1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 63 /* flag for if timekeeping is suspended */ 64 int __read_mostly timekeeping_suspended; 65 66 /* Flag for if there is a persistent clock on this platform */ 67 bool __read_mostly persistent_clock_exist = false; 68 69 static inline void tk_normalize_xtime(struct timekeeper *tk) 70 { 71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) { 72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift; 73 tk->xtime_sec++; 74 } 75 } 76 77 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 78 { 79 struct timespec64 ts; 80 81 ts.tv_sec = tk->xtime_sec; 82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift); 83 return ts; 84 } 85 86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 87 { 88 tk->xtime_sec = ts->tv_sec; 89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift; 90 } 91 92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 93 { 94 tk->xtime_sec += ts->tv_sec; 95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift; 96 tk_normalize_xtime(tk); 97 } 98 99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 100 { 101 struct timespec64 tmp; 102 103 /* 104 * Verify consistency of: offset_real = -wall_to_monotonic 105 * before modifying anything 106 */ 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 108 -tk->wall_to_monotonic.tv_nsec); 109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 110 tk->wall_to_monotonic = wtm; 111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 112 tk->offs_real = timespec64_to_ktime(tmp); 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 114 } 115 116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 117 { 118 tk->offs_boot = ktime_add(tk->offs_boot, delta); 119 } 120 121 /** 122 * tk_setup_internals - Set up internals to use clocksource clock. 123 * 124 * @tk: The target timekeeper to setup. 125 * @clock: Pointer to clocksource. 126 * 127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 128 * pair and interval request. 129 * 130 * Unless you're the timekeeping code, you should not be using this! 131 */ 132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 133 { 134 cycle_t interval; 135 u64 tmp, ntpinterval; 136 struct clocksource *old_clock; 137 138 old_clock = tk->tkr.clock; 139 tk->tkr.clock = clock; 140 tk->tkr.read = clock->read; 141 tk->tkr.mask = clock->mask; 142 tk->tkr.cycle_last = tk->tkr.read(clock); 143 144 /* Do the ns -> cycle conversion first, using original mult */ 145 tmp = NTP_INTERVAL_LENGTH; 146 tmp <<= clock->shift; 147 ntpinterval = tmp; 148 tmp += clock->mult/2; 149 do_div(tmp, clock->mult); 150 if (tmp == 0) 151 tmp = 1; 152 153 interval = (cycle_t) tmp; 154 tk->cycle_interval = interval; 155 156 /* Go back from cycles -> shifted ns */ 157 tk->xtime_interval = (u64) interval * clock->mult; 158 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 159 tk->raw_interval = 160 ((u64) interval * clock->mult) >> clock->shift; 161 162 /* if changing clocks, convert xtime_nsec shift units */ 163 if (old_clock) { 164 int shift_change = clock->shift - old_clock->shift; 165 if (shift_change < 0) 166 tk->tkr.xtime_nsec >>= -shift_change; 167 else 168 tk->tkr.xtime_nsec <<= shift_change; 169 } 170 tk->tkr.shift = clock->shift; 171 172 tk->ntp_error = 0; 173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 174 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 175 176 /* 177 * The timekeeper keeps its own mult values for the currently 178 * active clocksource. These value will be adjusted via NTP 179 * to counteract clock drifting. 180 */ 181 tk->tkr.mult = clock->mult; 182 tk->ntp_err_mult = 0; 183 } 184 185 /* Timekeeper helper functions. */ 186 187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 188 static u32 default_arch_gettimeoffset(void) { return 0; } 189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 190 #else 191 static inline u32 arch_gettimeoffset(void) { return 0; } 192 #endif 193 194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 195 { 196 cycle_t cycle_now, delta; 197 s64 nsec; 198 199 /* read clocksource: */ 200 cycle_now = tkr->read(tkr->clock); 201 202 /* calculate the delta since the last update_wall_time: */ 203 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 204 205 nsec = delta * tkr->mult + tkr->xtime_nsec; 206 nsec >>= tkr->shift; 207 208 /* If arch requires, add in get_arch_timeoffset() */ 209 return nsec + arch_gettimeoffset(); 210 } 211 212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 213 { 214 struct clocksource *clock = tk->tkr.clock; 215 cycle_t cycle_now, delta; 216 s64 nsec; 217 218 /* read clocksource: */ 219 cycle_now = tk->tkr.read(clock); 220 221 /* calculate the delta since the last update_wall_time: */ 222 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask); 223 224 /* convert delta to nanoseconds. */ 225 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift); 226 227 /* If arch requires, add in get_arch_timeoffset() */ 228 return nsec + arch_gettimeoffset(); 229 } 230 231 /** 232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 233 * @tkr: Timekeeping readout base from which we take the update 234 * 235 * We want to use this from any context including NMI and tracing / 236 * instrumenting the timekeeping code itself. 237 * 238 * So we handle this differently than the other timekeeping accessor 239 * functions which retry when the sequence count has changed. The 240 * update side does: 241 * 242 * smp_wmb(); <- Ensure that the last base[1] update is visible 243 * tkf->seq++; 244 * smp_wmb(); <- Ensure that the seqcount update is visible 245 * update(tkf->base[0], tkr); 246 * smp_wmb(); <- Ensure that the base[0] update is visible 247 * tkf->seq++; 248 * smp_wmb(); <- Ensure that the seqcount update is visible 249 * update(tkf->base[1], tkr); 250 * 251 * The reader side does: 252 * 253 * do { 254 * seq = tkf->seq; 255 * smp_rmb(); 256 * idx = seq & 0x01; 257 * now = now(tkf->base[idx]); 258 * smp_rmb(); 259 * } while (seq != tkf->seq) 260 * 261 * As long as we update base[0] readers are forced off to 262 * base[1]. Once base[0] is updated readers are redirected to base[0] 263 * and the base[1] update takes place. 264 * 265 * So if a NMI hits the update of base[0] then it will use base[1] 266 * which is still consistent. In the worst case this can result is a 267 * slightly wrong timestamp (a few nanoseconds). See 268 * @ktime_get_mono_fast_ns. 269 */ 270 static void update_fast_timekeeper(struct tk_read_base *tkr) 271 { 272 struct tk_read_base *base = tk_fast_mono.base; 273 274 /* Force readers off to base[1] */ 275 raw_write_seqcount_latch(&tk_fast_mono.seq); 276 277 /* Update base[0] */ 278 memcpy(base, tkr, sizeof(*base)); 279 280 /* Force readers back to base[0] */ 281 raw_write_seqcount_latch(&tk_fast_mono.seq); 282 283 /* Update base[1] */ 284 memcpy(base + 1, base, sizeof(*base)); 285 } 286 287 /** 288 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 289 * 290 * This timestamp is not guaranteed to be monotonic across an update. 291 * The timestamp is calculated by: 292 * 293 * now = base_mono + clock_delta * slope 294 * 295 * So if the update lowers the slope, readers who are forced to the 296 * not yet updated second array are still using the old steeper slope. 297 * 298 * tmono 299 * ^ 300 * | o n 301 * | o n 302 * | u 303 * | o 304 * |o 305 * |12345678---> reader order 306 * 307 * o = old slope 308 * u = update 309 * n = new slope 310 * 311 * So reader 6 will observe time going backwards versus reader 5. 312 * 313 * While other CPUs are likely to be able observe that, the only way 314 * for a CPU local observation is when an NMI hits in the middle of 315 * the update. Timestamps taken from that NMI context might be ahead 316 * of the following timestamps. Callers need to be aware of that and 317 * deal with it. 318 */ 319 u64 notrace ktime_get_mono_fast_ns(void) 320 { 321 struct tk_read_base *tkr; 322 unsigned int seq; 323 u64 now; 324 325 do { 326 seq = raw_read_seqcount(&tk_fast_mono.seq); 327 tkr = tk_fast_mono.base + (seq & 0x01); 328 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr); 329 330 } while (read_seqcount_retry(&tk_fast_mono.seq, seq)); 331 return now; 332 } 333 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 334 335 /* Suspend-time cycles value for halted fast timekeeper. */ 336 static cycle_t cycles_at_suspend; 337 338 static cycle_t dummy_clock_read(struct clocksource *cs) 339 { 340 return cycles_at_suspend; 341 } 342 343 /** 344 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 345 * @tk: Timekeeper to snapshot. 346 * 347 * It generally is unsafe to access the clocksource after timekeeping has been 348 * suspended, so take a snapshot of the readout base of @tk and use it as the 349 * fast timekeeper's readout base while suspended. It will return the same 350 * number of cycles every time until timekeeping is resumed at which time the 351 * proper readout base for the fast timekeeper will be restored automatically. 352 */ 353 static void halt_fast_timekeeper(struct timekeeper *tk) 354 { 355 static struct tk_read_base tkr_dummy; 356 struct tk_read_base *tkr = &tk->tkr; 357 358 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 359 cycles_at_suspend = tkr->read(tkr->clock); 360 tkr_dummy.read = dummy_clock_read; 361 update_fast_timekeeper(&tkr_dummy); 362 } 363 364 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 365 366 static inline void update_vsyscall(struct timekeeper *tk) 367 { 368 struct timespec xt, wm; 369 370 xt = timespec64_to_timespec(tk_xtime(tk)); 371 wm = timespec64_to_timespec(tk->wall_to_monotonic); 372 update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult, 373 tk->tkr.cycle_last); 374 } 375 376 static inline void old_vsyscall_fixup(struct timekeeper *tk) 377 { 378 s64 remainder; 379 380 /* 381 * Store only full nanoseconds into xtime_nsec after rounding 382 * it up and add the remainder to the error difference. 383 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 384 * by truncating the remainder in vsyscalls. However, it causes 385 * additional work to be done in timekeeping_adjust(). Once 386 * the vsyscall implementations are converted to use xtime_nsec 387 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 388 * users are removed, this can be killed. 389 */ 390 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1); 391 tk->tkr.xtime_nsec -= remainder; 392 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift; 393 tk->ntp_error += remainder << tk->ntp_error_shift; 394 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift; 395 } 396 #else 397 #define old_vsyscall_fixup(tk) 398 #endif 399 400 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 401 402 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 403 { 404 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 405 } 406 407 /** 408 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 409 */ 410 int pvclock_gtod_register_notifier(struct notifier_block *nb) 411 { 412 struct timekeeper *tk = &tk_core.timekeeper; 413 unsigned long flags; 414 int ret; 415 416 raw_spin_lock_irqsave(&timekeeper_lock, flags); 417 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 418 update_pvclock_gtod(tk, true); 419 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 420 421 return ret; 422 } 423 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 424 425 /** 426 * pvclock_gtod_unregister_notifier - unregister a pvclock 427 * timedata update listener 428 */ 429 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 430 { 431 unsigned long flags; 432 int ret; 433 434 raw_spin_lock_irqsave(&timekeeper_lock, flags); 435 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 436 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 437 438 return ret; 439 } 440 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 441 442 /* 443 * Update the ktime_t based scalar nsec members of the timekeeper 444 */ 445 static inline void tk_update_ktime_data(struct timekeeper *tk) 446 { 447 u64 seconds; 448 u32 nsec; 449 450 /* 451 * The xtime based monotonic readout is: 452 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 453 * The ktime based monotonic readout is: 454 * nsec = base_mono + now(); 455 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 456 */ 457 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 458 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 459 tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 460 461 /* Update the monotonic raw base */ 462 tk->base_raw = timespec64_to_ktime(tk->raw_time); 463 464 /* 465 * The sum of the nanoseconds portions of xtime and 466 * wall_to_monotonic can be greater/equal one second. Take 467 * this into account before updating tk->ktime_sec. 468 */ 469 nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift); 470 if (nsec >= NSEC_PER_SEC) 471 seconds++; 472 tk->ktime_sec = seconds; 473 } 474 475 /* must hold timekeeper_lock */ 476 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 477 { 478 if (action & TK_CLEAR_NTP) { 479 tk->ntp_error = 0; 480 ntp_clear(); 481 } 482 483 tk_update_ktime_data(tk); 484 485 update_vsyscall(tk); 486 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 487 488 if (action & TK_MIRROR) 489 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 490 sizeof(tk_core.timekeeper)); 491 492 update_fast_timekeeper(&tk->tkr); 493 } 494 495 /** 496 * timekeeping_forward_now - update clock to the current time 497 * 498 * Forward the current clock to update its state since the last call to 499 * update_wall_time(). This is useful before significant clock changes, 500 * as it avoids having to deal with this time offset explicitly. 501 */ 502 static void timekeeping_forward_now(struct timekeeper *tk) 503 { 504 struct clocksource *clock = tk->tkr.clock; 505 cycle_t cycle_now, delta; 506 s64 nsec; 507 508 cycle_now = tk->tkr.read(clock); 509 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask); 510 tk->tkr.cycle_last = cycle_now; 511 512 tk->tkr.xtime_nsec += delta * tk->tkr.mult; 513 514 /* If arch requires, add in get_arch_timeoffset() */ 515 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift; 516 517 tk_normalize_xtime(tk); 518 519 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift); 520 timespec64_add_ns(&tk->raw_time, nsec); 521 } 522 523 /** 524 * __getnstimeofday64 - Returns the time of day in a timespec64. 525 * @ts: pointer to the timespec to be set 526 * 527 * Updates the time of day in the timespec. 528 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 529 */ 530 int __getnstimeofday64(struct timespec64 *ts) 531 { 532 struct timekeeper *tk = &tk_core.timekeeper; 533 unsigned long seq; 534 s64 nsecs = 0; 535 536 do { 537 seq = read_seqcount_begin(&tk_core.seq); 538 539 ts->tv_sec = tk->xtime_sec; 540 nsecs = timekeeping_get_ns(&tk->tkr); 541 542 } while (read_seqcount_retry(&tk_core.seq, seq)); 543 544 ts->tv_nsec = 0; 545 timespec64_add_ns(ts, nsecs); 546 547 /* 548 * Do not bail out early, in case there were callers still using 549 * the value, even in the face of the WARN_ON. 550 */ 551 if (unlikely(timekeeping_suspended)) 552 return -EAGAIN; 553 return 0; 554 } 555 EXPORT_SYMBOL(__getnstimeofday64); 556 557 /** 558 * getnstimeofday64 - Returns the time of day in a timespec64. 559 * @ts: pointer to the timespec64 to be set 560 * 561 * Returns the time of day in a timespec64 (WARN if suspended). 562 */ 563 void getnstimeofday64(struct timespec64 *ts) 564 { 565 WARN_ON(__getnstimeofday64(ts)); 566 } 567 EXPORT_SYMBOL(getnstimeofday64); 568 569 ktime_t ktime_get(void) 570 { 571 struct timekeeper *tk = &tk_core.timekeeper; 572 unsigned int seq; 573 ktime_t base; 574 s64 nsecs; 575 576 WARN_ON(timekeeping_suspended); 577 578 do { 579 seq = read_seqcount_begin(&tk_core.seq); 580 base = tk->tkr.base_mono; 581 nsecs = timekeeping_get_ns(&tk->tkr); 582 583 } while (read_seqcount_retry(&tk_core.seq, seq)); 584 585 return ktime_add_ns(base, nsecs); 586 } 587 EXPORT_SYMBOL_GPL(ktime_get); 588 589 static ktime_t *offsets[TK_OFFS_MAX] = { 590 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 591 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 592 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 593 }; 594 595 ktime_t ktime_get_with_offset(enum tk_offsets offs) 596 { 597 struct timekeeper *tk = &tk_core.timekeeper; 598 unsigned int seq; 599 ktime_t base, *offset = offsets[offs]; 600 s64 nsecs; 601 602 WARN_ON(timekeeping_suspended); 603 604 do { 605 seq = read_seqcount_begin(&tk_core.seq); 606 base = ktime_add(tk->tkr.base_mono, *offset); 607 nsecs = timekeeping_get_ns(&tk->tkr); 608 609 } while (read_seqcount_retry(&tk_core.seq, seq)); 610 611 return ktime_add_ns(base, nsecs); 612 613 } 614 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 615 616 /** 617 * ktime_mono_to_any() - convert mononotic time to any other time 618 * @tmono: time to convert. 619 * @offs: which offset to use 620 */ 621 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 622 { 623 ktime_t *offset = offsets[offs]; 624 unsigned long seq; 625 ktime_t tconv; 626 627 do { 628 seq = read_seqcount_begin(&tk_core.seq); 629 tconv = ktime_add(tmono, *offset); 630 } while (read_seqcount_retry(&tk_core.seq, seq)); 631 632 return tconv; 633 } 634 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 635 636 /** 637 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 638 */ 639 ktime_t ktime_get_raw(void) 640 { 641 struct timekeeper *tk = &tk_core.timekeeper; 642 unsigned int seq; 643 ktime_t base; 644 s64 nsecs; 645 646 do { 647 seq = read_seqcount_begin(&tk_core.seq); 648 base = tk->base_raw; 649 nsecs = timekeeping_get_ns_raw(tk); 650 651 } while (read_seqcount_retry(&tk_core.seq, seq)); 652 653 return ktime_add_ns(base, nsecs); 654 } 655 EXPORT_SYMBOL_GPL(ktime_get_raw); 656 657 /** 658 * ktime_get_ts64 - get the monotonic clock in timespec64 format 659 * @ts: pointer to timespec variable 660 * 661 * The function calculates the monotonic clock from the realtime 662 * clock and the wall_to_monotonic offset and stores the result 663 * in normalized timespec64 format in the variable pointed to by @ts. 664 */ 665 void ktime_get_ts64(struct timespec64 *ts) 666 { 667 struct timekeeper *tk = &tk_core.timekeeper; 668 struct timespec64 tomono; 669 s64 nsec; 670 unsigned int seq; 671 672 WARN_ON(timekeeping_suspended); 673 674 do { 675 seq = read_seqcount_begin(&tk_core.seq); 676 ts->tv_sec = tk->xtime_sec; 677 nsec = timekeeping_get_ns(&tk->tkr); 678 tomono = tk->wall_to_monotonic; 679 680 } while (read_seqcount_retry(&tk_core.seq, seq)); 681 682 ts->tv_sec += tomono.tv_sec; 683 ts->tv_nsec = 0; 684 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 685 } 686 EXPORT_SYMBOL_GPL(ktime_get_ts64); 687 688 /** 689 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 690 * 691 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 692 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 693 * works on both 32 and 64 bit systems. On 32 bit systems the readout 694 * covers ~136 years of uptime which should be enough to prevent 695 * premature wrap arounds. 696 */ 697 time64_t ktime_get_seconds(void) 698 { 699 struct timekeeper *tk = &tk_core.timekeeper; 700 701 WARN_ON(timekeeping_suspended); 702 return tk->ktime_sec; 703 } 704 EXPORT_SYMBOL_GPL(ktime_get_seconds); 705 706 /** 707 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 708 * 709 * Returns the wall clock seconds since 1970. This replaces the 710 * get_seconds() interface which is not y2038 safe on 32bit systems. 711 * 712 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 713 * 32bit systems the access must be protected with the sequence 714 * counter to provide "atomic" access to the 64bit tk->xtime_sec 715 * value. 716 */ 717 time64_t ktime_get_real_seconds(void) 718 { 719 struct timekeeper *tk = &tk_core.timekeeper; 720 time64_t seconds; 721 unsigned int seq; 722 723 if (IS_ENABLED(CONFIG_64BIT)) 724 return tk->xtime_sec; 725 726 do { 727 seq = read_seqcount_begin(&tk_core.seq); 728 seconds = tk->xtime_sec; 729 730 } while (read_seqcount_retry(&tk_core.seq, seq)); 731 732 return seconds; 733 } 734 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 735 736 #ifdef CONFIG_NTP_PPS 737 738 /** 739 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 740 * @ts_raw: pointer to the timespec to be set to raw monotonic time 741 * @ts_real: pointer to the timespec to be set to the time of day 742 * 743 * This function reads both the time of day and raw monotonic time at the 744 * same time atomically and stores the resulting timestamps in timespec 745 * format. 746 */ 747 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 748 { 749 struct timekeeper *tk = &tk_core.timekeeper; 750 unsigned long seq; 751 s64 nsecs_raw, nsecs_real; 752 753 WARN_ON_ONCE(timekeeping_suspended); 754 755 do { 756 seq = read_seqcount_begin(&tk_core.seq); 757 758 *ts_raw = timespec64_to_timespec(tk->raw_time); 759 ts_real->tv_sec = tk->xtime_sec; 760 ts_real->tv_nsec = 0; 761 762 nsecs_raw = timekeeping_get_ns_raw(tk); 763 nsecs_real = timekeeping_get_ns(&tk->tkr); 764 765 } while (read_seqcount_retry(&tk_core.seq, seq)); 766 767 timespec_add_ns(ts_raw, nsecs_raw); 768 timespec_add_ns(ts_real, nsecs_real); 769 } 770 EXPORT_SYMBOL(getnstime_raw_and_real); 771 772 #endif /* CONFIG_NTP_PPS */ 773 774 /** 775 * do_gettimeofday - Returns the time of day in a timeval 776 * @tv: pointer to the timeval to be set 777 * 778 * NOTE: Users should be converted to using getnstimeofday() 779 */ 780 void do_gettimeofday(struct timeval *tv) 781 { 782 struct timespec64 now; 783 784 getnstimeofday64(&now); 785 tv->tv_sec = now.tv_sec; 786 tv->tv_usec = now.tv_nsec/1000; 787 } 788 EXPORT_SYMBOL(do_gettimeofday); 789 790 /** 791 * do_settimeofday64 - Sets the time of day. 792 * @ts: pointer to the timespec64 variable containing the new time 793 * 794 * Sets the time of day to the new time and update NTP and notify hrtimers 795 */ 796 int do_settimeofday64(const struct timespec64 *ts) 797 { 798 struct timekeeper *tk = &tk_core.timekeeper; 799 struct timespec64 ts_delta, xt; 800 unsigned long flags; 801 802 if (!timespec64_valid_strict(ts)) 803 return -EINVAL; 804 805 raw_spin_lock_irqsave(&timekeeper_lock, flags); 806 write_seqcount_begin(&tk_core.seq); 807 808 timekeeping_forward_now(tk); 809 810 xt = tk_xtime(tk); 811 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 812 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 813 814 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 815 816 tk_set_xtime(tk, ts); 817 818 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 819 820 write_seqcount_end(&tk_core.seq); 821 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 822 823 /* signal hrtimers about time change */ 824 clock_was_set(); 825 826 return 0; 827 } 828 EXPORT_SYMBOL(do_settimeofday64); 829 830 /** 831 * timekeeping_inject_offset - Adds or subtracts from the current time. 832 * @tv: pointer to the timespec variable containing the offset 833 * 834 * Adds or subtracts an offset value from the current time. 835 */ 836 int timekeeping_inject_offset(struct timespec *ts) 837 { 838 struct timekeeper *tk = &tk_core.timekeeper; 839 unsigned long flags; 840 struct timespec64 ts64, tmp; 841 int ret = 0; 842 843 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 844 return -EINVAL; 845 846 ts64 = timespec_to_timespec64(*ts); 847 848 raw_spin_lock_irqsave(&timekeeper_lock, flags); 849 write_seqcount_begin(&tk_core.seq); 850 851 timekeeping_forward_now(tk); 852 853 /* Make sure the proposed value is valid */ 854 tmp = timespec64_add(tk_xtime(tk), ts64); 855 if (!timespec64_valid_strict(&tmp)) { 856 ret = -EINVAL; 857 goto error; 858 } 859 860 tk_xtime_add(tk, &ts64); 861 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 862 863 error: /* even if we error out, we forwarded the time, so call update */ 864 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 865 866 write_seqcount_end(&tk_core.seq); 867 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 868 869 /* signal hrtimers about time change */ 870 clock_was_set(); 871 872 return ret; 873 } 874 EXPORT_SYMBOL(timekeeping_inject_offset); 875 876 877 /** 878 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 879 * 880 */ 881 s32 timekeeping_get_tai_offset(void) 882 { 883 struct timekeeper *tk = &tk_core.timekeeper; 884 unsigned int seq; 885 s32 ret; 886 887 do { 888 seq = read_seqcount_begin(&tk_core.seq); 889 ret = tk->tai_offset; 890 } while (read_seqcount_retry(&tk_core.seq, seq)); 891 892 return ret; 893 } 894 895 /** 896 * __timekeeping_set_tai_offset - Lock free worker function 897 * 898 */ 899 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 900 { 901 tk->tai_offset = tai_offset; 902 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 903 } 904 905 /** 906 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 907 * 908 */ 909 void timekeeping_set_tai_offset(s32 tai_offset) 910 { 911 struct timekeeper *tk = &tk_core.timekeeper; 912 unsigned long flags; 913 914 raw_spin_lock_irqsave(&timekeeper_lock, flags); 915 write_seqcount_begin(&tk_core.seq); 916 __timekeeping_set_tai_offset(tk, tai_offset); 917 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 918 write_seqcount_end(&tk_core.seq); 919 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 920 clock_was_set(); 921 } 922 923 /** 924 * change_clocksource - Swaps clocksources if a new one is available 925 * 926 * Accumulates current time interval and initializes new clocksource 927 */ 928 static int change_clocksource(void *data) 929 { 930 struct timekeeper *tk = &tk_core.timekeeper; 931 struct clocksource *new, *old; 932 unsigned long flags; 933 934 new = (struct clocksource *) data; 935 936 raw_spin_lock_irqsave(&timekeeper_lock, flags); 937 write_seqcount_begin(&tk_core.seq); 938 939 timekeeping_forward_now(tk); 940 /* 941 * If the cs is in module, get a module reference. Succeeds 942 * for built-in code (owner == NULL) as well. 943 */ 944 if (try_module_get(new->owner)) { 945 if (!new->enable || new->enable(new) == 0) { 946 old = tk->tkr.clock; 947 tk_setup_internals(tk, new); 948 if (old->disable) 949 old->disable(old); 950 module_put(old->owner); 951 } else { 952 module_put(new->owner); 953 } 954 } 955 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 956 957 write_seqcount_end(&tk_core.seq); 958 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 959 960 return 0; 961 } 962 963 /** 964 * timekeeping_notify - Install a new clock source 965 * @clock: pointer to the clock source 966 * 967 * This function is called from clocksource.c after a new, better clock 968 * source has been registered. The caller holds the clocksource_mutex. 969 */ 970 int timekeeping_notify(struct clocksource *clock) 971 { 972 struct timekeeper *tk = &tk_core.timekeeper; 973 974 if (tk->tkr.clock == clock) 975 return 0; 976 stop_machine(change_clocksource, clock, NULL); 977 tick_clock_notify(); 978 return tk->tkr.clock == clock ? 0 : -1; 979 } 980 981 /** 982 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 983 * @ts: pointer to the timespec64 to be set 984 * 985 * Returns the raw monotonic time (completely un-modified by ntp) 986 */ 987 void getrawmonotonic64(struct timespec64 *ts) 988 { 989 struct timekeeper *tk = &tk_core.timekeeper; 990 struct timespec64 ts64; 991 unsigned long seq; 992 s64 nsecs; 993 994 do { 995 seq = read_seqcount_begin(&tk_core.seq); 996 nsecs = timekeeping_get_ns_raw(tk); 997 ts64 = tk->raw_time; 998 999 } while (read_seqcount_retry(&tk_core.seq, seq)); 1000 1001 timespec64_add_ns(&ts64, nsecs); 1002 *ts = ts64; 1003 } 1004 EXPORT_SYMBOL(getrawmonotonic64); 1005 1006 1007 /** 1008 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1009 */ 1010 int timekeeping_valid_for_hres(void) 1011 { 1012 struct timekeeper *tk = &tk_core.timekeeper; 1013 unsigned long seq; 1014 int ret; 1015 1016 do { 1017 seq = read_seqcount_begin(&tk_core.seq); 1018 1019 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1020 1021 } while (read_seqcount_retry(&tk_core.seq, seq)); 1022 1023 return ret; 1024 } 1025 1026 /** 1027 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1028 */ 1029 u64 timekeeping_max_deferment(void) 1030 { 1031 struct timekeeper *tk = &tk_core.timekeeper; 1032 unsigned long seq; 1033 u64 ret; 1034 1035 do { 1036 seq = read_seqcount_begin(&tk_core.seq); 1037 1038 ret = tk->tkr.clock->max_idle_ns; 1039 1040 } while (read_seqcount_retry(&tk_core.seq, seq)); 1041 1042 return ret; 1043 } 1044 1045 /** 1046 * read_persistent_clock - Return time from the persistent clock. 1047 * 1048 * Weak dummy function for arches that do not yet support it. 1049 * Reads the time from the battery backed persistent clock. 1050 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1051 * 1052 * XXX - Do be sure to remove it once all arches implement it. 1053 */ 1054 void __weak read_persistent_clock(struct timespec *ts) 1055 { 1056 ts->tv_sec = 0; 1057 ts->tv_nsec = 0; 1058 } 1059 1060 /** 1061 * read_boot_clock - Return time of the system start. 1062 * 1063 * Weak dummy function for arches that do not yet support it. 1064 * Function to read the exact time the system has been started. 1065 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1066 * 1067 * XXX - Do be sure to remove it once all arches implement it. 1068 */ 1069 void __weak read_boot_clock(struct timespec *ts) 1070 { 1071 ts->tv_sec = 0; 1072 ts->tv_nsec = 0; 1073 } 1074 1075 /* 1076 * timekeeping_init - Initializes the clocksource and common timekeeping values 1077 */ 1078 void __init timekeeping_init(void) 1079 { 1080 struct timekeeper *tk = &tk_core.timekeeper; 1081 struct clocksource *clock; 1082 unsigned long flags; 1083 struct timespec64 now, boot, tmp; 1084 struct timespec ts; 1085 1086 read_persistent_clock(&ts); 1087 now = timespec_to_timespec64(ts); 1088 if (!timespec64_valid_strict(&now)) { 1089 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1090 " Check your CMOS/BIOS settings.\n"); 1091 now.tv_sec = 0; 1092 now.tv_nsec = 0; 1093 } else if (now.tv_sec || now.tv_nsec) 1094 persistent_clock_exist = true; 1095 1096 read_boot_clock(&ts); 1097 boot = timespec_to_timespec64(ts); 1098 if (!timespec64_valid_strict(&boot)) { 1099 pr_warn("WARNING: Boot clock returned invalid value!\n" 1100 " Check your CMOS/BIOS settings.\n"); 1101 boot.tv_sec = 0; 1102 boot.tv_nsec = 0; 1103 } 1104 1105 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1106 write_seqcount_begin(&tk_core.seq); 1107 ntp_init(); 1108 1109 clock = clocksource_default_clock(); 1110 if (clock->enable) 1111 clock->enable(clock); 1112 tk_setup_internals(tk, clock); 1113 1114 tk_set_xtime(tk, &now); 1115 tk->raw_time.tv_sec = 0; 1116 tk->raw_time.tv_nsec = 0; 1117 tk->base_raw.tv64 = 0; 1118 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1119 boot = tk_xtime(tk); 1120 1121 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1122 tk_set_wall_to_mono(tk, tmp); 1123 1124 timekeeping_update(tk, TK_MIRROR); 1125 1126 write_seqcount_end(&tk_core.seq); 1127 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1128 } 1129 1130 /* time in seconds when suspend began */ 1131 static struct timespec64 timekeeping_suspend_time; 1132 1133 /** 1134 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1135 * @delta: pointer to a timespec delta value 1136 * 1137 * Takes a timespec offset measuring a suspend interval and properly 1138 * adds the sleep offset to the timekeeping variables. 1139 */ 1140 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1141 struct timespec64 *delta) 1142 { 1143 if (!timespec64_valid_strict(delta)) { 1144 printk_deferred(KERN_WARNING 1145 "__timekeeping_inject_sleeptime: Invalid " 1146 "sleep delta value!\n"); 1147 return; 1148 } 1149 tk_xtime_add(tk, delta); 1150 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1151 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1152 tk_debug_account_sleep_time(delta); 1153 } 1154 1155 /** 1156 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1157 * @delta: pointer to a timespec64 delta value 1158 * 1159 * This hook is for architectures that cannot support read_persistent_clock 1160 * because their RTC/persistent clock is only accessible when irqs are enabled. 1161 * 1162 * This function should only be called by rtc_resume(), and allows 1163 * a suspend offset to be injected into the timekeeping values. 1164 */ 1165 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1166 { 1167 struct timekeeper *tk = &tk_core.timekeeper; 1168 unsigned long flags; 1169 1170 /* 1171 * Make sure we don't set the clock twice, as timekeeping_resume() 1172 * already did it 1173 */ 1174 if (has_persistent_clock()) 1175 return; 1176 1177 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1178 write_seqcount_begin(&tk_core.seq); 1179 1180 timekeeping_forward_now(tk); 1181 1182 __timekeeping_inject_sleeptime(tk, delta); 1183 1184 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1185 1186 write_seqcount_end(&tk_core.seq); 1187 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1188 1189 /* signal hrtimers about time change */ 1190 clock_was_set(); 1191 } 1192 1193 /** 1194 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1195 * 1196 * This is for the generic clocksource timekeeping. 1197 * xtime/wall_to_monotonic/jiffies/etc are 1198 * still managed by arch specific suspend/resume code. 1199 */ 1200 void timekeeping_resume(void) 1201 { 1202 struct timekeeper *tk = &tk_core.timekeeper; 1203 struct clocksource *clock = tk->tkr.clock; 1204 unsigned long flags; 1205 struct timespec64 ts_new, ts_delta; 1206 struct timespec tmp; 1207 cycle_t cycle_now, cycle_delta; 1208 bool suspendtime_found = false; 1209 1210 read_persistent_clock(&tmp); 1211 ts_new = timespec_to_timespec64(tmp); 1212 1213 clockevents_resume(); 1214 clocksource_resume(); 1215 1216 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1217 write_seqcount_begin(&tk_core.seq); 1218 1219 /* 1220 * After system resumes, we need to calculate the suspended time and 1221 * compensate it for the OS time. There are 3 sources that could be 1222 * used: Nonstop clocksource during suspend, persistent clock and rtc 1223 * device. 1224 * 1225 * One specific platform may have 1 or 2 or all of them, and the 1226 * preference will be: 1227 * suspend-nonstop clocksource -> persistent clock -> rtc 1228 * The less preferred source will only be tried if there is no better 1229 * usable source. The rtc part is handled separately in rtc core code. 1230 */ 1231 cycle_now = tk->tkr.read(clock); 1232 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1233 cycle_now > tk->tkr.cycle_last) { 1234 u64 num, max = ULLONG_MAX; 1235 u32 mult = clock->mult; 1236 u32 shift = clock->shift; 1237 s64 nsec = 0; 1238 1239 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, 1240 tk->tkr.mask); 1241 1242 /* 1243 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1244 * suspended time is too long. In that case we need do the 1245 * 64 bits math carefully 1246 */ 1247 do_div(max, mult); 1248 if (cycle_delta > max) { 1249 num = div64_u64(cycle_delta, max); 1250 nsec = (((u64) max * mult) >> shift) * num; 1251 cycle_delta -= num * max; 1252 } 1253 nsec += ((u64) cycle_delta * mult) >> shift; 1254 1255 ts_delta = ns_to_timespec64(nsec); 1256 suspendtime_found = true; 1257 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1258 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1259 suspendtime_found = true; 1260 } 1261 1262 if (suspendtime_found) 1263 __timekeeping_inject_sleeptime(tk, &ts_delta); 1264 1265 /* Re-base the last cycle value */ 1266 tk->tkr.cycle_last = cycle_now; 1267 tk->ntp_error = 0; 1268 timekeeping_suspended = 0; 1269 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1270 write_seqcount_end(&tk_core.seq); 1271 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1272 1273 touch_softlockup_watchdog(); 1274 1275 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 1276 1277 /* Resume hrtimers */ 1278 hrtimers_resume(); 1279 } 1280 1281 int timekeeping_suspend(void) 1282 { 1283 struct timekeeper *tk = &tk_core.timekeeper; 1284 unsigned long flags; 1285 struct timespec64 delta, delta_delta; 1286 static struct timespec64 old_delta; 1287 struct timespec tmp; 1288 1289 read_persistent_clock(&tmp); 1290 timekeeping_suspend_time = timespec_to_timespec64(tmp); 1291 1292 /* 1293 * On some systems the persistent_clock can not be detected at 1294 * timekeeping_init by its return value, so if we see a valid 1295 * value returned, update the persistent_clock_exists flag. 1296 */ 1297 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1298 persistent_clock_exist = true; 1299 1300 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1301 write_seqcount_begin(&tk_core.seq); 1302 timekeeping_forward_now(tk); 1303 timekeeping_suspended = 1; 1304 1305 /* 1306 * To avoid drift caused by repeated suspend/resumes, 1307 * which each can add ~1 second drift error, 1308 * try to compensate so the difference in system time 1309 * and persistent_clock time stays close to constant. 1310 */ 1311 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1312 delta_delta = timespec64_sub(delta, old_delta); 1313 if (abs(delta_delta.tv_sec) >= 2) { 1314 /* 1315 * if delta_delta is too large, assume time correction 1316 * has occured and set old_delta to the current delta. 1317 */ 1318 old_delta = delta; 1319 } else { 1320 /* Otherwise try to adjust old_system to compensate */ 1321 timekeeping_suspend_time = 1322 timespec64_add(timekeeping_suspend_time, delta_delta); 1323 } 1324 1325 timekeeping_update(tk, TK_MIRROR); 1326 halt_fast_timekeeper(tk); 1327 write_seqcount_end(&tk_core.seq); 1328 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1329 1330 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 1331 clocksource_suspend(); 1332 clockevents_suspend(); 1333 1334 return 0; 1335 } 1336 1337 /* sysfs resume/suspend bits for timekeeping */ 1338 static struct syscore_ops timekeeping_syscore_ops = { 1339 .resume = timekeeping_resume, 1340 .suspend = timekeeping_suspend, 1341 }; 1342 1343 static int __init timekeeping_init_ops(void) 1344 { 1345 register_syscore_ops(&timekeeping_syscore_ops); 1346 return 0; 1347 } 1348 device_initcall(timekeeping_init_ops); 1349 1350 /* 1351 * Apply a multiplier adjustment to the timekeeper 1352 */ 1353 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1354 s64 offset, 1355 bool negative, 1356 int adj_scale) 1357 { 1358 s64 interval = tk->cycle_interval; 1359 s32 mult_adj = 1; 1360 1361 if (negative) { 1362 mult_adj = -mult_adj; 1363 interval = -interval; 1364 offset = -offset; 1365 } 1366 mult_adj <<= adj_scale; 1367 interval <<= adj_scale; 1368 offset <<= adj_scale; 1369 1370 /* 1371 * So the following can be confusing. 1372 * 1373 * To keep things simple, lets assume mult_adj == 1 for now. 1374 * 1375 * When mult_adj != 1, remember that the interval and offset values 1376 * have been appropriately scaled so the math is the same. 1377 * 1378 * The basic idea here is that we're increasing the multiplier 1379 * by one, this causes the xtime_interval to be incremented by 1380 * one cycle_interval. This is because: 1381 * xtime_interval = cycle_interval * mult 1382 * So if mult is being incremented by one: 1383 * xtime_interval = cycle_interval * (mult + 1) 1384 * Its the same as: 1385 * xtime_interval = (cycle_interval * mult) + cycle_interval 1386 * Which can be shortened to: 1387 * xtime_interval += cycle_interval 1388 * 1389 * So offset stores the non-accumulated cycles. Thus the current 1390 * time (in shifted nanoseconds) is: 1391 * now = (offset * adj) + xtime_nsec 1392 * Now, even though we're adjusting the clock frequency, we have 1393 * to keep time consistent. In other words, we can't jump back 1394 * in time, and we also want to avoid jumping forward in time. 1395 * 1396 * So given the same offset value, we need the time to be the same 1397 * both before and after the freq adjustment. 1398 * now = (offset * adj_1) + xtime_nsec_1 1399 * now = (offset * adj_2) + xtime_nsec_2 1400 * So: 1401 * (offset * adj_1) + xtime_nsec_1 = 1402 * (offset * adj_2) + xtime_nsec_2 1403 * And we know: 1404 * adj_2 = adj_1 + 1 1405 * So: 1406 * (offset * adj_1) + xtime_nsec_1 = 1407 * (offset * (adj_1+1)) + xtime_nsec_2 1408 * (offset * adj_1) + xtime_nsec_1 = 1409 * (offset * adj_1) + offset + xtime_nsec_2 1410 * Canceling the sides: 1411 * xtime_nsec_1 = offset + xtime_nsec_2 1412 * Which gives us: 1413 * xtime_nsec_2 = xtime_nsec_1 - offset 1414 * Which simplfies to: 1415 * xtime_nsec -= offset 1416 * 1417 * XXX - TODO: Doc ntp_error calculation. 1418 */ 1419 if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) { 1420 /* NTP adjustment caused clocksource mult overflow */ 1421 WARN_ON_ONCE(1); 1422 return; 1423 } 1424 1425 tk->tkr.mult += mult_adj; 1426 tk->xtime_interval += interval; 1427 tk->tkr.xtime_nsec -= offset; 1428 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1429 } 1430 1431 /* 1432 * Calculate the multiplier adjustment needed to match the frequency 1433 * specified by NTP 1434 */ 1435 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1436 s64 offset) 1437 { 1438 s64 interval = tk->cycle_interval; 1439 s64 xinterval = tk->xtime_interval; 1440 s64 tick_error; 1441 bool negative; 1442 u32 adj; 1443 1444 /* Remove any current error adj from freq calculation */ 1445 if (tk->ntp_err_mult) 1446 xinterval -= tk->cycle_interval; 1447 1448 tk->ntp_tick = ntp_tick_length(); 1449 1450 /* Calculate current error per tick */ 1451 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1452 tick_error -= (xinterval + tk->xtime_remainder); 1453 1454 /* Don't worry about correcting it if its small */ 1455 if (likely((tick_error >= 0) && (tick_error <= interval))) 1456 return; 1457 1458 /* preserve the direction of correction */ 1459 negative = (tick_error < 0); 1460 1461 /* Sort out the magnitude of the correction */ 1462 tick_error = abs(tick_error); 1463 for (adj = 0; tick_error > interval; adj++) 1464 tick_error >>= 1; 1465 1466 /* scale the corrections */ 1467 timekeeping_apply_adjustment(tk, offset, negative, adj); 1468 } 1469 1470 /* 1471 * Adjust the timekeeper's multiplier to the correct frequency 1472 * and also to reduce the accumulated error value. 1473 */ 1474 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1475 { 1476 /* Correct for the current frequency error */ 1477 timekeeping_freqadjust(tk, offset); 1478 1479 /* Next make a small adjustment to fix any cumulative error */ 1480 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1481 tk->ntp_err_mult = 1; 1482 timekeeping_apply_adjustment(tk, offset, 0, 0); 1483 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1484 /* Undo any existing error adjustment */ 1485 timekeeping_apply_adjustment(tk, offset, 1, 0); 1486 tk->ntp_err_mult = 0; 1487 } 1488 1489 if (unlikely(tk->tkr.clock->maxadj && 1490 (abs(tk->tkr.mult - tk->tkr.clock->mult) 1491 > tk->tkr.clock->maxadj))) { 1492 printk_once(KERN_WARNING 1493 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1494 tk->tkr.clock->name, (long)tk->tkr.mult, 1495 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj); 1496 } 1497 1498 /* 1499 * It may be possible that when we entered this function, xtime_nsec 1500 * was very small. Further, if we're slightly speeding the clocksource 1501 * in the code above, its possible the required corrective factor to 1502 * xtime_nsec could cause it to underflow. 1503 * 1504 * Now, since we already accumulated the second, cannot simply roll 1505 * the accumulated second back, since the NTP subsystem has been 1506 * notified via second_overflow. So instead we push xtime_nsec forward 1507 * by the amount we underflowed, and add that amount into the error. 1508 * 1509 * We'll correct this error next time through this function, when 1510 * xtime_nsec is not as small. 1511 */ 1512 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) { 1513 s64 neg = -(s64)tk->tkr.xtime_nsec; 1514 tk->tkr.xtime_nsec = 0; 1515 tk->ntp_error += neg << tk->ntp_error_shift; 1516 } 1517 } 1518 1519 /** 1520 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1521 * 1522 * Helper function that accumulates a the nsecs greater then a second 1523 * from the xtime_nsec field to the xtime_secs field. 1524 * It also calls into the NTP code to handle leapsecond processing. 1525 * 1526 */ 1527 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1528 { 1529 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift; 1530 unsigned int clock_set = 0; 1531 1532 while (tk->tkr.xtime_nsec >= nsecps) { 1533 int leap; 1534 1535 tk->tkr.xtime_nsec -= nsecps; 1536 tk->xtime_sec++; 1537 1538 /* Figure out if its a leap sec and apply if needed */ 1539 leap = second_overflow(tk->xtime_sec); 1540 if (unlikely(leap)) { 1541 struct timespec64 ts; 1542 1543 tk->xtime_sec += leap; 1544 1545 ts.tv_sec = leap; 1546 ts.tv_nsec = 0; 1547 tk_set_wall_to_mono(tk, 1548 timespec64_sub(tk->wall_to_monotonic, ts)); 1549 1550 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1551 1552 clock_set = TK_CLOCK_WAS_SET; 1553 } 1554 } 1555 return clock_set; 1556 } 1557 1558 /** 1559 * logarithmic_accumulation - shifted accumulation of cycles 1560 * 1561 * This functions accumulates a shifted interval of cycles into 1562 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1563 * loop. 1564 * 1565 * Returns the unconsumed cycles. 1566 */ 1567 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1568 u32 shift, 1569 unsigned int *clock_set) 1570 { 1571 cycle_t interval = tk->cycle_interval << shift; 1572 u64 raw_nsecs; 1573 1574 /* If the offset is smaller then a shifted interval, do nothing */ 1575 if (offset < interval) 1576 return offset; 1577 1578 /* Accumulate one shifted interval */ 1579 offset -= interval; 1580 tk->tkr.cycle_last += interval; 1581 1582 tk->tkr.xtime_nsec += tk->xtime_interval << shift; 1583 *clock_set |= accumulate_nsecs_to_secs(tk); 1584 1585 /* Accumulate raw time */ 1586 raw_nsecs = (u64)tk->raw_interval << shift; 1587 raw_nsecs += tk->raw_time.tv_nsec; 1588 if (raw_nsecs >= NSEC_PER_SEC) { 1589 u64 raw_secs = raw_nsecs; 1590 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1591 tk->raw_time.tv_sec += raw_secs; 1592 } 1593 tk->raw_time.tv_nsec = raw_nsecs; 1594 1595 /* Accumulate error between NTP and clock interval */ 1596 tk->ntp_error += tk->ntp_tick << shift; 1597 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1598 (tk->ntp_error_shift + shift); 1599 1600 return offset; 1601 } 1602 1603 /** 1604 * update_wall_time - Uses the current clocksource to increment the wall time 1605 * 1606 */ 1607 void update_wall_time(void) 1608 { 1609 struct timekeeper *real_tk = &tk_core.timekeeper; 1610 struct timekeeper *tk = &shadow_timekeeper; 1611 cycle_t offset; 1612 int shift = 0, maxshift; 1613 unsigned int clock_set = 0; 1614 unsigned long flags; 1615 1616 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1617 1618 /* Make sure we're fully resumed: */ 1619 if (unlikely(timekeeping_suspended)) 1620 goto out; 1621 1622 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1623 offset = real_tk->cycle_interval; 1624 #else 1625 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock), 1626 tk->tkr.cycle_last, tk->tkr.mask); 1627 #endif 1628 1629 /* Check if there's really nothing to do */ 1630 if (offset < real_tk->cycle_interval) 1631 goto out; 1632 1633 /* 1634 * With NO_HZ we may have to accumulate many cycle_intervals 1635 * (think "ticks") worth of time at once. To do this efficiently, 1636 * we calculate the largest doubling multiple of cycle_intervals 1637 * that is smaller than the offset. We then accumulate that 1638 * chunk in one go, and then try to consume the next smaller 1639 * doubled multiple. 1640 */ 1641 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1642 shift = max(0, shift); 1643 /* Bound shift to one less than what overflows tick_length */ 1644 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1645 shift = min(shift, maxshift); 1646 while (offset >= tk->cycle_interval) { 1647 offset = logarithmic_accumulation(tk, offset, shift, 1648 &clock_set); 1649 if (offset < tk->cycle_interval<<shift) 1650 shift--; 1651 } 1652 1653 /* correct the clock when NTP error is too big */ 1654 timekeeping_adjust(tk, offset); 1655 1656 /* 1657 * XXX This can be killed once everyone converts 1658 * to the new update_vsyscall. 1659 */ 1660 old_vsyscall_fixup(tk); 1661 1662 /* 1663 * Finally, make sure that after the rounding 1664 * xtime_nsec isn't larger than NSEC_PER_SEC 1665 */ 1666 clock_set |= accumulate_nsecs_to_secs(tk); 1667 1668 write_seqcount_begin(&tk_core.seq); 1669 /* 1670 * Update the real timekeeper. 1671 * 1672 * We could avoid this memcpy by switching pointers, but that 1673 * requires changes to all other timekeeper usage sites as 1674 * well, i.e. move the timekeeper pointer getter into the 1675 * spinlocked/seqcount protected sections. And we trade this 1676 * memcpy under the tk_core.seq against one before we start 1677 * updating. 1678 */ 1679 memcpy(real_tk, tk, sizeof(*tk)); 1680 timekeeping_update(real_tk, clock_set); 1681 write_seqcount_end(&tk_core.seq); 1682 out: 1683 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1684 if (clock_set) 1685 /* Have to call _delayed version, since in irq context*/ 1686 clock_was_set_delayed(); 1687 } 1688 1689 /** 1690 * getboottime64 - Return the real time of system boot. 1691 * @ts: pointer to the timespec64 to be set 1692 * 1693 * Returns the wall-time of boot in a timespec64. 1694 * 1695 * This is based on the wall_to_monotonic offset and the total suspend 1696 * time. Calls to settimeofday will affect the value returned (which 1697 * basically means that however wrong your real time clock is at boot time, 1698 * you get the right time here). 1699 */ 1700 void getboottime64(struct timespec64 *ts) 1701 { 1702 struct timekeeper *tk = &tk_core.timekeeper; 1703 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 1704 1705 *ts = ktime_to_timespec64(t); 1706 } 1707 EXPORT_SYMBOL_GPL(getboottime64); 1708 1709 unsigned long get_seconds(void) 1710 { 1711 struct timekeeper *tk = &tk_core.timekeeper; 1712 1713 return tk->xtime_sec; 1714 } 1715 EXPORT_SYMBOL(get_seconds); 1716 1717 struct timespec __current_kernel_time(void) 1718 { 1719 struct timekeeper *tk = &tk_core.timekeeper; 1720 1721 return timespec64_to_timespec(tk_xtime(tk)); 1722 } 1723 1724 struct timespec current_kernel_time(void) 1725 { 1726 struct timekeeper *tk = &tk_core.timekeeper; 1727 struct timespec64 now; 1728 unsigned long seq; 1729 1730 do { 1731 seq = read_seqcount_begin(&tk_core.seq); 1732 1733 now = tk_xtime(tk); 1734 } while (read_seqcount_retry(&tk_core.seq, seq)); 1735 1736 return timespec64_to_timespec(now); 1737 } 1738 EXPORT_SYMBOL(current_kernel_time); 1739 1740 struct timespec64 get_monotonic_coarse64(void) 1741 { 1742 struct timekeeper *tk = &tk_core.timekeeper; 1743 struct timespec64 now, mono; 1744 unsigned long seq; 1745 1746 do { 1747 seq = read_seqcount_begin(&tk_core.seq); 1748 1749 now = tk_xtime(tk); 1750 mono = tk->wall_to_monotonic; 1751 } while (read_seqcount_retry(&tk_core.seq, seq)); 1752 1753 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 1754 now.tv_nsec + mono.tv_nsec); 1755 1756 return now; 1757 } 1758 1759 /* 1760 * Must hold jiffies_lock 1761 */ 1762 void do_timer(unsigned long ticks) 1763 { 1764 jiffies_64 += ticks; 1765 calc_global_load(ticks); 1766 } 1767 1768 /** 1769 * ktime_get_update_offsets_tick - hrtimer helper 1770 * @offs_real: pointer to storage for monotonic -> realtime offset 1771 * @offs_boot: pointer to storage for monotonic -> boottime offset 1772 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1773 * 1774 * Returns monotonic time at last tick and various offsets 1775 */ 1776 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot, 1777 ktime_t *offs_tai) 1778 { 1779 struct timekeeper *tk = &tk_core.timekeeper; 1780 unsigned int seq; 1781 ktime_t base; 1782 u64 nsecs; 1783 1784 do { 1785 seq = read_seqcount_begin(&tk_core.seq); 1786 1787 base = tk->tkr.base_mono; 1788 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift; 1789 1790 *offs_real = tk->offs_real; 1791 *offs_boot = tk->offs_boot; 1792 *offs_tai = tk->offs_tai; 1793 } while (read_seqcount_retry(&tk_core.seq, seq)); 1794 1795 return ktime_add_ns(base, nsecs); 1796 } 1797 1798 #ifdef CONFIG_HIGH_RES_TIMERS 1799 /** 1800 * ktime_get_update_offsets_now - hrtimer helper 1801 * @offs_real: pointer to storage for monotonic -> realtime offset 1802 * @offs_boot: pointer to storage for monotonic -> boottime offset 1803 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1804 * 1805 * Returns current monotonic time and updates the offsets 1806 * Called from hrtimer_interrupt() or retrigger_next_event() 1807 */ 1808 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot, 1809 ktime_t *offs_tai) 1810 { 1811 struct timekeeper *tk = &tk_core.timekeeper; 1812 unsigned int seq; 1813 ktime_t base; 1814 u64 nsecs; 1815 1816 do { 1817 seq = read_seqcount_begin(&tk_core.seq); 1818 1819 base = tk->tkr.base_mono; 1820 nsecs = timekeeping_get_ns(&tk->tkr); 1821 1822 *offs_real = tk->offs_real; 1823 *offs_boot = tk->offs_boot; 1824 *offs_tai = tk->offs_tai; 1825 } while (read_seqcount_retry(&tk_core.seq, seq)); 1826 1827 return ktime_add_ns(base, nsecs); 1828 } 1829 #endif 1830 1831 /** 1832 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1833 */ 1834 int do_adjtimex(struct timex *txc) 1835 { 1836 struct timekeeper *tk = &tk_core.timekeeper; 1837 unsigned long flags; 1838 struct timespec64 ts; 1839 s32 orig_tai, tai; 1840 int ret; 1841 1842 /* Validate the data before disabling interrupts */ 1843 ret = ntp_validate_timex(txc); 1844 if (ret) 1845 return ret; 1846 1847 if (txc->modes & ADJ_SETOFFSET) { 1848 struct timespec delta; 1849 delta.tv_sec = txc->time.tv_sec; 1850 delta.tv_nsec = txc->time.tv_usec; 1851 if (!(txc->modes & ADJ_NANO)) 1852 delta.tv_nsec *= 1000; 1853 ret = timekeeping_inject_offset(&delta); 1854 if (ret) 1855 return ret; 1856 } 1857 1858 getnstimeofday64(&ts); 1859 1860 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1861 write_seqcount_begin(&tk_core.seq); 1862 1863 orig_tai = tai = tk->tai_offset; 1864 ret = __do_adjtimex(txc, &ts, &tai); 1865 1866 if (tai != orig_tai) { 1867 __timekeeping_set_tai_offset(tk, tai); 1868 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1869 } 1870 write_seqcount_end(&tk_core.seq); 1871 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1872 1873 if (tai != orig_tai) 1874 clock_was_set(); 1875 1876 ntp_notify_cmos_timer(); 1877 1878 return ret; 1879 } 1880 1881 #ifdef CONFIG_NTP_PPS 1882 /** 1883 * hardpps() - Accessor function to NTP __hardpps function 1884 */ 1885 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 1886 { 1887 unsigned long flags; 1888 1889 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1890 write_seqcount_begin(&tk_core.seq); 1891 1892 __hardpps(phase_ts, raw_ts); 1893 1894 write_seqcount_end(&tk_core.seq); 1895 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1896 } 1897 EXPORT_SYMBOL(hardpps); 1898 #endif 1899 1900 /** 1901 * xtime_update() - advances the timekeeping infrastructure 1902 * @ticks: number of ticks, that have elapsed since the last call. 1903 * 1904 * Must be called with interrupts disabled. 1905 */ 1906 void xtime_update(unsigned long ticks) 1907 { 1908 write_seqlock(&jiffies_lock); 1909 do_timer(ticks); 1910 write_sequnlock(&jiffies_lock); 1911 update_wall_time(); 1912 } 1913