been started.
567  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
568  *
569  *  XXX - Do be sure to remove it once all arches implement it.
570  */
571 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
572 {
573 	ts->tv_sec = 0;
574 	ts->tv_nsec = 0;
575 }
576 
577 /*
578  * timekeeping_init - Initializes the clocksource and common timekeeping values
579  */
580 void __init timekeeping_init(void)
581 {
582 	struct clocksource *clock;
583 	unsigned long flags;
584 	struct timespec now, boot;
585 
586 	read_persistent_clock(&now);
587 	read_boot_clock(&boot);
588 
589 	seqlock_init(&timekeeper.lock);
590 
591 	ntp_init();
592 
593 	write_seqlock_irqsave(&timekeeper.lock, flags);
594 	clock = clocksource_default_clock();
595 	if (clock->enable)
596 		clock->enable(clock);
597 	timekeeper_setup_internals(clock);
598 
599 	timekeeper.xtime.tv_sec = now.tv_sec;
600 	timekeeper.xtime.tv_nsec = now.tv_nsec;
601 	timekeeper.raw_time.tv_sec = 0;
602 	timekeeper.raw_time.tv_nsec = 0;
603 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
604 		boot.tv_sec = timekeeper.xtime.tv_sec;
605 		boot.tv_nsec = timekeeper.xtime.tv_nsec;
606 	}
607 	set_normalized_timespec(&timekeeper.wall_to_monotonic,
608 				-boot.tv_sec, -boot.tv_nsec);
609 	timekeeper.total_sleep_time.tv_sec = 0;
610 	timekeeper.total_sleep_time.tv_nsec = 0;
611 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
612 }
613 
614 /* time in seconds when suspend began */
615 static struct timespec timekeeping_suspend_time;
616 
617 /**
618  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
619  * @delta: pointer to a timespec delta value
620  *
621  * Takes a timespec offset measuring a suspend interval and properly
622  * adds the sleep offset to the timekeeping variables.
623  */
624 static void __timekeeping_inject_sleeptime(struct timespec *delta)
625 {
626 	if (!timespec_valid(delta)) {
627 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
628 					"sleep delta value!\n");
629 		return;
630 	}
631 
632 	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
633 	timekeeper.wall_to_monotonic =
634 			timespec_sub(timekeeper.wall_to_monotonic, *delta);
635 	timekeeper.total_sleep_time = timespec_add(
636 					timekeeper.total_sleep_time, *delta);
637 }
638 
639 
640 /**
641  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
642  * @delta: pointer to a timespec delta value
643  *
644  * This hook is for architectures that cannot support read_persistent_clock
645  * because their RTC/persistent clock is only accessible when irqs are enabled.
646  *
647  * This function should only be called by rtc_resume(), and allows
648  * a suspend offset to be injected into the timekeeping values.
649  */
650 void timekeeping_inject_sleeptime(struct timespec *delta)
651 {
652 	unsigned long flags;
653 	struct timespec ts;
654 
655 	/* Make sure we don't set the clock twice */
656 	read_persistent_clock(&ts);
657 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
658 		return;
659 
660 	write_seqlock_irqsave(&timekeeper.lock, flags);
661 
662 	timekeeping_forward_now();
663 
664 	__timekeeping_inject_sleeptime(delta);
665 
666 	timekeeping_update(true);
667 
668 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
669 
670 	/* signal hrtimers about time change */
671 	clock_was_set();
672 }
673 
674 
675 /**
676  * timekeeping_resume - Resumes the generic timekeeping subsystem.
677  *
678  * This is for the generic clocksource timekeeping.
679  * xtime/wall_to_monotonic/jiffies/etc are
680  * still managed by arch specific suspend/resume code.
681  */
682 static void timekeeping_resume(void)
683 {
684 	unsigned long flags;
685 	struct timespec ts;
686 
687 	read_persistent_clock(&ts);
688 
689 	clocksource_resume();
690 
691 	write_seqlock_irqsave(&timekeeper.lock, flags);
692 
693 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
694 		ts = timespec_sub(ts, timekeeping_suspend_time);
695 		__timekeeping_inject_sleeptime(&ts);
696 	}
697 	/* re-base the last cycle value */
698 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
699 	timekeeper.ntp_error = 0;
700 	timekeeping_suspended = 0;
701 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
702 
703 	touch_softlockup_watchdog();
704 
705 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
706 
707 	/* Resume hrtimers */
708 	hrtimers_resume();
709 }
710 
711 static int timekeeping_suspend(void)
712 {
713 	unsigned long flags;
714 	struct timespec		delta, delta_delta;
715 	static struct timespec	old_delta;
716 
717 	read_persistent_clock(&timekeeping_suspend_time);
718 
719 	write_seqlock_irqsave(&timekeeper.lock, flags);
720 	timekeeping_forward_now();
721 	timekeeping_suspended = 1;
722 
723 	/*
724 	 * To avoid drift caused by repeated suspend/resumes,
725 	 * which each can add ~1 second drift error,
726 	 * try to compensate so the difference in system time
727 	 * and persistent_clock time stays close to constant.
728 	 */
729 	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
730 	delta_delta = timespec_sub(delta, old_delta);
731 	if (abs(delta_delta.tv_sec)  >= 2) {
732 		/*
733 		 * if delta_delta is too large, assume time correction
734 		 * has occured and set old_delta to the current delta.
735 		 */
736 		old_delta = delta;
737 	} else {
738 		/* Otherwise try to adjust old_system to compensate */
739 		timekeeping_suspend_time =
740 			timespec_add(timekeeping_suspend_time, delta_delta);
741 	}
742 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
743 
744 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
745 	clocksource_suspend();
746 
747 	return 0;
748 }
749 
750 /* sysfs resume/suspend bits for timekeeping */
751 static struct syscore_ops timekeeping_syscore_ops = {
752 	.resume		= timekeeping_resume,
753 	.suspend	= timekeeping_suspend,
754 };
755 
756 static int __init timekeeping_init_ops(void)
757 {
758 	register_syscore_ops(&timekeeping_syscore_ops);
759 	return 0;
760 }
761 
762 device_initcall(timekeeping_init_ops);
763 
764 /*
765  * If the error is already larger, we look ahead even further
766  * to compensate for late or lost adjustments.
767  */
768 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
769 						 s64 *offset)
770 {
771 	s64 tick_error, i;
772 	u32 look_ahead, adj;
773 	s32 error2, mult;
774 
775 	/*
776 	 * Use the current error value to determine how much to look ahead.
777 	 * The larger the error the slower we adjust for it to avoid problems
778 	 * with losing too many ticks, otherwise we would overadjust and
779 	 * produce an even larger error.  The smaller the adjustment the
780 	 * faster we try to adjust for it, as lost ticks can do less harm
781 	 * here.  This is tuned so that an error of about 1 msec is adjusted
782 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
783 	 */
784 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
785 	error2 = abs(error2);
786 	for (look_ahead = 0; error2 > 0; look_ahead++)
787 		error2 >>= 2;
788 
789 	/*
790 	 * Now calculate the error in (1 << look_ahead) ticks, but first
791 	 * remove the single look ahead already included in the error.
792 	 */
793 	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
794 	tick_error -= timekeeper.xtime_interval >> 1;
795 	error = ((error - tick_error) >> look_ahead) + tick_error;
796 
797 	/* Finally calculate the adjustment shift value.  */
798 	i = *interval;
799 	mult = 1;
800 	if (error < 0) {
801 		error = -error;
802 		*interval = -*interval;
803 		*offset = -*offset;
804 		mult = -1;
805 	}
806 	for (adj = 0; error > i; adj++)
807 		error >>= 1;
808 
809 	*interval <<= adj;
810 	*offset <<= adj;
811 	return mult << adj;
812 }
813 
814 /*
815  * Adjust the multiplier to reduce the error value,
816  * this is optimized for the most common adjustments of -1,0,1,
817  * for other values we can do a bit more work.
818  */
819 static void timekeeping_adjust(s64 offset)
820 {
821 	s64 error, interval = timekeeper.cycle_interval;
822 	int adj;
823 
824 	/*
825 	 * The point of this is to check if the error is greater than half
826 	 * an interval.
827 	 *
828 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
829 	 *
830 	 * Note we subtract one in the shift, so that error is really error*2.
831 	 * This "saves" dividing(shifting) interval twice, but keeps the
832 	 * (error > interval) comparison as still measuring if error is
833 	 * larger than half an interval.
834 	 *
835 	 * Note: It does not "save" on aggravation when reading the code.
836 	 */
837 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
838 	if (error > interval) {
839 		/*
840 		 * We now divide error by 4(via shift), which checks if
841 		 * the error is greater than twice the interval.
842 		 * If it is greater, we need a bigadjust, if its smaller,
843 		 * we can adjust by 1.
844 		 */
845 		error >>= 2;
846 		/*
847 		 * XXX - In update_wall_time, we round up to the next
848 		 * nanosecond, and store the amount rounded up into
849 		 * the error. This causes the likely below to be unlikely.
850 		 *
851 		 * The proper fix is to avoid rounding up by using
852 		 * the high precision timekeeper.xtime_nsec instead of
853 		 * xtime.tv_nsec everywhere. Fixing this will take some
854 		 * time.
855 		 */
856 		if (likely(error <= interval))
857 			adj = 1;
858 		else
859 			adj = timekeeping_bigadjust(error, &interval, &offset);
860 	} else if (error < -interval) {
861 		/* See comment above, this is just switched for the negative */
862 		error >>= 2;
863 		if (likely(error >= -interval)) {
864 			adj = -1;
865 			interval = -interval;
866 			offset = -offset;
867 		} else
868 			adj = timekeeping_bigadjust(error, &interval, &offset);
869 	} else /* No adjustment needed */
870 		return;
871 
872 	if (unlikely(timekeeper.clock->maxadj &&
873 			(timekeeper.mult + adj >
874 			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
875 		printk_once(KERN_WARNING
876 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
877 			timekeeper.clock->name, (long)timekeeper.mult + adj,
878 			(long)timekeeper.clock->mult +
879 				timekeeper.clock->maxadj);
880 	}
881 	/*
882 	 * So the following can be confusing.
883 	 *
884 	 * To keep things simple, lets assume adj == 1 for now.
885 	 *
886 	 * When adj != 1, remember that the interval and offset values
887 	 * have been appropriately scaled so the math is the same.
888 	 *
889 	 * The basic idea here is that we're increasing the multiplier
890 	 * by one, this causes the xtime_interval to be incremented by
891 	 * one cycle_interval. This is because:
892 	 *	xtime_interval = cycle_interval * mult
893 	 * So if mult is being incremented by one:
894 	 *	xtime_interval = cycle_interval * (mult + 1)
895 	 * Its the same as:
896 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
897 	 * Which can be shortened to:
898 	 *	xtime_interval += cycle_interval
899 	 *
900 	 * So offset stores the non-accumulated cycles. Thus the current
901 	 * time (in shifted nanoseconds) is:
902 	 *	now = (offset * adj) + xtime_nsec
903 	 * Now, even though we're adjusting the clock frequency, we have
904 	 * to keep time consistent. In other words, we can't jump back
905 	 * in time, and we also want to avoid jumping forward in time.
906 	 *
907 	 * So given the same offset value, we need the time to be the same
908 	 * both before and after the freq adjustment.
909 	 *	now = (offset * adj_1) + xtime_nsec_1
910 	 *	now = (offset * adj_2) + xtime_nsec_2
911 	 * So:
912 	 *	(offset * adj_1) + xtime_nsec_1 =
913 	 *		(offset * adj_2) + xtime_nsec_2
914 	 * And we know:
915 	 *	adj_2 = adj_1 + 1
916 	 * So:
917 	 *	(offset * adj_1) + xtime_nsec_1 =
918 	 *		(offset * (adj_1+1)) + xtime_nsec_2
919 	 *	(offset * adj_1) + xtime_nsec_1 =
920 	 *		(offset * adj_1) + offset + xtime_nsec_2
921 	 * Canceling the sides:
922 	 *	xtime_nsec_1 = offset + xtime_nsec_2
923 	 * Which gives us:
924 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
925 	 * Which simplfies to:
926 	 *	xtime_nsec -= offset
927 	 *
928 	 * XXX - TODO: Doc ntp_error calculation.
929 	 */
930 	timekeeper.mult += adj;
931 	timekeeper.xtime_interval += interval;
932 	timekeeper.xtime_nsec -= offset;
933 	timekeeper.ntp_error -= (interval - offset) <<
934 				timekeeper.ntp_error_shift;
935 }
936 
937 
938 /**
939  * logarithmic_accumulation - shifted accumulation of cycles
940  *
941  * This functions accumulates a shifted interval of cycles into
942  * into a shifted interval nanoseconds. Allows for O(log) accumulation
943  * loop.
944  *
945  * Returns the unconsumed cycles.
946  */
947 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
948 {
949 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
950 	u64 raw_nsecs;
951 
952 	/* If the offset is smaller than a shifted interval, do nothing */
953 	if (offset < timekeeper.cycle_interval<<shift)
954 		return offset;
955 
956 	/* Accumulate one shifted interval */
957 	offset -= timekeeper.cycle_interval << shift;
958 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
959 
960 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
961 	while (timekeeper.xtime_nsec >= nsecps) {
962 		int leap;
963 		timekeeper.xtime_nsec -= nsecps;
964 		timekeeper.xtime.tv_sec++;
965 		leap = second_overflow(timekeeper.xtime.tv_sec);
966 		timekeeper.xtime.tv_sec += leap;
967 	}
968 
969 	/* Accumulate raw time */
970 	raw_nsecs = timekeeper.raw_interval << shift;
971 	raw_nsecs += timekeeper.raw_time.tv_nsec;
972 	if (raw_nsecs >= NSEC_PER_SEC) {
973 		u64 raw_secs = raw_nsecs;
974 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
975 		timekeeper.raw_time.tv_sec += raw_secs;
976 	}
977 	timekeeper.raw_time.tv_nsec = raw_nsecs;
978 
979 	/* Accumulate error between NTP and clock interval */
980 	timekeeper.ntp_error += ntp_tick_length() << shift;
981 	timekeeper.ntp_error -=
982 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
983 				(timekeeper.ntp_error_shift + shift);
984 
985 	return offset;
986 }
987 
988 
989 /**
990  * update_wall_time - Uses the current clocksource to increment the wall time
991  *
992  */
993 static void update_wall_time(void)
994 {
995 	struct clocksource *clock;
996 	cycle_t offset;
997 	int shift = 0, maxshift;
998 	unsigned long flags;
999 
1000 	write_seqlock_irqsave(&timekeeper.lock, flags);
1001 
1002 	/* Make sure we're fully resumed: */
1003 	if (unlikely(timekeeping_suspended))
1004 		goto out;
1005 
1006 	clock = timekeeper.clock;
1007 
1008 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1009 	offset = timekeeper.cycle_interval;
1010 #else
1011 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1012 #endif
1013 	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1014 						timekeeper.shift;
1015 
1016 	/*
1017 	 * With NO_HZ we may have to accumulate many cycle_intervals
1018 	 * (think "ticks") worth of time at once. To do this efficiently,
1019 	 * we calculate the largest doubling multiple of cycle_intervals
1020 	 * that is smaller than the offset.  We then accumulate that
1021 	 * chunk in one go, and then try to consume the next smaller
1022 	 * doubled multiple.
1023 	 */
1024 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1025 	shift = max(0, shift);
1026 	/* Bound shift to one less than what overflows tick_length */
1027 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1028 	shift = min(shift, maxshift);
1029 	while (offset >= timekeeper.cycle_interval) {
1030 		offset = logarithmic_accumulation(offset, shift);
1031 		if(offset < timekeeper.cycle_interval<<shift)
1032 			shift--;
1033 	}
1034 
1035 	/* correct the clock when NTP error is too big */
1036 	timekeeping_adjust(offset);
1037 
1038 	/*
1039 	 * Since in the loop above, we accumulate any amount of time
1040 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1041 	 * xtime_nsec to be fairly small after the loop. Further, if we're
1042 	 * slightly speeding the clocksource up in timekeeping_adjust(),
1043 	 * its possible the required corrective factor to xtime_nsec could
1044 	 * cause it to underflow.
1045 	 *
1046 	 * Now, we cannot simply roll the accumulated second back, since
1047 	 * the NTP subsystem has been notified via second_overflow. So
1048 	 * instead we push xtime_nsec forward by the amount we underflowed,
1049 	 * and add that amount into the error.
1050 	 *
1051 	 * We'll correct this error next time through this function, when
1052 	 * xtime_nsec is not as small.
1053 	 */
1054 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1055 		s64 neg = -(s64)timekeeper.xtime_nsec;
1056 		timekeeper.xtime_nsec = 0;
1057 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1058 	}
1059 
1060 
1061 	/*
1062 	 * Store full nanoseconds into xtime after rounding it up and
1063 	 * add the remainder to the error difference.
1064 	 */
1065 	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1066 						timekeeper.shift) + 1;
1067 	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1068 						timekeeper.shift;
1069 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
1070 				timekeeper.ntp_error_shift;
1071 
1072 	/*
1073 	 * Finally, make sure that after the rounding
1074 	 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
1075 	 */
1076 	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1077 		int leap;
1078 		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1079 		timekeeper.xtime.tv_sec++;
1080 		leap = second_overflow(timekeeper.xtime.tv_sec);
1081 		timekeeper.xtime.tv_sec += leap;
1082 	}
1083 
1084 	timekeeping_update(false);
1085 
1086 out:
1087 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
1088 
1089 }
1090 
1091 /**
1092  * getboottime - Return the real time of system boot.
1093  * @ts:		pointer to the timespec to be set
1094  *
1095  * Returns the wall-time of boot in a timespec.
1096  *
1097  * This is based on the wall_to_monotonic offset and the total suspend
1098  * time. Calls to settimeofday will affect the value returned (which
1099  * basically means that however wrong your real time clock is at boot time,
1100  * you get the right time here).
1101  */
1102 void getboottime(struct timespec *ts)
1103 {
1104 	struct timespec boottime = {
1105 		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1106 				timekeeper.total_sleep_time.tv_sec,
1107 		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1108 				timekeeper.total_sleep_time.tv_nsec
1109 	};
1110 
1111 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1112 }
1113 EXPORT_SYMBOL_GPL(getboottime);
1114 
1115 
1116 /**
1117  * get_monotonic_boottime - Returns monotonic time since boot
1118  * @ts:		pointer to the timespec to be set
1119  *
1120  * Returns the monotonic time since boot in a timespec.
1121  *
1122  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1123  * includes the time spent in suspend.
1124  */
1125 void get_monotonic_boottime(struct timespec *ts)
1126 {
1127 	struct timespec tomono, sleep;
1128 	unsigned int seq;
1129 	s64 nsecs;
1130 
1131 	WARN_ON(timekeeping_suspended);
1132 
1133 	do {
1134 		seq = read_seqbegin(&timekeeper.lock);
1135 		*ts = timekeeper.xtime;
1136 		tomono = timekeeper.wall_to_monotonic;
1137 		sleep = timekeeper.total_sleep_time;
1138 		nsecs = timekeeping_get_ns();
1139 
1140 	} while (read_seqretry(&timekeeper.lock, seq));
1141 
1142 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1143 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1144 }
1145 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1146 
1147 /**
1148  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1149  *
1150  * Returns the monotonic time since boot in a ktime
1151  *
1152  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1153  * includes the time spent in suspend.
1154  */
1155 ktime_t ktime_get_boottime(void)
1156 {
1157 	struct timespec ts;
1158 
1159 	get_monotonic_boottime(&ts);
1160 	return timespec_to_ktime(ts);
1161 }
1162 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1163 
1164 /**
1165  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1166  * @ts:		pointer to the timespec to be converted
1167  */
1168 void monotonic_to_bootbased(struct timespec *ts)
1169 {
1170 	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
1171 }
1172 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1173 
1174 unsigned long get_seconds(void)
1175 {
1176 	return timekeeper.xtime.tv_sec;
1177 }
1178 EXPORT_SYMBOL(get_seconds);
1179 
1180 struct timespec __current_kernel_time(void)
1181 {
1182 	return timekeeper.xtime;
1183 }
1184 
1185 struct timespec current_kernel_time(void)
1186 {
1187 	struct timespec now;
1188 	unsigned long seq;
1189 
1190 	do {
1191 		seq = read_seqbegin(&timekeeper.lock);
1192 
1193 		now = timekeeper.xtime;
1194 	} while (read_seqretry(&timekeeper.lock, seq));
1195 
1196 	return now;
1197 }
1198 EXPORT_SYMBOL(current_kernel_time);
1199 
1200 struct timespec get_monotonic_coarse(void)
1201 {
1202 	struct timespec now, mono;
1203 	unsigned long seq;
1204 
1205 	do {
1206 		seq = read_seqbegin(&timekeeper.lock);
1207 
1208 		now = timekeeper.xtime;
1209 		mono = timekeeper.wall_to_monotonic;
1210 	} while (read_seqretry(&timekeeper.lock, seq));
1211 
1212 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1213 				now.tv_nsec + mono.tv_nsec);
1214 	return now;
1215 }
1216 
1217 /*
1218  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1219  * without sampling the sequence number in xtime_lock.
1220  * jiffies is defined in the linker script...
1221  */
1222 void do_timer(unsigned long ticks)
1223 {
1224 	jiffies_64 += ticks;
1225 	update_wall_time();
1226 	calc_global_load(ticks);
1227 }
1228 
1229 /**
1230  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1231  *    and sleep offsets.
1232  * @xtim:	pointer to timespec to be set with xtime
1233  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1234  * @sleep:	pointer to timespec to be set with time in suspend
1235  */
1236 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1237 				struct timespec *wtom, struct timespec *sleep)
1238 {
1239 	unsigned long seq;
1240 
1241 	do {
1242 		seq = read_seqbegin(&timekeeper.lock);
1243 		*xtim = timekeeper.xtime;
1244 		*wtom = timekeeper.wall_to_monotonic;
1245 		*sleep = timekeeper.total_sleep_time;
1246 	} while (read_seqretry(&timekeeper.lock, seq));
1247 }
1248 
1249 /**
1250  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1251  */
1252 ktime_t ktime_get_monotonic_offset(void)
1253 {
1254 	unsigned long seq;
1255 	struct timespec wtom;
1256 
1257 	do {
1258 		seq = read_seqbegin(&timekeeper.lock);
1259 		wtom = timekeeper.wall_to_monotonic;
1260 	} while (read_seqretry(&timekeeper.lock, seq));
1261 
1262 	return timespec_to_ktime(wtom);
1263 }
1264 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1265 
1266 
1267 /**
1268  * xtime_update() - advances the timekeeping infrastructure
1269  * @ticks:	number of ticks, that have elapsed since the last call.
1270  *
1271  * Must be called with interrupts disabled.
1272  */
1273 void xtime_update(unsigned long ticks)
1274 {
1275 	write_seqlock(&xtime_lock);
1276 	do_timer(ticks);
1277 	write_sequnlock(&xtime_lock);
1278 }
1279