1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/sysdev.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* The shift value of the current clocksource. */ 29 int shift; 30 31 /* Number of clock cycles in one NTP interval. */ 32 cycle_t cycle_interval; 33 /* Number of clock shifted nano seconds in one NTP interval. */ 34 u64 xtime_interval; 35 /* shifted nano seconds left over when rounding cycle_interval */ 36 s64 xtime_remainder; 37 /* Raw nano seconds accumulated per NTP interval. */ 38 u32 raw_interval; 39 40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ 41 u64 xtime_nsec; 42 /* Difference between accumulated time and NTP time in ntp 43 * shifted nano seconds. */ 44 s64 ntp_error; 45 /* Shift conversion between clock shifted nano seconds and 46 * ntp shifted nano seconds. */ 47 int ntp_error_shift; 48 /* NTP adjusted clock multiplier */ 49 u32 mult; 50 }; 51 52 static struct timekeeper timekeeper; 53 54 /** 55 * timekeeper_setup_internals - Set up internals to use clocksource clock. 56 * 57 * @clock: Pointer to clocksource. 58 * 59 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 60 * pair and interval request. 61 * 62 * Unless you're the timekeeping code, you should not be using this! 63 */ 64 static void timekeeper_setup_internals(struct clocksource *clock) 65 { 66 cycle_t interval; 67 u64 tmp, ntpinterval; 68 69 timekeeper.clock = clock; 70 clock->cycle_last = clock->read(clock); 71 72 /* Do the ns -> cycle conversion first, using original mult */ 73 tmp = NTP_INTERVAL_LENGTH; 74 tmp <<= clock->shift; 75 ntpinterval = tmp; 76 tmp += clock->mult/2; 77 do_div(tmp, clock->mult); 78 if (tmp == 0) 79 tmp = 1; 80 81 interval = (cycle_t) tmp; 82 timekeeper.cycle_interval = interval; 83 84 /* Go back from cycles -> shifted ns */ 85 timekeeper.xtime_interval = (u64) interval * clock->mult; 86 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval; 87 timekeeper.raw_interval = 88 ((u64) interval * clock->mult) >> clock->shift; 89 90 timekeeper.xtime_nsec = 0; 91 timekeeper.shift = clock->shift; 92 93 timekeeper.ntp_error = 0; 94 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 95 96 /* 97 * The timekeeper keeps its own mult values for the currently 98 * active clocksource. These value will be adjusted via NTP 99 * to counteract clock drifting. 100 */ 101 timekeeper.mult = clock->mult; 102 } 103 104 /* Timekeeper helper functions. */ 105 static inline s64 timekeeping_get_ns(void) 106 { 107 cycle_t cycle_now, cycle_delta; 108 struct clocksource *clock; 109 110 /* read clocksource: */ 111 clock = timekeeper.clock; 112 cycle_now = clock->read(clock); 113 114 /* calculate the delta since the last update_wall_time: */ 115 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 116 117 /* return delta convert to nanoseconds using ntp adjusted mult. */ 118 return clocksource_cyc2ns(cycle_delta, timekeeper.mult, 119 timekeeper.shift); 120 } 121 122 static inline s64 timekeeping_get_ns_raw(void) 123 { 124 cycle_t cycle_now, cycle_delta; 125 struct clocksource *clock; 126 127 /* read clocksource: */ 128 clock = timekeeper.clock; 129 cycle_now = clock->read(clock); 130 131 /* calculate the delta since the last update_wall_time: */ 132 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 133 134 /* return delta convert to nanoseconds using ntp adjusted mult. */ 135 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 136 } 137 138 /* 139 * This read-write spinlock protects us from races in SMP while 140 * playing with xtime. 141 */ 142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 143 144 145 /* 146 * The current time 147 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 148 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 149 * at zero at system boot time, so wall_to_monotonic will be negative, 150 * however, we will ALWAYS keep the tv_nsec part positive so we can use 151 * the usual normalization. 152 * 153 * wall_to_monotonic is moved after resume from suspend for the monotonic 154 * time not to jump. We need to add total_sleep_time to wall_to_monotonic 155 * to get the real boot based time offset. 156 * 157 * - wall_to_monotonic is no longer the boot time, getboottime must be 158 * used instead. 159 */ 160 static struct timespec xtime __attribute__ ((aligned (16))); 161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16))); 162 static struct timespec total_sleep_time; 163 164 /* 165 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. 166 */ 167 static struct timespec raw_time; 168 169 /* flag for if timekeeping is suspended */ 170 int __read_mostly timekeeping_suspended; 171 172 /* must hold xtime_lock */ 173 void timekeeping_leap_insert(int leapsecond) 174 { 175 xtime.tv_sec += leapsecond; 176 wall_to_monotonic.tv_sec -= leapsecond; 177 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock, 178 timekeeper.mult); 179 } 180 181 /** 182 * timekeeping_forward_now - update clock to the current time 183 * 184 * Forward the current clock to update its state since the last call to 185 * update_wall_time(). This is useful before significant clock changes, 186 * as it avoids having to deal with this time offset explicitly. 187 */ 188 static void timekeeping_forward_now(void) 189 { 190 cycle_t cycle_now, cycle_delta; 191 struct clocksource *clock; 192 s64 nsec; 193 194 clock = timekeeper.clock; 195 cycle_now = clock->read(clock); 196 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 197 clock->cycle_last = cycle_now; 198 199 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, 200 timekeeper.shift); 201 202 /* If arch requires, add in gettimeoffset() */ 203 nsec += arch_gettimeoffset(); 204 205 timespec_add_ns(&xtime, nsec); 206 207 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 208 timespec_add_ns(&raw_time, nsec); 209 } 210 211 /** 212 * getnstimeofday - Returns the time of day in a timespec 213 * @ts: pointer to the timespec to be set 214 * 215 * Returns the time of day in a timespec. 216 */ 217 void getnstimeofday(struct timespec *ts) 218 { 219 unsigned long seq; 220 s64 nsecs; 221 222 WARN_ON(timekeeping_suspended); 223 224 do { 225 seq = read_seqbegin(&xtime_lock); 226 227 *ts = xtime; 228 nsecs = timekeeping_get_ns(); 229 230 /* If arch requires, add in gettimeoffset() */ 231 nsecs += arch_gettimeoffset(); 232 233 } while (read_seqretry(&xtime_lock, seq)); 234 235 timespec_add_ns(ts, nsecs); 236 } 237 238 EXPORT_SYMBOL(getnstimeofday); 239 240 ktime_t ktime_get(void) 241 { 242 unsigned int seq; 243 s64 secs, nsecs; 244 245 WARN_ON(timekeeping_suspended); 246 247 do { 248 seq = read_seqbegin(&xtime_lock); 249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec; 250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; 251 nsecs += timekeeping_get_ns(); 252 253 } while (read_seqretry(&xtime_lock, seq)); 254 /* 255 * Use ktime_set/ktime_add_ns to create a proper ktime on 256 * 32-bit architectures without CONFIG_KTIME_SCALAR. 257 */ 258 return ktime_add_ns(ktime_set(secs, 0), nsecs); 259 } 260 EXPORT_SYMBOL_GPL(ktime_get); 261 262 /** 263 * ktime_get_ts - get the monotonic clock in timespec format 264 * @ts: pointer to timespec variable 265 * 266 * The function calculates the monotonic clock from the realtime 267 * clock and the wall_to_monotonic offset and stores the result 268 * in normalized timespec format in the variable pointed to by @ts. 269 */ 270 void ktime_get_ts(struct timespec *ts) 271 { 272 struct timespec tomono; 273 unsigned int seq; 274 s64 nsecs; 275 276 WARN_ON(timekeeping_suspended); 277 278 do { 279 seq = read_seqbegin(&xtime_lock); 280 *ts = xtime; 281 tomono = wall_to_monotonic; 282 nsecs = timekeeping_get_ns(); 283 284 } while (read_seqretry(&xtime_lock, seq)); 285 286 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 287 ts->tv_nsec + tomono.tv_nsec + nsecs); 288 } 289 EXPORT_SYMBOL_GPL(ktime_get_ts); 290 291 #ifdef CONFIG_NTP_PPS 292 293 /** 294 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 295 * @ts_raw: pointer to the timespec to be set to raw monotonic time 296 * @ts_real: pointer to the timespec to be set to the time of day 297 * 298 * This function reads both the time of day and raw monotonic time at the 299 * same time atomically and stores the resulting timestamps in timespec 300 * format. 301 */ 302 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 303 { 304 unsigned long seq; 305 s64 nsecs_raw, nsecs_real; 306 307 WARN_ON_ONCE(timekeeping_suspended); 308 309 do { 310 u32 arch_offset; 311 312 seq = read_seqbegin(&xtime_lock); 313 314 *ts_raw = raw_time; 315 *ts_real = xtime; 316 317 nsecs_raw = timekeeping_get_ns_raw(); 318 nsecs_real = timekeeping_get_ns(); 319 320 /* If arch requires, add in gettimeoffset() */ 321 arch_offset = arch_gettimeoffset(); 322 nsecs_raw += arch_offset; 323 nsecs_real += arch_offset; 324 325 } while (read_seqretry(&xtime_lock, seq)); 326 327 timespec_add_ns(ts_raw, nsecs_raw); 328 timespec_add_ns(ts_real, nsecs_real); 329 } 330 EXPORT_SYMBOL(getnstime_raw_and_real); 331 332 #endif /* CONFIG_NTP_PPS */ 333 334 /** 335 * do_gettimeofday - Returns the time of day in a timeval 336 * @tv: pointer to the timeval to be set 337 * 338 * NOTE: Users should be converted to using getnstimeofday() 339 */ 340 void do_gettimeofday(struct timeval *tv) 341 { 342 struct timespec now; 343 344 getnstimeofday(&now); 345 tv->tv_sec = now.tv_sec; 346 tv->tv_usec = now.tv_nsec/1000; 347 } 348 349 EXPORT_SYMBOL(do_gettimeofday); 350 /** 351 * do_settimeofday - Sets the time of day 352 * @tv: pointer to the timespec variable containing the new time 353 * 354 * Sets the time of day to the new time and update NTP and notify hrtimers 355 */ 356 int do_settimeofday(struct timespec *tv) 357 { 358 struct timespec ts_delta; 359 unsigned long flags; 360 361 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 362 return -EINVAL; 363 364 write_seqlock_irqsave(&xtime_lock, flags); 365 366 timekeeping_forward_now(); 367 368 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; 369 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; 370 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta); 371 372 xtime = *tv; 373 374 timekeeper.ntp_error = 0; 375 ntp_clear(); 376 377 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock, 378 timekeeper.mult); 379 380 write_sequnlock_irqrestore(&xtime_lock, flags); 381 382 /* signal hrtimers about time change */ 383 clock_was_set(); 384 385 return 0; 386 } 387 388 EXPORT_SYMBOL(do_settimeofday); 389 390 /** 391 * change_clocksource - Swaps clocksources if a new one is available 392 * 393 * Accumulates current time interval and initializes new clocksource 394 */ 395 static int change_clocksource(void *data) 396 { 397 struct clocksource *new, *old; 398 399 new = (struct clocksource *) data; 400 401 timekeeping_forward_now(); 402 if (!new->enable || new->enable(new) == 0) { 403 old = timekeeper.clock; 404 timekeeper_setup_internals(new); 405 if (old->disable) 406 old->disable(old); 407 } 408 return 0; 409 } 410 411 /** 412 * timekeeping_notify - Install a new clock source 413 * @clock: pointer to the clock source 414 * 415 * This function is called from clocksource.c after a new, better clock 416 * source has been registered. The caller holds the clocksource_mutex. 417 */ 418 void timekeeping_notify(struct clocksource *clock) 419 { 420 if (timekeeper.clock == clock) 421 return; 422 stop_machine(change_clocksource, clock, NULL); 423 tick_clock_notify(); 424 } 425 426 /** 427 * ktime_get_real - get the real (wall-) time in ktime_t format 428 * 429 * returns the time in ktime_t format 430 */ 431 ktime_t ktime_get_real(void) 432 { 433 struct timespec now; 434 435 getnstimeofday(&now); 436 437 return timespec_to_ktime(now); 438 } 439 EXPORT_SYMBOL_GPL(ktime_get_real); 440 441 /** 442 * getrawmonotonic - Returns the raw monotonic time in a timespec 443 * @ts: pointer to the timespec to be set 444 * 445 * Returns the raw monotonic time (completely un-modified by ntp) 446 */ 447 void getrawmonotonic(struct timespec *ts) 448 { 449 unsigned long seq; 450 s64 nsecs; 451 452 do { 453 seq = read_seqbegin(&xtime_lock); 454 nsecs = timekeeping_get_ns_raw(); 455 *ts = raw_time; 456 457 } while (read_seqretry(&xtime_lock, seq)); 458 459 timespec_add_ns(ts, nsecs); 460 } 461 EXPORT_SYMBOL(getrawmonotonic); 462 463 464 /** 465 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 466 */ 467 int timekeeping_valid_for_hres(void) 468 { 469 unsigned long seq; 470 int ret; 471 472 do { 473 seq = read_seqbegin(&xtime_lock); 474 475 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 476 477 } while (read_seqretry(&xtime_lock, seq)); 478 479 return ret; 480 } 481 482 /** 483 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 484 * 485 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to 486 * ensure that the clocksource does not change! 487 */ 488 u64 timekeeping_max_deferment(void) 489 { 490 return timekeeper.clock->max_idle_ns; 491 } 492 493 /** 494 * read_persistent_clock - Return time from the persistent clock. 495 * 496 * Weak dummy function for arches that do not yet support it. 497 * Reads the time from the battery backed persistent clock. 498 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 499 * 500 * XXX - Do be sure to remove it once all arches implement it. 501 */ 502 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 503 { 504 ts->tv_sec = 0; 505 ts->tv_nsec = 0; 506 } 507 508 /** 509 * read_boot_clock - Return time of the system start. 510 * 511 * Weak dummy function for arches that do not yet support it. 512 * Function to read the exact time the system has been started. 513 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 514 * 515 * XXX - Do be sure to remove it once all arches implement it. 516 */ 517 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 518 { 519 ts->tv_sec = 0; 520 ts->tv_nsec = 0; 521 } 522 523 /* 524 * timekeeping_init - Initializes the clocksource and common timekeeping values 525 */ 526 void __init timekeeping_init(void) 527 { 528 struct clocksource *clock; 529 unsigned long flags; 530 struct timespec now, boot; 531 532 read_persistent_clock(&now); 533 read_boot_clock(&boot); 534 535 write_seqlock_irqsave(&xtime_lock, flags); 536 537 ntp_init(); 538 539 clock = clocksource_default_clock(); 540 if (clock->enable) 541 clock->enable(clock); 542 timekeeper_setup_internals(clock); 543 544 xtime.tv_sec = now.tv_sec; 545 xtime.tv_nsec = now.tv_nsec; 546 raw_time.tv_sec = 0; 547 raw_time.tv_nsec = 0; 548 if (boot.tv_sec == 0 && boot.tv_nsec == 0) { 549 boot.tv_sec = xtime.tv_sec; 550 boot.tv_nsec = xtime.tv_nsec; 551 } 552 set_normalized_timespec(&wall_to_monotonic, 553 -boot.tv_sec, -boot.tv_nsec); 554 total_sleep_time.tv_sec = 0; 555 total_sleep_time.tv_nsec = 0; 556 write_sequnlock_irqrestore(&xtime_lock, flags); 557 } 558 559 /* time in seconds when suspend began */ 560 static struct timespec timekeeping_suspend_time; 561 562 /** 563 * timekeeping_resume - Resumes the generic timekeeping subsystem. 564 * @dev: unused 565 * 566 * This is for the generic clocksource timekeeping. 567 * xtime/wall_to_monotonic/jiffies/etc are 568 * still managed by arch specific suspend/resume code. 569 */ 570 static int timekeeping_resume(struct sys_device *dev) 571 { 572 unsigned long flags; 573 struct timespec ts; 574 575 read_persistent_clock(&ts); 576 577 clocksource_resume(); 578 579 write_seqlock_irqsave(&xtime_lock, flags); 580 581 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 582 ts = timespec_sub(ts, timekeeping_suspend_time); 583 xtime = timespec_add(xtime, ts); 584 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); 585 total_sleep_time = timespec_add(total_sleep_time, ts); 586 } 587 /* re-base the last cycle value */ 588 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); 589 timekeeper.ntp_error = 0; 590 timekeeping_suspended = 0; 591 write_sequnlock_irqrestore(&xtime_lock, flags); 592 593 touch_softlockup_watchdog(); 594 595 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 596 597 /* Resume hrtimers */ 598 hres_timers_resume(); 599 600 return 0; 601 } 602 603 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) 604 { 605 unsigned long flags; 606 607 read_persistent_clock(&timekeeping_suspend_time); 608 609 write_seqlock_irqsave(&xtime_lock, flags); 610 timekeeping_forward_now(); 611 timekeeping_suspended = 1; 612 write_sequnlock_irqrestore(&xtime_lock, flags); 613 614 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 615 clocksource_suspend(); 616 617 return 0; 618 } 619 620 /* sysfs resume/suspend bits for timekeeping */ 621 static struct sysdev_class timekeeping_sysclass = { 622 .name = "timekeeping", 623 .resume = timekeeping_resume, 624 .suspend = timekeeping_suspend, 625 }; 626 627 static struct sys_device device_timer = { 628 .id = 0, 629 .cls = &timekeeping_sysclass, 630 }; 631 632 static int __init timekeeping_init_device(void) 633 { 634 int error = sysdev_class_register(&timekeeping_sysclass); 635 if (!error) 636 error = sysdev_register(&device_timer); 637 return error; 638 } 639 640 device_initcall(timekeeping_init_device); 641 642 /* 643 * If the error is already larger, we look ahead even further 644 * to compensate for late or lost adjustments. 645 */ 646 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, 647 s64 *offset) 648 { 649 s64 tick_error, i; 650 u32 look_ahead, adj; 651 s32 error2, mult; 652 653 /* 654 * Use the current error value to determine how much to look ahead. 655 * The larger the error the slower we adjust for it to avoid problems 656 * with losing too many ticks, otherwise we would overadjust and 657 * produce an even larger error. The smaller the adjustment the 658 * faster we try to adjust for it, as lost ticks can do less harm 659 * here. This is tuned so that an error of about 1 msec is adjusted 660 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 661 */ 662 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 663 error2 = abs(error2); 664 for (look_ahead = 0; error2 > 0; look_ahead++) 665 error2 >>= 2; 666 667 /* 668 * Now calculate the error in (1 << look_ahead) ticks, but first 669 * remove the single look ahead already included in the error. 670 */ 671 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1); 672 tick_error -= timekeeper.xtime_interval >> 1; 673 error = ((error - tick_error) >> look_ahead) + tick_error; 674 675 /* Finally calculate the adjustment shift value. */ 676 i = *interval; 677 mult = 1; 678 if (error < 0) { 679 error = -error; 680 *interval = -*interval; 681 *offset = -*offset; 682 mult = -1; 683 } 684 for (adj = 0; error > i; adj++) 685 error >>= 1; 686 687 *interval <<= adj; 688 *offset <<= adj; 689 return mult << adj; 690 } 691 692 /* 693 * Adjust the multiplier to reduce the error value, 694 * this is optimized for the most common adjustments of -1,0,1, 695 * for other values we can do a bit more work. 696 */ 697 static void timekeeping_adjust(s64 offset) 698 { 699 s64 error, interval = timekeeper.cycle_interval; 700 int adj; 701 702 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); 703 if (error > interval) { 704 error >>= 2; 705 if (likely(error <= interval)) 706 adj = 1; 707 else 708 adj = timekeeping_bigadjust(error, &interval, &offset); 709 } else if (error < -interval) { 710 error >>= 2; 711 if (likely(error >= -interval)) { 712 adj = -1; 713 interval = -interval; 714 offset = -offset; 715 } else 716 adj = timekeeping_bigadjust(error, &interval, &offset); 717 } else 718 return; 719 720 timekeeper.mult += adj; 721 timekeeper.xtime_interval += interval; 722 timekeeper.xtime_nsec -= offset; 723 timekeeper.ntp_error -= (interval - offset) << 724 timekeeper.ntp_error_shift; 725 } 726 727 728 /** 729 * logarithmic_accumulation - shifted accumulation of cycles 730 * 731 * This functions accumulates a shifted interval of cycles into 732 * into a shifted interval nanoseconds. Allows for O(log) accumulation 733 * loop. 734 * 735 * Returns the unconsumed cycles. 736 */ 737 static cycle_t logarithmic_accumulation(cycle_t offset, int shift) 738 { 739 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; 740 u64 raw_nsecs; 741 742 /* If the offset is smaller then a shifted interval, do nothing */ 743 if (offset < timekeeper.cycle_interval<<shift) 744 return offset; 745 746 /* Accumulate one shifted interval */ 747 offset -= timekeeper.cycle_interval << shift; 748 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift; 749 750 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift; 751 while (timekeeper.xtime_nsec >= nsecps) { 752 timekeeper.xtime_nsec -= nsecps; 753 xtime.tv_sec++; 754 second_overflow(); 755 } 756 757 /* Accumulate raw time */ 758 raw_nsecs = timekeeper.raw_interval << shift; 759 raw_nsecs += raw_time.tv_nsec; 760 if (raw_nsecs >= NSEC_PER_SEC) { 761 u64 raw_secs = raw_nsecs; 762 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 763 raw_time.tv_sec += raw_secs; 764 } 765 raw_time.tv_nsec = raw_nsecs; 766 767 /* Accumulate error between NTP and clock interval */ 768 timekeeper.ntp_error += tick_length << shift; 769 timekeeper.ntp_error -= 770 (timekeeper.xtime_interval + timekeeper.xtime_remainder) << 771 (timekeeper.ntp_error_shift + shift); 772 773 return offset; 774 } 775 776 777 /** 778 * update_wall_time - Uses the current clocksource to increment the wall time 779 * 780 * Called from the timer interrupt, must hold a write on xtime_lock. 781 */ 782 void update_wall_time(void) 783 { 784 struct clocksource *clock; 785 cycle_t offset; 786 int shift = 0, maxshift; 787 788 /* Make sure we're fully resumed: */ 789 if (unlikely(timekeeping_suspended)) 790 return; 791 792 clock = timekeeper.clock; 793 794 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 795 offset = timekeeper.cycle_interval; 796 #else 797 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 798 #endif 799 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift; 800 801 /* 802 * With NO_HZ we may have to accumulate many cycle_intervals 803 * (think "ticks") worth of time at once. To do this efficiently, 804 * we calculate the largest doubling multiple of cycle_intervals 805 * that is smaller then the offset. We then accumulate that 806 * chunk in one go, and then try to consume the next smaller 807 * doubled multiple. 808 */ 809 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); 810 shift = max(0, shift); 811 /* Bound shift to one less then what overflows tick_length */ 812 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1; 813 shift = min(shift, maxshift); 814 while (offset >= timekeeper.cycle_interval) { 815 offset = logarithmic_accumulation(offset, shift); 816 if(offset < timekeeper.cycle_interval<<shift) 817 shift--; 818 } 819 820 /* correct the clock when NTP error is too big */ 821 timekeeping_adjust(offset); 822 823 /* 824 * Since in the loop above, we accumulate any amount of time 825 * in xtime_nsec over a second into xtime.tv_sec, its possible for 826 * xtime_nsec to be fairly small after the loop. Further, if we're 827 * slightly speeding the clocksource up in timekeeping_adjust(), 828 * its possible the required corrective factor to xtime_nsec could 829 * cause it to underflow. 830 * 831 * Now, we cannot simply roll the accumulated second back, since 832 * the NTP subsystem has been notified via second_overflow. So 833 * instead we push xtime_nsec forward by the amount we underflowed, 834 * and add that amount into the error. 835 * 836 * We'll correct this error next time through this function, when 837 * xtime_nsec is not as small. 838 */ 839 if (unlikely((s64)timekeeper.xtime_nsec < 0)) { 840 s64 neg = -(s64)timekeeper.xtime_nsec; 841 timekeeper.xtime_nsec = 0; 842 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; 843 } 844 845 846 /* 847 * Store full nanoseconds into xtime after rounding it up and 848 * add the remainder to the error difference. 849 */ 850 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; 851 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift; 852 timekeeper.ntp_error += timekeeper.xtime_nsec << 853 timekeeper.ntp_error_shift; 854 855 /* 856 * Finally, make sure that after the rounding 857 * xtime.tv_nsec isn't larger then NSEC_PER_SEC 858 */ 859 if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) { 860 xtime.tv_nsec -= NSEC_PER_SEC; 861 xtime.tv_sec++; 862 second_overflow(); 863 } 864 865 /* check to see if there is a new clocksource to use */ 866 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock, 867 timekeeper.mult); 868 } 869 870 /** 871 * getboottime - Return the real time of system boot. 872 * @ts: pointer to the timespec to be set 873 * 874 * Returns the time of day in a timespec. 875 * 876 * This is based on the wall_to_monotonic offset and the total suspend 877 * time. Calls to settimeofday will affect the value returned (which 878 * basically means that however wrong your real time clock is at boot time, 879 * you get the right time here). 880 */ 881 void getboottime(struct timespec *ts) 882 { 883 struct timespec boottime = { 884 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec, 885 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec 886 }; 887 888 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 889 } 890 EXPORT_SYMBOL_GPL(getboottime); 891 892 /** 893 * monotonic_to_bootbased - Convert the monotonic time to boot based. 894 * @ts: pointer to the timespec to be converted 895 */ 896 void monotonic_to_bootbased(struct timespec *ts) 897 { 898 *ts = timespec_add(*ts, total_sleep_time); 899 } 900 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 901 902 unsigned long get_seconds(void) 903 { 904 return xtime.tv_sec; 905 } 906 EXPORT_SYMBOL(get_seconds); 907 908 struct timespec __current_kernel_time(void) 909 { 910 return xtime; 911 } 912 913 struct timespec __get_wall_to_monotonic(void) 914 { 915 return wall_to_monotonic; 916 } 917 918 struct timespec current_kernel_time(void) 919 { 920 struct timespec now; 921 unsigned long seq; 922 923 do { 924 seq = read_seqbegin(&xtime_lock); 925 926 now = xtime; 927 } while (read_seqretry(&xtime_lock, seq)); 928 929 return now; 930 } 931 EXPORT_SYMBOL(current_kernel_time); 932 933 struct timespec get_monotonic_coarse(void) 934 { 935 struct timespec now, mono; 936 unsigned long seq; 937 938 do { 939 seq = read_seqbegin(&xtime_lock); 940 941 now = xtime; 942 mono = wall_to_monotonic; 943 } while (read_seqretry(&xtime_lock, seq)); 944 945 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 946 now.tv_nsec + mono.tv_nsec); 947 return now; 948 } 949