xref: /openbmc/linux/kernel/time/timekeeping.c (revision 588b48ca)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65 
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68 
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 		tk->xtime_sec++;
74 	}
75 }
76 
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 	struct timespec64 ts;
80 
81 	ts.tv_sec = tk->xtime_sec;
82 	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 	return ts;
84 }
85 
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 	tk->xtime_sec = ts->tv_sec;
89 	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91 
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 	tk->xtime_sec += ts->tv_sec;
95 	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96 	tk_normalize_xtime(tk);
97 }
98 
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 	struct timespec64 tmp;
102 
103 	/*
104 	 * Verify consistency of: offset_real = -wall_to_monotonic
105 	 * before modifying anything
106 	 */
107 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 					-tk->wall_to_monotonic.tv_nsec);
109 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110 	tk->wall_to_monotonic = wtm;
111 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 	tk->offs_real = timespec64_to_ktime(tmp);
113 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115 
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120 
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:		The target timekeeper to setup.
125  * @clock:		Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134 	cycle_t interval;
135 	u64 tmp, ntpinterval;
136 	struct clocksource *old_clock;
137 
138 	old_clock = tk->tkr.clock;
139 	tk->tkr.clock = clock;
140 	tk->tkr.read = clock->read;
141 	tk->tkr.mask = clock->mask;
142 	tk->tkr.cycle_last = tk->tkr.read(clock);
143 
144 	/* Do the ns -> cycle conversion first, using original mult */
145 	tmp = NTP_INTERVAL_LENGTH;
146 	tmp <<= clock->shift;
147 	ntpinterval = tmp;
148 	tmp += clock->mult/2;
149 	do_div(tmp, clock->mult);
150 	if (tmp == 0)
151 		tmp = 1;
152 
153 	interval = (cycle_t) tmp;
154 	tk->cycle_interval = interval;
155 
156 	/* Go back from cycles -> shifted ns */
157 	tk->xtime_interval = (u64) interval * clock->mult;
158 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 	tk->raw_interval =
160 		((u64) interval * clock->mult) >> clock->shift;
161 
162 	 /* if changing clocks, convert xtime_nsec shift units */
163 	if (old_clock) {
164 		int shift_change = clock->shift - old_clock->shift;
165 		if (shift_change < 0)
166 			tk->tkr.xtime_nsec >>= -shift_change;
167 		else
168 			tk->tkr.xtime_nsec <<= shift_change;
169 	}
170 	tk->tkr.shift = clock->shift;
171 
172 	tk->ntp_error = 0;
173 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 
176 	/*
177 	 * The timekeeper keeps its own mult values for the currently
178 	 * active clocksource. These value will be adjusted via NTP
179 	 * to counteract clock drifting.
180 	 */
181 	tk->tkr.mult = clock->mult;
182 	tk->ntp_err_mult = 0;
183 }
184 
185 /* Timekeeper helper functions. */
186 
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193 
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196 	cycle_t cycle_now, delta;
197 	s64 nsec;
198 
199 	/* read clocksource: */
200 	cycle_now = tkr->read(tkr->clock);
201 
202 	/* calculate the delta since the last update_wall_time: */
203 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204 
205 	nsec = delta * tkr->mult + tkr->xtime_nsec;
206 	nsec >>= tkr->shift;
207 
208 	/* If arch requires, add in get_arch_timeoffset() */
209 	return nsec + arch_gettimeoffset();
210 }
211 
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214 	struct clocksource *clock = tk->tkr.clock;
215 	cycle_t cycle_now, delta;
216 	s64 nsec;
217 
218 	/* read clocksource: */
219 	cycle_now = tk->tkr.read(clock);
220 
221 	/* calculate the delta since the last update_wall_time: */
222 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223 
224 	/* convert delta to nanoseconds. */
225 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226 
227 	/* If arch requires, add in get_arch_timeoffset() */
228 	return nsec + arch_gettimeoffset();
229 }
230 
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tk:		The timekeeper from which we take the update
234  * @tkf:	The fast timekeeper to update
235  * @tbase:	The time base for the fast timekeeper (mono/raw)
236  *
237  * We want to use this from any context including NMI and tracing /
238  * instrumenting the timekeeping code itself.
239  *
240  * So we handle this differently than the other timekeeping accessor
241  * functions which retry when the sequence count has changed. The
242  * update side does:
243  *
244  * smp_wmb();	<- Ensure that the last base[1] update is visible
245  * tkf->seq++;
246  * smp_wmb();	<- Ensure that the seqcount update is visible
247  * update(tkf->base[0], tk);
248  * smp_wmb();	<- Ensure that the base[0] update is visible
249  * tkf->seq++;
250  * smp_wmb();	<- Ensure that the seqcount update is visible
251  * update(tkf->base[1], tk);
252  *
253  * The reader side does:
254  *
255  * do {
256  *	seq = tkf->seq;
257  *	smp_rmb();
258  *	idx = seq & 0x01;
259  *	now = now(tkf->base[idx]);
260  *	smp_rmb();
261  * } while (seq != tkf->seq)
262  *
263  * As long as we update base[0] readers are forced off to
264  * base[1]. Once base[0] is updated readers are redirected to base[0]
265  * and the base[1] update takes place.
266  *
267  * So if a NMI hits the update of base[0] then it will use base[1]
268  * which is still consistent. In the worst case this can result is a
269  * slightly wrong timestamp (a few nanoseconds). See
270  * @ktime_get_mono_fast_ns.
271  */
272 static void update_fast_timekeeper(struct timekeeper *tk)
273 {
274 	struct tk_read_base *base = tk_fast_mono.base;
275 
276 	/* Force readers off to base[1] */
277 	raw_write_seqcount_latch(&tk_fast_mono.seq);
278 
279 	/* Update base[0] */
280 	memcpy(base, &tk->tkr, sizeof(*base));
281 
282 	/* Force readers back to base[0] */
283 	raw_write_seqcount_latch(&tk_fast_mono.seq);
284 
285 	/* Update base[1] */
286 	memcpy(base + 1, base, sizeof(*base));
287 }
288 
289 /**
290  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291  *
292  * This timestamp is not guaranteed to be monotonic across an update.
293  * The timestamp is calculated by:
294  *
295  *	now = base_mono + clock_delta * slope
296  *
297  * So if the update lowers the slope, readers who are forced to the
298  * not yet updated second array are still using the old steeper slope.
299  *
300  * tmono
301  * ^
302  * |    o  n
303  * |   o n
304  * |  u
305  * | o
306  * |o
307  * |12345678---> reader order
308  *
309  * o = old slope
310  * u = update
311  * n = new slope
312  *
313  * So reader 6 will observe time going backwards versus reader 5.
314  *
315  * While other CPUs are likely to be able observe that, the only way
316  * for a CPU local observation is when an NMI hits in the middle of
317  * the update. Timestamps taken from that NMI context might be ahead
318  * of the following timestamps. Callers need to be aware of that and
319  * deal with it.
320  */
321 u64 notrace ktime_get_mono_fast_ns(void)
322 {
323 	struct tk_read_base *tkr;
324 	unsigned int seq;
325 	u64 now;
326 
327 	do {
328 		seq = raw_read_seqcount(&tk_fast_mono.seq);
329 		tkr = tk_fast_mono.base + (seq & 0x01);
330 		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331 
332 	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333 	return now;
334 }
335 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336 
337 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338 
339 static inline void update_vsyscall(struct timekeeper *tk)
340 {
341 	struct timespec xt, wm;
342 
343 	xt = timespec64_to_timespec(tk_xtime(tk));
344 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
345 	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346 			    tk->tkr.cycle_last);
347 }
348 
349 static inline void old_vsyscall_fixup(struct timekeeper *tk)
350 {
351 	s64 remainder;
352 
353 	/*
354 	* Store only full nanoseconds into xtime_nsec after rounding
355 	* it up and add the remainder to the error difference.
356 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
357 	* by truncating the remainder in vsyscalls. However, it causes
358 	* additional work to be done in timekeeping_adjust(). Once
359 	* the vsyscall implementations are converted to use xtime_nsec
360 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361 	* users are removed, this can be killed.
362 	*/
363 	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364 	tk->tkr.xtime_nsec -= remainder;
365 	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366 	tk->ntp_error += remainder << tk->ntp_error_shift;
367 	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 }
369 #else
370 #define old_vsyscall_fixup(tk)
371 #endif
372 
373 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374 
375 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376 {
377 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 }
379 
380 /**
381  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
382  */
383 int pvclock_gtod_register_notifier(struct notifier_block *nb)
384 {
385 	struct timekeeper *tk = &tk_core.timekeeper;
386 	unsigned long flags;
387 	int ret;
388 
389 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
390 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391 	update_pvclock_gtod(tk, true);
392 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393 
394 	return ret;
395 }
396 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397 
398 /**
399  * pvclock_gtod_unregister_notifier - unregister a pvclock
400  * timedata update listener
401  */
402 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403 {
404 	unsigned long flags;
405 	int ret;
406 
407 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
408 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410 
411 	return ret;
412 }
413 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414 
415 /*
416  * Update the ktime_t based scalar nsec members of the timekeeper
417  */
418 static inline void tk_update_ktime_data(struct timekeeper *tk)
419 {
420 	s64 nsec;
421 
422 	/*
423 	 * The xtime based monotonic readout is:
424 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
425 	 * The ktime based monotonic readout is:
426 	 *	nsec = base_mono + now();
427 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
428 	 */
429 	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
430 	nsec *= NSEC_PER_SEC;
431 	nsec += tk->wall_to_monotonic.tv_nsec;
432 	tk->tkr.base_mono = ns_to_ktime(nsec);
433 
434 	/* Update the monotonic raw base */
435 	tk->base_raw = timespec64_to_ktime(tk->raw_time);
436 }
437 
438 /* must hold timekeeper_lock */
439 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
440 {
441 	if (action & TK_CLEAR_NTP) {
442 		tk->ntp_error = 0;
443 		ntp_clear();
444 	}
445 	update_vsyscall(tk);
446 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
447 
448 	tk_update_ktime_data(tk);
449 
450 	if (action & TK_MIRROR)
451 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
452 		       sizeof(tk_core.timekeeper));
453 
454 	update_fast_timekeeper(tk);
455 }
456 
457 /**
458  * timekeeping_forward_now - update clock to the current time
459  *
460  * Forward the current clock to update its state since the last call to
461  * update_wall_time(). This is useful before significant clock changes,
462  * as it avoids having to deal with this time offset explicitly.
463  */
464 static void timekeeping_forward_now(struct timekeeper *tk)
465 {
466 	struct clocksource *clock = tk->tkr.clock;
467 	cycle_t cycle_now, delta;
468 	s64 nsec;
469 
470 	cycle_now = tk->tkr.read(clock);
471 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
472 	tk->tkr.cycle_last = cycle_now;
473 
474 	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
475 
476 	/* If arch requires, add in get_arch_timeoffset() */
477 	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
478 
479 	tk_normalize_xtime(tk);
480 
481 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
482 	timespec64_add_ns(&tk->raw_time, nsec);
483 }
484 
485 /**
486  * __getnstimeofday64 - Returns the time of day in a timespec64.
487  * @ts:		pointer to the timespec to be set
488  *
489  * Updates the time of day in the timespec.
490  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
491  */
492 int __getnstimeofday64(struct timespec64 *ts)
493 {
494 	struct timekeeper *tk = &tk_core.timekeeper;
495 	unsigned long seq;
496 	s64 nsecs = 0;
497 
498 	do {
499 		seq = read_seqcount_begin(&tk_core.seq);
500 
501 		ts->tv_sec = tk->xtime_sec;
502 		nsecs = timekeeping_get_ns(&tk->tkr);
503 
504 	} while (read_seqcount_retry(&tk_core.seq, seq));
505 
506 	ts->tv_nsec = 0;
507 	timespec64_add_ns(ts, nsecs);
508 
509 	/*
510 	 * Do not bail out early, in case there were callers still using
511 	 * the value, even in the face of the WARN_ON.
512 	 */
513 	if (unlikely(timekeeping_suspended))
514 		return -EAGAIN;
515 	return 0;
516 }
517 EXPORT_SYMBOL(__getnstimeofday64);
518 
519 /**
520  * getnstimeofday64 - Returns the time of day in a timespec64.
521  * @ts:		pointer to the timespec to be set
522  *
523  * Returns the time of day in a timespec (WARN if suspended).
524  */
525 void getnstimeofday64(struct timespec64 *ts)
526 {
527 	WARN_ON(__getnstimeofday64(ts));
528 }
529 EXPORT_SYMBOL(getnstimeofday64);
530 
531 ktime_t ktime_get(void)
532 {
533 	struct timekeeper *tk = &tk_core.timekeeper;
534 	unsigned int seq;
535 	ktime_t base;
536 	s64 nsecs;
537 
538 	WARN_ON(timekeeping_suspended);
539 
540 	do {
541 		seq = read_seqcount_begin(&tk_core.seq);
542 		base = tk->tkr.base_mono;
543 		nsecs = timekeeping_get_ns(&tk->tkr);
544 
545 	} while (read_seqcount_retry(&tk_core.seq, seq));
546 
547 	return ktime_add_ns(base, nsecs);
548 }
549 EXPORT_SYMBOL_GPL(ktime_get);
550 
551 static ktime_t *offsets[TK_OFFS_MAX] = {
552 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
553 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
554 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
555 };
556 
557 ktime_t ktime_get_with_offset(enum tk_offsets offs)
558 {
559 	struct timekeeper *tk = &tk_core.timekeeper;
560 	unsigned int seq;
561 	ktime_t base, *offset = offsets[offs];
562 	s64 nsecs;
563 
564 	WARN_ON(timekeeping_suspended);
565 
566 	do {
567 		seq = read_seqcount_begin(&tk_core.seq);
568 		base = ktime_add(tk->tkr.base_mono, *offset);
569 		nsecs = timekeeping_get_ns(&tk->tkr);
570 
571 	} while (read_seqcount_retry(&tk_core.seq, seq));
572 
573 	return ktime_add_ns(base, nsecs);
574 
575 }
576 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
577 
578 /**
579  * ktime_mono_to_any() - convert mononotic time to any other time
580  * @tmono:	time to convert.
581  * @offs:	which offset to use
582  */
583 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
584 {
585 	ktime_t *offset = offsets[offs];
586 	unsigned long seq;
587 	ktime_t tconv;
588 
589 	do {
590 		seq = read_seqcount_begin(&tk_core.seq);
591 		tconv = ktime_add(tmono, *offset);
592 	} while (read_seqcount_retry(&tk_core.seq, seq));
593 
594 	return tconv;
595 }
596 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
597 
598 /**
599  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
600  */
601 ktime_t ktime_get_raw(void)
602 {
603 	struct timekeeper *tk = &tk_core.timekeeper;
604 	unsigned int seq;
605 	ktime_t base;
606 	s64 nsecs;
607 
608 	do {
609 		seq = read_seqcount_begin(&tk_core.seq);
610 		base = tk->base_raw;
611 		nsecs = timekeeping_get_ns_raw(tk);
612 
613 	} while (read_seqcount_retry(&tk_core.seq, seq));
614 
615 	return ktime_add_ns(base, nsecs);
616 }
617 EXPORT_SYMBOL_GPL(ktime_get_raw);
618 
619 /**
620  * ktime_get_ts64 - get the monotonic clock in timespec64 format
621  * @ts:		pointer to timespec variable
622  *
623  * The function calculates the monotonic clock from the realtime
624  * clock and the wall_to_monotonic offset and stores the result
625  * in normalized timespec format in the variable pointed to by @ts.
626  */
627 void ktime_get_ts64(struct timespec64 *ts)
628 {
629 	struct timekeeper *tk = &tk_core.timekeeper;
630 	struct timespec64 tomono;
631 	s64 nsec;
632 	unsigned int seq;
633 
634 	WARN_ON(timekeeping_suspended);
635 
636 	do {
637 		seq = read_seqcount_begin(&tk_core.seq);
638 		ts->tv_sec = tk->xtime_sec;
639 		nsec = timekeeping_get_ns(&tk->tkr);
640 		tomono = tk->wall_to_monotonic;
641 
642 	} while (read_seqcount_retry(&tk_core.seq, seq));
643 
644 	ts->tv_sec += tomono.tv_sec;
645 	ts->tv_nsec = 0;
646 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
647 }
648 EXPORT_SYMBOL_GPL(ktime_get_ts64);
649 
650 #ifdef CONFIG_NTP_PPS
651 
652 /**
653  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
654  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
655  * @ts_real:	pointer to the timespec to be set to the time of day
656  *
657  * This function reads both the time of day and raw monotonic time at the
658  * same time atomically and stores the resulting timestamps in timespec
659  * format.
660  */
661 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
662 {
663 	struct timekeeper *tk = &tk_core.timekeeper;
664 	unsigned long seq;
665 	s64 nsecs_raw, nsecs_real;
666 
667 	WARN_ON_ONCE(timekeeping_suspended);
668 
669 	do {
670 		seq = read_seqcount_begin(&tk_core.seq);
671 
672 		*ts_raw = timespec64_to_timespec(tk->raw_time);
673 		ts_real->tv_sec = tk->xtime_sec;
674 		ts_real->tv_nsec = 0;
675 
676 		nsecs_raw = timekeeping_get_ns_raw(tk);
677 		nsecs_real = timekeeping_get_ns(&tk->tkr);
678 
679 	} while (read_seqcount_retry(&tk_core.seq, seq));
680 
681 	timespec_add_ns(ts_raw, nsecs_raw);
682 	timespec_add_ns(ts_real, nsecs_real);
683 }
684 EXPORT_SYMBOL(getnstime_raw_and_real);
685 
686 #endif /* CONFIG_NTP_PPS */
687 
688 /**
689  * do_gettimeofday - Returns the time of day in a timeval
690  * @tv:		pointer to the timeval to be set
691  *
692  * NOTE: Users should be converted to using getnstimeofday()
693  */
694 void do_gettimeofday(struct timeval *tv)
695 {
696 	struct timespec64 now;
697 
698 	getnstimeofday64(&now);
699 	tv->tv_sec = now.tv_sec;
700 	tv->tv_usec = now.tv_nsec/1000;
701 }
702 EXPORT_SYMBOL(do_gettimeofday);
703 
704 /**
705  * do_settimeofday - Sets the time of day
706  * @tv:		pointer to the timespec variable containing the new time
707  *
708  * Sets the time of day to the new time and update NTP and notify hrtimers
709  */
710 int do_settimeofday(const struct timespec *tv)
711 {
712 	struct timekeeper *tk = &tk_core.timekeeper;
713 	struct timespec64 ts_delta, xt, tmp;
714 	unsigned long flags;
715 
716 	if (!timespec_valid_strict(tv))
717 		return -EINVAL;
718 
719 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
720 	write_seqcount_begin(&tk_core.seq);
721 
722 	timekeeping_forward_now(tk);
723 
724 	xt = tk_xtime(tk);
725 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
726 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
727 
728 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
729 
730 	tmp = timespec_to_timespec64(*tv);
731 	tk_set_xtime(tk, &tmp);
732 
733 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
734 
735 	write_seqcount_end(&tk_core.seq);
736 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
737 
738 	/* signal hrtimers about time change */
739 	clock_was_set();
740 
741 	return 0;
742 }
743 EXPORT_SYMBOL(do_settimeofday);
744 
745 /**
746  * timekeeping_inject_offset - Adds or subtracts from the current time.
747  * @tv:		pointer to the timespec variable containing the offset
748  *
749  * Adds or subtracts an offset value from the current time.
750  */
751 int timekeeping_inject_offset(struct timespec *ts)
752 {
753 	struct timekeeper *tk = &tk_core.timekeeper;
754 	unsigned long flags;
755 	struct timespec64 ts64, tmp;
756 	int ret = 0;
757 
758 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
759 		return -EINVAL;
760 
761 	ts64 = timespec_to_timespec64(*ts);
762 
763 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
764 	write_seqcount_begin(&tk_core.seq);
765 
766 	timekeeping_forward_now(tk);
767 
768 	/* Make sure the proposed value is valid */
769 	tmp = timespec64_add(tk_xtime(tk),  ts64);
770 	if (!timespec64_valid_strict(&tmp)) {
771 		ret = -EINVAL;
772 		goto error;
773 	}
774 
775 	tk_xtime_add(tk, &ts64);
776 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
777 
778 error: /* even if we error out, we forwarded the time, so call update */
779 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
780 
781 	write_seqcount_end(&tk_core.seq);
782 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
783 
784 	/* signal hrtimers about time change */
785 	clock_was_set();
786 
787 	return ret;
788 }
789 EXPORT_SYMBOL(timekeeping_inject_offset);
790 
791 
792 /**
793  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
794  *
795  */
796 s32 timekeeping_get_tai_offset(void)
797 {
798 	struct timekeeper *tk = &tk_core.timekeeper;
799 	unsigned int seq;
800 	s32 ret;
801 
802 	do {
803 		seq = read_seqcount_begin(&tk_core.seq);
804 		ret = tk->tai_offset;
805 	} while (read_seqcount_retry(&tk_core.seq, seq));
806 
807 	return ret;
808 }
809 
810 /**
811  * __timekeeping_set_tai_offset - Lock free worker function
812  *
813  */
814 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
815 {
816 	tk->tai_offset = tai_offset;
817 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
818 }
819 
820 /**
821  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
822  *
823  */
824 void timekeeping_set_tai_offset(s32 tai_offset)
825 {
826 	struct timekeeper *tk = &tk_core.timekeeper;
827 	unsigned long flags;
828 
829 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
830 	write_seqcount_begin(&tk_core.seq);
831 	__timekeeping_set_tai_offset(tk, tai_offset);
832 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
833 	write_seqcount_end(&tk_core.seq);
834 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
835 	clock_was_set();
836 }
837 
838 /**
839  * change_clocksource - Swaps clocksources if a new one is available
840  *
841  * Accumulates current time interval and initializes new clocksource
842  */
843 static int change_clocksource(void *data)
844 {
845 	struct timekeeper *tk = &tk_core.timekeeper;
846 	struct clocksource *new, *old;
847 	unsigned long flags;
848 
849 	new = (struct clocksource *) data;
850 
851 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
852 	write_seqcount_begin(&tk_core.seq);
853 
854 	timekeeping_forward_now(tk);
855 	/*
856 	 * If the cs is in module, get a module reference. Succeeds
857 	 * for built-in code (owner == NULL) as well.
858 	 */
859 	if (try_module_get(new->owner)) {
860 		if (!new->enable || new->enable(new) == 0) {
861 			old = tk->tkr.clock;
862 			tk_setup_internals(tk, new);
863 			if (old->disable)
864 				old->disable(old);
865 			module_put(old->owner);
866 		} else {
867 			module_put(new->owner);
868 		}
869 	}
870 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
871 
872 	write_seqcount_end(&tk_core.seq);
873 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
874 
875 	return 0;
876 }
877 
878 /**
879  * timekeeping_notify - Install a new clock source
880  * @clock:		pointer to the clock source
881  *
882  * This function is called from clocksource.c after a new, better clock
883  * source has been registered. The caller holds the clocksource_mutex.
884  */
885 int timekeeping_notify(struct clocksource *clock)
886 {
887 	struct timekeeper *tk = &tk_core.timekeeper;
888 
889 	if (tk->tkr.clock == clock)
890 		return 0;
891 	stop_machine(change_clocksource, clock, NULL);
892 	tick_clock_notify();
893 	return tk->tkr.clock == clock ? 0 : -1;
894 }
895 
896 /**
897  * getrawmonotonic - Returns the raw monotonic time in a timespec
898  * @ts:		pointer to the timespec to be set
899  *
900  * Returns the raw monotonic time (completely un-modified by ntp)
901  */
902 void getrawmonotonic(struct timespec *ts)
903 {
904 	struct timekeeper *tk = &tk_core.timekeeper;
905 	struct timespec64 ts64;
906 	unsigned long seq;
907 	s64 nsecs;
908 
909 	do {
910 		seq = read_seqcount_begin(&tk_core.seq);
911 		nsecs = timekeeping_get_ns_raw(tk);
912 		ts64 = tk->raw_time;
913 
914 	} while (read_seqcount_retry(&tk_core.seq, seq));
915 
916 	timespec64_add_ns(&ts64, nsecs);
917 	*ts = timespec64_to_timespec(ts64);
918 }
919 EXPORT_SYMBOL(getrawmonotonic);
920 
921 /**
922  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
923  */
924 int timekeeping_valid_for_hres(void)
925 {
926 	struct timekeeper *tk = &tk_core.timekeeper;
927 	unsigned long seq;
928 	int ret;
929 
930 	do {
931 		seq = read_seqcount_begin(&tk_core.seq);
932 
933 		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
934 
935 	} while (read_seqcount_retry(&tk_core.seq, seq));
936 
937 	return ret;
938 }
939 
940 /**
941  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
942  */
943 u64 timekeeping_max_deferment(void)
944 {
945 	struct timekeeper *tk = &tk_core.timekeeper;
946 	unsigned long seq;
947 	u64 ret;
948 
949 	do {
950 		seq = read_seqcount_begin(&tk_core.seq);
951 
952 		ret = tk->tkr.clock->max_idle_ns;
953 
954 	} while (read_seqcount_retry(&tk_core.seq, seq));
955 
956 	return ret;
957 }
958 
959 /**
960  * read_persistent_clock -  Return time from the persistent clock.
961  *
962  * Weak dummy function for arches that do not yet support it.
963  * Reads the time from the battery backed persistent clock.
964  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
965  *
966  *  XXX - Do be sure to remove it once all arches implement it.
967  */
968 void __weak read_persistent_clock(struct timespec *ts)
969 {
970 	ts->tv_sec = 0;
971 	ts->tv_nsec = 0;
972 }
973 
974 /**
975  * read_boot_clock -  Return time of the system start.
976  *
977  * Weak dummy function for arches that do not yet support it.
978  * Function to read the exact time the system has been started.
979  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
980  *
981  *  XXX - Do be sure to remove it once all arches implement it.
982  */
983 void __weak read_boot_clock(struct timespec *ts)
984 {
985 	ts->tv_sec = 0;
986 	ts->tv_nsec = 0;
987 }
988 
989 /*
990  * timekeeping_init - Initializes the clocksource and common timekeeping values
991  */
992 void __init timekeeping_init(void)
993 {
994 	struct timekeeper *tk = &tk_core.timekeeper;
995 	struct clocksource *clock;
996 	unsigned long flags;
997 	struct timespec64 now, boot, tmp;
998 	struct timespec ts;
999 
1000 	read_persistent_clock(&ts);
1001 	now = timespec_to_timespec64(ts);
1002 	if (!timespec64_valid_strict(&now)) {
1003 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1004 			"         Check your CMOS/BIOS settings.\n");
1005 		now.tv_sec = 0;
1006 		now.tv_nsec = 0;
1007 	} else if (now.tv_sec || now.tv_nsec)
1008 		persistent_clock_exist = true;
1009 
1010 	read_boot_clock(&ts);
1011 	boot = timespec_to_timespec64(ts);
1012 	if (!timespec64_valid_strict(&boot)) {
1013 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1014 			"         Check your CMOS/BIOS settings.\n");
1015 		boot.tv_sec = 0;
1016 		boot.tv_nsec = 0;
1017 	}
1018 
1019 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1020 	write_seqcount_begin(&tk_core.seq);
1021 	ntp_init();
1022 
1023 	clock = clocksource_default_clock();
1024 	if (clock->enable)
1025 		clock->enable(clock);
1026 	tk_setup_internals(tk, clock);
1027 
1028 	tk_set_xtime(tk, &now);
1029 	tk->raw_time.tv_sec = 0;
1030 	tk->raw_time.tv_nsec = 0;
1031 	tk->base_raw.tv64 = 0;
1032 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1033 		boot = tk_xtime(tk);
1034 
1035 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1036 	tk_set_wall_to_mono(tk, tmp);
1037 
1038 	timekeeping_update(tk, TK_MIRROR);
1039 
1040 	write_seqcount_end(&tk_core.seq);
1041 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1042 }
1043 
1044 /* time in seconds when suspend began */
1045 static struct timespec64 timekeeping_suspend_time;
1046 
1047 /**
1048  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1049  * @delta: pointer to a timespec delta value
1050  *
1051  * Takes a timespec offset measuring a suspend interval and properly
1052  * adds the sleep offset to the timekeeping variables.
1053  */
1054 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1055 					   struct timespec64 *delta)
1056 {
1057 	if (!timespec64_valid_strict(delta)) {
1058 		printk_deferred(KERN_WARNING
1059 				"__timekeeping_inject_sleeptime: Invalid "
1060 				"sleep delta value!\n");
1061 		return;
1062 	}
1063 	tk_xtime_add(tk, delta);
1064 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1065 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1066 	tk_debug_account_sleep_time(delta);
1067 }
1068 
1069 /**
1070  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1071  * @delta: pointer to a timespec delta value
1072  *
1073  * This hook is for architectures that cannot support read_persistent_clock
1074  * because their RTC/persistent clock is only accessible when irqs are enabled.
1075  *
1076  * This function should only be called by rtc_resume(), and allows
1077  * a suspend offset to be injected into the timekeeping values.
1078  */
1079 void timekeeping_inject_sleeptime(struct timespec *delta)
1080 {
1081 	struct timekeeper *tk = &tk_core.timekeeper;
1082 	struct timespec64 tmp;
1083 	unsigned long flags;
1084 
1085 	/*
1086 	 * Make sure we don't set the clock twice, as timekeeping_resume()
1087 	 * already did it
1088 	 */
1089 	if (has_persistent_clock())
1090 		return;
1091 
1092 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1093 	write_seqcount_begin(&tk_core.seq);
1094 
1095 	timekeeping_forward_now(tk);
1096 
1097 	tmp = timespec_to_timespec64(*delta);
1098 	__timekeeping_inject_sleeptime(tk, &tmp);
1099 
1100 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1101 
1102 	write_seqcount_end(&tk_core.seq);
1103 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1104 
1105 	/* signal hrtimers about time change */
1106 	clock_was_set();
1107 }
1108 
1109 /**
1110  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1111  *
1112  * This is for the generic clocksource timekeeping.
1113  * xtime/wall_to_monotonic/jiffies/etc are
1114  * still managed by arch specific suspend/resume code.
1115  */
1116 static void timekeeping_resume(void)
1117 {
1118 	struct timekeeper *tk = &tk_core.timekeeper;
1119 	struct clocksource *clock = tk->tkr.clock;
1120 	unsigned long flags;
1121 	struct timespec64 ts_new, ts_delta;
1122 	struct timespec tmp;
1123 	cycle_t cycle_now, cycle_delta;
1124 	bool suspendtime_found = false;
1125 
1126 	read_persistent_clock(&tmp);
1127 	ts_new = timespec_to_timespec64(tmp);
1128 
1129 	clockevents_resume();
1130 	clocksource_resume();
1131 
1132 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1133 	write_seqcount_begin(&tk_core.seq);
1134 
1135 	/*
1136 	 * After system resumes, we need to calculate the suspended time and
1137 	 * compensate it for the OS time. There are 3 sources that could be
1138 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1139 	 * device.
1140 	 *
1141 	 * One specific platform may have 1 or 2 or all of them, and the
1142 	 * preference will be:
1143 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1144 	 * The less preferred source will only be tried if there is no better
1145 	 * usable source. The rtc part is handled separately in rtc core code.
1146 	 */
1147 	cycle_now = tk->tkr.read(clock);
1148 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1149 		cycle_now > tk->tkr.cycle_last) {
1150 		u64 num, max = ULLONG_MAX;
1151 		u32 mult = clock->mult;
1152 		u32 shift = clock->shift;
1153 		s64 nsec = 0;
1154 
1155 		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1156 						tk->tkr.mask);
1157 
1158 		/*
1159 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1160 		 * suspended time is too long. In that case we need do the
1161 		 * 64 bits math carefully
1162 		 */
1163 		do_div(max, mult);
1164 		if (cycle_delta > max) {
1165 			num = div64_u64(cycle_delta, max);
1166 			nsec = (((u64) max * mult) >> shift) * num;
1167 			cycle_delta -= num * max;
1168 		}
1169 		nsec += ((u64) cycle_delta * mult) >> shift;
1170 
1171 		ts_delta = ns_to_timespec64(nsec);
1172 		suspendtime_found = true;
1173 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1174 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1175 		suspendtime_found = true;
1176 	}
1177 
1178 	if (suspendtime_found)
1179 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1180 
1181 	/* Re-base the last cycle value */
1182 	tk->tkr.cycle_last = cycle_now;
1183 	tk->ntp_error = 0;
1184 	timekeeping_suspended = 0;
1185 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1186 	write_seqcount_end(&tk_core.seq);
1187 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1188 
1189 	touch_softlockup_watchdog();
1190 
1191 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1192 
1193 	/* Resume hrtimers */
1194 	hrtimers_resume();
1195 }
1196 
1197 static int timekeeping_suspend(void)
1198 {
1199 	struct timekeeper *tk = &tk_core.timekeeper;
1200 	unsigned long flags;
1201 	struct timespec64		delta, delta_delta;
1202 	static struct timespec64	old_delta;
1203 	struct timespec tmp;
1204 
1205 	read_persistent_clock(&tmp);
1206 	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1207 
1208 	/*
1209 	 * On some systems the persistent_clock can not be detected at
1210 	 * timekeeping_init by its return value, so if we see a valid
1211 	 * value returned, update the persistent_clock_exists flag.
1212 	 */
1213 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1214 		persistent_clock_exist = true;
1215 
1216 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1217 	write_seqcount_begin(&tk_core.seq);
1218 	timekeeping_forward_now(tk);
1219 	timekeeping_suspended = 1;
1220 
1221 	/*
1222 	 * To avoid drift caused by repeated suspend/resumes,
1223 	 * which each can add ~1 second drift error,
1224 	 * try to compensate so the difference in system time
1225 	 * and persistent_clock time stays close to constant.
1226 	 */
1227 	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1228 	delta_delta = timespec64_sub(delta, old_delta);
1229 	if (abs(delta_delta.tv_sec)  >= 2) {
1230 		/*
1231 		 * if delta_delta is too large, assume time correction
1232 		 * has occured and set old_delta to the current delta.
1233 		 */
1234 		old_delta = delta;
1235 	} else {
1236 		/* Otherwise try to adjust old_system to compensate */
1237 		timekeeping_suspend_time =
1238 			timespec64_add(timekeeping_suspend_time, delta_delta);
1239 	}
1240 
1241 	timekeeping_update(tk, TK_MIRROR);
1242 	write_seqcount_end(&tk_core.seq);
1243 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1244 
1245 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1246 	clocksource_suspend();
1247 	clockevents_suspend();
1248 
1249 	return 0;
1250 }
1251 
1252 /* sysfs resume/suspend bits for timekeeping */
1253 static struct syscore_ops timekeeping_syscore_ops = {
1254 	.resume		= timekeeping_resume,
1255 	.suspend	= timekeeping_suspend,
1256 };
1257 
1258 static int __init timekeeping_init_ops(void)
1259 {
1260 	register_syscore_ops(&timekeeping_syscore_ops);
1261 	return 0;
1262 }
1263 device_initcall(timekeeping_init_ops);
1264 
1265 /*
1266  * Apply a multiplier adjustment to the timekeeper
1267  */
1268 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1269 							 s64 offset,
1270 							 bool negative,
1271 							 int adj_scale)
1272 {
1273 	s64 interval = tk->cycle_interval;
1274 	s32 mult_adj = 1;
1275 
1276 	if (negative) {
1277 		mult_adj = -mult_adj;
1278 		interval = -interval;
1279 		offset  = -offset;
1280 	}
1281 	mult_adj <<= adj_scale;
1282 	interval <<= adj_scale;
1283 	offset <<= adj_scale;
1284 
1285 	/*
1286 	 * So the following can be confusing.
1287 	 *
1288 	 * To keep things simple, lets assume mult_adj == 1 for now.
1289 	 *
1290 	 * When mult_adj != 1, remember that the interval and offset values
1291 	 * have been appropriately scaled so the math is the same.
1292 	 *
1293 	 * The basic idea here is that we're increasing the multiplier
1294 	 * by one, this causes the xtime_interval to be incremented by
1295 	 * one cycle_interval. This is because:
1296 	 *	xtime_interval = cycle_interval * mult
1297 	 * So if mult is being incremented by one:
1298 	 *	xtime_interval = cycle_interval * (mult + 1)
1299 	 * Its the same as:
1300 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1301 	 * Which can be shortened to:
1302 	 *	xtime_interval += cycle_interval
1303 	 *
1304 	 * So offset stores the non-accumulated cycles. Thus the current
1305 	 * time (in shifted nanoseconds) is:
1306 	 *	now = (offset * adj) + xtime_nsec
1307 	 * Now, even though we're adjusting the clock frequency, we have
1308 	 * to keep time consistent. In other words, we can't jump back
1309 	 * in time, and we also want to avoid jumping forward in time.
1310 	 *
1311 	 * So given the same offset value, we need the time to be the same
1312 	 * both before and after the freq adjustment.
1313 	 *	now = (offset * adj_1) + xtime_nsec_1
1314 	 *	now = (offset * adj_2) + xtime_nsec_2
1315 	 * So:
1316 	 *	(offset * adj_1) + xtime_nsec_1 =
1317 	 *		(offset * adj_2) + xtime_nsec_2
1318 	 * And we know:
1319 	 *	adj_2 = adj_1 + 1
1320 	 * So:
1321 	 *	(offset * adj_1) + xtime_nsec_1 =
1322 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1323 	 *	(offset * adj_1) + xtime_nsec_1 =
1324 	 *		(offset * adj_1) + offset + xtime_nsec_2
1325 	 * Canceling the sides:
1326 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1327 	 * Which gives us:
1328 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1329 	 * Which simplfies to:
1330 	 *	xtime_nsec -= offset
1331 	 *
1332 	 * XXX - TODO: Doc ntp_error calculation.
1333 	 */
1334 	tk->tkr.mult += mult_adj;
1335 	tk->xtime_interval += interval;
1336 	tk->tkr.xtime_nsec -= offset;
1337 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1338 }
1339 
1340 /*
1341  * Calculate the multiplier adjustment needed to match the frequency
1342  * specified by NTP
1343  */
1344 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1345 							s64 offset)
1346 {
1347 	s64 interval = tk->cycle_interval;
1348 	s64 xinterval = tk->xtime_interval;
1349 	s64 tick_error;
1350 	bool negative;
1351 	u32 adj;
1352 
1353 	/* Remove any current error adj from freq calculation */
1354 	if (tk->ntp_err_mult)
1355 		xinterval -= tk->cycle_interval;
1356 
1357 	tk->ntp_tick = ntp_tick_length();
1358 
1359 	/* Calculate current error per tick */
1360 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1361 	tick_error -= (xinterval + tk->xtime_remainder);
1362 
1363 	/* Don't worry about correcting it if its small */
1364 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1365 		return;
1366 
1367 	/* preserve the direction of correction */
1368 	negative = (tick_error < 0);
1369 
1370 	/* Sort out the magnitude of the correction */
1371 	tick_error = abs(tick_error);
1372 	for (adj = 0; tick_error > interval; adj++)
1373 		tick_error >>= 1;
1374 
1375 	/* scale the corrections */
1376 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1377 }
1378 
1379 /*
1380  * Adjust the timekeeper's multiplier to the correct frequency
1381  * and also to reduce the accumulated error value.
1382  */
1383 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1384 {
1385 	/* Correct for the current frequency error */
1386 	timekeeping_freqadjust(tk, offset);
1387 
1388 	/* Next make a small adjustment to fix any cumulative error */
1389 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1390 		tk->ntp_err_mult = 1;
1391 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1392 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1393 		/* Undo any existing error adjustment */
1394 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1395 		tk->ntp_err_mult = 0;
1396 	}
1397 
1398 	if (unlikely(tk->tkr.clock->maxadj &&
1399 		(tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1400 		printk_once(KERN_WARNING
1401 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1402 			tk->tkr.clock->name, (long)tk->tkr.mult,
1403 			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1404 	}
1405 
1406 	/*
1407 	 * It may be possible that when we entered this function, xtime_nsec
1408 	 * was very small.  Further, if we're slightly speeding the clocksource
1409 	 * in the code above, its possible the required corrective factor to
1410 	 * xtime_nsec could cause it to underflow.
1411 	 *
1412 	 * Now, since we already accumulated the second, cannot simply roll
1413 	 * the accumulated second back, since the NTP subsystem has been
1414 	 * notified via second_overflow. So instead we push xtime_nsec forward
1415 	 * by the amount we underflowed, and add that amount into the error.
1416 	 *
1417 	 * We'll correct this error next time through this function, when
1418 	 * xtime_nsec is not as small.
1419 	 */
1420 	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1421 		s64 neg = -(s64)tk->tkr.xtime_nsec;
1422 		tk->tkr.xtime_nsec = 0;
1423 		tk->ntp_error += neg << tk->ntp_error_shift;
1424 	}
1425 }
1426 
1427 /**
1428  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1429  *
1430  * Helper function that accumulates a the nsecs greater then a second
1431  * from the xtime_nsec field to the xtime_secs field.
1432  * It also calls into the NTP code to handle leapsecond processing.
1433  *
1434  */
1435 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1436 {
1437 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1438 	unsigned int clock_set = 0;
1439 
1440 	while (tk->tkr.xtime_nsec >= nsecps) {
1441 		int leap;
1442 
1443 		tk->tkr.xtime_nsec -= nsecps;
1444 		tk->xtime_sec++;
1445 
1446 		/* Figure out if its a leap sec and apply if needed */
1447 		leap = second_overflow(tk->xtime_sec);
1448 		if (unlikely(leap)) {
1449 			struct timespec64 ts;
1450 
1451 			tk->xtime_sec += leap;
1452 
1453 			ts.tv_sec = leap;
1454 			ts.tv_nsec = 0;
1455 			tk_set_wall_to_mono(tk,
1456 				timespec64_sub(tk->wall_to_monotonic, ts));
1457 
1458 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1459 
1460 			clock_set = TK_CLOCK_WAS_SET;
1461 		}
1462 	}
1463 	return clock_set;
1464 }
1465 
1466 /**
1467  * logarithmic_accumulation - shifted accumulation of cycles
1468  *
1469  * This functions accumulates a shifted interval of cycles into
1470  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1471  * loop.
1472  *
1473  * Returns the unconsumed cycles.
1474  */
1475 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1476 						u32 shift,
1477 						unsigned int *clock_set)
1478 {
1479 	cycle_t interval = tk->cycle_interval << shift;
1480 	u64 raw_nsecs;
1481 
1482 	/* If the offset is smaller then a shifted interval, do nothing */
1483 	if (offset < interval)
1484 		return offset;
1485 
1486 	/* Accumulate one shifted interval */
1487 	offset -= interval;
1488 	tk->tkr.cycle_last += interval;
1489 
1490 	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1491 	*clock_set |= accumulate_nsecs_to_secs(tk);
1492 
1493 	/* Accumulate raw time */
1494 	raw_nsecs = (u64)tk->raw_interval << shift;
1495 	raw_nsecs += tk->raw_time.tv_nsec;
1496 	if (raw_nsecs >= NSEC_PER_SEC) {
1497 		u64 raw_secs = raw_nsecs;
1498 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1499 		tk->raw_time.tv_sec += raw_secs;
1500 	}
1501 	tk->raw_time.tv_nsec = raw_nsecs;
1502 
1503 	/* Accumulate error between NTP and clock interval */
1504 	tk->ntp_error += tk->ntp_tick << shift;
1505 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1506 						(tk->ntp_error_shift + shift);
1507 
1508 	return offset;
1509 }
1510 
1511 /**
1512  * update_wall_time - Uses the current clocksource to increment the wall time
1513  *
1514  */
1515 void update_wall_time(void)
1516 {
1517 	struct timekeeper *real_tk = &tk_core.timekeeper;
1518 	struct timekeeper *tk = &shadow_timekeeper;
1519 	cycle_t offset;
1520 	int shift = 0, maxshift;
1521 	unsigned int clock_set = 0;
1522 	unsigned long flags;
1523 
1524 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1525 
1526 	/* Make sure we're fully resumed: */
1527 	if (unlikely(timekeeping_suspended))
1528 		goto out;
1529 
1530 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1531 	offset = real_tk->cycle_interval;
1532 #else
1533 	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1534 				   tk->tkr.cycle_last, tk->tkr.mask);
1535 #endif
1536 
1537 	/* Check if there's really nothing to do */
1538 	if (offset < real_tk->cycle_interval)
1539 		goto out;
1540 
1541 	/*
1542 	 * With NO_HZ we may have to accumulate many cycle_intervals
1543 	 * (think "ticks") worth of time at once. To do this efficiently,
1544 	 * we calculate the largest doubling multiple of cycle_intervals
1545 	 * that is smaller than the offset.  We then accumulate that
1546 	 * chunk in one go, and then try to consume the next smaller
1547 	 * doubled multiple.
1548 	 */
1549 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1550 	shift = max(0, shift);
1551 	/* Bound shift to one less than what overflows tick_length */
1552 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1553 	shift = min(shift, maxshift);
1554 	while (offset >= tk->cycle_interval) {
1555 		offset = logarithmic_accumulation(tk, offset, shift,
1556 							&clock_set);
1557 		if (offset < tk->cycle_interval<<shift)
1558 			shift--;
1559 	}
1560 
1561 	/* correct the clock when NTP error is too big */
1562 	timekeeping_adjust(tk, offset);
1563 
1564 	/*
1565 	 * XXX This can be killed once everyone converts
1566 	 * to the new update_vsyscall.
1567 	 */
1568 	old_vsyscall_fixup(tk);
1569 
1570 	/*
1571 	 * Finally, make sure that after the rounding
1572 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1573 	 */
1574 	clock_set |= accumulate_nsecs_to_secs(tk);
1575 
1576 	write_seqcount_begin(&tk_core.seq);
1577 	/*
1578 	 * Update the real timekeeper.
1579 	 *
1580 	 * We could avoid this memcpy by switching pointers, but that
1581 	 * requires changes to all other timekeeper usage sites as
1582 	 * well, i.e. move the timekeeper pointer getter into the
1583 	 * spinlocked/seqcount protected sections. And we trade this
1584 	 * memcpy under the tk_core.seq against one before we start
1585 	 * updating.
1586 	 */
1587 	memcpy(real_tk, tk, sizeof(*tk));
1588 	timekeeping_update(real_tk, clock_set);
1589 	write_seqcount_end(&tk_core.seq);
1590 out:
1591 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1592 	if (clock_set)
1593 		/* Have to call _delayed version, since in irq context*/
1594 		clock_was_set_delayed();
1595 }
1596 
1597 /**
1598  * getboottime - Return the real time of system boot.
1599  * @ts:		pointer to the timespec to be set
1600  *
1601  * Returns the wall-time of boot in a timespec.
1602  *
1603  * This is based on the wall_to_monotonic offset and the total suspend
1604  * time. Calls to settimeofday will affect the value returned (which
1605  * basically means that however wrong your real time clock is at boot time,
1606  * you get the right time here).
1607  */
1608 void getboottime(struct timespec *ts)
1609 {
1610 	struct timekeeper *tk = &tk_core.timekeeper;
1611 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1612 
1613 	*ts = ktime_to_timespec(t);
1614 }
1615 EXPORT_SYMBOL_GPL(getboottime);
1616 
1617 unsigned long get_seconds(void)
1618 {
1619 	struct timekeeper *tk = &tk_core.timekeeper;
1620 
1621 	return tk->xtime_sec;
1622 }
1623 EXPORT_SYMBOL(get_seconds);
1624 
1625 struct timespec __current_kernel_time(void)
1626 {
1627 	struct timekeeper *tk = &tk_core.timekeeper;
1628 
1629 	return timespec64_to_timespec(tk_xtime(tk));
1630 }
1631 
1632 struct timespec current_kernel_time(void)
1633 {
1634 	struct timekeeper *tk = &tk_core.timekeeper;
1635 	struct timespec64 now;
1636 	unsigned long seq;
1637 
1638 	do {
1639 		seq = read_seqcount_begin(&tk_core.seq);
1640 
1641 		now = tk_xtime(tk);
1642 	} while (read_seqcount_retry(&tk_core.seq, seq));
1643 
1644 	return timespec64_to_timespec(now);
1645 }
1646 EXPORT_SYMBOL(current_kernel_time);
1647 
1648 struct timespec get_monotonic_coarse(void)
1649 {
1650 	struct timekeeper *tk = &tk_core.timekeeper;
1651 	struct timespec64 now, mono;
1652 	unsigned long seq;
1653 
1654 	do {
1655 		seq = read_seqcount_begin(&tk_core.seq);
1656 
1657 		now = tk_xtime(tk);
1658 		mono = tk->wall_to_monotonic;
1659 	} while (read_seqcount_retry(&tk_core.seq, seq));
1660 
1661 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1662 				now.tv_nsec + mono.tv_nsec);
1663 
1664 	return timespec64_to_timespec(now);
1665 }
1666 
1667 /*
1668  * Must hold jiffies_lock
1669  */
1670 void do_timer(unsigned long ticks)
1671 {
1672 	jiffies_64 += ticks;
1673 	calc_global_load(ticks);
1674 }
1675 
1676 /**
1677  * ktime_get_update_offsets_tick - hrtimer helper
1678  * @offs_real:	pointer to storage for monotonic -> realtime offset
1679  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1680  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1681  *
1682  * Returns monotonic time at last tick and various offsets
1683  */
1684 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1685 							ktime_t *offs_tai)
1686 {
1687 	struct timekeeper *tk = &tk_core.timekeeper;
1688 	unsigned int seq;
1689 	ktime_t base;
1690 	u64 nsecs;
1691 
1692 	do {
1693 		seq = read_seqcount_begin(&tk_core.seq);
1694 
1695 		base = tk->tkr.base_mono;
1696 		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1697 
1698 		*offs_real = tk->offs_real;
1699 		*offs_boot = tk->offs_boot;
1700 		*offs_tai = tk->offs_tai;
1701 	} while (read_seqcount_retry(&tk_core.seq, seq));
1702 
1703 	return ktime_add_ns(base, nsecs);
1704 }
1705 
1706 #ifdef CONFIG_HIGH_RES_TIMERS
1707 /**
1708  * ktime_get_update_offsets_now - hrtimer helper
1709  * @offs_real:	pointer to storage for monotonic -> realtime offset
1710  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1711  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1712  *
1713  * Returns current monotonic time and updates the offsets
1714  * Called from hrtimer_interrupt() or retrigger_next_event()
1715  */
1716 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1717 							ktime_t *offs_tai)
1718 {
1719 	struct timekeeper *tk = &tk_core.timekeeper;
1720 	unsigned int seq;
1721 	ktime_t base;
1722 	u64 nsecs;
1723 
1724 	do {
1725 		seq = read_seqcount_begin(&tk_core.seq);
1726 
1727 		base = tk->tkr.base_mono;
1728 		nsecs = timekeeping_get_ns(&tk->tkr);
1729 
1730 		*offs_real = tk->offs_real;
1731 		*offs_boot = tk->offs_boot;
1732 		*offs_tai = tk->offs_tai;
1733 	} while (read_seqcount_retry(&tk_core.seq, seq));
1734 
1735 	return ktime_add_ns(base, nsecs);
1736 }
1737 #endif
1738 
1739 /**
1740  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1741  */
1742 int do_adjtimex(struct timex *txc)
1743 {
1744 	struct timekeeper *tk = &tk_core.timekeeper;
1745 	unsigned long flags;
1746 	struct timespec64 ts;
1747 	s32 orig_tai, tai;
1748 	int ret;
1749 
1750 	/* Validate the data before disabling interrupts */
1751 	ret = ntp_validate_timex(txc);
1752 	if (ret)
1753 		return ret;
1754 
1755 	if (txc->modes & ADJ_SETOFFSET) {
1756 		struct timespec delta;
1757 		delta.tv_sec  = txc->time.tv_sec;
1758 		delta.tv_nsec = txc->time.tv_usec;
1759 		if (!(txc->modes & ADJ_NANO))
1760 			delta.tv_nsec *= 1000;
1761 		ret = timekeeping_inject_offset(&delta);
1762 		if (ret)
1763 			return ret;
1764 	}
1765 
1766 	getnstimeofday64(&ts);
1767 
1768 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1769 	write_seqcount_begin(&tk_core.seq);
1770 
1771 	orig_tai = tai = tk->tai_offset;
1772 	ret = __do_adjtimex(txc, &ts, &tai);
1773 
1774 	if (tai != orig_tai) {
1775 		__timekeeping_set_tai_offset(tk, tai);
1776 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1777 	}
1778 	write_seqcount_end(&tk_core.seq);
1779 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1780 
1781 	if (tai != orig_tai)
1782 		clock_was_set();
1783 
1784 	ntp_notify_cmos_timer();
1785 
1786 	return ret;
1787 }
1788 
1789 #ifdef CONFIG_NTP_PPS
1790 /**
1791  * hardpps() - Accessor function to NTP __hardpps function
1792  */
1793 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1794 {
1795 	unsigned long flags;
1796 
1797 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1798 	write_seqcount_begin(&tk_core.seq);
1799 
1800 	__hardpps(phase_ts, raw_ts);
1801 
1802 	write_seqcount_end(&tk_core.seq);
1803 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1804 }
1805 EXPORT_SYMBOL(hardpps);
1806 #endif
1807 
1808 /**
1809  * xtime_update() - advances the timekeeping infrastructure
1810  * @ticks:	number of ticks, that have elapsed since the last call.
1811  *
1812  * Must be called with interrupts disabled.
1813  */
1814 void xtime_update(unsigned long ticks)
1815 {
1816 	write_seqlock(&jiffies_lock);
1817 	do_timer(ticks);
1818 	write_sequnlock(&jiffies_lock);
1819 	update_wall_time();
1820 }
1821