xref: /openbmc/linux/kernel/time/timekeeping.c (revision 565d76cb)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* The shift value of the current clocksource. */
29 	int	shift;
30 
31 	/* Number of clock cycles in one NTP interval. */
32 	cycle_t cycle_interval;
33 	/* Number of clock shifted nano seconds in one NTP interval. */
34 	u64	xtime_interval;
35 	/* shifted nano seconds left over when rounding cycle_interval */
36 	s64	xtime_remainder;
37 	/* Raw nano seconds accumulated per NTP interval. */
38 	u32	raw_interval;
39 
40 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 	u64	xtime_nsec;
42 	/* Difference between accumulated time and NTP time in ntp
43 	 * shifted nano seconds. */
44 	s64	ntp_error;
45 	/* Shift conversion between clock shifted nano seconds and
46 	 * ntp shifted nano seconds. */
47 	int	ntp_error_shift;
48 	/* NTP adjusted clock multiplier */
49 	u32	mult;
50 };
51 
52 static struct timekeeper timekeeper;
53 
54 /**
55  * timekeeper_setup_internals - Set up internals to use clocksource clock.
56  *
57  * @clock:		Pointer to clocksource.
58  *
59  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60  * pair and interval request.
61  *
62  * Unless you're the timekeeping code, you should not be using this!
63  */
64 static void timekeeper_setup_internals(struct clocksource *clock)
65 {
66 	cycle_t interval;
67 	u64 tmp, ntpinterval;
68 
69 	timekeeper.clock = clock;
70 	clock->cycle_last = clock->read(clock);
71 
72 	/* Do the ns -> cycle conversion first, using original mult */
73 	tmp = NTP_INTERVAL_LENGTH;
74 	tmp <<= clock->shift;
75 	ntpinterval = tmp;
76 	tmp += clock->mult/2;
77 	do_div(tmp, clock->mult);
78 	if (tmp == 0)
79 		tmp = 1;
80 
81 	interval = (cycle_t) tmp;
82 	timekeeper.cycle_interval = interval;
83 
84 	/* Go back from cycles -> shifted ns */
85 	timekeeper.xtime_interval = (u64) interval * clock->mult;
86 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 	timekeeper.raw_interval =
88 		((u64) interval * clock->mult) >> clock->shift;
89 
90 	timekeeper.xtime_nsec = 0;
91 	timekeeper.shift = clock->shift;
92 
93 	timekeeper.ntp_error = 0;
94 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 
96 	/*
97 	 * The timekeeper keeps its own mult values for the currently
98 	 * active clocksource. These value will be adjusted via NTP
99 	 * to counteract clock drifting.
100 	 */
101 	timekeeper.mult = clock->mult;
102 }
103 
104 /* Timekeeper helper functions. */
105 static inline s64 timekeeping_get_ns(void)
106 {
107 	cycle_t cycle_now, cycle_delta;
108 	struct clocksource *clock;
109 
110 	/* read clocksource: */
111 	clock = timekeeper.clock;
112 	cycle_now = clock->read(clock);
113 
114 	/* calculate the delta since the last update_wall_time: */
115 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
116 
117 	/* return delta convert to nanoseconds using ntp adjusted mult. */
118 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 				  timekeeper.shift);
120 }
121 
122 static inline s64 timekeeping_get_ns_raw(void)
123 {
124 	cycle_t cycle_now, cycle_delta;
125 	struct clocksource *clock;
126 
127 	/* read clocksource: */
128 	clock = timekeeper.clock;
129 	cycle_now = clock->read(clock);
130 
131 	/* calculate the delta since the last update_wall_time: */
132 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
133 
134 	/* return delta convert to nanoseconds using ntp adjusted mult. */
135 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
136 }
137 
138 /*
139  * This read-write spinlock protects us from races in SMP while
140  * playing with xtime.
141  */
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 
144 
145 /*
146  * The current time
147  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
149  * at zero at system boot time, so wall_to_monotonic will be negative,
150  * however, we will ALWAYS keep the tv_nsec part positive so we can use
151  * the usual normalization.
152  *
153  * wall_to_monotonic is moved after resume from suspend for the monotonic
154  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155  * to get the real boot based time offset.
156  *
157  * - wall_to_monotonic is no longer the boot time, getboottime must be
158  * used instead.
159  */
160 static struct timespec xtime __attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
163 
164 /*
165  * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
166  */
167 static struct timespec raw_time;
168 
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
171 
172 /* must hold xtime_lock */
173 void timekeeping_leap_insert(int leapsecond)
174 {
175 	xtime.tv_sec += leapsecond;
176 	wall_to_monotonic.tv_sec -= leapsecond;
177 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 			timekeeper.mult);
179 }
180 
181 /**
182  * timekeeping_forward_now - update clock to the current time
183  *
184  * Forward the current clock to update its state since the last call to
185  * update_wall_time(). This is useful before significant clock changes,
186  * as it avoids having to deal with this time offset explicitly.
187  */
188 static void timekeeping_forward_now(void)
189 {
190 	cycle_t cycle_now, cycle_delta;
191 	struct clocksource *clock;
192 	s64 nsec;
193 
194 	clock = timekeeper.clock;
195 	cycle_now = clock->read(clock);
196 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197 	clock->cycle_last = cycle_now;
198 
199 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 				  timekeeper.shift);
201 
202 	/* If arch requires, add in gettimeoffset() */
203 	nsec += arch_gettimeoffset();
204 
205 	timespec_add_ns(&xtime, nsec);
206 
207 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208 	timespec_add_ns(&raw_time, nsec);
209 }
210 
211 /**
212  * getnstimeofday - Returns the time of day in a timespec
213  * @ts:		pointer to the timespec to be set
214  *
215  * Returns the time of day in a timespec.
216  */
217 void getnstimeofday(struct timespec *ts)
218 {
219 	unsigned long seq;
220 	s64 nsecs;
221 
222 	WARN_ON(timekeeping_suspended);
223 
224 	do {
225 		seq = read_seqbegin(&xtime_lock);
226 
227 		*ts = xtime;
228 		nsecs = timekeeping_get_ns();
229 
230 		/* If arch requires, add in gettimeoffset() */
231 		nsecs += arch_gettimeoffset();
232 
233 	} while (read_seqretry(&xtime_lock, seq));
234 
235 	timespec_add_ns(ts, nsecs);
236 }
237 
238 EXPORT_SYMBOL(getnstimeofday);
239 
240 ktime_t ktime_get(void)
241 {
242 	unsigned int seq;
243 	s64 secs, nsecs;
244 
245 	WARN_ON(timekeeping_suspended);
246 
247 	do {
248 		seq = read_seqbegin(&xtime_lock);
249 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 		nsecs += timekeeping_get_ns();
252 
253 	} while (read_seqretry(&xtime_lock, seq));
254 	/*
255 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
256 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
257 	 */
258 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
259 }
260 EXPORT_SYMBOL_GPL(ktime_get);
261 
262 /**
263  * ktime_get_ts - get the monotonic clock in timespec format
264  * @ts:		pointer to timespec variable
265  *
266  * The function calculates the monotonic clock from the realtime
267  * clock and the wall_to_monotonic offset and stores the result
268  * in normalized timespec format in the variable pointed to by @ts.
269  */
270 void ktime_get_ts(struct timespec *ts)
271 {
272 	struct timespec tomono;
273 	unsigned int seq;
274 	s64 nsecs;
275 
276 	WARN_ON(timekeeping_suspended);
277 
278 	do {
279 		seq = read_seqbegin(&xtime_lock);
280 		*ts = xtime;
281 		tomono = wall_to_monotonic;
282 		nsecs = timekeeping_get_ns();
283 
284 	} while (read_seqretry(&xtime_lock, seq));
285 
286 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
287 				ts->tv_nsec + tomono.tv_nsec + nsecs);
288 }
289 EXPORT_SYMBOL_GPL(ktime_get_ts);
290 
291 #ifdef CONFIG_NTP_PPS
292 
293 /**
294  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
295  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
296  * @ts_real:	pointer to the timespec to be set to the time of day
297  *
298  * This function reads both the time of day and raw monotonic time at the
299  * same time atomically and stores the resulting timestamps in timespec
300  * format.
301  */
302 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
303 {
304 	unsigned long seq;
305 	s64 nsecs_raw, nsecs_real;
306 
307 	WARN_ON_ONCE(timekeeping_suspended);
308 
309 	do {
310 		u32 arch_offset;
311 
312 		seq = read_seqbegin(&xtime_lock);
313 
314 		*ts_raw = raw_time;
315 		*ts_real = xtime;
316 
317 		nsecs_raw = timekeeping_get_ns_raw();
318 		nsecs_real = timekeeping_get_ns();
319 
320 		/* If arch requires, add in gettimeoffset() */
321 		arch_offset = arch_gettimeoffset();
322 		nsecs_raw += arch_offset;
323 		nsecs_real += arch_offset;
324 
325 	} while (read_seqretry(&xtime_lock, seq));
326 
327 	timespec_add_ns(ts_raw, nsecs_raw);
328 	timespec_add_ns(ts_real, nsecs_real);
329 }
330 EXPORT_SYMBOL(getnstime_raw_and_real);
331 
332 #endif /* CONFIG_NTP_PPS */
333 
334 /**
335  * do_gettimeofday - Returns the time of day in a timeval
336  * @tv:		pointer to the timeval to be set
337  *
338  * NOTE: Users should be converted to using getnstimeofday()
339  */
340 void do_gettimeofday(struct timeval *tv)
341 {
342 	struct timespec now;
343 
344 	getnstimeofday(&now);
345 	tv->tv_sec = now.tv_sec;
346 	tv->tv_usec = now.tv_nsec/1000;
347 }
348 
349 EXPORT_SYMBOL(do_gettimeofday);
350 /**
351  * do_settimeofday - Sets the time of day
352  * @tv:		pointer to the timespec variable containing the new time
353  *
354  * Sets the time of day to the new time and update NTP and notify hrtimers
355  */
356 int do_settimeofday(const struct timespec *tv)
357 {
358 	struct timespec ts_delta;
359 	unsigned long flags;
360 
361 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
362 		return -EINVAL;
363 
364 	write_seqlock_irqsave(&xtime_lock, flags);
365 
366 	timekeeping_forward_now();
367 
368 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
369 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
370 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
371 
372 	xtime = *tv;
373 
374 	timekeeper.ntp_error = 0;
375 	ntp_clear();
376 
377 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
378 				timekeeper.mult);
379 
380 	write_sequnlock_irqrestore(&xtime_lock, flags);
381 
382 	/* signal hrtimers about time change */
383 	clock_was_set();
384 
385 	return 0;
386 }
387 
388 EXPORT_SYMBOL(do_settimeofday);
389 
390 
391 /**
392  * timekeeping_inject_offset - Adds or subtracts from the current time.
393  * @tv:		pointer to the timespec variable containing the offset
394  *
395  * Adds or subtracts an offset value from the current time.
396  */
397 int timekeeping_inject_offset(struct timespec *ts)
398 {
399 	unsigned long flags;
400 
401 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
402 		return -EINVAL;
403 
404 	write_seqlock_irqsave(&xtime_lock, flags);
405 
406 	timekeeping_forward_now();
407 
408 	xtime = timespec_add(xtime, *ts);
409 	wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
410 
411 	timekeeper.ntp_error = 0;
412 	ntp_clear();
413 
414 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
415 				timekeeper.mult);
416 
417 	write_sequnlock_irqrestore(&xtime_lock, flags);
418 
419 	/* signal hrtimers about time change */
420 	clock_was_set();
421 
422 	return 0;
423 }
424 EXPORT_SYMBOL(timekeeping_inject_offset);
425 
426 /**
427  * change_clocksource - Swaps clocksources if a new one is available
428  *
429  * Accumulates current time interval and initializes new clocksource
430  */
431 static int change_clocksource(void *data)
432 {
433 	struct clocksource *new, *old;
434 
435 	new = (struct clocksource *) data;
436 
437 	timekeeping_forward_now();
438 	if (!new->enable || new->enable(new) == 0) {
439 		old = timekeeper.clock;
440 		timekeeper_setup_internals(new);
441 		if (old->disable)
442 			old->disable(old);
443 	}
444 	return 0;
445 }
446 
447 /**
448  * timekeeping_notify - Install a new clock source
449  * @clock:		pointer to the clock source
450  *
451  * This function is called from clocksource.c after a new, better clock
452  * source has been registered. The caller holds the clocksource_mutex.
453  */
454 void timekeeping_notify(struct clocksource *clock)
455 {
456 	if (timekeeper.clock == clock)
457 		return;
458 	stop_machine(change_clocksource, clock, NULL);
459 	tick_clock_notify();
460 }
461 
462 /**
463  * ktime_get_real - get the real (wall-) time in ktime_t format
464  *
465  * returns the time in ktime_t format
466  */
467 ktime_t ktime_get_real(void)
468 {
469 	struct timespec now;
470 
471 	getnstimeofday(&now);
472 
473 	return timespec_to_ktime(now);
474 }
475 EXPORT_SYMBOL_GPL(ktime_get_real);
476 
477 /**
478  * getrawmonotonic - Returns the raw monotonic time in a timespec
479  * @ts:		pointer to the timespec to be set
480  *
481  * Returns the raw monotonic time (completely un-modified by ntp)
482  */
483 void getrawmonotonic(struct timespec *ts)
484 {
485 	unsigned long seq;
486 	s64 nsecs;
487 
488 	do {
489 		seq = read_seqbegin(&xtime_lock);
490 		nsecs = timekeeping_get_ns_raw();
491 		*ts = raw_time;
492 
493 	} while (read_seqretry(&xtime_lock, seq));
494 
495 	timespec_add_ns(ts, nsecs);
496 }
497 EXPORT_SYMBOL(getrawmonotonic);
498 
499 
500 /**
501  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
502  */
503 int timekeeping_valid_for_hres(void)
504 {
505 	unsigned long seq;
506 	int ret;
507 
508 	do {
509 		seq = read_seqbegin(&xtime_lock);
510 
511 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
512 
513 	} while (read_seqretry(&xtime_lock, seq));
514 
515 	return ret;
516 }
517 
518 /**
519  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
520  *
521  * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
522  * ensure that the clocksource does not change!
523  */
524 u64 timekeeping_max_deferment(void)
525 {
526 	return timekeeper.clock->max_idle_ns;
527 }
528 
529 /**
530  * read_persistent_clock -  Return time from the persistent clock.
531  *
532  * Weak dummy function for arches that do not yet support it.
533  * Reads the time from the battery backed persistent clock.
534  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
535  *
536  *  XXX - Do be sure to remove it once all arches implement it.
537  */
538 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
539 {
540 	ts->tv_sec = 0;
541 	ts->tv_nsec = 0;
542 }
543 
544 /**
545  * read_boot_clock -  Return time of the system start.
546  *
547  * Weak dummy function for arches that do not yet support it.
548  * Function to read the exact time the system has been started.
549  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
550  *
551  *  XXX - Do be sure to remove it once all arches implement it.
552  */
553 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
554 {
555 	ts->tv_sec = 0;
556 	ts->tv_nsec = 0;
557 }
558 
559 /*
560  * timekeeping_init - Initializes the clocksource and common timekeeping values
561  */
562 void __init timekeeping_init(void)
563 {
564 	struct clocksource *clock;
565 	unsigned long flags;
566 	struct timespec now, boot;
567 
568 	read_persistent_clock(&now);
569 	read_boot_clock(&boot);
570 
571 	write_seqlock_irqsave(&xtime_lock, flags);
572 
573 	ntp_init();
574 
575 	clock = clocksource_default_clock();
576 	if (clock->enable)
577 		clock->enable(clock);
578 	timekeeper_setup_internals(clock);
579 
580 	xtime.tv_sec = now.tv_sec;
581 	xtime.tv_nsec = now.tv_nsec;
582 	raw_time.tv_sec = 0;
583 	raw_time.tv_nsec = 0;
584 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
585 		boot.tv_sec = xtime.tv_sec;
586 		boot.tv_nsec = xtime.tv_nsec;
587 	}
588 	set_normalized_timespec(&wall_to_monotonic,
589 				-boot.tv_sec, -boot.tv_nsec);
590 	total_sleep_time.tv_sec = 0;
591 	total_sleep_time.tv_nsec = 0;
592 	write_sequnlock_irqrestore(&xtime_lock, flags);
593 }
594 
595 /* time in seconds when suspend began */
596 static struct timespec timekeeping_suspend_time;
597 
598 /**
599  * timekeeping_resume - Resumes the generic timekeeping subsystem.
600  * @dev:	unused
601  *
602  * This is for the generic clocksource timekeeping.
603  * xtime/wall_to_monotonic/jiffies/etc are
604  * still managed by arch specific suspend/resume code.
605  */
606 static int timekeeping_resume(struct sys_device *dev)
607 {
608 	unsigned long flags;
609 	struct timespec ts;
610 
611 	read_persistent_clock(&ts);
612 
613 	clocksource_resume();
614 
615 	write_seqlock_irqsave(&xtime_lock, flags);
616 
617 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
618 		ts = timespec_sub(ts, timekeeping_suspend_time);
619 		xtime = timespec_add(xtime, ts);
620 		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
621 		total_sleep_time = timespec_add(total_sleep_time, ts);
622 	}
623 	/* re-base the last cycle value */
624 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
625 	timekeeper.ntp_error = 0;
626 	timekeeping_suspended = 0;
627 	write_sequnlock_irqrestore(&xtime_lock, flags);
628 
629 	touch_softlockup_watchdog();
630 
631 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
632 
633 	/* Resume hrtimers */
634 	hres_timers_resume();
635 
636 	return 0;
637 }
638 
639 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
640 {
641 	unsigned long flags;
642 
643 	read_persistent_clock(&timekeeping_suspend_time);
644 
645 	write_seqlock_irqsave(&xtime_lock, flags);
646 	timekeeping_forward_now();
647 	timekeeping_suspended = 1;
648 	write_sequnlock_irqrestore(&xtime_lock, flags);
649 
650 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
651 	clocksource_suspend();
652 
653 	return 0;
654 }
655 
656 /* sysfs resume/suspend bits for timekeeping */
657 static struct sysdev_class timekeeping_sysclass = {
658 	.name		= "timekeeping",
659 	.resume		= timekeeping_resume,
660 	.suspend	= timekeeping_suspend,
661 };
662 
663 static struct sys_device device_timer = {
664 	.id		= 0,
665 	.cls		= &timekeeping_sysclass,
666 };
667 
668 static int __init timekeeping_init_device(void)
669 {
670 	int error = sysdev_class_register(&timekeeping_sysclass);
671 	if (!error)
672 		error = sysdev_register(&device_timer);
673 	return error;
674 }
675 
676 device_initcall(timekeeping_init_device);
677 
678 /*
679  * If the error is already larger, we look ahead even further
680  * to compensate for late or lost adjustments.
681  */
682 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
683 						 s64 *offset)
684 {
685 	s64 tick_error, i;
686 	u32 look_ahead, adj;
687 	s32 error2, mult;
688 
689 	/*
690 	 * Use the current error value to determine how much to look ahead.
691 	 * The larger the error the slower we adjust for it to avoid problems
692 	 * with losing too many ticks, otherwise we would overadjust and
693 	 * produce an even larger error.  The smaller the adjustment the
694 	 * faster we try to adjust for it, as lost ticks can do less harm
695 	 * here.  This is tuned so that an error of about 1 msec is adjusted
696 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
697 	 */
698 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
699 	error2 = abs(error2);
700 	for (look_ahead = 0; error2 > 0; look_ahead++)
701 		error2 >>= 2;
702 
703 	/*
704 	 * Now calculate the error in (1 << look_ahead) ticks, but first
705 	 * remove the single look ahead already included in the error.
706 	 */
707 	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
708 	tick_error -= timekeeper.xtime_interval >> 1;
709 	error = ((error - tick_error) >> look_ahead) + tick_error;
710 
711 	/* Finally calculate the adjustment shift value.  */
712 	i = *interval;
713 	mult = 1;
714 	if (error < 0) {
715 		error = -error;
716 		*interval = -*interval;
717 		*offset = -*offset;
718 		mult = -1;
719 	}
720 	for (adj = 0; error > i; adj++)
721 		error >>= 1;
722 
723 	*interval <<= adj;
724 	*offset <<= adj;
725 	return mult << adj;
726 }
727 
728 /*
729  * Adjust the multiplier to reduce the error value,
730  * this is optimized for the most common adjustments of -1,0,1,
731  * for other values we can do a bit more work.
732  */
733 static void timekeeping_adjust(s64 offset)
734 {
735 	s64 error, interval = timekeeper.cycle_interval;
736 	int adj;
737 
738 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
739 	if (error > interval) {
740 		error >>= 2;
741 		if (likely(error <= interval))
742 			adj = 1;
743 		else
744 			adj = timekeeping_bigadjust(error, &interval, &offset);
745 	} else if (error < -interval) {
746 		error >>= 2;
747 		if (likely(error >= -interval)) {
748 			adj = -1;
749 			interval = -interval;
750 			offset = -offset;
751 		} else
752 			adj = timekeeping_bigadjust(error, &interval, &offset);
753 	} else
754 		return;
755 
756 	timekeeper.mult += adj;
757 	timekeeper.xtime_interval += interval;
758 	timekeeper.xtime_nsec -= offset;
759 	timekeeper.ntp_error -= (interval - offset) <<
760 				timekeeper.ntp_error_shift;
761 }
762 
763 
764 /**
765  * logarithmic_accumulation - shifted accumulation of cycles
766  *
767  * This functions accumulates a shifted interval of cycles into
768  * into a shifted interval nanoseconds. Allows for O(log) accumulation
769  * loop.
770  *
771  * Returns the unconsumed cycles.
772  */
773 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
774 {
775 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
776 	u64 raw_nsecs;
777 
778 	/* If the offset is smaller then a shifted interval, do nothing */
779 	if (offset < timekeeper.cycle_interval<<shift)
780 		return offset;
781 
782 	/* Accumulate one shifted interval */
783 	offset -= timekeeper.cycle_interval << shift;
784 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
785 
786 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
787 	while (timekeeper.xtime_nsec >= nsecps) {
788 		timekeeper.xtime_nsec -= nsecps;
789 		xtime.tv_sec++;
790 		second_overflow();
791 	}
792 
793 	/* Accumulate raw time */
794 	raw_nsecs = timekeeper.raw_interval << shift;
795 	raw_nsecs += raw_time.tv_nsec;
796 	if (raw_nsecs >= NSEC_PER_SEC) {
797 		u64 raw_secs = raw_nsecs;
798 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
799 		raw_time.tv_sec += raw_secs;
800 	}
801 	raw_time.tv_nsec = raw_nsecs;
802 
803 	/* Accumulate error between NTP and clock interval */
804 	timekeeper.ntp_error += tick_length << shift;
805 	timekeeper.ntp_error -=
806 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
807 				(timekeeper.ntp_error_shift + shift);
808 
809 	return offset;
810 }
811 
812 
813 /**
814  * update_wall_time - Uses the current clocksource to increment the wall time
815  *
816  * Called from the timer interrupt, must hold a write on xtime_lock.
817  */
818 static void update_wall_time(void)
819 {
820 	struct clocksource *clock;
821 	cycle_t offset;
822 	int shift = 0, maxshift;
823 
824 	/* Make sure we're fully resumed: */
825 	if (unlikely(timekeeping_suspended))
826 		return;
827 
828 	clock = timekeeper.clock;
829 
830 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
831 	offset = timekeeper.cycle_interval;
832 #else
833 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
834 #endif
835 	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
836 
837 	/*
838 	 * With NO_HZ we may have to accumulate many cycle_intervals
839 	 * (think "ticks") worth of time at once. To do this efficiently,
840 	 * we calculate the largest doubling multiple of cycle_intervals
841 	 * that is smaller then the offset. We then accumulate that
842 	 * chunk in one go, and then try to consume the next smaller
843 	 * doubled multiple.
844 	 */
845 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
846 	shift = max(0, shift);
847 	/* Bound shift to one less then what overflows tick_length */
848 	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
849 	shift = min(shift, maxshift);
850 	while (offset >= timekeeper.cycle_interval) {
851 		offset = logarithmic_accumulation(offset, shift);
852 		if(offset < timekeeper.cycle_interval<<shift)
853 			shift--;
854 	}
855 
856 	/* correct the clock when NTP error is too big */
857 	timekeeping_adjust(offset);
858 
859 	/*
860 	 * Since in the loop above, we accumulate any amount of time
861 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
862 	 * xtime_nsec to be fairly small after the loop. Further, if we're
863 	 * slightly speeding the clocksource up in timekeeping_adjust(),
864 	 * its possible the required corrective factor to xtime_nsec could
865 	 * cause it to underflow.
866 	 *
867 	 * Now, we cannot simply roll the accumulated second back, since
868 	 * the NTP subsystem has been notified via second_overflow. So
869 	 * instead we push xtime_nsec forward by the amount we underflowed,
870 	 * and add that amount into the error.
871 	 *
872 	 * We'll correct this error next time through this function, when
873 	 * xtime_nsec is not as small.
874 	 */
875 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
876 		s64 neg = -(s64)timekeeper.xtime_nsec;
877 		timekeeper.xtime_nsec = 0;
878 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
879 	}
880 
881 
882 	/*
883 	 * Store full nanoseconds into xtime after rounding it up and
884 	 * add the remainder to the error difference.
885 	 */
886 	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
887 	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
888 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
889 				timekeeper.ntp_error_shift;
890 
891 	/*
892 	 * Finally, make sure that after the rounding
893 	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
894 	 */
895 	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
896 		xtime.tv_nsec -= NSEC_PER_SEC;
897 		xtime.tv_sec++;
898 		second_overflow();
899 	}
900 
901 	/* check to see if there is a new clocksource to use */
902 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
903 				timekeeper.mult);
904 }
905 
906 /**
907  * getboottime - Return the real time of system boot.
908  * @ts:		pointer to the timespec to be set
909  *
910  * Returns the wall-time of boot in a timespec.
911  *
912  * This is based on the wall_to_monotonic offset and the total suspend
913  * time. Calls to settimeofday will affect the value returned (which
914  * basically means that however wrong your real time clock is at boot time,
915  * you get the right time here).
916  */
917 void getboottime(struct timespec *ts)
918 {
919 	struct timespec boottime = {
920 		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
921 		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
922 	};
923 
924 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
925 }
926 EXPORT_SYMBOL_GPL(getboottime);
927 
928 
929 /**
930  * get_monotonic_boottime - Returns monotonic time since boot
931  * @ts:		pointer to the timespec to be set
932  *
933  * Returns the monotonic time since boot in a timespec.
934  *
935  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
936  * includes the time spent in suspend.
937  */
938 void get_monotonic_boottime(struct timespec *ts)
939 {
940 	struct timespec tomono, sleep;
941 	unsigned int seq;
942 	s64 nsecs;
943 
944 	WARN_ON(timekeeping_suspended);
945 
946 	do {
947 		seq = read_seqbegin(&xtime_lock);
948 		*ts = xtime;
949 		tomono = wall_to_monotonic;
950 		sleep = total_sleep_time;
951 		nsecs = timekeeping_get_ns();
952 
953 	} while (read_seqretry(&xtime_lock, seq));
954 
955 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
956 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
957 }
958 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
959 
960 /**
961  * ktime_get_boottime - Returns monotonic time since boot in a ktime
962  *
963  * Returns the monotonic time since boot in a ktime
964  *
965  * This is similar to CLOCK_MONTONIC/ktime_get, but also
966  * includes the time spent in suspend.
967  */
968 ktime_t ktime_get_boottime(void)
969 {
970 	struct timespec ts;
971 
972 	get_monotonic_boottime(&ts);
973 	return timespec_to_ktime(ts);
974 }
975 EXPORT_SYMBOL_GPL(ktime_get_boottime);
976 
977 /**
978  * monotonic_to_bootbased - Convert the monotonic time to boot based.
979  * @ts:		pointer to the timespec to be converted
980  */
981 void monotonic_to_bootbased(struct timespec *ts)
982 {
983 	*ts = timespec_add(*ts, total_sleep_time);
984 }
985 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
986 
987 unsigned long get_seconds(void)
988 {
989 	return xtime.tv_sec;
990 }
991 EXPORT_SYMBOL(get_seconds);
992 
993 struct timespec __current_kernel_time(void)
994 {
995 	return xtime;
996 }
997 
998 struct timespec current_kernel_time(void)
999 {
1000 	struct timespec now;
1001 	unsigned long seq;
1002 
1003 	do {
1004 		seq = read_seqbegin(&xtime_lock);
1005 
1006 		now = xtime;
1007 	} while (read_seqretry(&xtime_lock, seq));
1008 
1009 	return now;
1010 }
1011 EXPORT_SYMBOL(current_kernel_time);
1012 
1013 struct timespec get_monotonic_coarse(void)
1014 {
1015 	struct timespec now, mono;
1016 	unsigned long seq;
1017 
1018 	do {
1019 		seq = read_seqbegin(&xtime_lock);
1020 
1021 		now = xtime;
1022 		mono = wall_to_monotonic;
1023 	} while (read_seqretry(&xtime_lock, seq));
1024 
1025 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1026 				now.tv_nsec + mono.tv_nsec);
1027 	return now;
1028 }
1029 
1030 /*
1031  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1032  * without sampling the sequence number in xtime_lock.
1033  * jiffies is defined in the linker script...
1034  */
1035 void do_timer(unsigned long ticks)
1036 {
1037 	jiffies_64 += ticks;
1038 	update_wall_time();
1039 	calc_global_load(ticks);
1040 }
1041 
1042 /**
1043  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1044  *    and sleep offsets.
1045  * @xtim:	pointer to timespec to be set with xtime
1046  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1047  * @sleep:	pointer to timespec to be set with time in suspend
1048  */
1049 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1050 				struct timespec *wtom, struct timespec *sleep)
1051 {
1052 	unsigned long seq;
1053 
1054 	do {
1055 		seq = read_seqbegin(&xtime_lock);
1056 		*xtim = xtime;
1057 		*wtom = wall_to_monotonic;
1058 		*sleep = total_sleep_time;
1059 	} while (read_seqretry(&xtime_lock, seq));
1060 }
1061 
1062 /**
1063  * xtime_update() - advances the timekeeping infrastructure
1064  * @ticks:	number of ticks, that have elapsed since the last call.
1065  *
1066  * Must be called with interrupts disabled.
1067  */
1068 void xtime_update(unsigned long ticks)
1069 {
1070 	write_seqlock(&xtime_lock);
1071 	do_timer(ticks);
1072 	write_sequnlock(&xtime_lock);
1073 }
1074