xref: /openbmc/linux/kernel/time/timekeeping.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25 
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29 
30 #define TK_CLEAR_NTP		(1 << 0)
31 #define TK_MIRROR		(1 << 1)
32 #define TK_CLOCK_WAS_SET	(1 << 2)
33 
34 enum timekeeping_adv_mode {
35 	/* Update timekeeper when a tick has passed */
36 	TK_ADV_TICK,
37 
38 	/* Update timekeeper on a direct frequency change */
39 	TK_ADV_FREQ
40 };
41 
42 DEFINE_RAW_SPINLOCK(timekeeper_lock);
43 
44 /*
45  * The most important data for readout fits into a single 64 byte
46  * cache line.
47  */
48 static struct {
49 	seqcount_raw_spinlock_t	seq;
50 	struct timekeeper	timekeeper;
51 } tk_core ____cacheline_aligned = {
52 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
53 };
54 
55 static struct timekeeper shadow_timekeeper;
56 
57 /**
58  * struct tk_fast - NMI safe timekeeper
59  * @seq:	Sequence counter for protecting updates. The lowest bit
60  *		is the index for the tk_read_base array
61  * @base:	tk_read_base array. Access is indexed by the lowest bit of
62  *		@seq.
63  *
64  * See @update_fast_timekeeper() below.
65  */
66 struct tk_fast {
67 	seqcount_raw_spinlock_t	seq;
68 	struct tk_read_base	base[2];
69 };
70 
71 /* Suspend-time cycles value for halted fast timekeeper. */
72 static u64 cycles_at_suspend;
73 
74 static u64 dummy_clock_read(struct clocksource *cs)
75 {
76 	return cycles_at_suspend;
77 }
78 
79 static struct clocksource dummy_clock = {
80 	.read = dummy_clock_read,
81 };
82 
83 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
84 	.seq     = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_mono.seq, &timekeeper_lock),
85 	.base[0] = { .clock = &dummy_clock, },
86 	.base[1] = { .clock = &dummy_clock, },
87 };
88 
89 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
90 	.seq     = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_raw.seq, &timekeeper_lock),
91 	.base[0] = { .clock = &dummy_clock, },
92 	.base[1] = { .clock = &dummy_clock, },
93 };
94 
95 /* flag for if timekeeping is suspended */
96 int __read_mostly timekeeping_suspended;
97 
98 static inline void tk_normalize_xtime(struct timekeeper *tk)
99 {
100 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
101 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
102 		tk->xtime_sec++;
103 	}
104 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
105 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
106 		tk->raw_sec++;
107 	}
108 }
109 
110 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
111 {
112 	struct timespec64 ts;
113 
114 	ts.tv_sec = tk->xtime_sec;
115 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
116 	return ts;
117 }
118 
119 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
120 {
121 	tk->xtime_sec = ts->tv_sec;
122 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
123 }
124 
125 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
126 {
127 	tk->xtime_sec += ts->tv_sec;
128 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
129 	tk_normalize_xtime(tk);
130 }
131 
132 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
133 {
134 	struct timespec64 tmp;
135 
136 	/*
137 	 * Verify consistency of: offset_real = -wall_to_monotonic
138 	 * before modifying anything
139 	 */
140 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
141 					-tk->wall_to_monotonic.tv_nsec);
142 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
143 	tk->wall_to_monotonic = wtm;
144 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
145 	tk->offs_real = timespec64_to_ktime(tmp);
146 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
147 }
148 
149 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
150 {
151 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
152 	/*
153 	 * Timespec representation for VDSO update to avoid 64bit division
154 	 * on every update.
155 	 */
156 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
157 }
158 
159 /*
160  * tk_clock_read - atomic clocksource read() helper
161  *
162  * This helper is necessary to use in the read paths because, while the
163  * seqcount ensures we don't return a bad value while structures are updated,
164  * it doesn't protect from potential crashes. There is the possibility that
165  * the tkr's clocksource may change between the read reference, and the
166  * clock reference passed to the read function.  This can cause crashes if
167  * the wrong clocksource is passed to the wrong read function.
168  * This isn't necessary to use when holding the timekeeper_lock or doing
169  * a read of the fast-timekeeper tkrs (which is protected by its own locking
170  * and update logic).
171  */
172 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
173 {
174 	struct clocksource *clock = READ_ONCE(tkr->clock);
175 
176 	return clock->read(clock);
177 }
178 
179 #ifdef CONFIG_DEBUG_TIMEKEEPING
180 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
181 
182 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
183 {
184 
185 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
186 	const char *name = tk->tkr_mono.clock->name;
187 
188 	if (offset > max_cycles) {
189 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
190 				offset, name, max_cycles);
191 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
192 	} else {
193 		if (offset > (max_cycles >> 1)) {
194 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
195 					offset, name, max_cycles >> 1);
196 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
197 		}
198 	}
199 
200 	if (tk->underflow_seen) {
201 		if (jiffies - tk->last_warning > WARNING_FREQ) {
202 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
203 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
204 			printk_deferred("         Your kernel is probably still fine.\n");
205 			tk->last_warning = jiffies;
206 		}
207 		tk->underflow_seen = 0;
208 	}
209 
210 	if (tk->overflow_seen) {
211 		if (jiffies - tk->last_warning > WARNING_FREQ) {
212 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
213 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
214 			printk_deferred("         Your kernel is probably still fine.\n");
215 			tk->last_warning = jiffies;
216 		}
217 		tk->overflow_seen = 0;
218 	}
219 }
220 
221 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
222 {
223 	struct timekeeper *tk = &tk_core.timekeeper;
224 	u64 now, last, mask, max, delta;
225 	unsigned int seq;
226 
227 	/*
228 	 * Since we're called holding a seqcount, the data may shift
229 	 * under us while we're doing the calculation. This can cause
230 	 * false positives, since we'd note a problem but throw the
231 	 * results away. So nest another seqcount here to atomically
232 	 * grab the points we are checking with.
233 	 */
234 	do {
235 		seq = read_seqcount_begin(&tk_core.seq);
236 		now = tk_clock_read(tkr);
237 		last = tkr->cycle_last;
238 		mask = tkr->mask;
239 		max = tkr->clock->max_cycles;
240 	} while (read_seqcount_retry(&tk_core.seq, seq));
241 
242 	delta = clocksource_delta(now, last, mask);
243 
244 	/*
245 	 * Try to catch underflows by checking if we are seeing small
246 	 * mask-relative negative values.
247 	 */
248 	if (unlikely((~delta & mask) < (mask >> 3))) {
249 		tk->underflow_seen = 1;
250 		delta = 0;
251 	}
252 
253 	/* Cap delta value to the max_cycles values to avoid mult overflows */
254 	if (unlikely(delta > max)) {
255 		tk->overflow_seen = 1;
256 		delta = tkr->clock->max_cycles;
257 	}
258 
259 	return delta;
260 }
261 #else
262 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
263 {
264 }
265 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
266 {
267 	u64 cycle_now, delta;
268 
269 	/* read clocksource */
270 	cycle_now = tk_clock_read(tkr);
271 
272 	/* calculate the delta since the last update_wall_time */
273 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
274 
275 	return delta;
276 }
277 #endif
278 
279 /**
280  * tk_setup_internals - Set up internals to use clocksource clock.
281  *
282  * @tk:		The target timekeeper to setup.
283  * @clock:		Pointer to clocksource.
284  *
285  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
286  * pair and interval request.
287  *
288  * Unless you're the timekeeping code, you should not be using this!
289  */
290 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
291 {
292 	u64 interval;
293 	u64 tmp, ntpinterval;
294 	struct clocksource *old_clock;
295 
296 	++tk->cs_was_changed_seq;
297 	old_clock = tk->tkr_mono.clock;
298 	tk->tkr_mono.clock = clock;
299 	tk->tkr_mono.mask = clock->mask;
300 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
301 
302 	tk->tkr_raw.clock = clock;
303 	tk->tkr_raw.mask = clock->mask;
304 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
305 
306 	/* Do the ns -> cycle conversion first, using original mult */
307 	tmp = NTP_INTERVAL_LENGTH;
308 	tmp <<= clock->shift;
309 	ntpinterval = tmp;
310 	tmp += clock->mult/2;
311 	do_div(tmp, clock->mult);
312 	if (tmp == 0)
313 		tmp = 1;
314 
315 	interval = (u64) tmp;
316 	tk->cycle_interval = interval;
317 
318 	/* Go back from cycles -> shifted ns */
319 	tk->xtime_interval = interval * clock->mult;
320 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
321 	tk->raw_interval = interval * clock->mult;
322 
323 	 /* if changing clocks, convert xtime_nsec shift units */
324 	if (old_clock) {
325 		int shift_change = clock->shift - old_clock->shift;
326 		if (shift_change < 0) {
327 			tk->tkr_mono.xtime_nsec >>= -shift_change;
328 			tk->tkr_raw.xtime_nsec >>= -shift_change;
329 		} else {
330 			tk->tkr_mono.xtime_nsec <<= shift_change;
331 			tk->tkr_raw.xtime_nsec <<= shift_change;
332 		}
333 	}
334 
335 	tk->tkr_mono.shift = clock->shift;
336 	tk->tkr_raw.shift = clock->shift;
337 
338 	tk->ntp_error = 0;
339 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
340 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
341 
342 	/*
343 	 * The timekeeper keeps its own mult values for the currently
344 	 * active clocksource. These value will be adjusted via NTP
345 	 * to counteract clock drifting.
346 	 */
347 	tk->tkr_mono.mult = clock->mult;
348 	tk->tkr_raw.mult = clock->mult;
349 	tk->ntp_err_mult = 0;
350 	tk->skip_second_overflow = 0;
351 }
352 
353 /* Timekeeper helper functions. */
354 
355 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
356 static u32 default_arch_gettimeoffset(void) { return 0; }
357 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
358 #else
359 static inline u32 arch_gettimeoffset(void) { return 0; }
360 #endif
361 
362 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
363 {
364 	u64 nsec;
365 
366 	nsec = delta * tkr->mult + tkr->xtime_nsec;
367 	nsec >>= tkr->shift;
368 
369 	/* If arch requires, add in get_arch_timeoffset() */
370 	return nsec + arch_gettimeoffset();
371 }
372 
373 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
374 {
375 	u64 delta;
376 
377 	delta = timekeeping_get_delta(tkr);
378 	return timekeeping_delta_to_ns(tkr, delta);
379 }
380 
381 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
382 {
383 	u64 delta;
384 
385 	/* calculate the delta since the last update_wall_time */
386 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
387 	return timekeeping_delta_to_ns(tkr, delta);
388 }
389 
390 /**
391  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
392  * @tkr: Timekeeping readout base from which we take the update
393  *
394  * We want to use this from any context including NMI and tracing /
395  * instrumenting the timekeeping code itself.
396  *
397  * Employ the latch technique; see @raw_write_seqcount_latch.
398  *
399  * So if a NMI hits the update of base[0] then it will use base[1]
400  * which is still consistent. In the worst case this can result is a
401  * slightly wrong timestamp (a few nanoseconds). See
402  * @ktime_get_mono_fast_ns.
403  */
404 static void update_fast_timekeeper(const struct tk_read_base *tkr,
405 				   struct tk_fast *tkf)
406 {
407 	struct tk_read_base *base = tkf->base;
408 
409 	/* Force readers off to base[1] */
410 	raw_write_seqcount_latch(&tkf->seq);
411 
412 	/* Update base[0] */
413 	memcpy(base, tkr, sizeof(*base));
414 
415 	/* Force readers back to base[0] */
416 	raw_write_seqcount_latch(&tkf->seq);
417 
418 	/* Update base[1] */
419 	memcpy(base + 1, base, sizeof(*base));
420 }
421 
422 /**
423  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
424  *
425  * This timestamp is not guaranteed to be monotonic across an update.
426  * The timestamp is calculated by:
427  *
428  *	now = base_mono + clock_delta * slope
429  *
430  * So if the update lowers the slope, readers who are forced to the
431  * not yet updated second array are still using the old steeper slope.
432  *
433  * tmono
434  * ^
435  * |    o  n
436  * |   o n
437  * |  u
438  * | o
439  * |o
440  * |12345678---> reader order
441  *
442  * o = old slope
443  * u = update
444  * n = new slope
445  *
446  * So reader 6 will observe time going backwards versus reader 5.
447  *
448  * While other CPUs are likely to be able observe that, the only way
449  * for a CPU local observation is when an NMI hits in the middle of
450  * the update. Timestamps taken from that NMI context might be ahead
451  * of the following timestamps. Callers need to be aware of that and
452  * deal with it.
453  */
454 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
455 {
456 	struct tk_read_base *tkr;
457 	unsigned int seq;
458 	u64 now;
459 
460 	do {
461 		seq = raw_read_seqcount_latch(&tkf->seq);
462 		tkr = tkf->base + (seq & 0x01);
463 		now = ktime_to_ns(tkr->base);
464 
465 		now += timekeeping_delta_to_ns(tkr,
466 				clocksource_delta(
467 					tk_clock_read(tkr),
468 					tkr->cycle_last,
469 					tkr->mask));
470 	} while (read_seqcount_retry(&tkf->seq, seq));
471 
472 	return now;
473 }
474 
475 u64 ktime_get_mono_fast_ns(void)
476 {
477 	return __ktime_get_fast_ns(&tk_fast_mono);
478 }
479 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
480 
481 u64 ktime_get_raw_fast_ns(void)
482 {
483 	return __ktime_get_fast_ns(&tk_fast_raw);
484 }
485 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
486 
487 /**
488  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
489  *
490  * To keep it NMI safe since we're accessing from tracing, we're not using a
491  * separate timekeeper with updates to monotonic clock and boot offset
492  * protected with seqcounts. This has the following minor side effects:
493  *
494  * (1) Its possible that a timestamp be taken after the boot offset is updated
495  * but before the timekeeper is updated. If this happens, the new boot offset
496  * is added to the old timekeeping making the clock appear to update slightly
497  * earlier:
498  *    CPU 0                                        CPU 1
499  *    timekeeping_inject_sleeptime64()
500  *    __timekeeping_inject_sleeptime(tk, delta);
501  *                                                 timestamp();
502  *    timekeeping_update(tk, TK_CLEAR_NTP...);
503  *
504  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
505  * partially updated.  Since the tk->offs_boot update is a rare event, this
506  * should be a rare occurrence which postprocessing should be able to handle.
507  */
508 u64 notrace ktime_get_boot_fast_ns(void)
509 {
510 	struct timekeeper *tk = &tk_core.timekeeper;
511 
512 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
513 }
514 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
515 
516 
517 /*
518  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
519  */
520 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
521 {
522 	struct tk_read_base *tkr;
523 	unsigned int seq;
524 	u64 now;
525 
526 	do {
527 		seq = raw_read_seqcount_latch(&tkf->seq);
528 		tkr = tkf->base + (seq & 0x01);
529 		now = ktime_to_ns(tkr->base_real);
530 
531 		now += timekeeping_delta_to_ns(tkr,
532 				clocksource_delta(
533 					tk_clock_read(tkr),
534 					tkr->cycle_last,
535 					tkr->mask));
536 	} while (read_seqcount_retry(&tkf->seq, seq));
537 
538 	return now;
539 }
540 
541 /**
542  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
543  */
544 u64 ktime_get_real_fast_ns(void)
545 {
546 	return __ktime_get_real_fast_ns(&tk_fast_mono);
547 }
548 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
549 
550 /**
551  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
552  * @tk: Timekeeper to snapshot.
553  *
554  * It generally is unsafe to access the clocksource after timekeeping has been
555  * suspended, so take a snapshot of the readout base of @tk and use it as the
556  * fast timekeeper's readout base while suspended.  It will return the same
557  * number of cycles every time until timekeeping is resumed at which time the
558  * proper readout base for the fast timekeeper will be restored automatically.
559  */
560 static void halt_fast_timekeeper(const struct timekeeper *tk)
561 {
562 	static struct tk_read_base tkr_dummy;
563 	const struct tk_read_base *tkr = &tk->tkr_mono;
564 
565 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
566 	cycles_at_suspend = tk_clock_read(tkr);
567 	tkr_dummy.clock = &dummy_clock;
568 	tkr_dummy.base_real = tkr->base + tk->offs_real;
569 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
570 
571 	tkr = &tk->tkr_raw;
572 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
573 	tkr_dummy.clock = &dummy_clock;
574 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
575 }
576 
577 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
578 
579 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
580 {
581 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
582 }
583 
584 /**
585  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
586  */
587 int pvclock_gtod_register_notifier(struct notifier_block *nb)
588 {
589 	struct timekeeper *tk = &tk_core.timekeeper;
590 	unsigned long flags;
591 	int ret;
592 
593 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
594 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
595 	update_pvclock_gtod(tk, true);
596 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
597 
598 	return ret;
599 }
600 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
601 
602 /**
603  * pvclock_gtod_unregister_notifier - unregister a pvclock
604  * timedata update listener
605  */
606 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
607 {
608 	unsigned long flags;
609 	int ret;
610 
611 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
612 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
613 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
614 
615 	return ret;
616 }
617 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
618 
619 /*
620  * tk_update_leap_state - helper to update the next_leap_ktime
621  */
622 static inline void tk_update_leap_state(struct timekeeper *tk)
623 {
624 	tk->next_leap_ktime = ntp_get_next_leap();
625 	if (tk->next_leap_ktime != KTIME_MAX)
626 		/* Convert to monotonic time */
627 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
628 }
629 
630 /*
631  * Update the ktime_t based scalar nsec members of the timekeeper
632  */
633 static inline void tk_update_ktime_data(struct timekeeper *tk)
634 {
635 	u64 seconds;
636 	u32 nsec;
637 
638 	/*
639 	 * The xtime based monotonic readout is:
640 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
641 	 * The ktime based monotonic readout is:
642 	 *	nsec = base_mono + now();
643 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
644 	 */
645 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
646 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
647 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
648 
649 	/*
650 	 * The sum of the nanoseconds portions of xtime and
651 	 * wall_to_monotonic can be greater/equal one second. Take
652 	 * this into account before updating tk->ktime_sec.
653 	 */
654 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
655 	if (nsec >= NSEC_PER_SEC)
656 		seconds++;
657 	tk->ktime_sec = seconds;
658 
659 	/* Update the monotonic raw base */
660 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
661 }
662 
663 /* must hold timekeeper_lock */
664 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
665 {
666 	if (action & TK_CLEAR_NTP) {
667 		tk->ntp_error = 0;
668 		ntp_clear();
669 	}
670 
671 	tk_update_leap_state(tk);
672 	tk_update_ktime_data(tk);
673 
674 	update_vsyscall(tk);
675 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
676 
677 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
678 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
679 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
680 
681 	if (action & TK_CLOCK_WAS_SET)
682 		tk->clock_was_set_seq++;
683 	/*
684 	 * The mirroring of the data to the shadow-timekeeper needs
685 	 * to happen last here to ensure we don't over-write the
686 	 * timekeeper structure on the next update with stale data
687 	 */
688 	if (action & TK_MIRROR)
689 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
690 		       sizeof(tk_core.timekeeper));
691 }
692 
693 /**
694  * timekeeping_forward_now - update clock to the current time
695  *
696  * Forward the current clock to update its state since the last call to
697  * update_wall_time(). This is useful before significant clock changes,
698  * as it avoids having to deal with this time offset explicitly.
699  */
700 static void timekeeping_forward_now(struct timekeeper *tk)
701 {
702 	u64 cycle_now, delta;
703 
704 	cycle_now = tk_clock_read(&tk->tkr_mono);
705 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
706 	tk->tkr_mono.cycle_last = cycle_now;
707 	tk->tkr_raw.cycle_last  = cycle_now;
708 
709 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
710 
711 	/* If arch requires, add in get_arch_timeoffset() */
712 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
713 
714 
715 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
716 
717 	/* If arch requires, add in get_arch_timeoffset() */
718 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
719 
720 	tk_normalize_xtime(tk);
721 }
722 
723 /**
724  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
725  * @ts:		pointer to the timespec to be set
726  *
727  * Returns the time of day in a timespec64 (WARN if suspended).
728  */
729 void ktime_get_real_ts64(struct timespec64 *ts)
730 {
731 	struct timekeeper *tk = &tk_core.timekeeper;
732 	unsigned int seq;
733 	u64 nsecs;
734 
735 	WARN_ON(timekeeping_suspended);
736 
737 	do {
738 		seq = read_seqcount_begin(&tk_core.seq);
739 
740 		ts->tv_sec = tk->xtime_sec;
741 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
742 
743 	} while (read_seqcount_retry(&tk_core.seq, seq));
744 
745 	ts->tv_nsec = 0;
746 	timespec64_add_ns(ts, nsecs);
747 }
748 EXPORT_SYMBOL(ktime_get_real_ts64);
749 
750 ktime_t ktime_get(void)
751 {
752 	struct timekeeper *tk = &tk_core.timekeeper;
753 	unsigned int seq;
754 	ktime_t base;
755 	u64 nsecs;
756 
757 	WARN_ON(timekeeping_suspended);
758 
759 	do {
760 		seq = read_seqcount_begin(&tk_core.seq);
761 		base = tk->tkr_mono.base;
762 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
763 
764 	} while (read_seqcount_retry(&tk_core.seq, seq));
765 
766 	return ktime_add_ns(base, nsecs);
767 }
768 EXPORT_SYMBOL_GPL(ktime_get);
769 
770 u32 ktime_get_resolution_ns(void)
771 {
772 	struct timekeeper *tk = &tk_core.timekeeper;
773 	unsigned int seq;
774 	u32 nsecs;
775 
776 	WARN_ON(timekeeping_suspended);
777 
778 	do {
779 		seq = read_seqcount_begin(&tk_core.seq);
780 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
781 	} while (read_seqcount_retry(&tk_core.seq, seq));
782 
783 	return nsecs;
784 }
785 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
786 
787 static ktime_t *offsets[TK_OFFS_MAX] = {
788 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
789 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
790 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
791 };
792 
793 ktime_t ktime_get_with_offset(enum tk_offsets offs)
794 {
795 	struct timekeeper *tk = &tk_core.timekeeper;
796 	unsigned int seq;
797 	ktime_t base, *offset = offsets[offs];
798 	u64 nsecs;
799 
800 	WARN_ON(timekeeping_suspended);
801 
802 	do {
803 		seq = read_seqcount_begin(&tk_core.seq);
804 		base = ktime_add(tk->tkr_mono.base, *offset);
805 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
806 
807 	} while (read_seqcount_retry(&tk_core.seq, seq));
808 
809 	return ktime_add_ns(base, nsecs);
810 
811 }
812 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
813 
814 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
815 {
816 	struct timekeeper *tk = &tk_core.timekeeper;
817 	unsigned int seq;
818 	ktime_t base, *offset = offsets[offs];
819 	u64 nsecs;
820 
821 	WARN_ON(timekeeping_suspended);
822 
823 	do {
824 		seq = read_seqcount_begin(&tk_core.seq);
825 		base = ktime_add(tk->tkr_mono.base, *offset);
826 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
827 
828 	} while (read_seqcount_retry(&tk_core.seq, seq));
829 
830 	return ktime_add_ns(base, nsecs);
831 }
832 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
833 
834 /**
835  * ktime_mono_to_any() - convert mononotic time to any other time
836  * @tmono:	time to convert.
837  * @offs:	which offset to use
838  */
839 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
840 {
841 	ktime_t *offset = offsets[offs];
842 	unsigned int seq;
843 	ktime_t tconv;
844 
845 	do {
846 		seq = read_seqcount_begin(&tk_core.seq);
847 		tconv = ktime_add(tmono, *offset);
848 	} while (read_seqcount_retry(&tk_core.seq, seq));
849 
850 	return tconv;
851 }
852 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
853 
854 /**
855  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
856  */
857 ktime_t ktime_get_raw(void)
858 {
859 	struct timekeeper *tk = &tk_core.timekeeper;
860 	unsigned int seq;
861 	ktime_t base;
862 	u64 nsecs;
863 
864 	do {
865 		seq = read_seqcount_begin(&tk_core.seq);
866 		base = tk->tkr_raw.base;
867 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
868 
869 	} while (read_seqcount_retry(&tk_core.seq, seq));
870 
871 	return ktime_add_ns(base, nsecs);
872 }
873 EXPORT_SYMBOL_GPL(ktime_get_raw);
874 
875 /**
876  * ktime_get_ts64 - get the monotonic clock in timespec64 format
877  * @ts:		pointer to timespec variable
878  *
879  * The function calculates the monotonic clock from the realtime
880  * clock and the wall_to_monotonic offset and stores the result
881  * in normalized timespec64 format in the variable pointed to by @ts.
882  */
883 void ktime_get_ts64(struct timespec64 *ts)
884 {
885 	struct timekeeper *tk = &tk_core.timekeeper;
886 	struct timespec64 tomono;
887 	unsigned int seq;
888 	u64 nsec;
889 
890 	WARN_ON(timekeeping_suspended);
891 
892 	do {
893 		seq = read_seqcount_begin(&tk_core.seq);
894 		ts->tv_sec = tk->xtime_sec;
895 		nsec = timekeeping_get_ns(&tk->tkr_mono);
896 		tomono = tk->wall_to_monotonic;
897 
898 	} while (read_seqcount_retry(&tk_core.seq, seq));
899 
900 	ts->tv_sec += tomono.tv_sec;
901 	ts->tv_nsec = 0;
902 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
903 }
904 EXPORT_SYMBOL_GPL(ktime_get_ts64);
905 
906 /**
907  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
908  *
909  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
910  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
911  * works on both 32 and 64 bit systems. On 32 bit systems the readout
912  * covers ~136 years of uptime which should be enough to prevent
913  * premature wrap arounds.
914  */
915 time64_t ktime_get_seconds(void)
916 {
917 	struct timekeeper *tk = &tk_core.timekeeper;
918 
919 	WARN_ON(timekeeping_suspended);
920 	return tk->ktime_sec;
921 }
922 EXPORT_SYMBOL_GPL(ktime_get_seconds);
923 
924 /**
925  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
926  *
927  * Returns the wall clock seconds since 1970. This replaces the
928  * get_seconds() interface which is not y2038 safe on 32bit systems.
929  *
930  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
931  * 32bit systems the access must be protected with the sequence
932  * counter to provide "atomic" access to the 64bit tk->xtime_sec
933  * value.
934  */
935 time64_t ktime_get_real_seconds(void)
936 {
937 	struct timekeeper *tk = &tk_core.timekeeper;
938 	time64_t seconds;
939 	unsigned int seq;
940 
941 	if (IS_ENABLED(CONFIG_64BIT))
942 		return tk->xtime_sec;
943 
944 	do {
945 		seq = read_seqcount_begin(&tk_core.seq);
946 		seconds = tk->xtime_sec;
947 
948 	} while (read_seqcount_retry(&tk_core.seq, seq));
949 
950 	return seconds;
951 }
952 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
953 
954 /**
955  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
956  * but without the sequence counter protect. This internal function
957  * is called just when timekeeping lock is already held.
958  */
959 noinstr time64_t __ktime_get_real_seconds(void)
960 {
961 	struct timekeeper *tk = &tk_core.timekeeper;
962 
963 	return tk->xtime_sec;
964 }
965 
966 /**
967  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
968  * @systime_snapshot:	pointer to struct receiving the system time snapshot
969  */
970 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
971 {
972 	struct timekeeper *tk = &tk_core.timekeeper;
973 	unsigned int seq;
974 	ktime_t base_raw;
975 	ktime_t base_real;
976 	u64 nsec_raw;
977 	u64 nsec_real;
978 	u64 now;
979 
980 	WARN_ON_ONCE(timekeeping_suspended);
981 
982 	do {
983 		seq = read_seqcount_begin(&tk_core.seq);
984 		now = tk_clock_read(&tk->tkr_mono);
985 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
986 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
987 		base_real = ktime_add(tk->tkr_mono.base,
988 				      tk_core.timekeeper.offs_real);
989 		base_raw = tk->tkr_raw.base;
990 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
991 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
992 	} while (read_seqcount_retry(&tk_core.seq, seq));
993 
994 	systime_snapshot->cycles = now;
995 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
996 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
997 }
998 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
999 
1000 /* Scale base by mult/div checking for overflow */
1001 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1002 {
1003 	u64 tmp, rem;
1004 
1005 	tmp = div64_u64_rem(*base, div, &rem);
1006 
1007 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1008 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1009 		return -EOVERFLOW;
1010 	tmp *= mult;
1011 
1012 	rem = div64_u64(rem * mult, div);
1013 	*base = tmp + rem;
1014 	return 0;
1015 }
1016 
1017 /**
1018  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1019  * @history:			Snapshot representing start of history
1020  * @partial_history_cycles:	Cycle offset into history (fractional part)
1021  * @total_history_cycles:	Total history length in cycles
1022  * @discontinuity:		True indicates clock was set on history period
1023  * @ts:				Cross timestamp that should be adjusted using
1024  *	partial/total ratio
1025  *
1026  * Helper function used by get_device_system_crosststamp() to correct the
1027  * crosstimestamp corresponding to the start of the current interval to the
1028  * system counter value (timestamp point) provided by the driver. The
1029  * total_history_* quantities are the total history starting at the provided
1030  * reference point and ending at the start of the current interval. The cycle
1031  * count between the driver timestamp point and the start of the current
1032  * interval is partial_history_cycles.
1033  */
1034 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1035 					 u64 partial_history_cycles,
1036 					 u64 total_history_cycles,
1037 					 bool discontinuity,
1038 					 struct system_device_crosststamp *ts)
1039 {
1040 	struct timekeeper *tk = &tk_core.timekeeper;
1041 	u64 corr_raw, corr_real;
1042 	bool interp_forward;
1043 	int ret;
1044 
1045 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1046 		return 0;
1047 
1048 	/* Interpolate shortest distance from beginning or end of history */
1049 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1050 	partial_history_cycles = interp_forward ?
1051 		total_history_cycles - partial_history_cycles :
1052 		partial_history_cycles;
1053 
1054 	/*
1055 	 * Scale the monotonic raw time delta by:
1056 	 *	partial_history_cycles / total_history_cycles
1057 	 */
1058 	corr_raw = (u64)ktime_to_ns(
1059 		ktime_sub(ts->sys_monoraw, history->raw));
1060 	ret = scale64_check_overflow(partial_history_cycles,
1061 				     total_history_cycles, &corr_raw);
1062 	if (ret)
1063 		return ret;
1064 
1065 	/*
1066 	 * If there is a discontinuity in the history, scale monotonic raw
1067 	 *	correction by:
1068 	 *	mult(real)/mult(raw) yielding the realtime correction
1069 	 * Otherwise, calculate the realtime correction similar to monotonic
1070 	 *	raw calculation
1071 	 */
1072 	if (discontinuity) {
1073 		corr_real = mul_u64_u32_div
1074 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1075 	} else {
1076 		corr_real = (u64)ktime_to_ns(
1077 			ktime_sub(ts->sys_realtime, history->real));
1078 		ret = scale64_check_overflow(partial_history_cycles,
1079 					     total_history_cycles, &corr_real);
1080 		if (ret)
1081 			return ret;
1082 	}
1083 
1084 	/* Fixup monotonic raw and real time time values */
1085 	if (interp_forward) {
1086 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1087 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1088 	} else {
1089 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1090 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 /*
1097  * cycle_between - true if test occurs chronologically between before and after
1098  */
1099 static bool cycle_between(u64 before, u64 test, u64 after)
1100 {
1101 	if (test > before && test < after)
1102 		return true;
1103 	if (test < before && before > after)
1104 		return true;
1105 	return false;
1106 }
1107 
1108 /**
1109  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1110  * @get_time_fn:	Callback to get simultaneous device time and
1111  *	system counter from the device driver
1112  * @ctx:		Context passed to get_time_fn()
1113  * @history_begin:	Historical reference point used to interpolate system
1114  *	time when counter provided by the driver is before the current interval
1115  * @xtstamp:		Receives simultaneously captured system and device time
1116  *
1117  * Reads a timestamp from a device and correlates it to system time
1118  */
1119 int get_device_system_crosststamp(int (*get_time_fn)
1120 				  (ktime_t *device_time,
1121 				   struct system_counterval_t *sys_counterval,
1122 				   void *ctx),
1123 				  void *ctx,
1124 				  struct system_time_snapshot *history_begin,
1125 				  struct system_device_crosststamp *xtstamp)
1126 {
1127 	struct system_counterval_t system_counterval;
1128 	struct timekeeper *tk = &tk_core.timekeeper;
1129 	u64 cycles, now, interval_start;
1130 	unsigned int clock_was_set_seq = 0;
1131 	ktime_t base_real, base_raw;
1132 	u64 nsec_real, nsec_raw;
1133 	u8 cs_was_changed_seq;
1134 	unsigned int seq;
1135 	bool do_interp;
1136 	int ret;
1137 
1138 	do {
1139 		seq = read_seqcount_begin(&tk_core.seq);
1140 		/*
1141 		 * Try to synchronously capture device time and a system
1142 		 * counter value calling back into the device driver
1143 		 */
1144 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1145 		if (ret)
1146 			return ret;
1147 
1148 		/*
1149 		 * Verify that the clocksource associated with the captured
1150 		 * system counter value is the same as the currently installed
1151 		 * timekeeper clocksource
1152 		 */
1153 		if (tk->tkr_mono.clock != system_counterval.cs)
1154 			return -ENODEV;
1155 		cycles = system_counterval.cycles;
1156 
1157 		/*
1158 		 * Check whether the system counter value provided by the
1159 		 * device driver is on the current timekeeping interval.
1160 		 */
1161 		now = tk_clock_read(&tk->tkr_mono);
1162 		interval_start = tk->tkr_mono.cycle_last;
1163 		if (!cycle_between(interval_start, cycles, now)) {
1164 			clock_was_set_seq = tk->clock_was_set_seq;
1165 			cs_was_changed_seq = tk->cs_was_changed_seq;
1166 			cycles = interval_start;
1167 			do_interp = true;
1168 		} else {
1169 			do_interp = false;
1170 		}
1171 
1172 		base_real = ktime_add(tk->tkr_mono.base,
1173 				      tk_core.timekeeper.offs_real);
1174 		base_raw = tk->tkr_raw.base;
1175 
1176 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1177 						     system_counterval.cycles);
1178 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1179 						    system_counterval.cycles);
1180 	} while (read_seqcount_retry(&tk_core.seq, seq));
1181 
1182 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1183 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1184 
1185 	/*
1186 	 * Interpolate if necessary, adjusting back from the start of the
1187 	 * current interval
1188 	 */
1189 	if (do_interp) {
1190 		u64 partial_history_cycles, total_history_cycles;
1191 		bool discontinuity;
1192 
1193 		/*
1194 		 * Check that the counter value occurs after the provided
1195 		 * history reference and that the history doesn't cross a
1196 		 * clocksource change
1197 		 */
1198 		if (!history_begin ||
1199 		    !cycle_between(history_begin->cycles,
1200 				   system_counterval.cycles, cycles) ||
1201 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1202 			return -EINVAL;
1203 		partial_history_cycles = cycles - system_counterval.cycles;
1204 		total_history_cycles = cycles - history_begin->cycles;
1205 		discontinuity =
1206 			history_begin->clock_was_set_seq != clock_was_set_seq;
1207 
1208 		ret = adjust_historical_crosststamp(history_begin,
1209 						    partial_history_cycles,
1210 						    total_history_cycles,
1211 						    discontinuity, xtstamp);
1212 		if (ret)
1213 			return ret;
1214 	}
1215 
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1219 
1220 /**
1221  * do_settimeofday64 - Sets the time of day.
1222  * @ts:     pointer to the timespec64 variable containing the new time
1223  *
1224  * Sets the time of day to the new time and update NTP and notify hrtimers
1225  */
1226 int do_settimeofday64(const struct timespec64 *ts)
1227 {
1228 	struct timekeeper *tk = &tk_core.timekeeper;
1229 	struct timespec64 ts_delta, xt;
1230 	unsigned long flags;
1231 	int ret = 0;
1232 
1233 	if (!timespec64_valid_settod(ts))
1234 		return -EINVAL;
1235 
1236 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1237 	write_seqcount_begin(&tk_core.seq);
1238 
1239 	timekeeping_forward_now(tk);
1240 
1241 	xt = tk_xtime(tk);
1242 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1243 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1244 
1245 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1246 		ret = -EINVAL;
1247 		goto out;
1248 	}
1249 
1250 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1251 
1252 	tk_set_xtime(tk, ts);
1253 out:
1254 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1255 
1256 	write_seqcount_end(&tk_core.seq);
1257 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1258 
1259 	/* signal hrtimers about time change */
1260 	clock_was_set();
1261 
1262 	if (!ret)
1263 		audit_tk_injoffset(ts_delta);
1264 
1265 	return ret;
1266 }
1267 EXPORT_SYMBOL(do_settimeofday64);
1268 
1269 /**
1270  * timekeeping_inject_offset - Adds or subtracts from the current time.
1271  * @tv:		pointer to the timespec variable containing the offset
1272  *
1273  * Adds or subtracts an offset value from the current time.
1274  */
1275 static int timekeeping_inject_offset(const struct timespec64 *ts)
1276 {
1277 	struct timekeeper *tk = &tk_core.timekeeper;
1278 	unsigned long flags;
1279 	struct timespec64 tmp;
1280 	int ret = 0;
1281 
1282 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1283 		return -EINVAL;
1284 
1285 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1286 	write_seqcount_begin(&tk_core.seq);
1287 
1288 	timekeeping_forward_now(tk);
1289 
1290 	/* Make sure the proposed value is valid */
1291 	tmp = timespec64_add(tk_xtime(tk), *ts);
1292 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1293 	    !timespec64_valid_settod(&tmp)) {
1294 		ret = -EINVAL;
1295 		goto error;
1296 	}
1297 
1298 	tk_xtime_add(tk, ts);
1299 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1300 
1301 error: /* even if we error out, we forwarded the time, so call update */
1302 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1303 
1304 	write_seqcount_end(&tk_core.seq);
1305 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1306 
1307 	/* signal hrtimers about time change */
1308 	clock_was_set();
1309 
1310 	return ret;
1311 }
1312 
1313 /*
1314  * Indicates if there is an offset between the system clock and the hardware
1315  * clock/persistent clock/rtc.
1316  */
1317 int persistent_clock_is_local;
1318 
1319 /*
1320  * Adjust the time obtained from the CMOS to be UTC time instead of
1321  * local time.
1322  *
1323  * This is ugly, but preferable to the alternatives.  Otherwise we
1324  * would either need to write a program to do it in /etc/rc (and risk
1325  * confusion if the program gets run more than once; it would also be
1326  * hard to make the program warp the clock precisely n hours)  or
1327  * compile in the timezone information into the kernel.  Bad, bad....
1328  *
1329  *						- TYT, 1992-01-01
1330  *
1331  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1332  * as real UNIX machines always do it. This avoids all headaches about
1333  * daylight saving times and warping kernel clocks.
1334  */
1335 void timekeeping_warp_clock(void)
1336 {
1337 	if (sys_tz.tz_minuteswest != 0) {
1338 		struct timespec64 adjust;
1339 
1340 		persistent_clock_is_local = 1;
1341 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1342 		adjust.tv_nsec = 0;
1343 		timekeeping_inject_offset(&adjust);
1344 	}
1345 }
1346 
1347 /**
1348  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1349  *
1350  */
1351 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1352 {
1353 	tk->tai_offset = tai_offset;
1354 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1355 }
1356 
1357 /**
1358  * change_clocksource - Swaps clocksources if a new one is available
1359  *
1360  * Accumulates current time interval and initializes new clocksource
1361  */
1362 static int change_clocksource(void *data)
1363 {
1364 	struct timekeeper *tk = &tk_core.timekeeper;
1365 	struct clocksource *new, *old;
1366 	unsigned long flags;
1367 
1368 	new = (struct clocksource *) data;
1369 
1370 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1371 	write_seqcount_begin(&tk_core.seq);
1372 
1373 	timekeeping_forward_now(tk);
1374 	/*
1375 	 * If the cs is in module, get a module reference. Succeeds
1376 	 * for built-in code (owner == NULL) as well.
1377 	 */
1378 	if (try_module_get(new->owner)) {
1379 		if (!new->enable || new->enable(new) == 0) {
1380 			old = tk->tkr_mono.clock;
1381 			tk_setup_internals(tk, new);
1382 			if (old->disable)
1383 				old->disable(old);
1384 			module_put(old->owner);
1385 		} else {
1386 			module_put(new->owner);
1387 		}
1388 	}
1389 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1390 
1391 	write_seqcount_end(&tk_core.seq);
1392 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1393 
1394 	return 0;
1395 }
1396 
1397 /**
1398  * timekeeping_notify - Install a new clock source
1399  * @clock:		pointer to the clock source
1400  *
1401  * This function is called from clocksource.c after a new, better clock
1402  * source has been registered. The caller holds the clocksource_mutex.
1403  */
1404 int timekeeping_notify(struct clocksource *clock)
1405 {
1406 	struct timekeeper *tk = &tk_core.timekeeper;
1407 
1408 	if (tk->tkr_mono.clock == clock)
1409 		return 0;
1410 	stop_machine(change_clocksource, clock, NULL);
1411 	tick_clock_notify();
1412 	return tk->tkr_mono.clock == clock ? 0 : -1;
1413 }
1414 
1415 /**
1416  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1417  * @ts:		pointer to the timespec64 to be set
1418  *
1419  * Returns the raw monotonic time (completely un-modified by ntp)
1420  */
1421 void ktime_get_raw_ts64(struct timespec64 *ts)
1422 {
1423 	struct timekeeper *tk = &tk_core.timekeeper;
1424 	unsigned int seq;
1425 	u64 nsecs;
1426 
1427 	do {
1428 		seq = read_seqcount_begin(&tk_core.seq);
1429 		ts->tv_sec = tk->raw_sec;
1430 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1431 
1432 	} while (read_seqcount_retry(&tk_core.seq, seq));
1433 
1434 	ts->tv_nsec = 0;
1435 	timespec64_add_ns(ts, nsecs);
1436 }
1437 EXPORT_SYMBOL(ktime_get_raw_ts64);
1438 
1439 
1440 /**
1441  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1442  */
1443 int timekeeping_valid_for_hres(void)
1444 {
1445 	struct timekeeper *tk = &tk_core.timekeeper;
1446 	unsigned int seq;
1447 	int ret;
1448 
1449 	do {
1450 		seq = read_seqcount_begin(&tk_core.seq);
1451 
1452 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1453 
1454 	} while (read_seqcount_retry(&tk_core.seq, seq));
1455 
1456 	return ret;
1457 }
1458 
1459 /**
1460  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1461  */
1462 u64 timekeeping_max_deferment(void)
1463 {
1464 	struct timekeeper *tk = &tk_core.timekeeper;
1465 	unsigned int seq;
1466 	u64 ret;
1467 
1468 	do {
1469 		seq = read_seqcount_begin(&tk_core.seq);
1470 
1471 		ret = tk->tkr_mono.clock->max_idle_ns;
1472 
1473 	} while (read_seqcount_retry(&tk_core.seq, seq));
1474 
1475 	return ret;
1476 }
1477 
1478 /**
1479  * read_persistent_clock64 -  Return time from the persistent clock.
1480  *
1481  * Weak dummy function for arches that do not yet support it.
1482  * Reads the time from the battery backed persistent clock.
1483  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1484  *
1485  *  XXX - Do be sure to remove it once all arches implement it.
1486  */
1487 void __weak read_persistent_clock64(struct timespec64 *ts)
1488 {
1489 	ts->tv_sec = 0;
1490 	ts->tv_nsec = 0;
1491 }
1492 
1493 /**
1494  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1495  *                                        from the boot.
1496  *
1497  * Weak dummy function for arches that do not yet support it.
1498  * wall_time	- current time as returned by persistent clock
1499  * boot_offset	- offset that is defined as wall_time - boot_time
1500  * The default function calculates offset based on the current value of
1501  * local_clock(). This way architectures that support sched_clock() but don't
1502  * support dedicated boot time clock will provide the best estimate of the
1503  * boot time.
1504  */
1505 void __weak __init
1506 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1507 				     struct timespec64 *boot_offset)
1508 {
1509 	read_persistent_clock64(wall_time);
1510 	*boot_offset = ns_to_timespec64(local_clock());
1511 }
1512 
1513 /*
1514  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1515  *
1516  * The flag starts of false and is only set when a suspend reaches
1517  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1518  * timekeeper clocksource is not stopping across suspend and has been
1519  * used to update sleep time. If the timekeeper clocksource has stopped
1520  * then the flag stays true and is used by the RTC resume code to decide
1521  * whether sleeptime must be injected and if so the flag gets false then.
1522  *
1523  * If a suspend fails before reaching timekeeping_resume() then the flag
1524  * stays false and prevents erroneous sleeptime injection.
1525  */
1526 static bool suspend_timing_needed;
1527 
1528 /* Flag for if there is a persistent clock on this platform */
1529 static bool persistent_clock_exists;
1530 
1531 /*
1532  * timekeeping_init - Initializes the clocksource and common timekeeping values
1533  */
1534 void __init timekeeping_init(void)
1535 {
1536 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1537 	struct timekeeper *tk = &tk_core.timekeeper;
1538 	struct clocksource *clock;
1539 	unsigned long flags;
1540 
1541 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1542 	if (timespec64_valid_settod(&wall_time) &&
1543 	    timespec64_to_ns(&wall_time) > 0) {
1544 		persistent_clock_exists = true;
1545 	} else if (timespec64_to_ns(&wall_time) != 0) {
1546 		pr_warn("Persistent clock returned invalid value");
1547 		wall_time = (struct timespec64){0};
1548 	}
1549 
1550 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1551 		boot_offset = (struct timespec64){0};
1552 
1553 	/*
1554 	 * We want set wall_to_mono, so the following is true:
1555 	 * wall time + wall_to_mono = boot time
1556 	 */
1557 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1558 
1559 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1560 	write_seqcount_begin(&tk_core.seq);
1561 	ntp_init();
1562 
1563 	clock = clocksource_default_clock();
1564 	if (clock->enable)
1565 		clock->enable(clock);
1566 	tk_setup_internals(tk, clock);
1567 
1568 	tk_set_xtime(tk, &wall_time);
1569 	tk->raw_sec = 0;
1570 
1571 	tk_set_wall_to_mono(tk, wall_to_mono);
1572 
1573 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1574 
1575 	write_seqcount_end(&tk_core.seq);
1576 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1577 }
1578 
1579 /* time in seconds when suspend began for persistent clock */
1580 static struct timespec64 timekeeping_suspend_time;
1581 
1582 /**
1583  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1584  * @delta: pointer to a timespec delta value
1585  *
1586  * Takes a timespec offset measuring a suspend interval and properly
1587  * adds the sleep offset to the timekeeping variables.
1588  */
1589 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1590 					   const struct timespec64 *delta)
1591 {
1592 	if (!timespec64_valid_strict(delta)) {
1593 		printk_deferred(KERN_WARNING
1594 				"__timekeeping_inject_sleeptime: Invalid "
1595 				"sleep delta value!\n");
1596 		return;
1597 	}
1598 	tk_xtime_add(tk, delta);
1599 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1600 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1601 	tk_debug_account_sleep_time(delta);
1602 }
1603 
1604 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1605 /**
1606  * We have three kinds of time sources to use for sleep time
1607  * injection, the preference order is:
1608  * 1) non-stop clocksource
1609  * 2) persistent clock (ie: RTC accessible when irqs are off)
1610  * 3) RTC
1611  *
1612  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1613  * If system has neither 1) nor 2), 3) will be used finally.
1614  *
1615  *
1616  * If timekeeping has injected sleeptime via either 1) or 2),
1617  * 3) becomes needless, so in this case we don't need to call
1618  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1619  * means.
1620  */
1621 bool timekeeping_rtc_skipresume(void)
1622 {
1623 	return !suspend_timing_needed;
1624 }
1625 
1626 /**
1627  * 1) can be determined whether to use or not only when doing
1628  * timekeeping_resume() which is invoked after rtc_suspend(),
1629  * so we can't skip rtc_suspend() surely if system has 1).
1630  *
1631  * But if system has 2), 2) will definitely be used, so in this
1632  * case we don't need to call rtc_suspend(), and this is what
1633  * timekeeping_rtc_skipsuspend() means.
1634  */
1635 bool timekeeping_rtc_skipsuspend(void)
1636 {
1637 	return persistent_clock_exists;
1638 }
1639 
1640 /**
1641  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1642  * @delta: pointer to a timespec64 delta value
1643  *
1644  * This hook is for architectures that cannot support read_persistent_clock64
1645  * because their RTC/persistent clock is only accessible when irqs are enabled.
1646  * and also don't have an effective nonstop clocksource.
1647  *
1648  * This function should only be called by rtc_resume(), and allows
1649  * a suspend offset to be injected into the timekeeping values.
1650  */
1651 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1652 {
1653 	struct timekeeper *tk = &tk_core.timekeeper;
1654 	unsigned long flags;
1655 
1656 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1657 	write_seqcount_begin(&tk_core.seq);
1658 
1659 	suspend_timing_needed = false;
1660 
1661 	timekeeping_forward_now(tk);
1662 
1663 	__timekeeping_inject_sleeptime(tk, delta);
1664 
1665 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1666 
1667 	write_seqcount_end(&tk_core.seq);
1668 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1669 
1670 	/* signal hrtimers about time change */
1671 	clock_was_set();
1672 }
1673 #endif
1674 
1675 /**
1676  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1677  */
1678 void timekeeping_resume(void)
1679 {
1680 	struct timekeeper *tk = &tk_core.timekeeper;
1681 	struct clocksource *clock = tk->tkr_mono.clock;
1682 	unsigned long flags;
1683 	struct timespec64 ts_new, ts_delta;
1684 	u64 cycle_now, nsec;
1685 	bool inject_sleeptime = false;
1686 
1687 	read_persistent_clock64(&ts_new);
1688 
1689 	clockevents_resume();
1690 	clocksource_resume();
1691 
1692 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1693 	write_seqcount_begin(&tk_core.seq);
1694 
1695 	/*
1696 	 * After system resumes, we need to calculate the suspended time and
1697 	 * compensate it for the OS time. There are 3 sources that could be
1698 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1699 	 * device.
1700 	 *
1701 	 * One specific platform may have 1 or 2 or all of them, and the
1702 	 * preference will be:
1703 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1704 	 * The less preferred source will only be tried if there is no better
1705 	 * usable source. The rtc part is handled separately in rtc core code.
1706 	 */
1707 	cycle_now = tk_clock_read(&tk->tkr_mono);
1708 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1709 	if (nsec > 0) {
1710 		ts_delta = ns_to_timespec64(nsec);
1711 		inject_sleeptime = true;
1712 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1713 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1714 		inject_sleeptime = true;
1715 	}
1716 
1717 	if (inject_sleeptime) {
1718 		suspend_timing_needed = false;
1719 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1720 	}
1721 
1722 	/* Re-base the last cycle value */
1723 	tk->tkr_mono.cycle_last = cycle_now;
1724 	tk->tkr_raw.cycle_last  = cycle_now;
1725 
1726 	tk->ntp_error = 0;
1727 	timekeeping_suspended = 0;
1728 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1729 	write_seqcount_end(&tk_core.seq);
1730 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1731 
1732 	touch_softlockup_watchdog();
1733 
1734 	tick_resume();
1735 	hrtimers_resume();
1736 }
1737 
1738 int timekeeping_suspend(void)
1739 {
1740 	struct timekeeper *tk = &tk_core.timekeeper;
1741 	unsigned long flags;
1742 	struct timespec64		delta, delta_delta;
1743 	static struct timespec64	old_delta;
1744 	struct clocksource *curr_clock;
1745 	u64 cycle_now;
1746 
1747 	read_persistent_clock64(&timekeeping_suspend_time);
1748 
1749 	/*
1750 	 * On some systems the persistent_clock can not be detected at
1751 	 * timekeeping_init by its return value, so if we see a valid
1752 	 * value returned, update the persistent_clock_exists flag.
1753 	 */
1754 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1755 		persistent_clock_exists = true;
1756 
1757 	suspend_timing_needed = true;
1758 
1759 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1760 	write_seqcount_begin(&tk_core.seq);
1761 	timekeeping_forward_now(tk);
1762 	timekeeping_suspended = 1;
1763 
1764 	/*
1765 	 * Since we've called forward_now, cycle_last stores the value
1766 	 * just read from the current clocksource. Save this to potentially
1767 	 * use in suspend timing.
1768 	 */
1769 	curr_clock = tk->tkr_mono.clock;
1770 	cycle_now = tk->tkr_mono.cycle_last;
1771 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1772 
1773 	if (persistent_clock_exists) {
1774 		/*
1775 		 * To avoid drift caused by repeated suspend/resumes,
1776 		 * which each can add ~1 second drift error,
1777 		 * try to compensate so the difference in system time
1778 		 * and persistent_clock time stays close to constant.
1779 		 */
1780 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1781 		delta_delta = timespec64_sub(delta, old_delta);
1782 		if (abs(delta_delta.tv_sec) >= 2) {
1783 			/*
1784 			 * if delta_delta is too large, assume time correction
1785 			 * has occurred and set old_delta to the current delta.
1786 			 */
1787 			old_delta = delta;
1788 		} else {
1789 			/* Otherwise try to adjust old_system to compensate */
1790 			timekeeping_suspend_time =
1791 				timespec64_add(timekeeping_suspend_time, delta_delta);
1792 		}
1793 	}
1794 
1795 	timekeeping_update(tk, TK_MIRROR);
1796 	halt_fast_timekeeper(tk);
1797 	write_seqcount_end(&tk_core.seq);
1798 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1799 
1800 	tick_suspend();
1801 	clocksource_suspend();
1802 	clockevents_suspend();
1803 
1804 	return 0;
1805 }
1806 
1807 /* sysfs resume/suspend bits for timekeeping */
1808 static struct syscore_ops timekeeping_syscore_ops = {
1809 	.resume		= timekeeping_resume,
1810 	.suspend	= timekeeping_suspend,
1811 };
1812 
1813 static int __init timekeeping_init_ops(void)
1814 {
1815 	register_syscore_ops(&timekeeping_syscore_ops);
1816 	return 0;
1817 }
1818 device_initcall(timekeeping_init_ops);
1819 
1820 /*
1821  * Apply a multiplier adjustment to the timekeeper
1822  */
1823 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1824 							 s64 offset,
1825 							 s32 mult_adj)
1826 {
1827 	s64 interval = tk->cycle_interval;
1828 
1829 	if (mult_adj == 0) {
1830 		return;
1831 	} else if (mult_adj == -1) {
1832 		interval = -interval;
1833 		offset = -offset;
1834 	} else if (mult_adj != 1) {
1835 		interval *= mult_adj;
1836 		offset *= mult_adj;
1837 	}
1838 
1839 	/*
1840 	 * So the following can be confusing.
1841 	 *
1842 	 * To keep things simple, lets assume mult_adj == 1 for now.
1843 	 *
1844 	 * When mult_adj != 1, remember that the interval and offset values
1845 	 * have been appropriately scaled so the math is the same.
1846 	 *
1847 	 * The basic idea here is that we're increasing the multiplier
1848 	 * by one, this causes the xtime_interval to be incremented by
1849 	 * one cycle_interval. This is because:
1850 	 *	xtime_interval = cycle_interval * mult
1851 	 * So if mult is being incremented by one:
1852 	 *	xtime_interval = cycle_interval * (mult + 1)
1853 	 * Its the same as:
1854 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1855 	 * Which can be shortened to:
1856 	 *	xtime_interval += cycle_interval
1857 	 *
1858 	 * So offset stores the non-accumulated cycles. Thus the current
1859 	 * time (in shifted nanoseconds) is:
1860 	 *	now = (offset * adj) + xtime_nsec
1861 	 * Now, even though we're adjusting the clock frequency, we have
1862 	 * to keep time consistent. In other words, we can't jump back
1863 	 * in time, and we also want to avoid jumping forward in time.
1864 	 *
1865 	 * So given the same offset value, we need the time to be the same
1866 	 * both before and after the freq adjustment.
1867 	 *	now = (offset * adj_1) + xtime_nsec_1
1868 	 *	now = (offset * adj_2) + xtime_nsec_2
1869 	 * So:
1870 	 *	(offset * adj_1) + xtime_nsec_1 =
1871 	 *		(offset * adj_2) + xtime_nsec_2
1872 	 * And we know:
1873 	 *	adj_2 = adj_1 + 1
1874 	 * So:
1875 	 *	(offset * adj_1) + xtime_nsec_1 =
1876 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1877 	 *	(offset * adj_1) + xtime_nsec_1 =
1878 	 *		(offset * adj_1) + offset + xtime_nsec_2
1879 	 * Canceling the sides:
1880 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1881 	 * Which gives us:
1882 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1883 	 * Which simplfies to:
1884 	 *	xtime_nsec -= offset
1885 	 */
1886 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1887 		/* NTP adjustment caused clocksource mult overflow */
1888 		WARN_ON_ONCE(1);
1889 		return;
1890 	}
1891 
1892 	tk->tkr_mono.mult += mult_adj;
1893 	tk->xtime_interval += interval;
1894 	tk->tkr_mono.xtime_nsec -= offset;
1895 }
1896 
1897 /*
1898  * Adjust the timekeeper's multiplier to the correct frequency
1899  * and also to reduce the accumulated error value.
1900  */
1901 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1902 {
1903 	u32 mult;
1904 
1905 	/*
1906 	 * Determine the multiplier from the current NTP tick length.
1907 	 * Avoid expensive division when the tick length doesn't change.
1908 	 */
1909 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1910 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1911 	} else {
1912 		tk->ntp_tick = ntp_tick_length();
1913 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1914 				 tk->xtime_remainder, tk->cycle_interval);
1915 	}
1916 
1917 	/*
1918 	 * If the clock is behind the NTP time, increase the multiplier by 1
1919 	 * to catch up with it. If it's ahead and there was a remainder in the
1920 	 * tick division, the clock will slow down. Otherwise it will stay
1921 	 * ahead until the tick length changes to a non-divisible value.
1922 	 */
1923 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1924 	mult += tk->ntp_err_mult;
1925 
1926 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1927 
1928 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1929 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1930 			> tk->tkr_mono.clock->maxadj))) {
1931 		printk_once(KERN_WARNING
1932 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1933 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1934 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1935 	}
1936 
1937 	/*
1938 	 * It may be possible that when we entered this function, xtime_nsec
1939 	 * was very small.  Further, if we're slightly speeding the clocksource
1940 	 * in the code above, its possible the required corrective factor to
1941 	 * xtime_nsec could cause it to underflow.
1942 	 *
1943 	 * Now, since we have already accumulated the second and the NTP
1944 	 * subsystem has been notified via second_overflow(), we need to skip
1945 	 * the next update.
1946 	 */
1947 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1948 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1949 							tk->tkr_mono.shift;
1950 		tk->xtime_sec--;
1951 		tk->skip_second_overflow = 1;
1952 	}
1953 }
1954 
1955 /**
1956  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1957  *
1958  * Helper function that accumulates the nsecs greater than a second
1959  * from the xtime_nsec field to the xtime_secs field.
1960  * It also calls into the NTP code to handle leapsecond processing.
1961  *
1962  */
1963 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1964 {
1965 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1966 	unsigned int clock_set = 0;
1967 
1968 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1969 		int leap;
1970 
1971 		tk->tkr_mono.xtime_nsec -= nsecps;
1972 		tk->xtime_sec++;
1973 
1974 		/*
1975 		 * Skip NTP update if this second was accumulated before,
1976 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1977 		 */
1978 		if (unlikely(tk->skip_second_overflow)) {
1979 			tk->skip_second_overflow = 0;
1980 			continue;
1981 		}
1982 
1983 		/* Figure out if its a leap sec and apply if needed */
1984 		leap = second_overflow(tk->xtime_sec);
1985 		if (unlikely(leap)) {
1986 			struct timespec64 ts;
1987 
1988 			tk->xtime_sec += leap;
1989 
1990 			ts.tv_sec = leap;
1991 			ts.tv_nsec = 0;
1992 			tk_set_wall_to_mono(tk,
1993 				timespec64_sub(tk->wall_to_monotonic, ts));
1994 
1995 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1996 
1997 			clock_set = TK_CLOCK_WAS_SET;
1998 		}
1999 	}
2000 	return clock_set;
2001 }
2002 
2003 /**
2004  * logarithmic_accumulation - shifted accumulation of cycles
2005  *
2006  * This functions accumulates a shifted interval of cycles into
2007  * a shifted interval nanoseconds. Allows for O(log) accumulation
2008  * loop.
2009  *
2010  * Returns the unconsumed cycles.
2011  */
2012 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2013 				    u32 shift, unsigned int *clock_set)
2014 {
2015 	u64 interval = tk->cycle_interval << shift;
2016 	u64 snsec_per_sec;
2017 
2018 	/* If the offset is smaller than a shifted interval, do nothing */
2019 	if (offset < interval)
2020 		return offset;
2021 
2022 	/* Accumulate one shifted interval */
2023 	offset -= interval;
2024 	tk->tkr_mono.cycle_last += interval;
2025 	tk->tkr_raw.cycle_last  += interval;
2026 
2027 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2028 	*clock_set |= accumulate_nsecs_to_secs(tk);
2029 
2030 	/* Accumulate raw time */
2031 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2032 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2033 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2034 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2035 		tk->raw_sec++;
2036 	}
2037 
2038 	/* Accumulate error between NTP and clock interval */
2039 	tk->ntp_error += tk->ntp_tick << shift;
2040 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2041 						(tk->ntp_error_shift + shift);
2042 
2043 	return offset;
2044 }
2045 
2046 /*
2047  * timekeeping_advance - Updates the timekeeper to the current time and
2048  * current NTP tick length
2049  */
2050 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2051 {
2052 	struct timekeeper *real_tk = &tk_core.timekeeper;
2053 	struct timekeeper *tk = &shadow_timekeeper;
2054 	u64 offset;
2055 	int shift = 0, maxshift;
2056 	unsigned int clock_set = 0;
2057 	unsigned long flags;
2058 
2059 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2060 
2061 	/* Make sure we're fully resumed: */
2062 	if (unlikely(timekeeping_suspended))
2063 		goto out;
2064 
2065 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2066 	offset = real_tk->cycle_interval;
2067 
2068 	if (mode != TK_ADV_TICK)
2069 		goto out;
2070 #else
2071 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2072 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2073 
2074 	/* Check if there's really nothing to do */
2075 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2076 		goto out;
2077 #endif
2078 
2079 	/* Do some additional sanity checking */
2080 	timekeeping_check_update(tk, offset);
2081 
2082 	/*
2083 	 * With NO_HZ we may have to accumulate many cycle_intervals
2084 	 * (think "ticks") worth of time at once. To do this efficiently,
2085 	 * we calculate the largest doubling multiple of cycle_intervals
2086 	 * that is smaller than the offset.  We then accumulate that
2087 	 * chunk in one go, and then try to consume the next smaller
2088 	 * doubled multiple.
2089 	 */
2090 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2091 	shift = max(0, shift);
2092 	/* Bound shift to one less than what overflows tick_length */
2093 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2094 	shift = min(shift, maxshift);
2095 	while (offset >= tk->cycle_interval) {
2096 		offset = logarithmic_accumulation(tk, offset, shift,
2097 							&clock_set);
2098 		if (offset < tk->cycle_interval<<shift)
2099 			shift--;
2100 	}
2101 
2102 	/* Adjust the multiplier to correct NTP error */
2103 	timekeeping_adjust(tk, offset);
2104 
2105 	/*
2106 	 * Finally, make sure that after the rounding
2107 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2108 	 */
2109 	clock_set |= accumulate_nsecs_to_secs(tk);
2110 
2111 	write_seqcount_begin(&tk_core.seq);
2112 	/*
2113 	 * Update the real timekeeper.
2114 	 *
2115 	 * We could avoid this memcpy by switching pointers, but that
2116 	 * requires changes to all other timekeeper usage sites as
2117 	 * well, i.e. move the timekeeper pointer getter into the
2118 	 * spinlocked/seqcount protected sections. And we trade this
2119 	 * memcpy under the tk_core.seq against one before we start
2120 	 * updating.
2121 	 */
2122 	timekeeping_update(tk, clock_set);
2123 	memcpy(real_tk, tk, sizeof(*tk));
2124 	/* The memcpy must come last. Do not put anything here! */
2125 	write_seqcount_end(&tk_core.seq);
2126 out:
2127 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2128 	if (clock_set)
2129 		/* Have to call _delayed version, since in irq context*/
2130 		clock_was_set_delayed();
2131 }
2132 
2133 /**
2134  * update_wall_time - Uses the current clocksource to increment the wall time
2135  *
2136  */
2137 void update_wall_time(void)
2138 {
2139 	timekeeping_advance(TK_ADV_TICK);
2140 }
2141 
2142 /**
2143  * getboottime64 - Return the real time of system boot.
2144  * @ts:		pointer to the timespec64 to be set
2145  *
2146  * Returns the wall-time of boot in a timespec64.
2147  *
2148  * This is based on the wall_to_monotonic offset and the total suspend
2149  * time. Calls to settimeofday will affect the value returned (which
2150  * basically means that however wrong your real time clock is at boot time,
2151  * you get the right time here).
2152  */
2153 void getboottime64(struct timespec64 *ts)
2154 {
2155 	struct timekeeper *tk = &tk_core.timekeeper;
2156 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2157 
2158 	*ts = ktime_to_timespec64(t);
2159 }
2160 EXPORT_SYMBOL_GPL(getboottime64);
2161 
2162 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2163 {
2164 	struct timekeeper *tk = &tk_core.timekeeper;
2165 	unsigned int seq;
2166 
2167 	do {
2168 		seq = read_seqcount_begin(&tk_core.seq);
2169 
2170 		*ts = tk_xtime(tk);
2171 	} while (read_seqcount_retry(&tk_core.seq, seq));
2172 }
2173 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2174 
2175 void ktime_get_coarse_ts64(struct timespec64 *ts)
2176 {
2177 	struct timekeeper *tk = &tk_core.timekeeper;
2178 	struct timespec64 now, mono;
2179 	unsigned int seq;
2180 
2181 	do {
2182 		seq = read_seqcount_begin(&tk_core.seq);
2183 
2184 		now = tk_xtime(tk);
2185 		mono = tk->wall_to_monotonic;
2186 	} while (read_seqcount_retry(&tk_core.seq, seq));
2187 
2188 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2189 				now.tv_nsec + mono.tv_nsec);
2190 }
2191 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2192 
2193 /*
2194  * Must hold jiffies_lock
2195  */
2196 void do_timer(unsigned long ticks)
2197 {
2198 	jiffies_64 += ticks;
2199 	calc_global_load();
2200 }
2201 
2202 /**
2203  * ktime_get_update_offsets_now - hrtimer helper
2204  * @cwsseq:	pointer to check and store the clock was set sequence number
2205  * @offs_real:	pointer to storage for monotonic -> realtime offset
2206  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2207  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2208  *
2209  * Returns current monotonic time and updates the offsets if the
2210  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2211  * different.
2212  *
2213  * Called from hrtimer_interrupt() or retrigger_next_event()
2214  */
2215 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2216 				     ktime_t *offs_boot, ktime_t *offs_tai)
2217 {
2218 	struct timekeeper *tk = &tk_core.timekeeper;
2219 	unsigned int seq;
2220 	ktime_t base;
2221 	u64 nsecs;
2222 
2223 	do {
2224 		seq = read_seqcount_begin(&tk_core.seq);
2225 
2226 		base = tk->tkr_mono.base;
2227 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2228 		base = ktime_add_ns(base, nsecs);
2229 
2230 		if (*cwsseq != tk->clock_was_set_seq) {
2231 			*cwsseq = tk->clock_was_set_seq;
2232 			*offs_real = tk->offs_real;
2233 			*offs_boot = tk->offs_boot;
2234 			*offs_tai = tk->offs_tai;
2235 		}
2236 
2237 		/* Handle leapsecond insertion adjustments */
2238 		if (unlikely(base >= tk->next_leap_ktime))
2239 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2240 
2241 	} while (read_seqcount_retry(&tk_core.seq, seq));
2242 
2243 	return base;
2244 }
2245 
2246 /**
2247  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2248  */
2249 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2250 {
2251 	if (txc->modes & ADJ_ADJTIME) {
2252 		/* singleshot must not be used with any other mode bits */
2253 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2254 			return -EINVAL;
2255 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2256 		    !capable(CAP_SYS_TIME))
2257 			return -EPERM;
2258 	} else {
2259 		/* In order to modify anything, you gotta be super-user! */
2260 		if (txc->modes && !capable(CAP_SYS_TIME))
2261 			return -EPERM;
2262 		/*
2263 		 * if the quartz is off by more than 10% then
2264 		 * something is VERY wrong!
2265 		 */
2266 		if (txc->modes & ADJ_TICK &&
2267 		    (txc->tick <  900000/USER_HZ ||
2268 		     txc->tick > 1100000/USER_HZ))
2269 			return -EINVAL;
2270 	}
2271 
2272 	if (txc->modes & ADJ_SETOFFSET) {
2273 		/* In order to inject time, you gotta be super-user! */
2274 		if (!capable(CAP_SYS_TIME))
2275 			return -EPERM;
2276 
2277 		/*
2278 		 * Validate if a timespec/timeval used to inject a time
2279 		 * offset is valid.  Offsets can be postive or negative, so
2280 		 * we don't check tv_sec. The value of the timeval/timespec
2281 		 * is the sum of its fields,but *NOTE*:
2282 		 * The field tv_usec/tv_nsec must always be non-negative and
2283 		 * we can't have more nanoseconds/microseconds than a second.
2284 		 */
2285 		if (txc->time.tv_usec < 0)
2286 			return -EINVAL;
2287 
2288 		if (txc->modes & ADJ_NANO) {
2289 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2290 				return -EINVAL;
2291 		} else {
2292 			if (txc->time.tv_usec >= USEC_PER_SEC)
2293 				return -EINVAL;
2294 		}
2295 	}
2296 
2297 	/*
2298 	 * Check for potential multiplication overflows that can
2299 	 * only happen on 64-bit systems:
2300 	 */
2301 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2302 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2303 			return -EINVAL;
2304 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2305 			return -EINVAL;
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 
2312 /**
2313  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2314  */
2315 int do_adjtimex(struct __kernel_timex *txc)
2316 {
2317 	struct timekeeper *tk = &tk_core.timekeeper;
2318 	struct audit_ntp_data ad;
2319 	unsigned long flags;
2320 	struct timespec64 ts;
2321 	s32 orig_tai, tai;
2322 	int ret;
2323 
2324 	/* Validate the data before disabling interrupts */
2325 	ret = timekeeping_validate_timex(txc);
2326 	if (ret)
2327 		return ret;
2328 
2329 	if (txc->modes & ADJ_SETOFFSET) {
2330 		struct timespec64 delta;
2331 		delta.tv_sec  = txc->time.tv_sec;
2332 		delta.tv_nsec = txc->time.tv_usec;
2333 		if (!(txc->modes & ADJ_NANO))
2334 			delta.tv_nsec *= 1000;
2335 		ret = timekeeping_inject_offset(&delta);
2336 		if (ret)
2337 			return ret;
2338 
2339 		audit_tk_injoffset(delta);
2340 	}
2341 
2342 	audit_ntp_init(&ad);
2343 
2344 	ktime_get_real_ts64(&ts);
2345 
2346 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2347 	write_seqcount_begin(&tk_core.seq);
2348 
2349 	orig_tai = tai = tk->tai_offset;
2350 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2351 
2352 	if (tai != orig_tai) {
2353 		__timekeeping_set_tai_offset(tk, tai);
2354 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2355 	}
2356 	tk_update_leap_state(tk);
2357 
2358 	write_seqcount_end(&tk_core.seq);
2359 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2360 
2361 	audit_ntp_log(&ad);
2362 
2363 	/* Update the multiplier immediately if frequency was set directly */
2364 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2365 		timekeeping_advance(TK_ADV_FREQ);
2366 
2367 	if (tai != orig_tai)
2368 		clock_was_set();
2369 
2370 	ntp_notify_cmos_timer();
2371 
2372 	return ret;
2373 }
2374 
2375 #ifdef CONFIG_NTP_PPS
2376 /**
2377  * hardpps() - Accessor function to NTP __hardpps function
2378  */
2379 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2380 {
2381 	unsigned long flags;
2382 
2383 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2384 	write_seqcount_begin(&tk_core.seq);
2385 
2386 	__hardpps(phase_ts, raw_ts);
2387 
2388 	write_seqcount_end(&tk_core.seq);
2389 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2390 }
2391 EXPORT_SYMBOL(hardpps);
2392 #endif /* CONFIG_NTP_PPS */
2393 
2394 /**
2395  * xtime_update() - advances the timekeeping infrastructure
2396  * @ticks:	number of ticks, that have elapsed since the last call.
2397  *
2398  * Must be called with interrupts disabled.
2399  */
2400 void xtime_update(unsigned long ticks)
2401 {
2402 	raw_spin_lock(&jiffies_lock);
2403 	write_seqcount_begin(&jiffies_seq);
2404 	do_timer(ticks);
2405 	write_seqcount_end(&jiffies_seq);
2406 	raw_spin_unlock(&jiffies_lock);
2407 	update_wall_time();
2408 }
2409