xref: /openbmc/linux/kernel/time/timekeeping.c (revision 5e29a910)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65 
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68 
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 		tk->xtime_sec++;
74 	}
75 }
76 
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 	struct timespec64 ts;
80 
81 	ts.tv_sec = tk->xtime_sec;
82 	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 	return ts;
84 }
85 
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 	tk->xtime_sec = ts->tv_sec;
89 	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91 
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 	tk->xtime_sec += ts->tv_sec;
95 	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96 	tk_normalize_xtime(tk);
97 }
98 
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 	struct timespec64 tmp;
102 
103 	/*
104 	 * Verify consistency of: offset_real = -wall_to_monotonic
105 	 * before modifying anything
106 	 */
107 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 					-tk->wall_to_monotonic.tv_nsec);
109 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110 	tk->wall_to_monotonic = wtm;
111 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 	tk->offs_real = timespec64_to_ktime(tmp);
113 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115 
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120 
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:		The target timekeeper to setup.
125  * @clock:		Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134 	cycle_t interval;
135 	u64 tmp, ntpinterval;
136 	struct clocksource *old_clock;
137 
138 	old_clock = tk->tkr.clock;
139 	tk->tkr.clock = clock;
140 	tk->tkr.read = clock->read;
141 	tk->tkr.mask = clock->mask;
142 	tk->tkr.cycle_last = tk->tkr.read(clock);
143 
144 	/* Do the ns -> cycle conversion first, using original mult */
145 	tmp = NTP_INTERVAL_LENGTH;
146 	tmp <<= clock->shift;
147 	ntpinterval = tmp;
148 	tmp += clock->mult/2;
149 	do_div(tmp, clock->mult);
150 	if (tmp == 0)
151 		tmp = 1;
152 
153 	interval = (cycle_t) tmp;
154 	tk->cycle_interval = interval;
155 
156 	/* Go back from cycles -> shifted ns */
157 	tk->xtime_interval = (u64) interval * clock->mult;
158 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 	tk->raw_interval =
160 		((u64) interval * clock->mult) >> clock->shift;
161 
162 	 /* if changing clocks, convert xtime_nsec shift units */
163 	if (old_clock) {
164 		int shift_change = clock->shift - old_clock->shift;
165 		if (shift_change < 0)
166 			tk->tkr.xtime_nsec >>= -shift_change;
167 		else
168 			tk->tkr.xtime_nsec <<= shift_change;
169 	}
170 	tk->tkr.shift = clock->shift;
171 
172 	tk->ntp_error = 0;
173 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 
176 	/*
177 	 * The timekeeper keeps its own mult values for the currently
178 	 * active clocksource. These value will be adjusted via NTP
179 	 * to counteract clock drifting.
180 	 */
181 	tk->tkr.mult = clock->mult;
182 	tk->ntp_err_mult = 0;
183 }
184 
185 /* Timekeeper helper functions. */
186 
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193 
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196 	cycle_t cycle_now, delta;
197 	s64 nsec;
198 
199 	/* read clocksource: */
200 	cycle_now = tkr->read(tkr->clock);
201 
202 	/* calculate the delta since the last update_wall_time: */
203 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204 
205 	nsec = delta * tkr->mult + tkr->xtime_nsec;
206 	nsec >>= tkr->shift;
207 
208 	/* If arch requires, add in get_arch_timeoffset() */
209 	return nsec + arch_gettimeoffset();
210 }
211 
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214 	struct clocksource *clock = tk->tkr.clock;
215 	cycle_t cycle_now, delta;
216 	s64 nsec;
217 
218 	/* read clocksource: */
219 	cycle_now = tk->tkr.read(clock);
220 
221 	/* calculate the delta since the last update_wall_time: */
222 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223 
224 	/* convert delta to nanoseconds. */
225 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226 
227 	/* If arch requires, add in get_arch_timeoffset() */
228 	return nsec + arch_gettimeoffset();
229 }
230 
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tkr: Timekeeping readout base from which we take the update
234  *
235  * We want to use this from any context including NMI and tracing /
236  * instrumenting the timekeeping code itself.
237  *
238  * So we handle this differently than the other timekeeping accessor
239  * functions which retry when the sequence count has changed. The
240  * update side does:
241  *
242  * smp_wmb();	<- Ensure that the last base[1] update is visible
243  * tkf->seq++;
244  * smp_wmb();	<- Ensure that the seqcount update is visible
245  * update(tkf->base[0], tkr);
246  * smp_wmb();	<- Ensure that the base[0] update is visible
247  * tkf->seq++;
248  * smp_wmb();	<- Ensure that the seqcount update is visible
249  * update(tkf->base[1], tkr);
250  *
251  * The reader side does:
252  *
253  * do {
254  *	seq = tkf->seq;
255  *	smp_rmb();
256  *	idx = seq & 0x01;
257  *	now = now(tkf->base[idx]);
258  *	smp_rmb();
259  * } while (seq != tkf->seq)
260  *
261  * As long as we update base[0] readers are forced off to
262  * base[1]. Once base[0] is updated readers are redirected to base[0]
263  * and the base[1] update takes place.
264  *
265  * So if a NMI hits the update of base[0] then it will use base[1]
266  * which is still consistent. In the worst case this can result is a
267  * slightly wrong timestamp (a few nanoseconds). See
268  * @ktime_get_mono_fast_ns.
269  */
270 static void update_fast_timekeeper(struct tk_read_base *tkr)
271 {
272 	struct tk_read_base *base = tk_fast_mono.base;
273 
274 	/* Force readers off to base[1] */
275 	raw_write_seqcount_latch(&tk_fast_mono.seq);
276 
277 	/* Update base[0] */
278 	memcpy(base, tkr, sizeof(*base));
279 
280 	/* Force readers back to base[0] */
281 	raw_write_seqcount_latch(&tk_fast_mono.seq);
282 
283 	/* Update base[1] */
284 	memcpy(base + 1, base, sizeof(*base));
285 }
286 
287 /**
288  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
289  *
290  * This timestamp is not guaranteed to be monotonic across an update.
291  * The timestamp is calculated by:
292  *
293  *	now = base_mono + clock_delta * slope
294  *
295  * So if the update lowers the slope, readers who are forced to the
296  * not yet updated second array are still using the old steeper slope.
297  *
298  * tmono
299  * ^
300  * |    o  n
301  * |   o n
302  * |  u
303  * | o
304  * |o
305  * |12345678---> reader order
306  *
307  * o = old slope
308  * u = update
309  * n = new slope
310  *
311  * So reader 6 will observe time going backwards versus reader 5.
312  *
313  * While other CPUs are likely to be able observe that, the only way
314  * for a CPU local observation is when an NMI hits in the middle of
315  * the update. Timestamps taken from that NMI context might be ahead
316  * of the following timestamps. Callers need to be aware of that and
317  * deal with it.
318  */
319 u64 notrace ktime_get_mono_fast_ns(void)
320 {
321 	struct tk_read_base *tkr;
322 	unsigned int seq;
323 	u64 now;
324 
325 	do {
326 		seq = raw_read_seqcount(&tk_fast_mono.seq);
327 		tkr = tk_fast_mono.base + (seq & 0x01);
328 		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
329 
330 	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
331 	return now;
332 }
333 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
334 
335 /* Suspend-time cycles value for halted fast timekeeper. */
336 static cycle_t cycles_at_suspend;
337 
338 static cycle_t dummy_clock_read(struct clocksource *cs)
339 {
340 	return cycles_at_suspend;
341 }
342 
343 /**
344  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
345  * @tk: Timekeeper to snapshot.
346  *
347  * It generally is unsafe to access the clocksource after timekeeping has been
348  * suspended, so take a snapshot of the readout base of @tk and use it as the
349  * fast timekeeper's readout base while suspended.  It will return the same
350  * number of cycles every time until timekeeping is resumed at which time the
351  * proper readout base for the fast timekeeper will be restored automatically.
352  */
353 static void halt_fast_timekeeper(struct timekeeper *tk)
354 {
355 	static struct tk_read_base tkr_dummy;
356 	struct tk_read_base *tkr = &tk->tkr;
357 
358 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
359 	cycles_at_suspend = tkr->read(tkr->clock);
360 	tkr_dummy.read = dummy_clock_read;
361 	update_fast_timekeeper(&tkr_dummy);
362 }
363 
364 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
365 
366 static inline void update_vsyscall(struct timekeeper *tk)
367 {
368 	struct timespec xt, wm;
369 
370 	xt = timespec64_to_timespec(tk_xtime(tk));
371 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
372 	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
373 			    tk->tkr.cycle_last);
374 }
375 
376 static inline void old_vsyscall_fixup(struct timekeeper *tk)
377 {
378 	s64 remainder;
379 
380 	/*
381 	* Store only full nanoseconds into xtime_nsec after rounding
382 	* it up and add the remainder to the error difference.
383 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
384 	* by truncating the remainder in vsyscalls. However, it causes
385 	* additional work to be done in timekeeping_adjust(). Once
386 	* the vsyscall implementations are converted to use xtime_nsec
387 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
388 	* users are removed, this can be killed.
389 	*/
390 	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
391 	tk->tkr.xtime_nsec -= remainder;
392 	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
393 	tk->ntp_error += remainder << tk->ntp_error_shift;
394 	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
395 }
396 #else
397 #define old_vsyscall_fixup(tk)
398 #endif
399 
400 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
401 
402 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
403 {
404 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
405 }
406 
407 /**
408  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
409  */
410 int pvclock_gtod_register_notifier(struct notifier_block *nb)
411 {
412 	struct timekeeper *tk = &tk_core.timekeeper;
413 	unsigned long flags;
414 	int ret;
415 
416 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
417 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
418 	update_pvclock_gtod(tk, true);
419 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
420 
421 	return ret;
422 }
423 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
424 
425 /**
426  * pvclock_gtod_unregister_notifier - unregister a pvclock
427  * timedata update listener
428  */
429 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
430 {
431 	unsigned long flags;
432 	int ret;
433 
434 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
435 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
436 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
437 
438 	return ret;
439 }
440 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
441 
442 /*
443  * Update the ktime_t based scalar nsec members of the timekeeper
444  */
445 static inline void tk_update_ktime_data(struct timekeeper *tk)
446 {
447 	u64 seconds;
448 	u32 nsec;
449 
450 	/*
451 	 * The xtime based monotonic readout is:
452 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
453 	 * The ktime based monotonic readout is:
454 	 *	nsec = base_mono + now();
455 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
456 	 */
457 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
458 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
459 	tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
460 
461 	/* Update the monotonic raw base */
462 	tk->base_raw = timespec64_to_ktime(tk->raw_time);
463 
464 	/*
465 	 * The sum of the nanoseconds portions of xtime and
466 	 * wall_to_monotonic can be greater/equal one second. Take
467 	 * this into account before updating tk->ktime_sec.
468 	 */
469 	nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
470 	if (nsec >= NSEC_PER_SEC)
471 		seconds++;
472 	tk->ktime_sec = seconds;
473 }
474 
475 /* must hold timekeeper_lock */
476 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
477 {
478 	if (action & TK_CLEAR_NTP) {
479 		tk->ntp_error = 0;
480 		ntp_clear();
481 	}
482 
483 	tk_update_ktime_data(tk);
484 
485 	update_vsyscall(tk);
486 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
487 
488 	if (action & TK_MIRROR)
489 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
490 		       sizeof(tk_core.timekeeper));
491 
492 	update_fast_timekeeper(&tk->tkr);
493 }
494 
495 /**
496  * timekeeping_forward_now - update clock to the current time
497  *
498  * Forward the current clock to update its state since the last call to
499  * update_wall_time(). This is useful before significant clock changes,
500  * as it avoids having to deal with this time offset explicitly.
501  */
502 static void timekeeping_forward_now(struct timekeeper *tk)
503 {
504 	struct clocksource *clock = tk->tkr.clock;
505 	cycle_t cycle_now, delta;
506 	s64 nsec;
507 
508 	cycle_now = tk->tkr.read(clock);
509 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
510 	tk->tkr.cycle_last = cycle_now;
511 
512 	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
513 
514 	/* If arch requires, add in get_arch_timeoffset() */
515 	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
516 
517 	tk_normalize_xtime(tk);
518 
519 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
520 	timespec64_add_ns(&tk->raw_time, nsec);
521 }
522 
523 /**
524  * __getnstimeofday64 - Returns the time of day in a timespec64.
525  * @ts:		pointer to the timespec to be set
526  *
527  * Updates the time of day in the timespec.
528  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
529  */
530 int __getnstimeofday64(struct timespec64 *ts)
531 {
532 	struct timekeeper *tk = &tk_core.timekeeper;
533 	unsigned long seq;
534 	s64 nsecs = 0;
535 
536 	do {
537 		seq = read_seqcount_begin(&tk_core.seq);
538 
539 		ts->tv_sec = tk->xtime_sec;
540 		nsecs = timekeeping_get_ns(&tk->tkr);
541 
542 	} while (read_seqcount_retry(&tk_core.seq, seq));
543 
544 	ts->tv_nsec = 0;
545 	timespec64_add_ns(ts, nsecs);
546 
547 	/*
548 	 * Do not bail out early, in case there were callers still using
549 	 * the value, even in the face of the WARN_ON.
550 	 */
551 	if (unlikely(timekeeping_suspended))
552 		return -EAGAIN;
553 	return 0;
554 }
555 EXPORT_SYMBOL(__getnstimeofday64);
556 
557 /**
558  * getnstimeofday64 - Returns the time of day in a timespec64.
559  * @ts:		pointer to the timespec64 to be set
560  *
561  * Returns the time of day in a timespec64 (WARN if suspended).
562  */
563 void getnstimeofday64(struct timespec64 *ts)
564 {
565 	WARN_ON(__getnstimeofday64(ts));
566 }
567 EXPORT_SYMBOL(getnstimeofday64);
568 
569 ktime_t ktime_get(void)
570 {
571 	struct timekeeper *tk = &tk_core.timekeeper;
572 	unsigned int seq;
573 	ktime_t base;
574 	s64 nsecs;
575 
576 	WARN_ON(timekeeping_suspended);
577 
578 	do {
579 		seq = read_seqcount_begin(&tk_core.seq);
580 		base = tk->tkr.base_mono;
581 		nsecs = timekeeping_get_ns(&tk->tkr);
582 
583 	} while (read_seqcount_retry(&tk_core.seq, seq));
584 
585 	return ktime_add_ns(base, nsecs);
586 }
587 EXPORT_SYMBOL_GPL(ktime_get);
588 
589 static ktime_t *offsets[TK_OFFS_MAX] = {
590 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
591 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
592 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
593 };
594 
595 ktime_t ktime_get_with_offset(enum tk_offsets offs)
596 {
597 	struct timekeeper *tk = &tk_core.timekeeper;
598 	unsigned int seq;
599 	ktime_t base, *offset = offsets[offs];
600 	s64 nsecs;
601 
602 	WARN_ON(timekeeping_suspended);
603 
604 	do {
605 		seq = read_seqcount_begin(&tk_core.seq);
606 		base = ktime_add(tk->tkr.base_mono, *offset);
607 		nsecs = timekeeping_get_ns(&tk->tkr);
608 
609 	} while (read_seqcount_retry(&tk_core.seq, seq));
610 
611 	return ktime_add_ns(base, nsecs);
612 
613 }
614 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
615 
616 /**
617  * ktime_mono_to_any() - convert mononotic time to any other time
618  * @tmono:	time to convert.
619  * @offs:	which offset to use
620  */
621 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
622 {
623 	ktime_t *offset = offsets[offs];
624 	unsigned long seq;
625 	ktime_t tconv;
626 
627 	do {
628 		seq = read_seqcount_begin(&tk_core.seq);
629 		tconv = ktime_add(tmono, *offset);
630 	} while (read_seqcount_retry(&tk_core.seq, seq));
631 
632 	return tconv;
633 }
634 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
635 
636 /**
637  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
638  */
639 ktime_t ktime_get_raw(void)
640 {
641 	struct timekeeper *tk = &tk_core.timekeeper;
642 	unsigned int seq;
643 	ktime_t base;
644 	s64 nsecs;
645 
646 	do {
647 		seq = read_seqcount_begin(&tk_core.seq);
648 		base = tk->base_raw;
649 		nsecs = timekeeping_get_ns_raw(tk);
650 
651 	} while (read_seqcount_retry(&tk_core.seq, seq));
652 
653 	return ktime_add_ns(base, nsecs);
654 }
655 EXPORT_SYMBOL_GPL(ktime_get_raw);
656 
657 /**
658  * ktime_get_ts64 - get the monotonic clock in timespec64 format
659  * @ts:		pointer to timespec variable
660  *
661  * The function calculates the monotonic clock from the realtime
662  * clock and the wall_to_monotonic offset and stores the result
663  * in normalized timespec64 format in the variable pointed to by @ts.
664  */
665 void ktime_get_ts64(struct timespec64 *ts)
666 {
667 	struct timekeeper *tk = &tk_core.timekeeper;
668 	struct timespec64 tomono;
669 	s64 nsec;
670 	unsigned int seq;
671 
672 	WARN_ON(timekeeping_suspended);
673 
674 	do {
675 		seq = read_seqcount_begin(&tk_core.seq);
676 		ts->tv_sec = tk->xtime_sec;
677 		nsec = timekeeping_get_ns(&tk->tkr);
678 		tomono = tk->wall_to_monotonic;
679 
680 	} while (read_seqcount_retry(&tk_core.seq, seq));
681 
682 	ts->tv_sec += tomono.tv_sec;
683 	ts->tv_nsec = 0;
684 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
685 }
686 EXPORT_SYMBOL_GPL(ktime_get_ts64);
687 
688 /**
689  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
690  *
691  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
692  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
693  * works on both 32 and 64 bit systems. On 32 bit systems the readout
694  * covers ~136 years of uptime which should be enough to prevent
695  * premature wrap arounds.
696  */
697 time64_t ktime_get_seconds(void)
698 {
699 	struct timekeeper *tk = &tk_core.timekeeper;
700 
701 	WARN_ON(timekeeping_suspended);
702 	return tk->ktime_sec;
703 }
704 EXPORT_SYMBOL_GPL(ktime_get_seconds);
705 
706 /**
707  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
708  *
709  * Returns the wall clock seconds since 1970. This replaces the
710  * get_seconds() interface which is not y2038 safe on 32bit systems.
711  *
712  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
713  * 32bit systems the access must be protected with the sequence
714  * counter to provide "atomic" access to the 64bit tk->xtime_sec
715  * value.
716  */
717 time64_t ktime_get_real_seconds(void)
718 {
719 	struct timekeeper *tk = &tk_core.timekeeper;
720 	time64_t seconds;
721 	unsigned int seq;
722 
723 	if (IS_ENABLED(CONFIG_64BIT))
724 		return tk->xtime_sec;
725 
726 	do {
727 		seq = read_seqcount_begin(&tk_core.seq);
728 		seconds = tk->xtime_sec;
729 
730 	} while (read_seqcount_retry(&tk_core.seq, seq));
731 
732 	return seconds;
733 }
734 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
735 
736 #ifdef CONFIG_NTP_PPS
737 
738 /**
739  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
740  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
741  * @ts_real:	pointer to the timespec to be set to the time of day
742  *
743  * This function reads both the time of day and raw monotonic time at the
744  * same time atomically and stores the resulting timestamps in timespec
745  * format.
746  */
747 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
748 {
749 	struct timekeeper *tk = &tk_core.timekeeper;
750 	unsigned long seq;
751 	s64 nsecs_raw, nsecs_real;
752 
753 	WARN_ON_ONCE(timekeeping_suspended);
754 
755 	do {
756 		seq = read_seqcount_begin(&tk_core.seq);
757 
758 		*ts_raw = timespec64_to_timespec(tk->raw_time);
759 		ts_real->tv_sec = tk->xtime_sec;
760 		ts_real->tv_nsec = 0;
761 
762 		nsecs_raw = timekeeping_get_ns_raw(tk);
763 		nsecs_real = timekeeping_get_ns(&tk->tkr);
764 
765 	} while (read_seqcount_retry(&tk_core.seq, seq));
766 
767 	timespec_add_ns(ts_raw, nsecs_raw);
768 	timespec_add_ns(ts_real, nsecs_real);
769 }
770 EXPORT_SYMBOL(getnstime_raw_and_real);
771 
772 #endif /* CONFIG_NTP_PPS */
773 
774 /**
775  * do_gettimeofday - Returns the time of day in a timeval
776  * @tv:		pointer to the timeval to be set
777  *
778  * NOTE: Users should be converted to using getnstimeofday()
779  */
780 void do_gettimeofday(struct timeval *tv)
781 {
782 	struct timespec64 now;
783 
784 	getnstimeofday64(&now);
785 	tv->tv_sec = now.tv_sec;
786 	tv->tv_usec = now.tv_nsec/1000;
787 }
788 EXPORT_SYMBOL(do_gettimeofday);
789 
790 /**
791  * do_settimeofday64 - Sets the time of day.
792  * @ts:     pointer to the timespec64 variable containing the new time
793  *
794  * Sets the time of day to the new time and update NTP and notify hrtimers
795  */
796 int do_settimeofday64(const struct timespec64 *ts)
797 {
798 	struct timekeeper *tk = &tk_core.timekeeper;
799 	struct timespec64 ts_delta, xt;
800 	unsigned long flags;
801 
802 	if (!timespec64_valid_strict(ts))
803 		return -EINVAL;
804 
805 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
806 	write_seqcount_begin(&tk_core.seq);
807 
808 	timekeeping_forward_now(tk);
809 
810 	xt = tk_xtime(tk);
811 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
812 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
813 
814 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
815 
816 	tk_set_xtime(tk, ts);
817 
818 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
819 
820 	write_seqcount_end(&tk_core.seq);
821 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
822 
823 	/* signal hrtimers about time change */
824 	clock_was_set();
825 
826 	return 0;
827 }
828 EXPORT_SYMBOL(do_settimeofday64);
829 
830 /**
831  * timekeeping_inject_offset - Adds or subtracts from the current time.
832  * @tv:		pointer to the timespec variable containing the offset
833  *
834  * Adds or subtracts an offset value from the current time.
835  */
836 int timekeeping_inject_offset(struct timespec *ts)
837 {
838 	struct timekeeper *tk = &tk_core.timekeeper;
839 	unsigned long flags;
840 	struct timespec64 ts64, tmp;
841 	int ret = 0;
842 
843 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
844 		return -EINVAL;
845 
846 	ts64 = timespec_to_timespec64(*ts);
847 
848 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
849 	write_seqcount_begin(&tk_core.seq);
850 
851 	timekeeping_forward_now(tk);
852 
853 	/* Make sure the proposed value is valid */
854 	tmp = timespec64_add(tk_xtime(tk),  ts64);
855 	if (!timespec64_valid_strict(&tmp)) {
856 		ret = -EINVAL;
857 		goto error;
858 	}
859 
860 	tk_xtime_add(tk, &ts64);
861 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
862 
863 error: /* even if we error out, we forwarded the time, so call update */
864 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
865 
866 	write_seqcount_end(&tk_core.seq);
867 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
868 
869 	/* signal hrtimers about time change */
870 	clock_was_set();
871 
872 	return ret;
873 }
874 EXPORT_SYMBOL(timekeeping_inject_offset);
875 
876 
877 /**
878  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
879  *
880  */
881 s32 timekeeping_get_tai_offset(void)
882 {
883 	struct timekeeper *tk = &tk_core.timekeeper;
884 	unsigned int seq;
885 	s32 ret;
886 
887 	do {
888 		seq = read_seqcount_begin(&tk_core.seq);
889 		ret = tk->tai_offset;
890 	} while (read_seqcount_retry(&tk_core.seq, seq));
891 
892 	return ret;
893 }
894 
895 /**
896  * __timekeeping_set_tai_offset - Lock free worker function
897  *
898  */
899 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
900 {
901 	tk->tai_offset = tai_offset;
902 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
903 }
904 
905 /**
906  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
907  *
908  */
909 void timekeeping_set_tai_offset(s32 tai_offset)
910 {
911 	struct timekeeper *tk = &tk_core.timekeeper;
912 	unsigned long flags;
913 
914 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
915 	write_seqcount_begin(&tk_core.seq);
916 	__timekeeping_set_tai_offset(tk, tai_offset);
917 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
918 	write_seqcount_end(&tk_core.seq);
919 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
920 	clock_was_set();
921 }
922 
923 /**
924  * change_clocksource - Swaps clocksources if a new one is available
925  *
926  * Accumulates current time interval and initializes new clocksource
927  */
928 static int change_clocksource(void *data)
929 {
930 	struct timekeeper *tk = &tk_core.timekeeper;
931 	struct clocksource *new, *old;
932 	unsigned long flags;
933 
934 	new = (struct clocksource *) data;
935 
936 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
937 	write_seqcount_begin(&tk_core.seq);
938 
939 	timekeeping_forward_now(tk);
940 	/*
941 	 * If the cs is in module, get a module reference. Succeeds
942 	 * for built-in code (owner == NULL) as well.
943 	 */
944 	if (try_module_get(new->owner)) {
945 		if (!new->enable || new->enable(new) == 0) {
946 			old = tk->tkr.clock;
947 			tk_setup_internals(tk, new);
948 			if (old->disable)
949 				old->disable(old);
950 			module_put(old->owner);
951 		} else {
952 			module_put(new->owner);
953 		}
954 	}
955 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
956 
957 	write_seqcount_end(&tk_core.seq);
958 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
959 
960 	return 0;
961 }
962 
963 /**
964  * timekeeping_notify - Install a new clock source
965  * @clock:		pointer to the clock source
966  *
967  * This function is called from clocksource.c after a new, better clock
968  * source has been registered. The caller holds the clocksource_mutex.
969  */
970 int timekeeping_notify(struct clocksource *clock)
971 {
972 	struct timekeeper *tk = &tk_core.timekeeper;
973 
974 	if (tk->tkr.clock == clock)
975 		return 0;
976 	stop_machine(change_clocksource, clock, NULL);
977 	tick_clock_notify();
978 	return tk->tkr.clock == clock ? 0 : -1;
979 }
980 
981 /**
982  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
983  * @ts:		pointer to the timespec64 to be set
984  *
985  * Returns the raw monotonic time (completely un-modified by ntp)
986  */
987 void getrawmonotonic64(struct timespec64 *ts)
988 {
989 	struct timekeeper *tk = &tk_core.timekeeper;
990 	struct timespec64 ts64;
991 	unsigned long seq;
992 	s64 nsecs;
993 
994 	do {
995 		seq = read_seqcount_begin(&tk_core.seq);
996 		nsecs = timekeeping_get_ns_raw(tk);
997 		ts64 = tk->raw_time;
998 
999 	} while (read_seqcount_retry(&tk_core.seq, seq));
1000 
1001 	timespec64_add_ns(&ts64, nsecs);
1002 	*ts = ts64;
1003 }
1004 EXPORT_SYMBOL(getrawmonotonic64);
1005 
1006 
1007 /**
1008  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1009  */
1010 int timekeeping_valid_for_hres(void)
1011 {
1012 	struct timekeeper *tk = &tk_core.timekeeper;
1013 	unsigned long seq;
1014 	int ret;
1015 
1016 	do {
1017 		seq = read_seqcount_begin(&tk_core.seq);
1018 
1019 		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1020 
1021 	} while (read_seqcount_retry(&tk_core.seq, seq));
1022 
1023 	return ret;
1024 }
1025 
1026 /**
1027  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1028  */
1029 u64 timekeeping_max_deferment(void)
1030 {
1031 	struct timekeeper *tk = &tk_core.timekeeper;
1032 	unsigned long seq;
1033 	u64 ret;
1034 
1035 	do {
1036 		seq = read_seqcount_begin(&tk_core.seq);
1037 
1038 		ret = tk->tkr.clock->max_idle_ns;
1039 
1040 	} while (read_seqcount_retry(&tk_core.seq, seq));
1041 
1042 	return ret;
1043 }
1044 
1045 /**
1046  * read_persistent_clock -  Return time from the persistent clock.
1047  *
1048  * Weak dummy function for arches that do not yet support it.
1049  * Reads the time from the battery backed persistent clock.
1050  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1051  *
1052  *  XXX - Do be sure to remove it once all arches implement it.
1053  */
1054 void __weak read_persistent_clock(struct timespec *ts)
1055 {
1056 	ts->tv_sec = 0;
1057 	ts->tv_nsec = 0;
1058 }
1059 
1060 /**
1061  * read_boot_clock -  Return time of the system start.
1062  *
1063  * Weak dummy function for arches that do not yet support it.
1064  * Function to read the exact time the system has been started.
1065  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1066  *
1067  *  XXX - Do be sure to remove it once all arches implement it.
1068  */
1069 void __weak read_boot_clock(struct timespec *ts)
1070 {
1071 	ts->tv_sec = 0;
1072 	ts->tv_nsec = 0;
1073 }
1074 
1075 /*
1076  * timekeeping_init - Initializes the clocksource and common timekeeping values
1077  */
1078 void __init timekeeping_init(void)
1079 {
1080 	struct timekeeper *tk = &tk_core.timekeeper;
1081 	struct clocksource *clock;
1082 	unsigned long flags;
1083 	struct timespec64 now, boot, tmp;
1084 	struct timespec ts;
1085 
1086 	read_persistent_clock(&ts);
1087 	now = timespec_to_timespec64(ts);
1088 	if (!timespec64_valid_strict(&now)) {
1089 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1090 			"         Check your CMOS/BIOS settings.\n");
1091 		now.tv_sec = 0;
1092 		now.tv_nsec = 0;
1093 	} else if (now.tv_sec || now.tv_nsec)
1094 		persistent_clock_exist = true;
1095 
1096 	read_boot_clock(&ts);
1097 	boot = timespec_to_timespec64(ts);
1098 	if (!timespec64_valid_strict(&boot)) {
1099 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1100 			"         Check your CMOS/BIOS settings.\n");
1101 		boot.tv_sec = 0;
1102 		boot.tv_nsec = 0;
1103 	}
1104 
1105 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1106 	write_seqcount_begin(&tk_core.seq);
1107 	ntp_init();
1108 
1109 	clock = clocksource_default_clock();
1110 	if (clock->enable)
1111 		clock->enable(clock);
1112 	tk_setup_internals(tk, clock);
1113 
1114 	tk_set_xtime(tk, &now);
1115 	tk->raw_time.tv_sec = 0;
1116 	tk->raw_time.tv_nsec = 0;
1117 	tk->base_raw.tv64 = 0;
1118 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1119 		boot = tk_xtime(tk);
1120 
1121 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1122 	tk_set_wall_to_mono(tk, tmp);
1123 
1124 	timekeeping_update(tk, TK_MIRROR);
1125 
1126 	write_seqcount_end(&tk_core.seq);
1127 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1128 }
1129 
1130 /* time in seconds when suspend began */
1131 static struct timespec64 timekeeping_suspend_time;
1132 
1133 /**
1134  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1135  * @delta: pointer to a timespec delta value
1136  *
1137  * Takes a timespec offset measuring a suspend interval and properly
1138  * adds the sleep offset to the timekeeping variables.
1139  */
1140 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1141 					   struct timespec64 *delta)
1142 {
1143 	if (!timespec64_valid_strict(delta)) {
1144 		printk_deferred(KERN_WARNING
1145 				"__timekeeping_inject_sleeptime: Invalid "
1146 				"sleep delta value!\n");
1147 		return;
1148 	}
1149 	tk_xtime_add(tk, delta);
1150 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1151 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1152 	tk_debug_account_sleep_time(delta);
1153 }
1154 
1155 /**
1156  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1157  * @delta: pointer to a timespec64 delta value
1158  *
1159  * This hook is for architectures that cannot support read_persistent_clock
1160  * because their RTC/persistent clock is only accessible when irqs are enabled.
1161  *
1162  * This function should only be called by rtc_resume(), and allows
1163  * a suspend offset to be injected into the timekeeping values.
1164  */
1165 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1166 {
1167 	struct timekeeper *tk = &tk_core.timekeeper;
1168 	unsigned long flags;
1169 
1170 	/*
1171 	 * Make sure we don't set the clock twice, as timekeeping_resume()
1172 	 * already did it
1173 	 */
1174 	if (has_persistent_clock())
1175 		return;
1176 
1177 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1178 	write_seqcount_begin(&tk_core.seq);
1179 
1180 	timekeeping_forward_now(tk);
1181 
1182 	__timekeeping_inject_sleeptime(tk, delta);
1183 
1184 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1185 
1186 	write_seqcount_end(&tk_core.seq);
1187 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1188 
1189 	/* signal hrtimers about time change */
1190 	clock_was_set();
1191 }
1192 
1193 /**
1194  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1195  *
1196  * This is for the generic clocksource timekeeping.
1197  * xtime/wall_to_monotonic/jiffies/etc are
1198  * still managed by arch specific suspend/resume code.
1199  */
1200 void timekeeping_resume(void)
1201 {
1202 	struct timekeeper *tk = &tk_core.timekeeper;
1203 	struct clocksource *clock = tk->tkr.clock;
1204 	unsigned long flags;
1205 	struct timespec64 ts_new, ts_delta;
1206 	struct timespec tmp;
1207 	cycle_t cycle_now, cycle_delta;
1208 	bool suspendtime_found = false;
1209 
1210 	read_persistent_clock(&tmp);
1211 	ts_new = timespec_to_timespec64(tmp);
1212 
1213 	clockevents_resume();
1214 	clocksource_resume();
1215 
1216 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1217 	write_seqcount_begin(&tk_core.seq);
1218 
1219 	/*
1220 	 * After system resumes, we need to calculate the suspended time and
1221 	 * compensate it for the OS time. There are 3 sources that could be
1222 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1223 	 * device.
1224 	 *
1225 	 * One specific platform may have 1 or 2 or all of them, and the
1226 	 * preference will be:
1227 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1228 	 * The less preferred source will only be tried if there is no better
1229 	 * usable source. The rtc part is handled separately in rtc core code.
1230 	 */
1231 	cycle_now = tk->tkr.read(clock);
1232 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1233 		cycle_now > tk->tkr.cycle_last) {
1234 		u64 num, max = ULLONG_MAX;
1235 		u32 mult = clock->mult;
1236 		u32 shift = clock->shift;
1237 		s64 nsec = 0;
1238 
1239 		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1240 						tk->tkr.mask);
1241 
1242 		/*
1243 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1244 		 * suspended time is too long. In that case we need do the
1245 		 * 64 bits math carefully
1246 		 */
1247 		do_div(max, mult);
1248 		if (cycle_delta > max) {
1249 			num = div64_u64(cycle_delta, max);
1250 			nsec = (((u64) max * mult) >> shift) * num;
1251 			cycle_delta -= num * max;
1252 		}
1253 		nsec += ((u64) cycle_delta * mult) >> shift;
1254 
1255 		ts_delta = ns_to_timespec64(nsec);
1256 		suspendtime_found = true;
1257 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1258 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1259 		suspendtime_found = true;
1260 	}
1261 
1262 	if (suspendtime_found)
1263 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1264 
1265 	/* Re-base the last cycle value */
1266 	tk->tkr.cycle_last = cycle_now;
1267 	tk->ntp_error = 0;
1268 	timekeeping_suspended = 0;
1269 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1270 	write_seqcount_end(&tk_core.seq);
1271 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1272 
1273 	touch_softlockup_watchdog();
1274 
1275 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1276 
1277 	/* Resume hrtimers */
1278 	hrtimers_resume();
1279 }
1280 
1281 int timekeeping_suspend(void)
1282 {
1283 	struct timekeeper *tk = &tk_core.timekeeper;
1284 	unsigned long flags;
1285 	struct timespec64		delta, delta_delta;
1286 	static struct timespec64	old_delta;
1287 	struct timespec tmp;
1288 
1289 	read_persistent_clock(&tmp);
1290 	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1291 
1292 	/*
1293 	 * On some systems the persistent_clock can not be detected at
1294 	 * timekeeping_init by its return value, so if we see a valid
1295 	 * value returned, update the persistent_clock_exists flag.
1296 	 */
1297 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1298 		persistent_clock_exist = true;
1299 
1300 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1301 	write_seqcount_begin(&tk_core.seq);
1302 	timekeeping_forward_now(tk);
1303 	timekeeping_suspended = 1;
1304 
1305 	/*
1306 	 * To avoid drift caused by repeated suspend/resumes,
1307 	 * which each can add ~1 second drift error,
1308 	 * try to compensate so the difference in system time
1309 	 * and persistent_clock time stays close to constant.
1310 	 */
1311 	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1312 	delta_delta = timespec64_sub(delta, old_delta);
1313 	if (abs(delta_delta.tv_sec)  >= 2) {
1314 		/*
1315 		 * if delta_delta is too large, assume time correction
1316 		 * has occured and set old_delta to the current delta.
1317 		 */
1318 		old_delta = delta;
1319 	} else {
1320 		/* Otherwise try to adjust old_system to compensate */
1321 		timekeeping_suspend_time =
1322 			timespec64_add(timekeeping_suspend_time, delta_delta);
1323 	}
1324 
1325 	timekeeping_update(tk, TK_MIRROR);
1326 	halt_fast_timekeeper(tk);
1327 	write_seqcount_end(&tk_core.seq);
1328 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1329 
1330 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1331 	clocksource_suspend();
1332 	clockevents_suspend();
1333 
1334 	return 0;
1335 }
1336 
1337 /* sysfs resume/suspend bits for timekeeping */
1338 static struct syscore_ops timekeeping_syscore_ops = {
1339 	.resume		= timekeeping_resume,
1340 	.suspend	= timekeeping_suspend,
1341 };
1342 
1343 static int __init timekeeping_init_ops(void)
1344 {
1345 	register_syscore_ops(&timekeeping_syscore_ops);
1346 	return 0;
1347 }
1348 device_initcall(timekeeping_init_ops);
1349 
1350 /*
1351  * Apply a multiplier adjustment to the timekeeper
1352  */
1353 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1354 							 s64 offset,
1355 							 bool negative,
1356 							 int adj_scale)
1357 {
1358 	s64 interval = tk->cycle_interval;
1359 	s32 mult_adj = 1;
1360 
1361 	if (negative) {
1362 		mult_adj = -mult_adj;
1363 		interval = -interval;
1364 		offset  = -offset;
1365 	}
1366 	mult_adj <<= adj_scale;
1367 	interval <<= adj_scale;
1368 	offset <<= adj_scale;
1369 
1370 	/*
1371 	 * So the following can be confusing.
1372 	 *
1373 	 * To keep things simple, lets assume mult_adj == 1 for now.
1374 	 *
1375 	 * When mult_adj != 1, remember that the interval and offset values
1376 	 * have been appropriately scaled so the math is the same.
1377 	 *
1378 	 * The basic idea here is that we're increasing the multiplier
1379 	 * by one, this causes the xtime_interval to be incremented by
1380 	 * one cycle_interval. This is because:
1381 	 *	xtime_interval = cycle_interval * mult
1382 	 * So if mult is being incremented by one:
1383 	 *	xtime_interval = cycle_interval * (mult + 1)
1384 	 * Its the same as:
1385 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1386 	 * Which can be shortened to:
1387 	 *	xtime_interval += cycle_interval
1388 	 *
1389 	 * So offset stores the non-accumulated cycles. Thus the current
1390 	 * time (in shifted nanoseconds) is:
1391 	 *	now = (offset * adj) + xtime_nsec
1392 	 * Now, even though we're adjusting the clock frequency, we have
1393 	 * to keep time consistent. In other words, we can't jump back
1394 	 * in time, and we also want to avoid jumping forward in time.
1395 	 *
1396 	 * So given the same offset value, we need the time to be the same
1397 	 * both before and after the freq adjustment.
1398 	 *	now = (offset * adj_1) + xtime_nsec_1
1399 	 *	now = (offset * adj_2) + xtime_nsec_2
1400 	 * So:
1401 	 *	(offset * adj_1) + xtime_nsec_1 =
1402 	 *		(offset * adj_2) + xtime_nsec_2
1403 	 * And we know:
1404 	 *	adj_2 = adj_1 + 1
1405 	 * So:
1406 	 *	(offset * adj_1) + xtime_nsec_1 =
1407 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1408 	 *	(offset * adj_1) + xtime_nsec_1 =
1409 	 *		(offset * adj_1) + offset + xtime_nsec_2
1410 	 * Canceling the sides:
1411 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1412 	 * Which gives us:
1413 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1414 	 * Which simplfies to:
1415 	 *	xtime_nsec -= offset
1416 	 *
1417 	 * XXX - TODO: Doc ntp_error calculation.
1418 	 */
1419 	if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1420 		/* NTP adjustment caused clocksource mult overflow */
1421 		WARN_ON_ONCE(1);
1422 		return;
1423 	}
1424 
1425 	tk->tkr.mult += mult_adj;
1426 	tk->xtime_interval += interval;
1427 	tk->tkr.xtime_nsec -= offset;
1428 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1429 }
1430 
1431 /*
1432  * Calculate the multiplier adjustment needed to match the frequency
1433  * specified by NTP
1434  */
1435 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1436 							s64 offset)
1437 {
1438 	s64 interval = tk->cycle_interval;
1439 	s64 xinterval = tk->xtime_interval;
1440 	s64 tick_error;
1441 	bool negative;
1442 	u32 adj;
1443 
1444 	/* Remove any current error adj from freq calculation */
1445 	if (tk->ntp_err_mult)
1446 		xinterval -= tk->cycle_interval;
1447 
1448 	tk->ntp_tick = ntp_tick_length();
1449 
1450 	/* Calculate current error per tick */
1451 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1452 	tick_error -= (xinterval + tk->xtime_remainder);
1453 
1454 	/* Don't worry about correcting it if its small */
1455 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1456 		return;
1457 
1458 	/* preserve the direction of correction */
1459 	negative = (tick_error < 0);
1460 
1461 	/* Sort out the magnitude of the correction */
1462 	tick_error = abs(tick_error);
1463 	for (adj = 0; tick_error > interval; adj++)
1464 		tick_error >>= 1;
1465 
1466 	/* scale the corrections */
1467 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1468 }
1469 
1470 /*
1471  * Adjust the timekeeper's multiplier to the correct frequency
1472  * and also to reduce the accumulated error value.
1473  */
1474 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1475 {
1476 	/* Correct for the current frequency error */
1477 	timekeeping_freqadjust(tk, offset);
1478 
1479 	/* Next make a small adjustment to fix any cumulative error */
1480 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1481 		tk->ntp_err_mult = 1;
1482 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1483 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1484 		/* Undo any existing error adjustment */
1485 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1486 		tk->ntp_err_mult = 0;
1487 	}
1488 
1489 	if (unlikely(tk->tkr.clock->maxadj &&
1490 		(abs(tk->tkr.mult - tk->tkr.clock->mult)
1491 			> tk->tkr.clock->maxadj))) {
1492 		printk_once(KERN_WARNING
1493 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1494 			tk->tkr.clock->name, (long)tk->tkr.mult,
1495 			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1496 	}
1497 
1498 	/*
1499 	 * It may be possible that when we entered this function, xtime_nsec
1500 	 * was very small.  Further, if we're slightly speeding the clocksource
1501 	 * in the code above, its possible the required corrective factor to
1502 	 * xtime_nsec could cause it to underflow.
1503 	 *
1504 	 * Now, since we already accumulated the second, cannot simply roll
1505 	 * the accumulated second back, since the NTP subsystem has been
1506 	 * notified via second_overflow. So instead we push xtime_nsec forward
1507 	 * by the amount we underflowed, and add that amount into the error.
1508 	 *
1509 	 * We'll correct this error next time through this function, when
1510 	 * xtime_nsec is not as small.
1511 	 */
1512 	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1513 		s64 neg = -(s64)tk->tkr.xtime_nsec;
1514 		tk->tkr.xtime_nsec = 0;
1515 		tk->ntp_error += neg << tk->ntp_error_shift;
1516 	}
1517 }
1518 
1519 /**
1520  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1521  *
1522  * Helper function that accumulates a the nsecs greater then a second
1523  * from the xtime_nsec field to the xtime_secs field.
1524  * It also calls into the NTP code to handle leapsecond processing.
1525  *
1526  */
1527 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1528 {
1529 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1530 	unsigned int clock_set = 0;
1531 
1532 	while (tk->tkr.xtime_nsec >= nsecps) {
1533 		int leap;
1534 
1535 		tk->tkr.xtime_nsec -= nsecps;
1536 		tk->xtime_sec++;
1537 
1538 		/* Figure out if its a leap sec and apply if needed */
1539 		leap = second_overflow(tk->xtime_sec);
1540 		if (unlikely(leap)) {
1541 			struct timespec64 ts;
1542 
1543 			tk->xtime_sec += leap;
1544 
1545 			ts.tv_sec = leap;
1546 			ts.tv_nsec = 0;
1547 			tk_set_wall_to_mono(tk,
1548 				timespec64_sub(tk->wall_to_monotonic, ts));
1549 
1550 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1551 
1552 			clock_set = TK_CLOCK_WAS_SET;
1553 		}
1554 	}
1555 	return clock_set;
1556 }
1557 
1558 /**
1559  * logarithmic_accumulation - shifted accumulation of cycles
1560  *
1561  * This functions accumulates a shifted interval of cycles into
1562  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1563  * loop.
1564  *
1565  * Returns the unconsumed cycles.
1566  */
1567 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1568 						u32 shift,
1569 						unsigned int *clock_set)
1570 {
1571 	cycle_t interval = tk->cycle_interval << shift;
1572 	u64 raw_nsecs;
1573 
1574 	/* If the offset is smaller then a shifted interval, do nothing */
1575 	if (offset < interval)
1576 		return offset;
1577 
1578 	/* Accumulate one shifted interval */
1579 	offset -= interval;
1580 	tk->tkr.cycle_last += interval;
1581 
1582 	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1583 	*clock_set |= accumulate_nsecs_to_secs(tk);
1584 
1585 	/* Accumulate raw time */
1586 	raw_nsecs = (u64)tk->raw_interval << shift;
1587 	raw_nsecs += tk->raw_time.tv_nsec;
1588 	if (raw_nsecs >= NSEC_PER_SEC) {
1589 		u64 raw_secs = raw_nsecs;
1590 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1591 		tk->raw_time.tv_sec += raw_secs;
1592 	}
1593 	tk->raw_time.tv_nsec = raw_nsecs;
1594 
1595 	/* Accumulate error between NTP and clock interval */
1596 	tk->ntp_error += tk->ntp_tick << shift;
1597 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1598 						(tk->ntp_error_shift + shift);
1599 
1600 	return offset;
1601 }
1602 
1603 /**
1604  * update_wall_time - Uses the current clocksource to increment the wall time
1605  *
1606  */
1607 void update_wall_time(void)
1608 {
1609 	struct timekeeper *real_tk = &tk_core.timekeeper;
1610 	struct timekeeper *tk = &shadow_timekeeper;
1611 	cycle_t offset;
1612 	int shift = 0, maxshift;
1613 	unsigned int clock_set = 0;
1614 	unsigned long flags;
1615 
1616 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1617 
1618 	/* Make sure we're fully resumed: */
1619 	if (unlikely(timekeeping_suspended))
1620 		goto out;
1621 
1622 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1623 	offset = real_tk->cycle_interval;
1624 #else
1625 	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1626 				   tk->tkr.cycle_last, tk->tkr.mask);
1627 #endif
1628 
1629 	/* Check if there's really nothing to do */
1630 	if (offset < real_tk->cycle_interval)
1631 		goto out;
1632 
1633 	/*
1634 	 * With NO_HZ we may have to accumulate many cycle_intervals
1635 	 * (think "ticks") worth of time at once. To do this efficiently,
1636 	 * we calculate the largest doubling multiple of cycle_intervals
1637 	 * that is smaller than the offset.  We then accumulate that
1638 	 * chunk in one go, and then try to consume the next smaller
1639 	 * doubled multiple.
1640 	 */
1641 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1642 	shift = max(0, shift);
1643 	/* Bound shift to one less than what overflows tick_length */
1644 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1645 	shift = min(shift, maxshift);
1646 	while (offset >= tk->cycle_interval) {
1647 		offset = logarithmic_accumulation(tk, offset, shift,
1648 							&clock_set);
1649 		if (offset < tk->cycle_interval<<shift)
1650 			shift--;
1651 	}
1652 
1653 	/* correct the clock when NTP error is too big */
1654 	timekeeping_adjust(tk, offset);
1655 
1656 	/*
1657 	 * XXX This can be killed once everyone converts
1658 	 * to the new update_vsyscall.
1659 	 */
1660 	old_vsyscall_fixup(tk);
1661 
1662 	/*
1663 	 * Finally, make sure that after the rounding
1664 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1665 	 */
1666 	clock_set |= accumulate_nsecs_to_secs(tk);
1667 
1668 	write_seqcount_begin(&tk_core.seq);
1669 	/*
1670 	 * Update the real timekeeper.
1671 	 *
1672 	 * We could avoid this memcpy by switching pointers, but that
1673 	 * requires changes to all other timekeeper usage sites as
1674 	 * well, i.e. move the timekeeper pointer getter into the
1675 	 * spinlocked/seqcount protected sections. And we trade this
1676 	 * memcpy under the tk_core.seq against one before we start
1677 	 * updating.
1678 	 */
1679 	memcpy(real_tk, tk, sizeof(*tk));
1680 	timekeeping_update(real_tk, clock_set);
1681 	write_seqcount_end(&tk_core.seq);
1682 out:
1683 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1684 	if (clock_set)
1685 		/* Have to call _delayed version, since in irq context*/
1686 		clock_was_set_delayed();
1687 }
1688 
1689 /**
1690  * getboottime64 - Return the real time of system boot.
1691  * @ts:		pointer to the timespec64 to be set
1692  *
1693  * Returns the wall-time of boot in a timespec64.
1694  *
1695  * This is based on the wall_to_monotonic offset and the total suspend
1696  * time. Calls to settimeofday will affect the value returned (which
1697  * basically means that however wrong your real time clock is at boot time,
1698  * you get the right time here).
1699  */
1700 void getboottime64(struct timespec64 *ts)
1701 {
1702 	struct timekeeper *tk = &tk_core.timekeeper;
1703 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1704 
1705 	*ts = ktime_to_timespec64(t);
1706 }
1707 EXPORT_SYMBOL_GPL(getboottime64);
1708 
1709 unsigned long get_seconds(void)
1710 {
1711 	struct timekeeper *tk = &tk_core.timekeeper;
1712 
1713 	return tk->xtime_sec;
1714 }
1715 EXPORT_SYMBOL(get_seconds);
1716 
1717 struct timespec __current_kernel_time(void)
1718 {
1719 	struct timekeeper *tk = &tk_core.timekeeper;
1720 
1721 	return timespec64_to_timespec(tk_xtime(tk));
1722 }
1723 
1724 struct timespec current_kernel_time(void)
1725 {
1726 	struct timekeeper *tk = &tk_core.timekeeper;
1727 	struct timespec64 now;
1728 	unsigned long seq;
1729 
1730 	do {
1731 		seq = read_seqcount_begin(&tk_core.seq);
1732 
1733 		now = tk_xtime(tk);
1734 	} while (read_seqcount_retry(&tk_core.seq, seq));
1735 
1736 	return timespec64_to_timespec(now);
1737 }
1738 EXPORT_SYMBOL(current_kernel_time);
1739 
1740 struct timespec64 get_monotonic_coarse64(void)
1741 {
1742 	struct timekeeper *tk = &tk_core.timekeeper;
1743 	struct timespec64 now, mono;
1744 	unsigned long seq;
1745 
1746 	do {
1747 		seq = read_seqcount_begin(&tk_core.seq);
1748 
1749 		now = tk_xtime(tk);
1750 		mono = tk->wall_to_monotonic;
1751 	} while (read_seqcount_retry(&tk_core.seq, seq));
1752 
1753 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1754 				now.tv_nsec + mono.tv_nsec);
1755 
1756 	return now;
1757 }
1758 
1759 /*
1760  * Must hold jiffies_lock
1761  */
1762 void do_timer(unsigned long ticks)
1763 {
1764 	jiffies_64 += ticks;
1765 	calc_global_load(ticks);
1766 }
1767 
1768 /**
1769  * ktime_get_update_offsets_tick - hrtimer helper
1770  * @offs_real:	pointer to storage for monotonic -> realtime offset
1771  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1772  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1773  *
1774  * Returns monotonic time at last tick and various offsets
1775  */
1776 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1777 							ktime_t *offs_tai)
1778 {
1779 	struct timekeeper *tk = &tk_core.timekeeper;
1780 	unsigned int seq;
1781 	ktime_t base;
1782 	u64 nsecs;
1783 
1784 	do {
1785 		seq = read_seqcount_begin(&tk_core.seq);
1786 
1787 		base = tk->tkr.base_mono;
1788 		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1789 
1790 		*offs_real = tk->offs_real;
1791 		*offs_boot = tk->offs_boot;
1792 		*offs_tai = tk->offs_tai;
1793 	} while (read_seqcount_retry(&tk_core.seq, seq));
1794 
1795 	return ktime_add_ns(base, nsecs);
1796 }
1797 
1798 #ifdef CONFIG_HIGH_RES_TIMERS
1799 /**
1800  * ktime_get_update_offsets_now - hrtimer helper
1801  * @offs_real:	pointer to storage for monotonic -> realtime offset
1802  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1803  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1804  *
1805  * Returns current monotonic time and updates the offsets
1806  * Called from hrtimer_interrupt() or retrigger_next_event()
1807  */
1808 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1809 							ktime_t *offs_tai)
1810 {
1811 	struct timekeeper *tk = &tk_core.timekeeper;
1812 	unsigned int seq;
1813 	ktime_t base;
1814 	u64 nsecs;
1815 
1816 	do {
1817 		seq = read_seqcount_begin(&tk_core.seq);
1818 
1819 		base = tk->tkr.base_mono;
1820 		nsecs = timekeeping_get_ns(&tk->tkr);
1821 
1822 		*offs_real = tk->offs_real;
1823 		*offs_boot = tk->offs_boot;
1824 		*offs_tai = tk->offs_tai;
1825 	} while (read_seqcount_retry(&tk_core.seq, seq));
1826 
1827 	return ktime_add_ns(base, nsecs);
1828 }
1829 #endif
1830 
1831 /**
1832  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1833  */
1834 int do_adjtimex(struct timex *txc)
1835 {
1836 	struct timekeeper *tk = &tk_core.timekeeper;
1837 	unsigned long flags;
1838 	struct timespec64 ts;
1839 	s32 orig_tai, tai;
1840 	int ret;
1841 
1842 	/* Validate the data before disabling interrupts */
1843 	ret = ntp_validate_timex(txc);
1844 	if (ret)
1845 		return ret;
1846 
1847 	if (txc->modes & ADJ_SETOFFSET) {
1848 		struct timespec delta;
1849 		delta.tv_sec  = txc->time.tv_sec;
1850 		delta.tv_nsec = txc->time.tv_usec;
1851 		if (!(txc->modes & ADJ_NANO))
1852 			delta.tv_nsec *= 1000;
1853 		ret = timekeeping_inject_offset(&delta);
1854 		if (ret)
1855 			return ret;
1856 	}
1857 
1858 	getnstimeofday64(&ts);
1859 
1860 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1861 	write_seqcount_begin(&tk_core.seq);
1862 
1863 	orig_tai = tai = tk->tai_offset;
1864 	ret = __do_adjtimex(txc, &ts, &tai);
1865 
1866 	if (tai != orig_tai) {
1867 		__timekeeping_set_tai_offset(tk, tai);
1868 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1869 	}
1870 	write_seqcount_end(&tk_core.seq);
1871 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1872 
1873 	if (tai != orig_tai)
1874 		clock_was_set();
1875 
1876 	ntp_notify_cmos_timer();
1877 
1878 	return ret;
1879 }
1880 
1881 #ifdef CONFIG_NTP_PPS
1882 /**
1883  * hardpps() - Accessor function to NTP __hardpps function
1884  */
1885 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1886 {
1887 	unsigned long flags;
1888 
1889 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1890 	write_seqcount_begin(&tk_core.seq);
1891 
1892 	__hardpps(phase_ts, raw_ts);
1893 
1894 	write_seqcount_end(&tk_core.seq);
1895 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1896 }
1897 EXPORT_SYMBOL(hardpps);
1898 #endif
1899 
1900 /**
1901  * xtime_update() - advances the timekeeping infrastructure
1902  * @ticks:	number of ticks, that have elapsed since the last call.
1903  *
1904  * Must be called with interrupts disabled.
1905  */
1906 void xtime_update(unsigned long ticks)
1907 {
1908 	write_seqlock(&jiffies_lock);
1909 	do_timer(ticks);
1910 	write_sequnlock(&jiffies_lock);
1911 	update_wall_time();
1912 }
1913