1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/tick.h> 21 #include <linux/stop_machine.h> 22 #include <linux/pvclock_gtod.h> 23 #include <linux/compiler.h> 24 25 #include "tick-internal.h" 26 #include "ntp_internal.h" 27 #include "timekeeping_internal.h" 28 29 #define TK_CLEAR_NTP (1 << 0) 30 #define TK_MIRROR (1 << 1) 31 #define TK_CLOCK_WAS_SET (1 << 2) 32 33 enum timekeeping_adv_mode { 34 /* Update timekeeper when a tick has passed */ 35 TK_ADV_TICK, 36 37 /* Update timekeeper on a direct frequency change */ 38 TK_ADV_FREQ 39 }; 40 41 /* 42 * The most important data for readout fits into a single 64 byte 43 * cache line. 44 */ 45 static struct { 46 seqcount_t seq; 47 struct timekeeper timekeeper; 48 } tk_core ____cacheline_aligned = { 49 .seq = SEQCNT_ZERO(tk_core.seq), 50 }; 51 52 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 53 static struct timekeeper shadow_timekeeper; 54 55 /** 56 * struct tk_fast - NMI safe timekeeper 57 * @seq: Sequence counter for protecting updates. The lowest bit 58 * is the index for the tk_read_base array 59 * @base: tk_read_base array. Access is indexed by the lowest bit of 60 * @seq. 61 * 62 * See @update_fast_timekeeper() below. 63 */ 64 struct tk_fast { 65 seqcount_t seq; 66 struct tk_read_base base[2]; 67 }; 68 69 /* Suspend-time cycles value for halted fast timekeeper. */ 70 static u64 cycles_at_suspend; 71 72 static u64 dummy_clock_read(struct clocksource *cs) 73 { 74 return cycles_at_suspend; 75 } 76 77 static struct clocksource dummy_clock = { 78 .read = dummy_clock_read, 79 }; 80 81 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 82 .base[0] = { .clock = &dummy_clock, }, 83 .base[1] = { .clock = &dummy_clock, }, 84 }; 85 86 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 87 .base[0] = { .clock = &dummy_clock, }, 88 .base[1] = { .clock = &dummy_clock, }, 89 }; 90 91 /* flag for if timekeeping is suspended */ 92 int __read_mostly timekeeping_suspended; 93 94 static inline void tk_normalize_xtime(struct timekeeper *tk) 95 { 96 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 97 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 98 tk->xtime_sec++; 99 } 100 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 101 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 102 tk->raw_sec++; 103 } 104 } 105 106 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 107 { 108 struct timespec64 ts; 109 110 ts.tv_sec = tk->xtime_sec; 111 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 112 return ts; 113 } 114 115 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 116 { 117 tk->xtime_sec = ts->tv_sec; 118 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 119 } 120 121 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 122 { 123 tk->xtime_sec += ts->tv_sec; 124 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 125 tk_normalize_xtime(tk); 126 } 127 128 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 129 { 130 struct timespec64 tmp; 131 132 /* 133 * Verify consistency of: offset_real = -wall_to_monotonic 134 * before modifying anything 135 */ 136 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 137 -tk->wall_to_monotonic.tv_nsec); 138 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 139 tk->wall_to_monotonic = wtm; 140 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 141 tk->offs_real = timespec64_to_ktime(tmp); 142 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 143 } 144 145 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 146 { 147 tk->offs_boot = ktime_add(tk->offs_boot, delta); 148 } 149 150 /* 151 * tk_clock_read - atomic clocksource read() helper 152 * 153 * This helper is necessary to use in the read paths because, while the 154 * seqlock ensures we don't return a bad value while structures are updated, 155 * it doesn't protect from potential crashes. There is the possibility that 156 * the tkr's clocksource may change between the read reference, and the 157 * clock reference passed to the read function. This can cause crashes if 158 * the wrong clocksource is passed to the wrong read function. 159 * This isn't necessary to use when holding the timekeeper_lock or doing 160 * a read of the fast-timekeeper tkrs (which is protected by its own locking 161 * and update logic). 162 */ 163 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 164 { 165 struct clocksource *clock = READ_ONCE(tkr->clock); 166 167 return clock->read(clock); 168 } 169 170 #ifdef CONFIG_DEBUG_TIMEKEEPING 171 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 172 173 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 174 { 175 176 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 177 const char *name = tk->tkr_mono.clock->name; 178 179 if (offset > max_cycles) { 180 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 181 offset, name, max_cycles); 182 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 183 } else { 184 if (offset > (max_cycles >> 1)) { 185 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 186 offset, name, max_cycles >> 1); 187 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 188 } 189 } 190 191 if (tk->underflow_seen) { 192 if (jiffies - tk->last_warning > WARNING_FREQ) { 193 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 194 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 195 printk_deferred(" Your kernel is probably still fine.\n"); 196 tk->last_warning = jiffies; 197 } 198 tk->underflow_seen = 0; 199 } 200 201 if (tk->overflow_seen) { 202 if (jiffies - tk->last_warning > WARNING_FREQ) { 203 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 204 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 205 printk_deferred(" Your kernel is probably still fine.\n"); 206 tk->last_warning = jiffies; 207 } 208 tk->overflow_seen = 0; 209 } 210 } 211 212 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 213 { 214 struct timekeeper *tk = &tk_core.timekeeper; 215 u64 now, last, mask, max, delta; 216 unsigned int seq; 217 218 /* 219 * Since we're called holding a seqlock, the data may shift 220 * under us while we're doing the calculation. This can cause 221 * false positives, since we'd note a problem but throw the 222 * results away. So nest another seqlock here to atomically 223 * grab the points we are checking with. 224 */ 225 do { 226 seq = read_seqcount_begin(&tk_core.seq); 227 now = tk_clock_read(tkr); 228 last = tkr->cycle_last; 229 mask = tkr->mask; 230 max = tkr->clock->max_cycles; 231 } while (read_seqcount_retry(&tk_core.seq, seq)); 232 233 delta = clocksource_delta(now, last, mask); 234 235 /* 236 * Try to catch underflows by checking if we are seeing small 237 * mask-relative negative values. 238 */ 239 if (unlikely((~delta & mask) < (mask >> 3))) { 240 tk->underflow_seen = 1; 241 delta = 0; 242 } 243 244 /* Cap delta value to the max_cycles values to avoid mult overflows */ 245 if (unlikely(delta > max)) { 246 tk->overflow_seen = 1; 247 delta = tkr->clock->max_cycles; 248 } 249 250 return delta; 251 } 252 #else 253 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 254 { 255 } 256 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 257 { 258 u64 cycle_now, delta; 259 260 /* read clocksource */ 261 cycle_now = tk_clock_read(tkr); 262 263 /* calculate the delta since the last update_wall_time */ 264 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 265 266 return delta; 267 } 268 #endif 269 270 /** 271 * tk_setup_internals - Set up internals to use clocksource clock. 272 * 273 * @tk: The target timekeeper to setup. 274 * @clock: Pointer to clocksource. 275 * 276 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 277 * pair and interval request. 278 * 279 * Unless you're the timekeeping code, you should not be using this! 280 */ 281 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 282 { 283 u64 interval; 284 u64 tmp, ntpinterval; 285 struct clocksource *old_clock; 286 287 ++tk->cs_was_changed_seq; 288 old_clock = tk->tkr_mono.clock; 289 tk->tkr_mono.clock = clock; 290 tk->tkr_mono.mask = clock->mask; 291 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 292 293 tk->tkr_raw.clock = clock; 294 tk->tkr_raw.mask = clock->mask; 295 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 296 297 /* Do the ns -> cycle conversion first, using original mult */ 298 tmp = NTP_INTERVAL_LENGTH; 299 tmp <<= clock->shift; 300 ntpinterval = tmp; 301 tmp += clock->mult/2; 302 do_div(tmp, clock->mult); 303 if (tmp == 0) 304 tmp = 1; 305 306 interval = (u64) tmp; 307 tk->cycle_interval = interval; 308 309 /* Go back from cycles -> shifted ns */ 310 tk->xtime_interval = interval * clock->mult; 311 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 312 tk->raw_interval = interval * clock->mult; 313 314 /* if changing clocks, convert xtime_nsec shift units */ 315 if (old_clock) { 316 int shift_change = clock->shift - old_clock->shift; 317 if (shift_change < 0) { 318 tk->tkr_mono.xtime_nsec >>= -shift_change; 319 tk->tkr_raw.xtime_nsec >>= -shift_change; 320 } else { 321 tk->tkr_mono.xtime_nsec <<= shift_change; 322 tk->tkr_raw.xtime_nsec <<= shift_change; 323 } 324 } 325 326 tk->tkr_mono.shift = clock->shift; 327 tk->tkr_raw.shift = clock->shift; 328 329 tk->ntp_error = 0; 330 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 331 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 332 333 /* 334 * The timekeeper keeps its own mult values for the currently 335 * active clocksource. These value will be adjusted via NTP 336 * to counteract clock drifting. 337 */ 338 tk->tkr_mono.mult = clock->mult; 339 tk->tkr_raw.mult = clock->mult; 340 tk->ntp_err_mult = 0; 341 tk->skip_second_overflow = 0; 342 } 343 344 /* Timekeeper helper functions. */ 345 346 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 347 static u32 default_arch_gettimeoffset(void) { return 0; } 348 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 349 #else 350 static inline u32 arch_gettimeoffset(void) { return 0; } 351 #endif 352 353 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 354 { 355 u64 nsec; 356 357 nsec = delta * tkr->mult + tkr->xtime_nsec; 358 nsec >>= tkr->shift; 359 360 /* If arch requires, add in get_arch_timeoffset() */ 361 return nsec + arch_gettimeoffset(); 362 } 363 364 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 365 { 366 u64 delta; 367 368 delta = timekeeping_get_delta(tkr); 369 return timekeeping_delta_to_ns(tkr, delta); 370 } 371 372 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 373 { 374 u64 delta; 375 376 /* calculate the delta since the last update_wall_time */ 377 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 378 return timekeeping_delta_to_ns(tkr, delta); 379 } 380 381 /** 382 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 383 * @tkr: Timekeeping readout base from which we take the update 384 * 385 * We want to use this from any context including NMI and tracing / 386 * instrumenting the timekeeping code itself. 387 * 388 * Employ the latch technique; see @raw_write_seqcount_latch. 389 * 390 * So if a NMI hits the update of base[0] then it will use base[1] 391 * which is still consistent. In the worst case this can result is a 392 * slightly wrong timestamp (a few nanoseconds). See 393 * @ktime_get_mono_fast_ns. 394 */ 395 static void update_fast_timekeeper(const struct tk_read_base *tkr, 396 struct tk_fast *tkf) 397 { 398 struct tk_read_base *base = tkf->base; 399 400 /* Force readers off to base[1] */ 401 raw_write_seqcount_latch(&tkf->seq); 402 403 /* Update base[0] */ 404 memcpy(base, tkr, sizeof(*base)); 405 406 /* Force readers back to base[0] */ 407 raw_write_seqcount_latch(&tkf->seq); 408 409 /* Update base[1] */ 410 memcpy(base + 1, base, sizeof(*base)); 411 } 412 413 /** 414 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 415 * 416 * This timestamp is not guaranteed to be monotonic across an update. 417 * The timestamp is calculated by: 418 * 419 * now = base_mono + clock_delta * slope 420 * 421 * So if the update lowers the slope, readers who are forced to the 422 * not yet updated second array are still using the old steeper slope. 423 * 424 * tmono 425 * ^ 426 * | o n 427 * | o n 428 * | u 429 * | o 430 * |o 431 * |12345678---> reader order 432 * 433 * o = old slope 434 * u = update 435 * n = new slope 436 * 437 * So reader 6 will observe time going backwards versus reader 5. 438 * 439 * While other CPUs are likely to be able observe that, the only way 440 * for a CPU local observation is when an NMI hits in the middle of 441 * the update. Timestamps taken from that NMI context might be ahead 442 * of the following timestamps. Callers need to be aware of that and 443 * deal with it. 444 */ 445 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 446 { 447 struct tk_read_base *tkr; 448 unsigned int seq; 449 u64 now; 450 451 do { 452 seq = raw_read_seqcount_latch(&tkf->seq); 453 tkr = tkf->base + (seq & 0x01); 454 now = ktime_to_ns(tkr->base); 455 456 now += timekeeping_delta_to_ns(tkr, 457 clocksource_delta( 458 tk_clock_read(tkr), 459 tkr->cycle_last, 460 tkr->mask)); 461 } while (read_seqcount_retry(&tkf->seq, seq)); 462 463 return now; 464 } 465 466 u64 ktime_get_mono_fast_ns(void) 467 { 468 return __ktime_get_fast_ns(&tk_fast_mono); 469 } 470 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 471 472 u64 ktime_get_raw_fast_ns(void) 473 { 474 return __ktime_get_fast_ns(&tk_fast_raw); 475 } 476 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 477 478 /** 479 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 480 * 481 * To keep it NMI safe since we're accessing from tracing, we're not using a 482 * separate timekeeper with updates to monotonic clock and boot offset 483 * protected with seqlocks. This has the following minor side effects: 484 * 485 * (1) Its possible that a timestamp be taken after the boot offset is updated 486 * but before the timekeeper is updated. If this happens, the new boot offset 487 * is added to the old timekeeping making the clock appear to update slightly 488 * earlier: 489 * CPU 0 CPU 1 490 * timekeeping_inject_sleeptime64() 491 * __timekeeping_inject_sleeptime(tk, delta); 492 * timestamp(); 493 * timekeeping_update(tk, TK_CLEAR_NTP...); 494 * 495 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 496 * partially updated. Since the tk->offs_boot update is a rare event, this 497 * should be a rare occurrence which postprocessing should be able to handle. 498 */ 499 u64 notrace ktime_get_boot_fast_ns(void) 500 { 501 struct timekeeper *tk = &tk_core.timekeeper; 502 503 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 504 } 505 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 506 507 508 /* 509 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 510 */ 511 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) 512 { 513 struct tk_read_base *tkr; 514 unsigned int seq; 515 u64 now; 516 517 do { 518 seq = raw_read_seqcount_latch(&tkf->seq); 519 tkr = tkf->base + (seq & 0x01); 520 now = ktime_to_ns(tkr->base_real); 521 522 now += timekeeping_delta_to_ns(tkr, 523 clocksource_delta( 524 tk_clock_read(tkr), 525 tkr->cycle_last, 526 tkr->mask)); 527 } while (read_seqcount_retry(&tkf->seq, seq)); 528 529 return now; 530 } 531 532 /** 533 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 534 */ 535 u64 ktime_get_real_fast_ns(void) 536 { 537 return __ktime_get_real_fast_ns(&tk_fast_mono); 538 } 539 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 540 541 /** 542 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 543 * @tk: Timekeeper to snapshot. 544 * 545 * It generally is unsafe to access the clocksource after timekeeping has been 546 * suspended, so take a snapshot of the readout base of @tk and use it as the 547 * fast timekeeper's readout base while suspended. It will return the same 548 * number of cycles every time until timekeeping is resumed at which time the 549 * proper readout base for the fast timekeeper will be restored automatically. 550 */ 551 static void halt_fast_timekeeper(const struct timekeeper *tk) 552 { 553 static struct tk_read_base tkr_dummy; 554 const struct tk_read_base *tkr = &tk->tkr_mono; 555 556 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 557 cycles_at_suspend = tk_clock_read(tkr); 558 tkr_dummy.clock = &dummy_clock; 559 tkr_dummy.base_real = tkr->base + tk->offs_real; 560 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 561 562 tkr = &tk->tkr_raw; 563 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 564 tkr_dummy.clock = &dummy_clock; 565 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 566 } 567 568 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 569 570 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 571 { 572 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 573 } 574 575 /** 576 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 577 */ 578 int pvclock_gtod_register_notifier(struct notifier_block *nb) 579 { 580 struct timekeeper *tk = &tk_core.timekeeper; 581 unsigned long flags; 582 int ret; 583 584 raw_spin_lock_irqsave(&timekeeper_lock, flags); 585 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 586 update_pvclock_gtod(tk, true); 587 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 588 589 return ret; 590 } 591 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 592 593 /** 594 * pvclock_gtod_unregister_notifier - unregister a pvclock 595 * timedata update listener 596 */ 597 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 598 { 599 unsigned long flags; 600 int ret; 601 602 raw_spin_lock_irqsave(&timekeeper_lock, flags); 603 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 604 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 605 606 return ret; 607 } 608 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 609 610 /* 611 * tk_update_leap_state - helper to update the next_leap_ktime 612 */ 613 static inline void tk_update_leap_state(struct timekeeper *tk) 614 { 615 tk->next_leap_ktime = ntp_get_next_leap(); 616 if (tk->next_leap_ktime != KTIME_MAX) 617 /* Convert to monotonic time */ 618 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 619 } 620 621 /* 622 * Update the ktime_t based scalar nsec members of the timekeeper 623 */ 624 static inline void tk_update_ktime_data(struct timekeeper *tk) 625 { 626 u64 seconds; 627 u32 nsec; 628 629 /* 630 * The xtime based monotonic readout is: 631 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 632 * The ktime based monotonic readout is: 633 * nsec = base_mono + now(); 634 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 635 */ 636 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 637 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 638 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 639 640 /* 641 * The sum of the nanoseconds portions of xtime and 642 * wall_to_monotonic can be greater/equal one second. Take 643 * this into account before updating tk->ktime_sec. 644 */ 645 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 646 if (nsec >= NSEC_PER_SEC) 647 seconds++; 648 tk->ktime_sec = seconds; 649 650 /* Update the monotonic raw base */ 651 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 652 } 653 654 /* must hold timekeeper_lock */ 655 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 656 { 657 if (action & TK_CLEAR_NTP) { 658 tk->ntp_error = 0; 659 ntp_clear(); 660 } 661 662 tk_update_leap_state(tk); 663 tk_update_ktime_data(tk); 664 665 update_vsyscall(tk); 666 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 667 668 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 669 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 670 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 671 672 if (action & TK_CLOCK_WAS_SET) 673 tk->clock_was_set_seq++; 674 /* 675 * The mirroring of the data to the shadow-timekeeper needs 676 * to happen last here to ensure we don't over-write the 677 * timekeeper structure on the next update with stale data 678 */ 679 if (action & TK_MIRROR) 680 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 681 sizeof(tk_core.timekeeper)); 682 } 683 684 /** 685 * timekeeping_forward_now - update clock to the current time 686 * 687 * Forward the current clock to update its state since the last call to 688 * update_wall_time(). This is useful before significant clock changes, 689 * as it avoids having to deal with this time offset explicitly. 690 */ 691 static void timekeeping_forward_now(struct timekeeper *tk) 692 { 693 u64 cycle_now, delta; 694 695 cycle_now = tk_clock_read(&tk->tkr_mono); 696 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 697 tk->tkr_mono.cycle_last = cycle_now; 698 tk->tkr_raw.cycle_last = cycle_now; 699 700 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 701 702 /* If arch requires, add in get_arch_timeoffset() */ 703 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 704 705 706 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 707 708 /* If arch requires, add in get_arch_timeoffset() */ 709 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 710 711 tk_normalize_xtime(tk); 712 } 713 714 /** 715 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 716 * @ts: pointer to the timespec to be set 717 * 718 * Returns the time of day in a timespec64 (WARN if suspended). 719 */ 720 void ktime_get_real_ts64(struct timespec64 *ts) 721 { 722 struct timekeeper *tk = &tk_core.timekeeper; 723 unsigned long seq; 724 u64 nsecs; 725 726 WARN_ON(timekeeping_suspended); 727 728 do { 729 seq = read_seqcount_begin(&tk_core.seq); 730 731 ts->tv_sec = tk->xtime_sec; 732 nsecs = timekeeping_get_ns(&tk->tkr_mono); 733 734 } while (read_seqcount_retry(&tk_core.seq, seq)); 735 736 ts->tv_nsec = 0; 737 timespec64_add_ns(ts, nsecs); 738 } 739 EXPORT_SYMBOL(ktime_get_real_ts64); 740 741 ktime_t ktime_get(void) 742 { 743 struct timekeeper *tk = &tk_core.timekeeper; 744 unsigned int seq; 745 ktime_t base; 746 u64 nsecs; 747 748 WARN_ON(timekeeping_suspended); 749 750 do { 751 seq = read_seqcount_begin(&tk_core.seq); 752 base = tk->tkr_mono.base; 753 nsecs = timekeeping_get_ns(&tk->tkr_mono); 754 755 } while (read_seqcount_retry(&tk_core.seq, seq)); 756 757 return ktime_add_ns(base, nsecs); 758 } 759 EXPORT_SYMBOL_GPL(ktime_get); 760 761 u32 ktime_get_resolution_ns(void) 762 { 763 struct timekeeper *tk = &tk_core.timekeeper; 764 unsigned int seq; 765 u32 nsecs; 766 767 WARN_ON(timekeeping_suspended); 768 769 do { 770 seq = read_seqcount_begin(&tk_core.seq); 771 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 772 } while (read_seqcount_retry(&tk_core.seq, seq)); 773 774 return nsecs; 775 } 776 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 777 778 static ktime_t *offsets[TK_OFFS_MAX] = { 779 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 780 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 781 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 782 }; 783 784 ktime_t ktime_get_with_offset(enum tk_offsets offs) 785 { 786 struct timekeeper *tk = &tk_core.timekeeper; 787 unsigned int seq; 788 ktime_t base, *offset = offsets[offs]; 789 u64 nsecs; 790 791 WARN_ON(timekeeping_suspended); 792 793 do { 794 seq = read_seqcount_begin(&tk_core.seq); 795 base = ktime_add(tk->tkr_mono.base, *offset); 796 nsecs = timekeeping_get_ns(&tk->tkr_mono); 797 798 } while (read_seqcount_retry(&tk_core.seq, seq)); 799 800 return ktime_add_ns(base, nsecs); 801 802 } 803 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 804 805 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 806 { 807 struct timekeeper *tk = &tk_core.timekeeper; 808 unsigned int seq; 809 ktime_t base, *offset = offsets[offs]; 810 811 WARN_ON(timekeeping_suspended); 812 813 do { 814 seq = read_seqcount_begin(&tk_core.seq); 815 base = ktime_add(tk->tkr_mono.base, *offset); 816 817 } while (read_seqcount_retry(&tk_core.seq, seq)); 818 819 return base; 820 821 } 822 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 823 824 /** 825 * ktime_mono_to_any() - convert mononotic time to any other time 826 * @tmono: time to convert. 827 * @offs: which offset to use 828 */ 829 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 830 { 831 ktime_t *offset = offsets[offs]; 832 unsigned long seq; 833 ktime_t tconv; 834 835 do { 836 seq = read_seqcount_begin(&tk_core.seq); 837 tconv = ktime_add(tmono, *offset); 838 } while (read_seqcount_retry(&tk_core.seq, seq)); 839 840 return tconv; 841 } 842 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 843 844 /** 845 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 846 */ 847 ktime_t ktime_get_raw(void) 848 { 849 struct timekeeper *tk = &tk_core.timekeeper; 850 unsigned int seq; 851 ktime_t base; 852 u64 nsecs; 853 854 do { 855 seq = read_seqcount_begin(&tk_core.seq); 856 base = tk->tkr_raw.base; 857 nsecs = timekeeping_get_ns(&tk->tkr_raw); 858 859 } while (read_seqcount_retry(&tk_core.seq, seq)); 860 861 return ktime_add_ns(base, nsecs); 862 } 863 EXPORT_SYMBOL_GPL(ktime_get_raw); 864 865 /** 866 * ktime_get_ts64 - get the monotonic clock in timespec64 format 867 * @ts: pointer to timespec variable 868 * 869 * The function calculates the monotonic clock from the realtime 870 * clock and the wall_to_monotonic offset and stores the result 871 * in normalized timespec64 format in the variable pointed to by @ts. 872 */ 873 void ktime_get_ts64(struct timespec64 *ts) 874 { 875 struct timekeeper *tk = &tk_core.timekeeper; 876 struct timespec64 tomono; 877 unsigned int seq; 878 u64 nsec; 879 880 WARN_ON(timekeeping_suspended); 881 882 do { 883 seq = read_seqcount_begin(&tk_core.seq); 884 ts->tv_sec = tk->xtime_sec; 885 nsec = timekeeping_get_ns(&tk->tkr_mono); 886 tomono = tk->wall_to_monotonic; 887 888 } while (read_seqcount_retry(&tk_core.seq, seq)); 889 890 ts->tv_sec += tomono.tv_sec; 891 ts->tv_nsec = 0; 892 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 893 } 894 EXPORT_SYMBOL_GPL(ktime_get_ts64); 895 896 /** 897 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 898 * 899 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 900 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 901 * works on both 32 and 64 bit systems. On 32 bit systems the readout 902 * covers ~136 years of uptime which should be enough to prevent 903 * premature wrap arounds. 904 */ 905 time64_t ktime_get_seconds(void) 906 { 907 struct timekeeper *tk = &tk_core.timekeeper; 908 909 WARN_ON(timekeeping_suspended); 910 return tk->ktime_sec; 911 } 912 EXPORT_SYMBOL_GPL(ktime_get_seconds); 913 914 /** 915 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 916 * 917 * Returns the wall clock seconds since 1970. This replaces the 918 * get_seconds() interface which is not y2038 safe on 32bit systems. 919 * 920 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 921 * 32bit systems the access must be protected with the sequence 922 * counter to provide "atomic" access to the 64bit tk->xtime_sec 923 * value. 924 */ 925 time64_t ktime_get_real_seconds(void) 926 { 927 struct timekeeper *tk = &tk_core.timekeeper; 928 time64_t seconds; 929 unsigned int seq; 930 931 if (IS_ENABLED(CONFIG_64BIT)) 932 return tk->xtime_sec; 933 934 do { 935 seq = read_seqcount_begin(&tk_core.seq); 936 seconds = tk->xtime_sec; 937 938 } while (read_seqcount_retry(&tk_core.seq, seq)); 939 940 return seconds; 941 } 942 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 943 944 /** 945 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 946 * but without the sequence counter protect. This internal function 947 * is called just when timekeeping lock is already held. 948 */ 949 time64_t __ktime_get_real_seconds(void) 950 { 951 struct timekeeper *tk = &tk_core.timekeeper; 952 953 return tk->xtime_sec; 954 } 955 956 /** 957 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 958 * @systime_snapshot: pointer to struct receiving the system time snapshot 959 */ 960 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 961 { 962 struct timekeeper *tk = &tk_core.timekeeper; 963 unsigned long seq; 964 ktime_t base_raw; 965 ktime_t base_real; 966 u64 nsec_raw; 967 u64 nsec_real; 968 u64 now; 969 970 WARN_ON_ONCE(timekeeping_suspended); 971 972 do { 973 seq = read_seqcount_begin(&tk_core.seq); 974 now = tk_clock_read(&tk->tkr_mono); 975 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 976 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 977 base_real = ktime_add(tk->tkr_mono.base, 978 tk_core.timekeeper.offs_real); 979 base_raw = tk->tkr_raw.base; 980 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 981 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 982 } while (read_seqcount_retry(&tk_core.seq, seq)); 983 984 systime_snapshot->cycles = now; 985 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 986 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 987 } 988 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 989 990 /* Scale base by mult/div checking for overflow */ 991 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 992 { 993 u64 tmp, rem; 994 995 tmp = div64_u64_rem(*base, div, &rem); 996 997 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 998 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 999 return -EOVERFLOW; 1000 tmp *= mult; 1001 rem *= mult; 1002 1003 do_div(rem, div); 1004 *base = tmp + rem; 1005 return 0; 1006 } 1007 1008 /** 1009 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1010 * @history: Snapshot representing start of history 1011 * @partial_history_cycles: Cycle offset into history (fractional part) 1012 * @total_history_cycles: Total history length in cycles 1013 * @discontinuity: True indicates clock was set on history period 1014 * @ts: Cross timestamp that should be adjusted using 1015 * partial/total ratio 1016 * 1017 * Helper function used by get_device_system_crosststamp() to correct the 1018 * crosstimestamp corresponding to the start of the current interval to the 1019 * system counter value (timestamp point) provided by the driver. The 1020 * total_history_* quantities are the total history starting at the provided 1021 * reference point and ending at the start of the current interval. The cycle 1022 * count between the driver timestamp point and the start of the current 1023 * interval is partial_history_cycles. 1024 */ 1025 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1026 u64 partial_history_cycles, 1027 u64 total_history_cycles, 1028 bool discontinuity, 1029 struct system_device_crosststamp *ts) 1030 { 1031 struct timekeeper *tk = &tk_core.timekeeper; 1032 u64 corr_raw, corr_real; 1033 bool interp_forward; 1034 int ret; 1035 1036 if (total_history_cycles == 0 || partial_history_cycles == 0) 1037 return 0; 1038 1039 /* Interpolate shortest distance from beginning or end of history */ 1040 interp_forward = partial_history_cycles > total_history_cycles / 2; 1041 partial_history_cycles = interp_forward ? 1042 total_history_cycles - partial_history_cycles : 1043 partial_history_cycles; 1044 1045 /* 1046 * Scale the monotonic raw time delta by: 1047 * partial_history_cycles / total_history_cycles 1048 */ 1049 corr_raw = (u64)ktime_to_ns( 1050 ktime_sub(ts->sys_monoraw, history->raw)); 1051 ret = scale64_check_overflow(partial_history_cycles, 1052 total_history_cycles, &corr_raw); 1053 if (ret) 1054 return ret; 1055 1056 /* 1057 * If there is a discontinuity in the history, scale monotonic raw 1058 * correction by: 1059 * mult(real)/mult(raw) yielding the realtime correction 1060 * Otherwise, calculate the realtime correction similar to monotonic 1061 * raw calculation 1062 */ 1063 if (discontinuity) { 1064 corr_real = mul_u64_u32_div 1065 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1066 } else { 1067 corr_real = (u64)ktime_to_ns( 1068 ktime_sub(ts->sys_realtime, history->real)); 1069 ret = scale64_check_overflow(partial_history_cycles, 1070 total_history_cycles, &corr_real); 1071 if (ret) 1072 return ret; 1073 } 1074 1075 /* Fixup monotonic raw and real time time values */ 1076 if (interp_forward) { 1077 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1078 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1079 } else { 1080 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1081 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1082 } 1083 1084 return 0; 1085 } 1086 1087 /* 1088 * cycle_between - true if test occurs chronologically between before and after 1089 */ 1090 static bool cycle_between(u64 before, u64 test, u64 after) 1091 { 1092 if (test > before && test < after) 1093 return true; 1094 if (test < before && before > after) 1095 return true; 1096 return false; 1097 } 1098 1099 /** 1100 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1101 * @get_time_fn: Callback to get simultaneous device time and 1102 * system counter from the device driver 1103 * @ctx: Context passed to get_time_fn() 1104 * @history_begin: Historical reference point used to interpolate system 1105 * time when counter provided by the driver is before the current interval 1106 * @xtstamp: Receives simultaneously captured system and device time 1107 * 1108 * Reads a timestamp from a device and correlates it to system time 1109 */ 1110 int get_device_system_crosststamp(int (*get_time_fn) 1111 (ktime_t *device_time, 1112 struct system_counterval_t *sys_counterval, 1113 void *ctx), 1114 void *ctx, 1115 struct system_time_snapshot *history_begin, 1116 struct system_device_crosststamp *xtstamp) 1117 { 1118 struct system_counterval_t system_counterval; 1119 struct timekeeper *tk = &tk_core.timekeeper; 1120 u64 cycles, now, interval_start; 1121 unsigned int clock_was_set_seq = 0; 1122 ktime_t base_real, base_raw; 1123 u64 nsec_real, nsec_raw; 1124 u8 cs_was_changed_seq; 1125 unsigned long seq; 1126 bool do_interp; 1127 int ret; 1128 1129 do { 1130 seq = read_seqcount_begin(&tk_core.seq); 1131 /* 1132 * Try to synchronously capture device time and a system 1133 * counter value calling back into the device driver 1134 */ 1135 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1136 if (ret) 1137 return ret; 1138 1139 /* 1140 * Verify that the clocksource associated with the captured 1141 * system counter value is the same as the currently installed 1142 * timekeeper clocksource 1143 */ 1144 if (tk->tkr_mono.clock != system_counterval.cs) 1145 return -ENODEV; 1146 cycles = system_counterval.cycles; 1147 1148 /* 1149 * Check whether the system counter value provided by the 1150 * device driver is on the current timekeeping interval. 1151 */ 1152 now = tk_clock_read(&tk->tkr_mono); 1153 interval_start = tk->tkr_mono.cycle_last; 1154 if (!cycle_between(interval_start, cycles, now)) { 1155 clock_was_set_seq = tk->clock_was_set_seq; 1156 cs_was_changed_seq = tk->cs_was_changed_seq; 1157 cycles = interval_start; 1158 do_interp = true; 1159 } else { 1160 do_interp = false; 1161 } 1162 1163 base_real = ktime_add(tk->tkr_mono.base, 1164 tk_core.timekeeper.offs_real); 1165 base_raw = tk->tkr_raw.base; 1166 1167 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1168 system_counterval.cycles); 1169 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1170 system_counterval.cycles); 1171 } while (read_seqcount_retry(&tk_core.seq, seq)); 1172 1173 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1174 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1175 1176 /* 1177 * Interpolate if necessary, adjusting back from the start of the 1178 * current interval 1179 */ 1180 if (do_interp) { 1181 u64 partial_history_cycles, total_history_cycles; 1182 bool discontinuity; 1183 1184 /* 1185 * Check that the counter value occurs after the provided 1186 * history reference and that the history doesn't cross a 1187 * clocksource change 1188 */ 1189 if (!history_begin || 1190 !cycle_between(history_begin->cycles, 1191 system_counterval.cycles, cycles) || 1192 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1193 return -EINVAL; 1194 partial_history_cycles = cycles - system_counterval.cycles; 1195 total_history_cycles = cycles - history_begin->cycles; 1196 discontinuity = 1197 history_begin->clock_was_set_seq != clock_was_set_seq; 1198 1199 ret = adjust_historical_crosststamp(history_begin, 1200 partial_history_cycles, 1201 total_history_cycles, 1202 discontinuity, xtstamp); 1203 if (ret) 1204 return ret; 1205 } 1206 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1210 1211 /** 1212 * do_settimeofday64 - Sets the time of day. 1213 * @ts: pointer to the timespec64 variable containing the new time 1214 * 1215 * Sets the time of day to the new time and update NTP and notify hrtimers 1216 */ 1217 int do_settimeofday64(const struct timespec64 *ts) 1218 { 1219 struct timekeeper *tk = &tk_core.timekeeper; 1220 struct timespec64 ts_delta, xt; 1221 unsigned long flags; 1222 int ret = 0; 1223 1224 if (!timespec64_valid_strict(ts)) 1225 return -EINVAL; 1226 1227 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1228 write_seqcount_begin(&tk_core.seq); 1229 1230 timekeeping_forward_now(tk); 1231 1232 xt = tk_xtime(tk); 1233 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1234 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1235 1236 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1237 ret = -EINVAL; 1238 goto out; 1239 } 1240 1241 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1242 1243 tk_set_xtime(tk, ts); 1244 out: 1245 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1246 1247 write_seqcount_end(&tk_core.seq); 1248 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1249 1250 /* signal hrtimers about time change */ 1251 clock_was_set(); 1252 1253 return ret; 1254 } 1255 EXPORT_SYMBOL(do_settimeofday64); 1256 1257 /** 1258 * timekeeping_inject_offset - Adds or subtracts from the current time. 1259 * @tv: pointer to the timespec variable containing the offset 1260 * 1261 * Adds or subtracts an offset value from the current time. 1262 */ 1263 static int timekeeping_inject_offset(const struct timespec64 *ts) 1264 { 1265 struct timekeeper *tk = &tk_core.timekeeper; 1266 unsigned long flags; 1267 struct timespec64 tmp; 1268 int ret = 0; 1269 1270 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1271 return -EINVAL; 1272 1273 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1274 write_seqcount_begin(&tk_core.seq); 1275 1276 timekeeping_forward_now(tk); 1277 1278 /* Make sure the proposed value is valid */ 1279 tmp = timespec64_add(tk_xtime(tk), *ts); 1280 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1281 !timespec64_valid_strict(&tmp)) { 1282 ret = -EINVAL; 1283 goto error; 1284 } 1285 1286 tk_xtime_add(tk, ts); 1287 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1288 1289 error: /* even if we error out, we forwarded the time, so call update */ 1290 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1291 1292 write_seqcount_end(&tk_core.seq); 1293 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1294 1295 /* signal hrtimers about time change */ 1296 clock_was_set(); 1297 1298 return ret; 1299 } 1300 1301 /* 1302 * Indicates if there is an offset between the system clock and the hardware 1303 * clock/persistent clock/rtc. 1304 */ 1305 int persistent_clock_is_local; 1306 1307 /* 1308 * Adjust the time obtained from the CMOS to be UTC time instead of 1309 * local time. 1310 * 1311 * This is ugly, but preferable to the alternatives. Otherwise we 1312 * would either need to write a program to do it in /etc/rc (and risk 1313 * confusion if the program gets run more than once; it would also be 1314 * hard to make the program warp the clock precisely n hours) or 1315 * compile in the timezone information into the kernel. Bad, bad.... 1316 * 1317 * - TYT, 1992-01-01 1318 * 1319 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1320 * as real UNIX machines always do it. This avoids all headaches about 1321 * daylight saving times and warping kernel clocks. 1322 */ 1323 void timekeeping_warp_clock(void) 1324 { 1325 if (sys_tz.tz_minuteswest != 0) { 1326 struct timespec64 adjust; 1327 1328 persistent_clock_is_local = 1; 1329 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1330 adjust.tv_nsec = 0; 1331 timekeeping_inject_offset(&adjust); 1332 } 1333 } 1334 1335 /** 1336 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1337 * 1338 */ 1339 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1340 { 1341 tk->tai_offset = tai_offset; 1342 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1343 } 1344 1345 /** 1346 * change_clocksource - Swaps clocksources if a new one is available 1347 * 1348 * Accumulates current time interval and initializes new clocksource 1349 */ 1350 static int change_clocksource(void *data) 1351 { 1352 struct timekeeper *tk = &tk_core.timekeeper; 1353 struct clocksource *new, *old; 1354 unsigned long flags; 1355 1356 new = (struct clocksource *) data; 1357 1358 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1359 write_seqcount_begin(&tk_core.seq); 1360 1361 timekeeping_forward_now(tk); 1362 /* 1363 * If the cs is in module, get a module reference. Succeeds 1364 * for built-in code (owner == NULL) as well. 1365 */ 1366 if (try_module_get(new->owner)) { 1367 if (!new->enable || new->enable(new) == 0) { 1368 old = tk->tkr_mono.clock; 1369 tk_setup_internals(tk, new); 1370 if (old->disable) 1371 old->disable(old); 1372 module_put(old->owner); 1373 } else { 1374 module_put(new->owner); 1375 } 1376 } 1377 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1378 1379 write_seqcount_end(&tk_core.seq); 1380 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1381 1382 return 0; 1383 } 1384 1385 /** 1386 * timekeeping_notify - Install a new clock source 1387 * @clock: pointer to the clock source 1388 * 1389 * This function is called from clocksource.c after a new, better clock 1390 * source has been registered. The caller holds the clocksource_mutex. 1391 */ 1392 int timekeeping_notify(struct clocksource *clock) 1393 { 1394 struct timekeeper *tk = &tk_core.timekeeper; 1395 1396 if (tk->tkr_mono.clock == clock) 1397 return 0; 1398 stop_machine(change_clocksource, clock, NULL); 1399 tick_clock_notify(); 1400 return tk->tkr_mono.clock == clock ? 0 : -1; 1401 } 1402 1403 /** 1404 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1405 * @ts: pointer to the timespec64 to be set 1406 * 1407 * Returns the raw monotonic time (completely un-modified by ntp) 1408 */ 1409 void ktime_get_raw_ts64(struct timespec64 *ts) 1410 { 1411 struct timekeeper *tk = &tk_core.timekeeper; 1412 unsigned long seq; 1413 u64 nsecs; 1414 1415 do { 1416 seq = read_seqcount_begin(&tk_core.seq); 1417 ts->tv_sec = tk->raw_sec; 1418 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1419 1420 } while (read_seqcount_retry(&tk_core.seq, seq)); 1421 1422 ts->tv_nsec = 0; 1423 timespec64_add_ns(ts, nsecs); 1424 } 1425 EXPORT_SYMBOL(ktime_get_raw_ts64); 1426 1427 1428 /** 1429 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1430 */ 1431 int timekeeping_valid_for_hres(void) 1432 { 1433 struct timekeeper *tk = &tk_core.timekeeper; 1434 unsigned long seq; 1435 int ret; 1436 1437 do { 1438 seq = read_seqcount_begin(&tk_core.seq); 1439 1440 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1441 1442 } while (read_seqcount_retry(&tk_core.seq, seq)); 1443 1444 return ret; 1445 } 1446 1447 /** 1448 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1449 */ 1450 u64 timekeeping_max_deferment(void) 1451 { 1452 struct timekeeper *tk = &tk_core.timekeeper; 1453 unsigned long seq; 1454 u64 ret; 1455 1456 do { 1457 seq = read_seqcount_begin(&tk_core.seq); 1458 1459 ret = tk->tkr_mono.clock->max_idle_ns; 1460 1461 } while (read_seqcount_retry(&tk_core.seq, seq)); 1462 1463 return ret; 1464 } 1465 1466 /** 1467 * read_persistent_clock64 - Return time from the persistent clock. 1468 * 1469 * Weak dummy function for arches that do not yet support it. 1470 * Reads the time from the battery backed persistent clock. 1471 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1472 * 1473 * XXX - Do be sure to remove it once all arches implement it. 1474 */ 1475 void __weak read_persistent_clock64(struct timespec64 *ts) 1476 { 1477 ts->tv_sec = 0; 1478 ts->tv_nsec = 0; 1479 } 1480 1481 /** 1482 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1483 * from the boot. 1484 * 1485 * Weak dummy function for arches that do not yet support it. 1486 * wall_time - current time as returned by persistent clock 1487 * boot_offset - offset that is defined as wall_time - boot_time 1488 * The default function calculates offset based on the current value of 1489 * local_clock(). This way architectures that support sched_clock() but don't 1490 * support dedicated boot time clock will provide the best estimate of the 1491 * boot time. 1492 */ 1493 void __weak __init 1494 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1495 struct timespec64 *boot_offset) 1496 { 1497 read_persistent_clock64(wall_time); 1498 *boot_offset = ns_to_timespec64(local_clock()); 1499 } 1500 1501 /* 1502 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1503 * 1504 * The flag starts of false and is only set when a suspend reaches 1505 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1506 * timekeeper clocksource is not stopping across suspend and has been 1507 * used to update sleep time. If the timekeeper clocksource has stopped 1508 * then the flag stays true and is used by the RTC resume code to decide 1509 * whether sleeptime must be injected and if so the flag gets false then. 1510 * 1511 * If a suspend fails before reaching timekeeping_resume() then the flag 1512 * stays false and prevents erroneous sleeptime injection. 1513 */ 1514 static bool suspend_timing_needed; 1515 1516 /* Flag for if there is a persistent clock on this platform */ 1517 static bool persistent_clock_exists; 1518 1519 /* 1520 * timekeeping_init - Initializes the clocksource and common timekeeping values 1521 */ 1522 void __init timekeeping_init(void) 1523 { 1524 struct timespec64 wall_time, boot_offset, wall_to_mono; 1525 struct timekeeper *tk = &tk_core.timekeeper; 1526 struct clocksource *clock; 1527 unsigned long flags; 1528 1529 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1530 if (timespec64_valid_strict(&wall_time) && 1531 timespec64_to_ns(&wall_time) > 0) { 1532 persistent_clock_exists = true; 1533 } else if (timespec64_to_ns(&wall_time) != 0) { 1534 pr_warn("Persistent clock returned invalid value"); 1535 wall_time = (struct timespec64){0}; 1536 } 1537 1538 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1539 boot_offset = (struct timespec64){0}; 1540 1541 /* 1542 * We want set wall_to_mono, so the following is true: 1543 * wall time + wall_to_mono = boot time 1544 */ 1545 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1546 1547 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1548 write_seqcount_begin(&tk_core.seq); 1549 ntp_init(); 1550 1551 clock = clocksource_default_clock(); 1552 if (clock->enable) 1553 clock->enable(clock); 1554 tk_setup_internals(tk, clock); 1555 1556 tk_set_xtime(tk, &wall_time); 1557 tk->raw_sec = 0; 1558 1559 tk_set_wall_to_mono(tk, wall_to_mono); 1560 1561 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1562 1563 write_seqcount_end(&tk_core.seq); 1564 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1565 } 1566 1567 /* time in seconds when suspend began for persistent clock */ 1568 static struct timespec64 timekeeping_suspend_time; 1569 1570 /** 1571 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1572 * @delta: pointer to a timespec delta value 1573 * 1574 * Takes a timespec offset measuring a suspend interval and properly 1575 * adds the sleep offset to the timekeeping variables. 1576 */ 1577 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1578 const struct timespec64 *delta) 1579 { 1580 if (!timespec64_valid_strict(delta)) { 1581 printk_deferred(KERN_WARNING 1582 "__timekeeping_inject_sleeptime: Invalid " 1583 "sleep delta value!\n"); 1584 return; 1585 } 1586 tk_xtime_add(tk, delta); 1587 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1588 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1589 tk_debug_account_sleep_time(delta); 1590 } 1591 1592 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1593 /** 1594 * We have three kinds of time sources to use for sleep time 1595 * injection, the preference order is: 1596 * 1) non-stop clocksource 1597 * 2) persistent clock (ie: RTC accessible when irqs are off) 1598 * 3) RTC 1599 * 1600 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1601 * If system has neither 1) nor 2), 3) will be used finally. 1602 * 1603 * 1604 * If timekeeping has injected sleeptime via either 1) or 2), 1605 * 3) becomes needless, so in this case we don't need to call 1606 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1607 * means. 1608 */ 1609 bool timekeeping_rtc_skipresume(void) 1610 { 1611 return !suspend_timing_needed; 1612 } 1613 1614 /** 1615 * 1) can be determined whether to use or not only when doing 1616 * timekeeping_resume() which is invoked after rtc_suspend(), 1617 * so we can't skip rtc_suspend() surely if system has 1). 1618 * 1619 * But if system has 2), 2) will definitely be used, so in this 1620 * case we don't need to call rtc_suspend(), and this is what 1621 * timekeeping_rtc_skipsuspend() means. 1622 */ 1623 bool timekeeping_rtc_skipsuspend(void) 1624 { 1625 return persistent_clock_exists; 1626 } 1627 1628 /** 1629 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1630 * @delta: pointer to a timespec64 delta value 1631 * 1632 * This hook is for architectures that cannot support read_persistent_clock64 1633 * because their RTC/persistent clock is only accessible when irqs are enabled. 1634 * and also don't have an effective nonstop clocksource. 1635 * 1636 * This function should only be called by rtc_resume(), and allows 1637 * a suspend offset to be injected into the timekeeping values. 1638 */ 1639 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1640 { 1641 struct timekeeper *tk = &tk_core.timekeeper; 1642 unsigned long flags; 1643 1644 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1645 write_seqcount_begin(&tk_core.seq); 1646 1647 suspend_timing_needed = false; 1648 1649 timekeeping_forward_now(tk); 1650 1651 __timekeeping_inject_sleeptime(tk, delta); 1652 1653 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1654 1655 write_seqcount_end(&tk_core.seq); 1656 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1657 1658 /* signal hrtimers about time change */ 1659 clock_was_set(); 1660 } 1661 #endif 1662 1663 /** 1664 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1665 */ 1666 void timekeeping_resume(void) 1667 { 1668 struct timekeeper *tk = &tk_core.timekeeper; 1669 struct clocksource *clock = tk->tkr_mono.clock; 1670 unsigned long flags; 1671 struct timespec64 ts_new, ts_delta; 1672 u64 cycle_now, nsec; 1673 bool inject_sleeptime = false; 1674 1675 read_persistent_clock64(&ts_new); 1676 1677 clockevents_resume(); 1678 clocksource_resume(); 1679 1680 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1681 write_seqcount_begin(&tk_core.seq); 1682 1683 /* 1684 * After system resumes, we need to calculate the suspended time and 1685 * compensate it for the OS time. There are 3 sources that could be 1686 * used: Nonstop clocksource during suspend, persistent clock and rtc 1687 * device. 1688 * 1689 * One specific platform may have 1 or 2 or all of them, and the 1690 * preference will be: 1691 * suspend-nonstop clocksource -> persistent clock -> rtc 1692 * The less preferred source will only be tried if there is no better 1693 * usable source. The rtc part is handled separately in rtc core code. 1694 */ 1695 cycle_now = tk_clock_read(&tk->tkr_mono); 1696 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1697 if (nsec > 0) { 1698 ts_delta = ns_to_timespec64(nsec); 1699 inject_sleeptime = true; 1700 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1701 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1702 inject_sleeptime = true; 1703 } 1704 1705 if (inject_sleeptime) { 1706 suspend_timing_needed = false; 1707 __timekeeping_inject_sleeptime(tk, &ts_delta); 1708 } 1709 1710 /* Re-base the last cycle value */ 1711 tk->tkr_mono.cycle_last = cycle_now; 1712 tk->tkr_raw.cycle_last = cycle_now; 1713 1714 tk->ntp_error = 0; 1715 timekeeping_suspended = 0; 1716 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1717 write_seqcount_end(&tk_core.seq); 1718 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1719 1720 touch_softlockup_watchdog(); 1721 1722 tick_resume(); 1723 hrtimers_resume(); 1724 } 1725 1726 int timekeeping_suspend(void) 1727 { 1728 struct timekeeper *tk = &tk_core.timekeeper; 1729 unsigned long flags; 1730 struct timespec64 delta, delta_delta; 1731 static struct timespec64 old_delta; 1732 struct clocksource *curr_clock; 1733 u64 cycle_now; 1734 1735 read_persistent_clock64(&timekeeping_suspend_time); 1736 1737 /* 1738 * On some systems the persistent_clock can not be detected at 1739 * timekeeping_init by its return value, so if we see a valid 1740 * value returned, update the persistent_clock_exists flag. 1741 */ 1742 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1743 persistent_clock_exists = true; 1744 1745 suspend_timing_needed = true; 1746 1747 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1748 write_seqcount_begin(&tk_core.seq); 1749 timekeeping_forward_now(tk); 1750 timekeeping_suspended = 1; 1751 1752 /* 1753 * Since we've called forward_now, cycle_last stores the value 1754 * just read from the current clocksource. Save this to potentially 1755 * use in suspend timing. 1756 */ 1757 curr_clock = tk->tkr_mono.clock; 1758 cycle_now = tk->tkr_mono.cycle_last; 1759 clocksource_start_suspend_timing(curr_clock, cycle_now); 1760 1761 if (persistent_clock_exists) { 1762 /* 1763 * To avoid drift caused by repeated suspend/resumes, 1764 * which each can add ~1 second drift error, 1765 * try to compensate so the difference in system time 1766 * and persistent_clock time stays close to constant. 1767 */ 1768 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1769 delta_delta = timespec64_sub(delta, old_delta); 1770 if (abs(delta_delta.tv_sec) >= 2) { 1771 /* 1772 * if delta_delta is too large, assume time correction 1773 * has occurred and set old_delta to the current delta. 1774 */ 1775 old_delta = delta; 1776 } else { 1777 /* Otherwise try to adjust old_system to compensate */ 1778 timekeeping_suspend_time = 1779 timespec64_add(timekeeping_suspend_time, delta_delta); 1780 } 1781 } 1782 1783 timekeeping_update(tk, TK_MIRROR); 1784 halt_fast_timekeeper(tk); 1785 write_seqcount_end(&tk_core.seq); 1786 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1787 1788 tick_suspend(); 1789 clocksource_suspend(); 1790 clockevents_suspend(); 1791 1792 return 0; 1793 } 1794 1795 /* sysfs resume/suspend bits for timekeeping */ 1796 static struct syscore_ops timekeeping_syscore_ops = { 1797 .resume = timekeeping_resume, 1798 .suspend = timekeeping_suspend, 1799 }; 1800 1801 static int __init timekeeping_init_ops(void) 1802 { 1803 register_syscore_ops(&timekeeping_syscore_ops); 1804 return 0; 1805 } 1806 device_initcall(timekeeping_init_ops); 1807 1808 /* 1809 * Apply a multiplier adjustment to the timekeeper 1810 */ 1811 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1812 s64 offset, 1813 s32 mult_adj) 1814 { 1815 s64 interval = tk->cycle_interval; 1816 1817 if (mult_adj == 0) { 1818 return; 1819 } else if (mult_adj == -1) { 1820 interval = -interval; 1821 offset = -offset; 1822 } else if (mult_adj != 1) { 1823 interval *= mult_adj; 1824 offset *= mult_adj; 1825 } 1826 1827 /* 1828 * So the following can be confusing. 1829 * 1830 * To keep things simple, lets assume mult_adj == 1 for now. 1831 * 1832 * When mult_adj != 1, remember that the interval and offset values 1833 * have been appropriately scaled so the math is the same. 1834 * 1835 * The basic idea here is that we're increasing the multiplier 1836 * by one, this causes the xtime_interval to be incremented by 1837 * one cycle_interval. This is because: 1838 * xtime_interval = cycle_interval * mult 1839 * So if mult is being incremented by one: 1840 * xtime_interval = cycle_interval * (mult + 1) 1841 * Its the same as: 1842 * xtime_interval = (cycle_interval * mult) + cycle_interval 1843 * Which can be shortened to: 1844 * xtime_interval += cycle_interval 1845 * 1846 * So offset stores the non-accumulated cycles. Thus the current 1847 * time (in shifted nanoseconds) is: 1848 * now = (offset * adj) + xtime_nsec 1849 * Now, even though we're adjusting the clock frequency, we have 1850 * to keep time consistent. In other words, we can't jump back 1851 * in time, and we also want to avoid jumping forward in time. 1852 * 1853 * So given the same offset value, we need the time to be the same 1854 * both before and after the freq adjustment. 1855 * now = (offset * adj_1) + xtime_nsec_1 1856 * now = (offset * adj_2) + xtime_nsec_2 1857 * So: 1858 * (offset * adj_1) + xtime_nsec_1 = 1859 * (offset * adj_2) + xtime_nsec_2 1860 * And we know: 1861 * adj_2 = adj_1 + 1 1862 * So: 1863 * (offset * adj_1) + xtime_nsec_1 = 1864 * (offset * (adj_1+1)) + xtime_nsec_2 1865 * (offset * adj_1) + xtime_nsec_1 = 1866 * (offset * adj_1) + offset + xtime_nsec_2 1867 * Canceling the sides: 1868 * xtime_nsec_1 = offset + xtime_nsec_2 1869 * Which gives us: 1870 * xtime_nsec_2 = xtime_nsec_1 - offset 1871 * Which simplfies to: 1872 * xtime_nsec -= offset 1873 */ 1874 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1875 /* NTP adjustment caused clocksource mult overflow */ 1876 WARN_ON_ONCE(1); 1877 return; 1878 } 1879 1880 tk->tkr_mono.mult += mult_adj; 1881 tk->xtime_interval += interval; 1882 tk->tkr_mono.xtime_nsec -= offset; 1883 } 1884 1885 /* 1886 * Adjust the timekeeper's multiplier to the correct frequency 1887 * and also to reduce the accumulated error value. 1888 */ 1889 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1890 { 1891 u32 mult; 1892 1893 /* 1894 * Determine the multiplier from the current NTP tick length. 1895 * Avoid expensive division when the tick length doesn't change. 1896 */ 1897 if (likely(tk->ntp_tick == ntp_tick_length())) { 1898 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1899 } else { 1900 tk->ntp_tick = ntp_tick_length(); 1901 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1902 tk->xtime_remainder, tk->cycle_interval); 1903 } 1904 1905 /* 1906 * If the clock is behind the NTP time, increase the multiplier by 1 1907 * to catch up with it. If it's ahead and there was a remainder in the 1908 * tick division, the clock will slow down. Otherwise it will stay 1909 * ahead until the tick length changes to a non-divisible value. 1910 */ 1911 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 1912 mult += tk->ntp_err_mult; 1913 1914 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 1915 1916 if (unlikely(tk->tkr_mono.clock->maxadj && 1917 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1918 > tk->tkr_mono.clock->maxadj))) { 1919 printk_once(KERN_WARNING 1920 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1921 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1922 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1923 } 1924 1925 /* 1926 * It may be possible that when we entered this function, xtime_nsec 1927 * was very small. Further, if we're slightly speeding the clocksource 1928 * in the code above, its possible the required corrective factor to 1929 * xtime_nsec could cause it to underflow. 1930 * 1931 * Now, since we have already accumulated the second and the NTP 1932 * subsystem has been notified via second_overflow(), we need to skip 1933 * the next update. 1934 */ 1935 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1936 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 1937 tk->tkr_mono.shift; 1938 tk->xtime_sec--; 1939 tk->skip_second_overflow = 1; 1940 } 1941 } 1942 1943 /** 1944 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1945 * 1946 * Helper function that accumulates the nsecs greater than a second 1947 * from the xtime_nsec field to the xtime_secs field. 1948 * It also calls into the NTP code to handle leapsecond processing. 1949 * 1950 */ 1951 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1952 { 1953 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1954 unsigned int clock_set = 0; 1955 1956 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1957 int leap; 1958 1959 tk->tkr_mono.xtime_nsec -= nsecps; 1960 tk->xtime_sec++; 1961 1962 /* 1963 * Skip NTP update if this second was accumulated before, 1964 * i.e. xtime_nsec underflowed in timekeeping_adjust() 1965 */ 1966 if (unlikely(tk->skip_second_overflow)) { 1967 tk->skip_second_overflow = 0; 1968 continue; 1969 } 1970 1971 /* Figure out if its a leap sec and apply if needed */ 1972 leap = second_overflow(tk->xtime_sec); 1973 if (unlikely(leap)) { 1974 struct timespec64 ts; 1975 1976 tk->xtime_sec += leap; 1977 1978 ts.tv_sec = leap; 1979 ts.tv_nsec = 0; 1980 tk_set_wall_to_mono(tk, 1981 timespec64_sub(tk->wall_to_monotonic, ts)); 1982 1983 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1984 1985 clock_set = TK_CLOCK_WAS_SET; 1986 } 1987 } 1988 return clock_set; 1989 } 1990 1991 /** 1992 * logarithmic_accumulation - shifted accumulation of cycles 1993 * 1994 * This functions accumulates a shifted interval of cycles into 1995 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1996 * loop. 1997 * 1998 * Returns the unconsumed cycles. 1999 */ 2000 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2001 u32 shift, unsigned int *clock_set) 2002 { 2003 u64 interval = tk->cycle_interval << shift; 2004 u64 snsec_per_sec; 2005 2006 /* If the offset is smaller than a shifted interval, do nothing */ 2007 if (offset < interval) 2008 return offset; 2009 2010 /* Accumulate one shifted interval */ 2011 offset -= interval; 2012 tk->tkr_mono.cycle_last += interval; 2013 tk->tkr_raw.cycle_last += interval; 2014 2015 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2016 *clock_set |= accumulate_nsecs_to_secs(tk); 2017 2018 /* Accumulate raw time */ 2019 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2020 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2021 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2022 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2023 tk->raw_sec++; 2024 } 2025 2026 /* Accumulate error between NTP and clock interval */ 2027 tk->ntp_error += tk->ntp_tick << shift; 2028 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2029 (tk->ntp_error_shift + shift); 2030 2031 return offset; 2032 } 2033 2034 /* 2035 * timekeeping_advance - Updates the timekeeper to the current time and 2036 * current NTP tick length 2037 */ 2038 static void timekeeping_advance(enum timekeeping_adv_mode mode) 2039 { 2040 struct timekeeper *real_tk = &tk_core.timekeeper; 2041 struct timekeeper *tk = &shadow_timekeeper; 2042 u64 offset; 2043 int shift = 0, maxshift; 2044 unsigned int clock_set = 0; 2045 unsigned long flags; 2046 2047 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2048 2049 /* Make sure we're fully resumed: */ 2050 if (unlikely(timekeeping_suspended)) 2051 goto out; 2052 2053 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2054 offset = real_tk->cycle_interval; 2055 2056 if (mode != TK_ADV_TICK) 2057 goto out; 2058 #else 2059 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2060 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2061 2062 /* Check if there's really nothing to do */ 2063 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2064 goto out; 2065 #endif 2066 2067 /* Do some additional sanity checking */ 2068 timekeeping_check_update(tk, offset); 2069 2070 /* 2071 * With NO_HZ we may have to accumulate many cycle_intervals 2072 * (think "ticks") worth of time at once. To do this efficiently, 2073 * we calculate the largest doubling multiple of cycle_intervals 2074 * that is smaller than the offset. We then accumulate that 2075 * chunk in one go, and then try to consume the next smaller 2076 * doubled multiple. 2077 */ 2078 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2079 shift = max(0, shift); 2080 /* Bound shift to one less than what overflows tick_length */ 2081 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2082 shift = min(shift, maxshift); 2083 while (offset >= tk->cycle_interval) { 2084 offset = logarithmic_accumulation(tk, offset, shift, 2085 &clock_set); 2086 if (offset < tk->cycle_interval<<shift) 2087 shift--; 2088 } 2089 2090 /* Adjust the multiplier to correct NTP error */ 2091 timekeeping_adjust(tk, offset); 2092 2093 /* 2094 * Finally, make sure that after the rounding 2095 * xtime_nsec isn't larger than NSEC_PER_SEC 2096 */ 2097 clock_set |= accumulate_nsecs_to_secs(tk); 2098 2099 write_seqcount_begin(&tk_core.seq); 2100 /* 2101 * Update the real timekeeper. 2102 * 2103 * We could avoid this memcpy by switching pointers, but that 2104 * requires changes to all other timekeeper usage sites as 2105 * well, i.e. move the timekeeper pointer getter into the 2106 * spinlocked/seqcount protected sections. And we trade this 2107 * memcpy under the tk_core.seq against one before we start 2108 * updating. 2109 */ 2110 timekeeping_update(tk, clock_set); 2111 memcpy(real_tk, tk, sizeof(*tk)); 2112 /* The memcpy must come last. Do not put anything here! */ 2113 write_seqcount_end(&tk_core.seq); 2114 out: 2115 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2116 if (clock_set) 2117 /* Have to call _delayed version, since in irq context*/ 2118 clock_was_set_delayed(); 2119 } 2120 2121 /** 2122 * update_wall_time - Uses the current clocksource to increment the wall time 2123 * 2124 */ 2125 void update_wall_time(void) 2126 { 2127 timekeeping_advance(TK_ADV_TICK); 2128 } 2129 2130 /** 2131 * getboottime64 - Return the real time of system boot. 2132 * @ts: pointer to the timespec64 to be set 2133 * 2134 * Returns the wall-time of boot in a timespec64. 2135 * 2136 * This is based on the wall_to_monotonic offset and the total suspend 2137 * time. Calls to settimeofday will affect the value returned (which 2138 * basically means that however wrong your real time clock is at boot time, 2139 * you get the right time here). 2140 */ 2141 void getboottime64(struct timespec64 *ts) 2142 { 2143 struct timekeeper *tk = &tk_core.timekeeper; 2144 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2145 2146 *ts = ktime_to_timespec64(t); 2147 } 2148 EXPORT_SYMBOL_GPL(getboottime64); 2149 2150 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2151 { 2152 struct timekeeper *tk = &tk_core.timekeeper; 2153 unsigned long seq; 2154 2155 do { 2156 seq = read_seqcount_begin(&tk_core.seq); 2157 2158 *ts = tk_xtime(tk); 2159 } while (read_seqcount_retry(&tk_core.seq, seq)); 2160 } 2161 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2162 2163 void ktime_get_coarse_ts64(struct timespec64 *ts) 2164 { 2165 struct timekeeper *tk = &tk_core.timekeeper; 2166 struct timespec64 now, mono; 2167 unsigned long seq; 2168 2169 do { 2170 seq = read_seqcount_begin(&tk_core.seq); 2171 2172 now = tk_xtime(tk); 2173 mono = tk->wall_to_monotonic; 2174 } while (read_seqcount_retry(&tk_core.seq, seq)); 2175 2176 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2177 now.tv_nsec + mono.tv_nsec); 2178 } 2179 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2180 2181 /* 2182 * Must hold jiffies_lock 2183 */ 2184 void do_timer(unsigned long ticks) 2185 { 2186 jiffies_64 += ticks; 2187 calc_global_load(ticks); 2188 } 2189 2190 /** 2191 * ktime_get_update_offsets_now - hrtimer helper 2192 * @cwsseq: pointer to check and store the clock was set sequence number 2193 * @offs_real: pointer to storage for monotonic -> realtime offset 2194 * @offs_boot: pointer to storage for monotonic -> boottime offset 2195 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2196 * 2197 * Returns current monotonic time and updates the offsets if the 2198 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2199 * different. 2200 * 2201 * Called from hrtimer_interrupt() or retrigger_next_event() 2202 */ 2203 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2204 ktime_t *offs_boot, ktime_t *offs_tai) 2205 { 2206 struct timekeeper *tk = &tk_core.timekeeper; 2207 unsigned int seq; 2208 ktime_t base; 2209 u64 nsecs; 2210 2211 do { 2212 seq = read_seqcount_begin(&tk_core.seq); 2213 2214 base = tk->tkr_mono.base; 2215 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2216 base = ktime_add_ns(base, nsecs); 2217 2218 if (*cwsseq != tk->clock_was_set_seq) { 2219 *cwsseq = tk->clock_was_set_seq; 2220 *offs_real = tk->offs_real; 2221 *offs_boot = tk->offs_boot; 2222 *offs_tai = tk->offs_tai; 2223 } 2224 2225 /* Handle leapsecond insertion adjustments */ 2226 if (unlikely(base >= tk->next_leap_ktime)) 2227 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2228 2229 } while (read_seqcount_retry(&tk_core.seq, seq)); 2230 2231 return base; 2232 } 2233 2234 /** 2235 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2236 */ 2237 static int timekeeping_validate_timex(const struct timex *txc) 2238 { 2239 if (txc->modes & ADJ_ADJTIME) { 2240 /* singleshot must not be used with any other mode bits */ 2241 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2242 return -EINVAL; 2243 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2244 !capable(CAP_SYS_TIME)) 2245 return -EPERM; 2246 } else { 2247 /* In order to modify anything, you gotta be super-user! */ 2248 if (txc->modes && !capable(CAP_SYS_TIME)) 2249 return -EPERM; 2250 /* 2251 * if the quartz is off by more than 10% then 2252 * something is VERY wrong! 2253 */ 2254 if (txc->modes & ADJ_TICK && 2255 (txc->tick < 900000/USER_HZ || 2256 txc->tick > 1100000/USER_HZ)) 2257 return -EINVAL; 2258 } 2259 2260 if (txc->modes & ADJ_SETOFFSET) { 2261 /* In order to inject time, you gotta be super-user! */ 2262 if (!capable(CAP_SYS_TIME)) 2263 return -EPERM; 2264 2265 /* 2266 * Validate if a timespec/timeval used to inject a time 2267 * offset is valid. Offsets can be postive or negative, so 2268 * we don't check tv_sec. The value of the timeval/timespec 2269 * is the sum of its fields,but *NOTE*: 2270 * The field tv_usec/tv_nsec must always be non-negative and 2271 * we can't have more nanoseconds/microseconds than a second. 2272 */ 2273 if (txc->time.tv_usec < 0) 2274 return -EINVAL; 2275 2276 if (txc->modes & ADJ_NANO) { 2277 if (txc->time.tv_usec >= NSEC_PER_SEC) 2278 return -EINVAL; 2279 } else { 2280 if (txc->time.tv_usec >= USEC_PER_SEC) 2281 return -EINVAL; 2282 } 2283 } 2284 2285 /* 2286 * Check for potential multiplication overflows that can 2287 * only happen on 64-bit systems: 2288 */ 2289 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2290 if (LLONG_MIN / PPM_SCALE > txc->freq) 2291 return -EINVAL; 2292 if (LLONG_MAX / PPM_SCALE < txc->freq) 2293 return -EINVAL; 2294 } 2295 2296 return 0; 2297 } 2298 2299 2300 /** 2301 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2302 */ 2303 int do_adjtimex(struct timex *txc) 2304 { 2305 struct timekeeper *tk = &tk_core.timekeeper; 2306 unsigned long flags; 2307 struct timespec64 ts; 2308 s32 orig_tai, tai; 2309 int ret; 2310 2311 /* Validate the data before disabling interrupts */ 2312 ret = timekeeping_validate_timex(txc); 2313 if (ret) 2314 return ret; 2315 2316 if (txc->modes & ADJ_SETOFFSET) { 2317 struct timespec64 delta; 2318 delta.tv_sec = txc->time.tv_sec; 2319 delta.tv_nsec = txc->time.tv_usec; 2320 if (!(txc->modes & ADJ_NANO)) 2321 delta.tv_nsec *= 1000; 2322 ret = timekeeping_inject_offset(&delta); 2323 if (ret) 2324 return ret; 2325 } 2326 2327 ktime_get_real_ts64(&ts); 2328 2329 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2330 write_seqcount_begin(&tk_core.seq); 2331 2332 orig_tai = tai = tk->tai_offset; 2333 ret = __do_adjtimex(txc, &ts, &tai); 2334 2335 if (tai != orig_tai) { 2336 __timekeeping_set_tai_offset(tk, tai); 2337 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2338 } 2339 tk_update_leap_state(tk); 2340 2341 write_seqcount_end(&tk_core.seq); 2342 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2343 2344 /* Update the multiplier immediately if frequency was set directly */ 2345 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2346 timekeeping_advance(TK_ADV_FREQ); 2347 2348 if (tai != orig_tai) 2349 clock_was_set(); 2350 2351 ntp_notify_cmos_timer(); 2352 2353 return ret; 2354 } 2355 2356 #ifdef CONFIG_NTP_PPS 2357 /** 2358 * hardpps() - Accessor function to NTP __hardpps function 2359 */ 2360 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2361 { 2362 unsigned long flags; 2363 2364 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2365 write_seqcount_begin(&tk_core.seq); 2366 2367 __hardpps(phase_ts, raw_ts); 2368 2369 write_seqcount_end(&tk_core.seq); 2370 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2371 } 2372 EXPORT_SYMBOL(hardpps); 2373 #endif /* CONFIG_NTP_PPS */ 2374 2375 /** 2376 * xtime_update() - advances the timekeeping infrastructure 2377 * @ticks: number of ticks, that have elapsed since the last call. 2378 * 2379 * Must be called with interrupts disabled. 2380 */ 2381 void xtime_update(unsigned long ticks) 2382 { 2383 write_seqlock(&jiffies_lock); 2384 do_timer(ticks); 2385 write_sequnlock(&jiffies_lock); 2386 update_wall_time(); 2387 } 2388