1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 123 { 124 125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 cycle_t now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 203 { 204 } 205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 cycle_t cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 cycle_t interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 old_clock = tk->tkr_mono.clock; 237 tk->tkr_mono.clock = clock; 238 tk->tkr_mono.read = clock->read; 239 tk->tkr_mono.mask = clock->mask; 240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 241 242 tk->tkr_raw.clock = clock; 243 tk->tkr_raw.read = clock->read; 244 tk->tkr_raw.mask = clock->mask; 245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 246 247 /* Do the ns -> cycle conversion first, using original mult */ 248 tmp = NTP_INTERVAL_LENGTH; 249 tmp <<= clock->shift; 250 ntpinterval = tmp; 251 tmp += clock->mult/2; 252 do_div(tmp, clock->mult); 253 if (tmp == 0) 254 tmp = 1; 255 256 interval = (cycle_t) tmp; 257 tk->cycle_interval = interval; 258 259 /* Go back from cycles -> shifted ns */ 260 tk->xtime_interval = (u64) interval * clock->mult; 261 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 262 tk->raw_interval = 263 ((u64) interval * clock->mult) >> clock->shift; 264 265 /* if changing clocks, convert xtime_nsec shift units */ 266 if (old_clock) { 267 int shift_change = clock->shift - old_clock->shift; 268 if (shift_change < 0) 269 tk->tkr_mono.xtime_nsec >>= -shift_change; 270 else 271 tk->tkr_mono.xtime_nsec <<= shift_change; 272 } 273 tk->tkr_raw.xtime_nsec = 0; 274 275 tk->tkr_mono.shift = clock->shift; 276 tk->tkr_raw.shift = clock->shift; 277 278 tk->ntp_error = 0; 279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 281 282 /* 283 * The timekeeper keeps its own mult values for the currently 284 * active clocksource. These value will be adjusted via NTP 285 * to counteract clock drifting. 286 */ 287 tk->tkr_mono.mult = clock->mult; 288 tk->tkr_raw.mult = clock->mult; 289 tk->ntp_err_mult = 0; 290 } 291 292 /* Timekeeper helper functions. */ 293 294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 295 static u32 default_arch_gettimeoffset(void) { return 0; } 296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 297 #else 298 static inline u32 arch_gettimeoffset(void) { return 0; } 299 #endif 300 301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 302 { 303 cycle_t delta; 304 s64 nsec; 305 306 delta = timekeeping_get_delta(tkr); 307 308 nsec = delta * tkr->mult + tkr->xtime_nsec; 309 nsec >>= tkr->shift; 310 311 /* If arch requires, add in get_arch_timeoffset() */ 312 return nsec + arch_gettimeoffset(); 313 } 314 315 /** 316 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 317 * @tkr: Timekeeping readout base from which we take the update 318 * 319 * We want to use this from any context including NMI and tracing / 320 * instrumenting the timekeeping code itself. 321 * 322 * So we handle this differently than the other timekeeping accessor 323 * functions which retry when the sequence count has changed. The 324 * update side does: 325 * 326 * smp_wmb(); <- Ensure that the last base[1] update is visible 327 * tkf->seq++; 328 * smp_wmb(); <- Ensure that the seqcount update is visible 329 * update(tkf->base[0], tkr); 330 * smp_wmb(); <- Ensure that the base[0] update is visible 331 * tkf->seq++; 332 * smp_wmb(); <- Ensure that the seqcount update is visible 333 * update(tkf->base[1], tkr); 334 * 335 * The reader side does: 336 * 337 * do { 338 * seq = tkf->seq; 339 * smp_rmb(); 340 * idx = seq & 0x01; 341 * now = now(tkf->base[idx]); 342 * smp_rmb(); 343 * } while (seq != tkf->seq) 344 * 345 * As long as we update base[0] readers are forced off to 346 * base[1]. Once base[0] is updated readers are redirected to base[0] 347 * and the base[1] update takes place. 348 * 349 * So if a NMI hits the update of base[0] then it will use base[1] 350 * which is still consistent. In the worst case this can result is a 351 * slightly wrong timestamp (a few nanoseconds). See 352 * @ktime_get_mono_fast_ns. 353 */ 354 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 355 { 356 struct tk_read_base *base = tkf->base; 357 358 /* Force readers off to base[1] */ 359 raw_write_seqcount_latch(&tkf->seq); 360 361 /* Update base[0] */ 362 memcpy(base, tkr, sizeof(*base)); 363 364 /* Force readers back to base[0] */ 365 raw_write_seqcount_latch(&tkf->seq); 366 367 /* Update base[1] */ 368 memcpy(base + 1, base, sizeof(*base)); 369 } 370 371 /** 372 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 373 * 374 * This timestamp is not guaranteed to be monotonic across an update. 375 * The timestamp is calculated by: 376 * 377 * now = base_mono + clock_delta * slope 378 * 379 * So if the update lowers the slope, readers who are forced to the 380 * not yet updated second array are still using the old steeper slope. 381 * 382 * tmono 383 * ^ 384 * | o n 385 * | o n 386 * | u 387 * | o 388 * |o 389 * |12345678---> reader order 390 * 391 * o = old slope 392 * u = update 393 * n = new slope 394 * 395 * So reader 6 will observe time going backwards versus reader 5. 396 * 397 * While other CPUs are likely to be able observe that, the only way 398 * for a CPU local observation is when an NMI hits in the middle of 399 * the update. Timestamps taken from that NMI context might be ahead 400 * of the following timestamps. Callers need to be aware of that and 401 * deal with it. 402 */ 403 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 404 { 405 struct tk_read_base *tkr; 406 unsigned int seq; 407 u64 now; 408 409 do { 410 seq = raw_read_seqcount(&tkf->seq); 411 tkr = tkf->base + (seq & 0x01); 412 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr); 413 } while (read_seqcount_retry(&tkf->seq, seq)); 414 415 return now; 416 } 417 418 u64 ktime_get_mono_fast_ns(void) 419 { 420 return __ktime_get_fast_ns(&tk_fast_mono); 421 } 422 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 423 424 u64 ktime_get_raw_fast_ns(void) 425 { 426 return __ktime_get_fast_ns(&tk_fast_raw); 427 } 428 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 429 430 /* Suspend-time cycles value for halted fast timekeeper. */ 431 static cycle_t cycles_at_suspend; 432 433 static cycle_t dummy_clock_read(struct clocksource *cs) 434 { 435 return cycles_at_suspend; 436 } 437 438 /** 439 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 440 * @tk: Timekeeper to snapshot. 441 * 442 * It generally is unsafe to access the clocksource after timekeeping has been 443 * suspended, so take a snapshot of the readout base of @tk and use it as the 444 * fast timekeeper's readout base while suspended. It will return the same 445 * number of cycles every time until timekeeping is resumed at which time the 446 * proper readout base for the fast timekeeper will be restored automatically. 447 */ 448 static void halt_fast_timekeeper(struct timekeeper *tk) 449 { 450 static struct tk_read_base tkr_dummy; 451 struct tk_read_base *tkr = &tk->tkr_mono; 452 453 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 454 cycles_at_suspend = tkr->read(tkr->clock); 455 tkr_dummy.read = dummy_clock_read; 456 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 457 458 tkr = &tk->tkr_raw; 459 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 460 tkr_dummy.read = dummy_clock_read; 461 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 462 } 463 464 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 465 466 static inline void update_vsyscall(struct timekeeper *tk) 467 { 468 struct timespec xt, wm; 469 470 xt = timespec64_to_timespec(tk_xtime(tk)); 471 wm = timespec64_to_timespec(tk->wall_to_monotonic); 472 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 473 tk->tkr_mono.cycle_last); 474 } 475 476 static inline void old_vsyscall_fixup(struct timekeeper *tk) 477 { 478 s64 remainder; 479 480 /* 481 * Store only full nanoseconds into xtime_nsec after rounding 482 * it up and add the remainder to the error difference. 483 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 484 * by truncating the remainder in vsyscalls. However, it causes 485 * additional work to be done in timekeeping_adjust(). Once 486 * the vsyscall implementations are converted to use xtime_nsec 487 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 488 * users are removed, this can be killed. 489 */ 490 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 491 tk->tkr_mono.xtime_nsec -= remainder; 492 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 493 tk->ntp_error += remainder << tk->ntp_error_shift; 494 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 495 } 496 #else 497 #define old_vsyscall_fixup(tk) 498 #endif 499 500 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 501 502 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 503 { 504 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 505 } 506 507 /** 508 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 509 */ 510 int pvclock_gtod_register_notifier(struct notifier_block *nb) 511 { 512 struct timekeeper *tk = &tk_core.timekeeper; 513 unsigned long flags; 514 int ret; 515 516 raw_spin_lock_irqsave(&timekeeper_lock, flags); 517 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 518 update_pvclock_gtod(tk, true); 519 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 520 521 return ret; 522 } 523 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 524 525 /** 526 * pvclock_gtod_unregister_notifier - unregister a pvclock 527 * timedata update listener 528 */ 529 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 530 { 531 unsigned long flags; 532 int ret; 533 534 raw_spin_lock_irqsave(&timekeeper_lock, flags); 535 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 536 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 537 538 return ret; 539 } 540 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 541 542 /* 543 * tk_update_leap_state - helper to update the next_leap_ktime 544 */ 545 static inline void tk_update_leap_state(struct timekeeper *tk) 546 { 547 tk->next_leap_ktime = ntp_get_next_leap(); 548 if (tk->next_leap_ktime.tv64 != KTIME_MAX) 549 /* Convert to monotonic time */ 550 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 551 } 552 553 /* 554 * Update the ktime_t based scalar nsec members of the timekeeper 555 */ 556 static inline void tk_update_ktime_data(struct timekeeper *tk) 557 { 558 u64 seconds; 559 u32 nsec; 560 561 /* 562 * The xtime based monotonic readout is: 563 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 564 * The ktime based monotonic readout is: 565 * nsec = base_mono + now(); 566 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 567 */ 568 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 569 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 570 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 571 572 /* Update the monotonic raw base */ 573 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 574 575 /* 576 * The sum of the nanoseconds portions of xtime and 577 * wall_to_monotonic can be greater/equal one second. Take 578 * this into account before updating tk->ktime_sec. 579 */ 580 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 581 if (nsec >= NSEC_PER_SEC) 582 seconds++; 583 tk->ktime_sec = seconds; 584 } 585 586 /* must hold timekeeper_lock */ 587 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 588 { 589 if (action & TK_CLEAR_NTP) { 590 tk->ntp_error = 0; 591 ntp_clear(); 592 } 593 594 tk_update_leap_state(tk); 595 tk_update_ktime_data(tk); 596 597 update_vsyscall(tk); 598 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 599 600 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 601 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 602 603 if (action & TK_CLOCK_WAS_SET) 604 tk->clock_was_set_seq++; 605 /* 606 * The mirroring of the data to the shadow-timekeeper needs 607 * to happen last here to ensure we don't over-write the 608 * timekeeper structure on the next update with stale data 609 */ 610 if (action & TK_MIRROR) 611 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 612 sizeof(tk_core.timekeeper)); 613 } 614 615 /** 616 * timekeeping_forward_now - update clock to the current time 617 * 618 * Forward the current clock to update its state since the last call to 619 * update_wall_time(). This is useful before significant clock changes, 620 * as it avoids having to deal with this time offset explicitly. 621 */ 622 static void timekeeping_forward_now(struct timekeeper *tk) 623 { 624 struct clocksource *clock = tk->tkr_mono.clock; 625 cycle_t cycle_now, delta; 626 s64 nsec; 627 628 cycle_now = tk->tkr_mono.read(clock); 629 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 630 tk->tkr_mono.cycle_last = cycle_now; 631 tk->tkr_raw.cycle_last = cycle_now; 632 633 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 634 635 /* If arch requires, add in get_arch_timeoffset() */ 636 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 637 638 tk_normalize_xtime(tk); 639 640 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 641 timespec64_add_ns(&tk->raw_time, nsec); 642 } 643 644 /** 645 * __getnstimeofday64 - Returns the time of day in a timespec64. 646 * @ts: pointer to the timespec to be set 647 * 648 * Updates the time of day in the timespec. 649 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 650 */ 651 int __getnstimeofday64(struct timespec64 *ts) 652 { 653 struct timekeeper *tk = &tk_core.timekeeper; 654 unsigned long seq; 655 s64 nsecs = 0; 656 657 do { 658 seq = read_seqcount_begin(&tk_core.seq); 659 660 ts->tv_sec = tk->xtime_sec; 661 nsecs = timekeeping_get_ns(&tk->tkr_mono); 662 663 } while (read_seqcount_retry(&tk_core.seq, seq)); 664 665 ts->tv_nsec = 0; 666 timespec64_add_ns(ts, nsecs); 667 668 /* 669 * Do not bail out early, in case there were callers still using 670 * the value, even in the face of the WARN_ON. 671 */ 672 if (unlikely(timekeeping_suspended)) 673 return -EAGAIN; 674 return 0; 675 } 676 EXPORT_SYMBOL(__getnstimeofday64); 677 678 /** 679 * getnstimeofday64 - Returns the time of day in a timespec64. 680 * @ts: pointer to the timespec64 to be set 681 * 682 * Returns the time of day in a timespec64 (WARN if suspended). 683 */ 684 void getnstimeofday64(struct timespec64 *ts) 685 { 686 WARN_ON(__getnstimeofday64(ts)); 687 } 688 EXPORT_SYMBOL(getnstimeofday64); 689 690 ktime_t ktime_get(void) 691 { 692 struct timekeeper *tk = &tk_core.timekeeper; 693 unsigned int seq; 694 ktime_t base; 695 s64 nsecs; 696 697 WARN_ON(timekeeping_suspended); 698 699 do { 700 seq = read_seqcount_begin(&tk_core.seq); 701 base = tk->tkr_mono.base; 702 nsecs = timekeeping_get_ns(&tk->tkr_mono); 703 704 } while (read_seqcount_retry(&tk_core.seq, seq)); 705 706 return ktime_add_ns(base, nsecs); 707 } 708 EXPORT_SYMBOL_GPL(ktime_get); 709 710 u32 ktime_get_resolution_ns(void) 711 { 712 struct timekeeper *tk = &tk_core.timekeeper; 713 unsigned int seq; 714 u32 nsecs; 715 716 WARN_ON(timekeeping_suspended); 717 718 do { 719 seq = read_seqcount_begin(&tk_core.seq); 720 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 721 } while (read_seqcount_retry(&tk_core.seq, seq)); 722 723 return nsecs; 724 } 725 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 726 727 static ktime_t *offsets[TK_OFFS_MAX] = { 728 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 729 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 730 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 731 }; 732 733 ktime_t ktime_get_with_offset(enum tk_offsets offs) 734 { 735 struct timekeeper *tk = &tk_core.timekeeper; 736 unsigned int seq; 737 ktime_t base, *offset = offsets[offs]; 738 s64 nsecs; 739 740 WARN_ON(timekeeping_suspended); 741 742 do { 743 seq = read_seqcount_begin(&tk_core.seq); 744 base = ktime_add(tk->tkr_mono.base, *offset); 745 nsecs = timekeeping_get_ns(&tk->tkr_mono); 746 747 } while (read_seqcount_retry(&tk_core.seq, seq)); 748 749 return ktime_add_ns(base, nsecs); 750 751 } 752 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 753 754 /** 755 * ktime_mono_to_any() - convert mononotic time to any other time 756 * @tmono: time to convert. 757 * @offs: which offset to use 758 */ 759 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 760 { 761 ktime_t *offset = offsets[offs]; 762 unsigned long seq; 763 ktime_t tconv; 764 765 do { 766 seq = read_seqcount_begin(&tk_core.seq); 767 tconv = ktime_add(tmono, *offset); 768 } while (read_seqcount_retry(&tk_core.seq, seq)); 769 770 return tconv; 771 } 772 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 773 774 /** 775 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 776 */ 777 ktime_t ktime_get_raw(void) 778 { 779 struct timekeeper *tk = &tk_core.timekeeper; 780 unsigned int seq; 781 ktime_t base; 782 s64 nsecs; 783 784 do { 785 seq = read_seqcount_begin(&tk_core.seq); 786 base = tk->tkr_raw.base; 787 nsecs = timekeeping_get_ns(&tk->tkr_raw); 788 789 } while (read_seqcount_retry(&tk_core.seq, seq)); 790 791 return ktime_add_ns(base, nsecs); 792 } 793 EXPORT_SYMBOL_GPL(ktime_get_raw); 794 795 /** 796 * ktime_get_ts64 - get the monotonic clock in timespec64 format 797 * @ts: pointer to timespec variable 798 * 799 * The function calculates the monotonic clock from the realtime 800 * clock and the wall_to_monotonic offset and stores the result 801 * in normalized timespec64 format in the variable pointed to by @ts. 802 */ 803 void ktime_get_ts64(struct timespec64 *ts) 804 { 805 struct timekeeper *tk = &tk_core.timekeeper; 806 struct timespec64 tomono; 807 s64 nsec; 808 unsigned int seq; 809 810 WARN_ON(timekeeping_suspended); 811 812 do { 813 seq = read_seqcount_begin(&tk_core.seq); 814 ts->tv_sec = tk->xtime_sec; 815 nsec = timekeeping_get_ns(&tk->tkr_mono); 816 tomono = tk->wall_to_monotonic; 817 818 } while (read_seqcount_retry(&tk_core.seq, seq)); 819 820 ts->tv_sec += tomono.tv_sec; 821 ts->tv_nsec = 0; 822 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 823 } 824 EXPORT_SYMBOL_GPL(ktime_get_ts64); 825 826 /** 827 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 828 * 829 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 830 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 831 * works on both 32 and 64 bit systems. On 32 bit systems the readout 832 * covers ~136 years of uptime which should be enough to prevent 833 * premature wrap arounds. 834 */ 835 time64_t ktime_get_seconds(void) 836 { 837 struct timekeeper *tk = &tk_core.timekeeper; 838 839 WARN_ON(timekeeping_suspended); 840 return tk->ktime_sec; 841 } 842 EXPORT_SYMBOL_GPL(ktime_get_seconds); 843 844 /** 845 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 846 * 847 * Returns the wall clock seconds since 1970. This replaces the 848 * get_seconds() interface which is not y2038 safe on 32bit systems. 849 * 850 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 851 * 32bit systems the access must be protected with the sequence 852 * counter to provide "atomic" access to the 64bit tk->xtime_sec 853 * value. 854 */ 855 time64_t ktime_get_real_seconds(void) 856 { 857 struct timekeeper *tk = &tk_core.timekeeper; 858 time64_t seconds; 859 unsigned int seq; 860 861 if (IS_ENABLED(CONFIG_64BIT)) 862 return tk->xtime_sec; 863 864 do { 865 seq = read_seqcount_begin(&tk_core.seq); 866 seconds = tk->xtime_sec; 867 868 } while (read_seqcount_retry(&tk_core.seq, seq)); 869 870 return seconds; 871 } 872 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 873 874 #ifdef CONFIG_NTP_PPS 875 876 /** 877 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 878 * @ts_raw: pointer to the timespec to be set to raw monotonic time 879 * @ts_real: pointer to the timespec to be set to the time of day 880 * 881 * This function reads both the time of day and raw monotonic time at the 882 * same time atomically and stores the resulting timestamps in timespec 883 * format. 884 */ 885 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 886 { 887 struct timekeeper *tk = &tk_core.timekeeper; 888 unsigned long seq; 889 s64 nsecs_raw, nsecs_real; 890 891 WARN_ON_ONCE(timekeeping_suspended); 892 893 do { 894 seq = read_seqcount_begin(&tk_core.seq); 895 896 *ts_raw = timespec64_to_timespec(tk->raw_time); 897 ts_real->tv_sec = tk->xtime_sec; 898 ts_real->tv_nsec = 0; 899 900 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw); 901 nsecs_real = timekeeping_get_ns(&tk->tkr_mono); 902 903 } while (read_seqcount_retry(&tk_core.seq, seq)); 904 905 timespec_add_ns(ts_raw, nsecs_raw); 906 timespec_add_ns(ts_real, nsecs_real); 907 } 908 EXPORT_SYMBOL(getnstime_raw_and_real); 909 910 #endif /* CONFIG_NTP_PPS */ 911 912 /** 913 * do_gettimeofday - Returns the time of day in a timeval 914 * @tv: pointer to the timeval to be set 915 * 916 * NOTE: Users should be converted to using getnstimeofday() 917 */ 918 void do_gettimeofday(struct timeval *tv) 919 { 920 struct timespec64 now; 921 922 getnstimeofday64(&now); 923 tv->tv_sec = now.tv_sec; 924 tv->tv_usec = now.tv_nsec/1000; 925 } 926 EXPORT_SYMBOL(do_gettimeofday); 927 928 /** 929 * do_settimeofday64 - Sets the time of day. 930 * @ts: pointer to the timespec64 variable containing the new time 931 * 932 * Sets the time of day to the new time and update NTP and notify hrtimers 933 */ 934 int do_settimeofday64(const struct timespec64 *ts) 935 { 936 struct timekeeper *tk = &tk_core.timekeeper; 937 struct timespec64 ts_delta, xt; 938 unsigned long flags; 939 940 if (!timespec64_valid_strict(ts)) 941 return -EINVAL; 942 943 raw_spin_lock_irqsave(&timekeeper_lock, flags); 944 write_seqcount_begin(&tk_core.seq); 945 946 timekeeping_forward_now(tk); 947 948 xt = tk_xtime(tk); 949 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 950 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 951 952 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 953 954 tk_set_xtime(tk, ts); 955 956 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 957 958 write_seqcount_end(&tk_core.seq); 959 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 960 961 /* signal hrtimers about time change */ 962 clock_was_set(); 963 964 return 0; 965 } 966 EXPORT_SYMBOL(do_settimeofday64); 967 968 /** 969 * timekeeping_inject_offset - Adds or subtracts from the current time. 970 * @tv: pointer to the timespec variable containing the offset 971 * 972 * Adds or subtracts an offset value from the current time. 973 */ 974 int timekeeping_inject_offset(struct timespec *ts) 975 { 976 struct timekeeper *tk = &tk_core.timekeeper; 977 unsigned long flags; 978 struct timespec64 ts64, tmp; 979 int ret = 0; 980 981 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 982 return -EINVAL; 983 984 ts64 = timespec_to_timespec64(*ts); 985 986 raw_spin_lock_irqsave(&timekeeper_lock, flags); 987 write_seqcount_begin(&tk_core.seq); 988 989 timekeeping_forward_now(tk); 990 991 /* Make sure the proposed value is valid */ 992 tmp = timespec64_add(tk_xtime(tk), ts64); 993 if (!timespec64_valid_strict(&tmp)) { 994 ret = -EINVAL; 995 goto error; 996 } 997 998 tk_xtime_add(tk, &ts64); 999 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1000 1001 error: /* even if we error out, we forwarded the time, so call update */ 1002 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1003 1004 write_seqcount_end(&tk_core.seq); 1005 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1006 1007 /* signal hrtimers about time change */ 1008 clock_was_set(); 1009 1010 return ret; 1011 } 1012 EXPORT_SYMBOL(timekeeping_inject_offset); 1013 1014 1015 /** 1016 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 1017 * 1018 */ 1019 s32 timekeeping_get_tai_offset(void) 1020 { 1021 struct timekeeper *tk = &tk_core.timekeeper; 1022 unsigned int seq; 1023 s32 ret; 1024 1025 do { 1026 seq = read_seqcount_begin(&tk_core.seq); 1027 ret = tk->tai_offset; 1028 } while (read_seqcount_retry(&tk_core.seq, seq)); 1029 1030 return ret; 1031 } 1032 1033 /** 1034 * __timekeeping_set_tai_offset - Lock free worker function 1035 * 1036 */ 1037 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1038 { 1039 tk->tai_offset = tai_offset; 1040 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1041 } 1042 1043 /** 1044 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1045 * 1046 */ 1047 void timekeeping_set_tai_offset(s32 tai_offset) 1048 { 1049 struct timekeeper *tk = &tk_core.timekeeper; 1050 unsigned long flags; 1051 1052 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1053 write_seqcount_begin(&tk_core.seq); 1054 __timekeeping_set_tai_offset(tk, tai_offset); 1055 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1056 write_seqcount_end(&tk_core.seq); 1057 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1058 clock_was_set(); 1059 } 1060 1061 /** 1062 * change_clocksource - Swaps clocksources if a new one is available 1063 * 1064 * Accumulates current time interval and initializes new clocksource 1065 */ 1066 static int change_clocksource(void *data) 1067 { 1068 struct timekeeper *tk = &tk_core.timekeeper; 1069 struct clocksource *new, *old; 1070 unsigned long flags; 1071 1072 new = (struct clocksource *) data; 1073 1074 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1075 write_seqcount_begin(&tk_core.seq); 1076 1077 timekeeping_forward_now(tk); 1078 /* 1079 * If the cs is in module, get a module reference. Succeeds 1080 * for built-in code (owner == NULL) as well. 1081 */ 1082 if (try_module_get(new->owner)) { 1083 if (!new->enable || new->enable(new) == 0) { 1084 old = tk->tkr_mono.clock; 1085 tk_setup_internals(tk, new); 1086 if (old->disable) 1087 old->disable(old); 1088 module_put(old->owner); 1089 } else { 1090 module_put(new->owner); 1091 } 1092 } 1093 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1094 1095 write_seqcount_end(&tk_core.seq); 1096 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1097 1098 return 0; 1099 } 1100 1101 /** 1102 * timekeeping_notify - Install a new clock source 1103 * @clock: pointer to the clock source 1104 * 1105 * This function is called from clocksource.c after a new, better clock 1106 * source has been registered. The caller holds the clocksource_mutex. 1107 */ 1108 int timekeeping_notify(struct clocksource *clock) 1109 { 1110 struct timekeeper *tk = &tk_core.timekeeper; 1111 1112 if (tk->tkr_mono.clock == clock) 1113 return 0; 1114 stop_machine(change_clocksource, clock, NULL); 1115 tick_clock_notify(); 1116 return tk->tkr_mono.clock == clock ? 0 : -1; 1117 } 1118 1119 /** 1120 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1121 * @ts: pointer to the timespec64 to be set 1122 * 1123 * Returns the raw monotonic time (completely un-modified by ntp) 1124 */ 1125 void getrawmonotonic64(struct timespec64 *ts) 1126 { 1127 struct timekeeper *tk = &tk_core.timekeeper; 1128 struct timespec64 ts64; 1129 unsigned long seq; 1130 s64 nsecs; 1131 1132 do { 1133 seq = read_seqcount_begin(&tk_core.seq); 1134 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1135 ts64 = tk->raw_time; 1136 1137 } while (read_seqcount_retry(&tk_core.seq, seq)); 1138 1139 timespec64_add_ns(&ts64, nsecs); 1140 *ts = ts64; 1141 } 1142 EXPORT_SYMBOL(getrawmonotonic64); 1143 1144 1145 /** 1146 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1147 */ 1148 int timekeeping_valid_for_hres(void) 1149 { 1150 struct timekeeper *tk = &tk_core.timekeeper; 1151 unsigned long seq; 1152 int ret; 1153 1154 do { 1155 seq = read_seqcount_begin(&tk_core.seq); 1156 1157 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1158 1159 } while (read_seqcount_retry(&tk_core.seq, seq)); 1160 1161 return ret; 1162 } 1163 1164 /** 1165 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1166 */ 1167 u64 timekeeping_max_deferment(void) 1168 { 1169 struct timekeeper *tk = &tk_core.timekeeper; 1170 unsigned long seq; 1171 u64 ret; 1172 1173 do { 1174 seq = read_seqcount_begin(&tk_core.seq); 1175 1176 ret = tk->tkr_mono.clock->max_idle_ns; 1177 1178 } while (read_seqcount_retry(&tk_core.seq, seq)); 1179 1180 return ret; 1181 } 1182 1183 /** 1184 * read_persistent_clock - Return time from the persistent clock. 1185 * 1186 * Weak dummy function for arches that do not yet support it. 1187 * Reads the time from the battery backed persistent clock. 1188 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1189 * 1190 * XXX - Do be sure to remove it once all arches implement it. 1191 */ 1192 void __weak read_persistent_clock(struct timespec *ts) 1193 { 1194 ts->tv_sec = 0; 1195 ts->tv_nsec = 0; 1196 } 1197 1198 void __weak read_persistent_clock64(struct timespec64 *ts64) 1199 { 1200 struct timespec ts; 1201 1202 read_persistent_clock(&ts); 1203 *ts64 = timespec_to_timespec64(ts); 1204 } 1205 1206 /** 1207 * read_boot_clock64 - Return time of the system start. 1208 * 1209 * Weak dummy function for arches that do not yet support it. 1210 * Function to read the exact time the system has been started. 1211 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1212 * 1213 * XXX - Do be sure to remove it once all arches implement it. 1214 */ 1215 void __weak read_boot_clock64(struct timespec64 *ts) 1216 { 1217 ts->tv_sec = 0; 1218 ts->tv_nsec = 0; 1219 } 1220 1221 /* Flag for if timekeeping_resume() has injected sleeptime */ 1222 static bool sleeptime_injected; 1223 1224 /* Flag for if there is a persistent clock on this platform */ 1225 static bool persistent_clock_exists; 1226 1227 /* 1228 * timekeeping_init - Initializes the clocksource and common timekeeping values 1229 */ 1230 void __init timekeeping_init(void) 1231 { 1232 struct timekeeper *tk = &tk_core.timekeeper; 1233 struct clocksource *clock; 1234 unsigned long flags; 1235 struct timespec64 now, boot, tmp; 1236 1237 read_persistent_clock64(&now); 1238 if (!timespec64_valid_strict(&now)) { 1239 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1240 " Check your CMOS/BIOS settings.\n"); 1241 now.tv_sec = 0; 1242 now.tv_nsec = 0; 1243 } else if (now.tv_sec || now.tv_nsec) 1244 persistent_clock_exists = true; 1245 1246 read_boot_clock64(&boot); 1247 if (!timespec64_valid_strict(&boot)) { 1248 pr_warn("WARNING: Boot clock returned invalid value!\n" 1249 " Check your CMOS/BIOS settings.\n"); 1250 boot.tv_sec = 0; 1251 boot.tv_nsec = 0; 1252 } 1253 1254 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1255 write_seqcount_begin(&tk_core.seq); 1256 ntp_init(); 1257 1258 clock = clocksource_default_clock(); 1259 if (clock->enable) 1260 clock->enable(clock); 1261 tk_setup_internals(tk, clock); 1262 1263 tk_set_xtime(tk, &now); 1264 tk->raw_time.tv_sec = 0; 1265 tk->raw_time.tv_nsec = 0; 1266 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1267 boot = tk_xtime(tk); 1268 1269 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1270 tk_set_wall_to_mono(tk, tmp); 1271 1272 timekeeping_update(tk, TK_MIRROR); 1273 1274 write_seqcount_end(&tk_core.seq); 1275 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1276 } 1277 1278 /* time in seconds when suspend began for persistent clock */ 1279 static struct timespec64 timekeeping_suspend_time; 1280 1281 /** 1282 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1283 * @delta: pointer to a timespec delta value 1284 * 1285 * Takes a timespec offset measuring a suspend interval and properly 1286 * adds the sleep offset to the timekeeping variables. 1287 */ 1288 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1289 struct timespec64 *delta) 1290 { 1291 if (!timespec64_valid_strict(delta)) { 1292 printk_deferred(KERN_WARNING 1293 "__timekeeping_inject_sleeptime: Invalid " 1294 "sleep delta value!\n"); 1295 return; 1296 } 1297 tk_xtime_add(tk, delta); 1298 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1299 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1300 tk_debug_account_sleep_time(delta); 1301 } 1302 1303 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1304 /** 1305 * We have three kinds of time sources to use for sleep time 1306 * injection, the preference order is: 1307 * 1) non-stop clocksource 1308 * 2) persistent clock (ie: RTC accessible when irqs are off) 1309 * 3) RTC 1310 * 1311 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1312 * If system has neither 1) nor 2), 3) will be used finally. 1313 * 1314 * 1315 * If timekeeping has injected sleeptime via either 1) or 2), 1316 * 3) becomes needless, so in this case we don't need to call 1317 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1318 * means. 1319 */ 1320 bool timekeeping_rtc_skipresume(void) 1321 { 1322 return sleeptime_injected; 1323 } 1324 1325 /** 1326 * 1) can be determined whether to use or not only when doing 1327 * timekeeping_resume() which is invoked after rtc_suspend(), 1328 * so we can't skip rtc_suspend() surely if system has 1). 1329 * 1330 * But if system has 2), 2) will definitely be used, so in this 1331 * case we don't need to call rtc_suspend(), and this is what 1332 * timekeeping_rtc_skipsuspend() means. 1333 */ 1334 bool timekeeping_rtc_skipsuspend(void) 1335 { 1336 return persistent_clock_exists; 1337 } 1338 1339 /** 1340 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1341 * @delta: pointer to a timespec64 delta value 1342 * 1343 * This hook is for architectures that cannot support read_persistent_clock64 1344 * because their RTC/persistent clock is only accessible when irqs are enabled. 1345 * and also don't have an effective nonstop clocksource. 1346 * 1347 * This function should only be called by rtc_resume(), and allows 1348 * a suspend offset to be injected into the timekeeping values. 1349 */ 1350 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1351 { 1352 struct timekeeper *tk = &tk_core.timekeeper; 1353 unsigned long flags; 1354 1355 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1356 write_seqcount_begin(&tk_core.seq); 1357 1358 timekeeping_forward_now(tk); 1359 1360 __timekeeping_inject_sleeptime(tk, delta); 1361 1362 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1363 1364 write_seqcount_end(&tk_core.seq); 1365 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1366 1367 /* signal hrtimers about time change */ 1368 clock_was_set(); 1369 } 1370 #endif 1371 1372 /** 1373 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1374 */ 1375 void timekeeping_resume(void) 1376 { 1377 struct timekeeper *tk = &tk_core.timekeeper; 1378 struct clocksource *clock = tk->tkr_mono.clock; 1379 unsigned long flags; 1380 struct timespec64 ts_new, ts_delta; 1381 cycle_t cycle_now, cycle_delta; 1382 1383 sleeptime_injected = false; 1384 read_persistent_clock64(&ts_new); 1385 1386 clockevents_resume(); 1387 clocksource_resume(); 1388 1389 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1390 write_seqcount_begin(&tk_core.seq); 1391 1392 /* 1393 * After system resumes, we need to calculate the suspended time and 1394 * compensate it for the OS time. There are 3 sources that could be 1395 * used: Nonstop clocksource during suspend, persistent clock and rtc 1396 * device. 1397 * 1398 * One specific platform may have 1 or 2 or all of them, and the 1399 * preference will be: 1400 * suspend-nonstop clocksource -> persistent clock -> rtc 1401 * The less preferred source will only be tried if there is no better 1402 * usable source. The rtc part is handled separately in rtc core code. 1403 */ 1404 cycle_now = tk->tkr_mono.read(clock); 1405 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1406 cycle_now > tk->tkr_mono.cycle_last) { 1407 u64 num, max = ULLONG_MAX; 1408 u32 mult = clock->mult; 1409 u32 shift = clock->shift; 1410 s64 nsec = 0; 1411 1412 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1413 tk->tkr_mono.mask); 1414 1415 /* 1416 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1417 * suspended time is too long. In that case we need do the 1418 * 64 bits math carefully 1419 */ 1420 do_div(max, mult); 1421 if (cycle_delta > max) { 1422 num = div64_u64(cycle_delta, max); 1423 nsec = (((u64) max * mult) >> shift) * num; 1424 cycle_delta -= num * max; 1425 } 1426 nsec += ((u64) cycle_delta * mult) >> shift; 1427 1428 ts_delta = ns_to_timespec64(nsec); 1429 sleeptime_injected = true; 1430 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1431 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1432 sleeptime_injected = true; 1433 } 1434 1435 if (sleeptime_injected) 1436 __timekeeping_inject_sleeptime(tk, &ts_delta); 1437 1438 /* Re-base the last cycle value */ 1439 tk->tkr_mono.cycle_last = cycle_now; 1440 tk->tkr_raw.cycle_last = cycle_now; 1441 1442 tk->ntp_error = 0; 1443 timekeeping_suspended = 0; 1444 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1445 write_seqcount_end(&tk_core.seq); 1446 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1447 1448 touch_softlockup_watchdog(); 1449 1450 tick_resume(); 1451 hrtimers_resume(); 1452 } 1453 1454 int timekeeping_suspend(void) 1455 { 1456 struct timekeeper *tk = &tk_core.timekeeper; 1457 unsigned long flags; 1458 struct timespec64 delta, delta_delta; 1459 static struct timespec64 old_delta; 1460 1461 read_persistent_clock64(&timekeeping_suspend_time); 1462 1463 /* 1464 * On some systems the persistent_clock can not be detected at 1465 * timekeeping_init by its return value, so if we see a valid 1466 * value returned, update the persistent_clock_exists flag. 1467 */ 1468 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1469 persistent_clock_exists = true; 1470 1471 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1472 write_seqcount_begin(&tk_core.seq); 1473 timekeeping_forward_now(tk); 1474 timekeeping_suspended = 1; 1475 1476 if (persistent_clock_exists) { 1477 /* 1478 * To avoid drift caused by repeated suspend/resumes, 1479 * which each can add ~1 second drift error, 1480 * try to compensate so the difference in system time 1481 * and persistent_clock time stays close to constant. 1482 */ 1483 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1484 delta_delta = timespec64_sub(delta, old_delta); 1485 if (abs(delta_delta.tv_sec) >= 2) { 1486 /* 1487 * if delta_delta is too large, assume time correction 1488 * has occurred and set old_delta to the current delta. 1489 */ 1490 old_delta = delta; 1491 } else { 1492 /* Otherwise try to adjust old_system to compensate */ 1493 timekeeping_suspend_time = 1494 timespec64_add(timekeeping_suspend_time, delta_delta); 1495 } 1496 } 1497 1498 timekeeping_update(tk, TK_MIRROR); 1499 halt_fast_timekeeper(tk); 1500 write_seqcount_end(&tk_core.seq); 1501 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1502 1503 tick_suspend(); 1504 clocksource_suspend(); 1505 clockevents_suspend(); 1506 1507 return 0; 1508 } 1509 1510 /* sysfs resume/suspend bits for timekeeping */ 1511 static struct syscore_ops timekeeping_syscore_ops = { 1512 .resume = timekeeping_resume, 1513 .suspend = timekeeping_suspend, 1514 }; 1515 1516 static int __init timekeeping_init_ops(void) 1517 { 1518 register_syscore_ops(&timekeeping_syscore_ops); 1519 return 0; 1520 } 1521 device_initcall(timekeeping_init_ops); 1522 1523 /* 1524 * Apply a multiplier adjustment to the timekeeper 1525 */ 1526 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1527 s64 offset, 1528 bool negative, 1529 int adj_scale) 1530 { 1531 s64 interval = tk->cycle_interval; 1532 s32 mult_adj = 1; 1533 1534 if (negative) { 1535 mult_adj = -mult_adj; 1536 interval = -interval; 1537 offset = -offset; 1538 } 1539 mult_adj <<= adj_scale; 1540 interval <<= adj_scale; 1541 offset <<= adj_scale; 1542 1543 /* 1544 * So the following can be confusing. 1545 * 1546 * To keep things simple, lets assume mult_adj == 1 for now. 1547 * 1548 * When mult_adj != 1, remember that the interval and offset values 1549 * have been appropriately scaled so the math is the same. 1550 * 1551 * The basic idea here is that we're increasing the multiplier 1552 * by one, this causes the xtime_interval to be incremented by 1553 * one cycle_interval. This is because: 1554 * xtime_interval = cycle_interval * mult 1555 * So if mult is being incremented by one: 1556 * xtime_interval = cycle_interval * (mult + 1) 1557 * Its the same as: 1558 * xtime_interval = (cycle_interval * mult) + cycle_interval 1559 * Which can be shortened to: 1560 * xtime_interval += cycle_interval 1561 * 1562 * So offset stores the non-accumulated cycles. Thus the current 1563 * time (in shifted nanoseconds) is: 1564 * now = (offset * adj) + xtime_nsec 1565 * Now, even though we're adjusting the clock frequency, we have 1566 * to keep time consistent. In other words, we can't jump back 1567 * in time, and we also want to avoid jumping forward in time. 1568 * 1569 * So given the same offset value, we need the time to be the same 1570 * both before and after the freq adjustment. 1571 * now = (offset * adj_1) + xtime_nsec_1 1572 * now = (offset * adj_2) + xtime_nsec_2 1573 * So: 1574 * (offset * adj_1) + xtime_nsec_1 = 1575 * (offset * adj_2) + xtime_nsec_2 1576 * And we know: 1577 * adj_2 = adj_1 + 1 1578 * So: 1579 * (offset * adj_1) + xtime_nsec_1 = 1580 * (offset * (adj_1+1)) + xtime_nsec_2 1581 * (offset * adj_1) + xtime_nsec_1 = 1582 * (offset * adj_1) + offset + xtime_nsec_2 1583 * Canceling the sides: 1584 * xtime_nsec_1 = offset + xtime_nsec_2 1585 * Which gives us: 1586 * xtime_nsec_2 = xtime_nsec_1 - offset 1587 * Which simplfies to: 1588 * xtime_nsec -= offset 1589 * 1590 * XXX - TODO: Doc ntp_error calculation. 1591 */ 1592 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1593 /* NTP adjustment caused clocksource mult overflow */ 1594 WARN_ON_ONCE(1); 1595 return; 1596 } 1597 1598 tk->tkr_mono.mult += mult_adj; 1599 tk->xtime_interval += interval; 1600 tk->tkr_mono.xtime_nsec -= offset; 1601 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1602 } 1603 1604 /* 1605 * Calculate the multiplier adjustment needed to match the frequency 1606 * specified by NTP 1607 */ 1608 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1609 s64 offset) 1610 { 1611 s64 interval = tk->cycle_interval; 1612 s64 xinterval = tk->xtime_interval; 1613 s64 tick_error; 1614 bool negative; 1615 u32 adj; 1616 1617 /* Remove any current error adj from freq calculation */ 1618 if (tk->ntp_err_mult) 1619 xinterval -= tk->cycle_interval; 1620 1621 tk->ntp_tick = ntp_tick_length(); 1622 1623 /* Calculate current error per tick */ 1624 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1625 tick_error -= (xinterval + tk->xtime_remainder); 1626 1627 /* Don't worry about correcting it if its small */ 1628 if (likely((tick_error >= 0) && (tick_error <= interval))) 1629 return; 1630 1631 /* preserve the direction of correction */ 1632 negative = (tick_error < 0); 1633 1634 /* Sort out the magnitude of the correction */ 1635 tick_error = abs(tick_error); 1636 for (adj = 0; tick_error > interval; adj++) 1637 tick_error >>= 1; 1638 1639 /* scale the corrections */ 1640 timekeeping_apply_adjustment(tk, offset, negative, adj); 1641 } 1642 1643 /* 1644 * Adjust the timekeeper's multiplier to the correct frequency 1645 * and also to reduce the accumulated error value. 1646 */ 1647 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1648 { 1649 /* Correct for the current frequency error */ 1650 timekeeping_freqadjust(tk, offset); 1651 1652 /* Next make a small adjustment to fix any cumulative error */ 1653 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1654 tk->ntp_err_mult = 1; 1655 timekeeping_apply_adjustment(tk, offset, 0, 0); 1656 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1657 /* Undo any existing error adjustment */ 1658 timekeeping_apply_adjustment(tk, offset, 1, 0); 1659 tk->ntp_err_mult = 0; 1660 } 1661 1662 if (unlikely(tk->tkr_mono.clock->maxadj && 1663 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1664 > tk->tkr_mono.clock->maxadj))) { 1665 printk_once(KERN_WARNING 1666 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1667 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1668 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1669 } 1670 1671 /* 1672 * It may be possible that when we entered this function, xtime_nsec 1673 * was very small. Further, if we're slightly speeding the clocksource 1674 * in the code above, its possible the required corrective factor to 1675 * xtime_nsec could cause it to underflow. 1676 * 1677 * Now, since we already accumulated the second, cannot simply roll 1678 * the accumulated second back, since the NTP subsystem has been 1679 * notified via second_overflow. So instead we push xtime_nsec forward 1680 * by the amount we underflowed, and add that amount into the error. 1681 * 1682 * We'll correct this error next time through this function, when 1683 * xtime_nsec is not as small. 1684 */ 1685 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1686 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1687 tk->tkr_mono.xtime_nsec = 0; 1688 tk->ntp_error += neg << tk->ntp_error_shift; 1689 } 1690 } 1691 1692 /** 1693 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1694 * 1695 * Helper function that accumulates a the nsecs greater then a second 1696 * from the xtime_nsec field to the xtime_secs field. 1697 * It also calls into the NTP code to handle leapsecond processing. 1698 * 1699 */ 1700 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1701 { 1702 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1703 unsigned int clock_set = 0; 1704 1705 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1706 int leap; 1707 1708 tk->tkr_mono.xtime_nsec -= nsecps; 1709 tk->xtime_sec++; 1710 1711 /* Figure out if its a leap sec and apply if needed */ 1712 leap = second_overflow(tk->xtime_sec); 1713 if (unlikely(leap)) { 1714 struct timespec64 ts; 1715 1716 tk->xtime_sec += leap; 1717 1718 ts.tv_sec = leap; 1719 ts.tv_nsec = 0; 1720 tk_set_wall_to_mono(tk, 1721 timespec64_sub(tk->wall_to_monotonic, ts)); 1722 1723 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1724 1725 clock_set = TK_CLOCK_WAS_SET; 1726 } 1727 } 1728 return clock_set; 1729 } 1730 1731 /** 1732 * logarithmic_accumulation - shifted accumulation of cycles 1733 * 1734 * This functions accumulates a shifted interval of cycles into 1735 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1736 * loop. 1737 * 1738 * Returns the unconsumed cycles. 1739 */ 1740 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1741 u32 shift, 1742 unsigned int *clock_set) 1743 { 1744 cycle_t interval = tk->cycle_interval << shift; 1745 u64 raw_nsecs; 1746 1747 /* If the offset is smaller then a shifted interval, do nothing */ 1748 if (offset < interval) 1749 return offset; 1750 1751 /* Accumulate one shifted interval */ 1752 offset -= interval; 1753 tk->tkr_mono.cycle_last += interval; 1754 tk->tkr_raw.cycle_last += interval; 1755 1756 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 1757 *clock_set |= accumulate_nsecs_to_secs(tk); 1758 1759 /* Accumulate raw time */ 1760 raw_nsecs = (u64)tk->raw_interval << shift; 1761 raw_nsecs += tk->raw_time.tv_nsec; 1762 if (raw_nsecs >= NSEC_PER_SEC) { 1763 u64 raw_secs = raw_nsecs; 1764 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1765 tk->raw_time.tv_sec += raw_secs; 1766 } 1767 tk->raw_time.tv_nsec = raw_nsecs; 1768 1769 /* Accumulate error between NTP and clock interval */ 1770 tk->ntp_error += tk->ntp_tick << shift; 1771 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1772 (tk->ntp_error_shift + shift); 1773 1774 return offset; 1775 } 1776 1777 /** 1778 * update_wall_time - Uses the current clocksource to increment the wall time 1779 * 1780 */ 1781 void update_wall_time(void) 1782 { 1783 struct timekeeper *real_tk = &tk_core.timekeeper; 1784 struct timekeeper *tk = &shadow_timekeeper; 1785 cycle_t offset; 1786 int shift = 0, maxshift; 1787 unsigned int clock_set = 0; 1788 unsigned long flags; 1789 1790 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1791 1792 /* Make sure we're fully resumed: */ 1793 if (unlikely(timekeeping_suspended)) 1794 goto out; 1795 1796 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1797 offset = real_tk->cycle_interval; 1798 #else 1799 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 1800 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 1801 #endif 1802 1803 /* Check if there's really nothing to do */ 1804 if (offset < real_tk->cycle_interval) 1805 goto out; 1806 1807 /* Do some additional sanity checking */ 1808 timekeeping_check_update(real_tk, offset); 1809 1810 /* 1811 * With NO_HZ we may have to accumulate many cycle_intervals 1812 * (think "ticks") worth of time at once. To do this efficiently, 1813 * we calculate the largest doubling multiple of cycle_intervals 1814 * that is smaller than the offset. We then accumulate that 1815 * chunk in one go, and then try to consume the next smaller 1816 * doubled multiple. 1817 */ 1818 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1819 shift = max(0, shift); 1820 /* Bound shift to one less than what overflows tick_length */ 1821 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1822 shift = min(shift, maxshift); 1823 while (offset >= tk->cycle_interval) { 1824 offset = logarithmic_accumulation(tk, offset, shift, 1825 &clock_set); 1826 if (offset < tk->cycle_interval<<shift) 1827 shift--; 1828 } 1829 1830 /* correct the clock when NTP error is too big */ 1831 timekeeping_adjust(tk, offset); 1832 1833 /* 1834 * XXX This can be killed once everyone converts 1835 * to the new update_vsyscall. 1836 */ 1837 old_vsyscall_fixup(tk); 1838 1839 /* 1840 * Finally, make sure that after the rounding 1841 * xtime_nsec isn't larger than NSEC_PER_SEC 1842 */ 1843 clock_set |= accumulate_nsecs_to_secs(tk); 1844 1845 write_seqcount_begin(&tk_core.seq); 1846 /* 1847 * Update the real timekeeper. 1848 * 1849 * We could avoid this memcpy by switching pointers, but that 1850 * requires changes to all other timekeeper usage sites as 1851 * well, i.e. move the timekeeper pointer getter into the 1852 * spinlocked/seqcount protected sections. And we trade this 1853 * memcpy under the tk_core.seq against one before we start 1854 * updating. 1855 */ 1856 timekeeping_update(tk, clock_set); 1857 memcpy(real_tk, tk, sizeof(*tk)); 1858 /* The memcpy must come last. Do not put anything here! */ 1859 write_seqcount_end(&tk_core.seq); 1860 out: 1861 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1862 if (clock_set) 1863 /* Have to call _delayed version, since in irq context*/ 1864 clock_was_set_delayed(); 1865 } 1866 1867 /** 1868 * getboottime64 - Return the real time of system boot. 1869 * @ts: pointer to the timespec64 to be set 1870 * 1871 * Returns the wall-time of boot in a timespec64. 1872 * 1873 * This is based on the wall_to_monotonic offset and the total suspend 1874 * time. Calls to settimeofday will affect the value returned (which 1875 * basically means that however wrong your real time clock is at boot time, 1876 * you get the right time here). 1877 */ 1878 void getboottime64(struct timespec64 *ts) 1879 { 1880 struct timekeeper *tk = &tk_core.timekeeper; 1881 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 1882 1883 *ts = ktime_to_timespec64(t); 1884 } 1885 EXPORT_SYMBOL_GPL(getboottime64); 1886 1887 unsigned long get_seconds(void) 1888 { 1889 struct timekeeper *tk = &tk_core.timekeeper; 1890 1891 return tk->xtime_sec; 1892 } 1893 EXPORT_SYMBOL(get_seconds); 1894 1895 struct timespec __current_kernel_time(void) 1896 { 1897 struct timekeeper *tk = &tk_core.timekeeper; 1898 1899 return timespec64_to_timespec(tk_xtime(tk)); 1900 } 1901 1902 struct timespec current_kernel_time(void) 1903 { 1904 struct timekeeper *tk = &tk_core.timekeeper; 1905 struct timespec64 now; 1906 unsigned long seq; 1907 1908 do { 1909 seq = read_seqcount_begin(&tk_core.seq); 1910 1911 now = tk_xtime(tk); 1912 } while (read_seqcount_retry(&tk_core.seq, seq)); 1913 1914 return timespec64_to_timespec(now); 1915 } 1916 EXPORT_SYMBOL(current_kernel_time); 1917 1918 struct timespec64 get_monotonic_coarse64(void) 1919 { 1920 struct timekeeper *tk = &tk_core.timekeeper; 1921 struct timespec64 now, mono; 1922 unsigned long seq; 1923 1924 do { 1925 seq = read_seqcount_begin(&tk_core.seq); 1926 1927 now = tk_xtime(tk); 1928 mono = tk->wall_to_monotonic; 1929 } while (read_seqcount_retry(&tk_core.seq, seq)); 1930 1931 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 1932 now.tv_nsec + mono.tv_nsec); 1933 1934 return now; 1935 } 1936 1937 /* 1938 * Must hold jiffies_lock 1939 */ 1940 void do_timer(unsigned long ticks) 1941 { 1942 jiffies_64 += ticks; 1943 calc_global_load(ticks); 1944 } 1945 1946 /** 1947 * ktime_get_update_offsets_now - hrtimer helper 1948 * @cwsseq: pointer to check and store the clock was set sequence number 1949 * @offs_real: pointer to storage for monotonic -> realtime offset 1950 * @offs_boot: pointer to storage for monotonic -> boottime offset 1951 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1952 * 1953 * Returns current monotonic time and updates the offsets if the 1954 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 1955 * different. 1956 * 1957 * Called from hrtimer_interrupt() or retrigger_next_event() 1958 */ 1959 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 1960 ktime_t *offs_boot, ktime_t *offs_tai) 1961 { 1962 struct timekeeper *tk = &tk_core.timekeeper; 1963 unsigned int seq; 1964 ktime_t base; 1965 u64 nsecs; 1966 1967 do { 1968 seq = read_seqcount_begin(&tk_core.seq); 1969 1970 base = tk->tkr_mono.base; 1971 nsecs = timekeeping_get_ns(&tk->tkr_mono); 1972 base = ktime_add_ns(base, nsecs); 1973 1974 if (*cwsseq != tk->clock_was_set_seq) { 1975 *cwsseq = tk->clock_was_set_seq; 1976 *offs_real = tk->offs_real; 1977 *offs_boot = tk->offs_boot; 1978 *offs_tai = tk->offs_tai; 1979 } 1980 1981 /* Handle leapsecond insertion adjustments */ 1982 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) 1983 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 1984 1985 } while (read_seqcount_retry(&tk_core.seq, seq)); 1986 1987 return base; 1988 } 1989 1990 /** 1991 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1992 */ 1993 int do_adjtimex(struct timex *txc) 1994 { 1995 struct timekeeper *tk = &tk_core.timekeeper; 1996 unsigned long flags; 1997 struct timespec64 ts; 1998 s32 orig_tai, tai; 1999 int ret; 2000 2001 /* Validate the data before disabling interrupts */ 2002 ret = ntp_validate_timex(txc); 2003 if (ret) 2004 return ret; 2005 2006 if (txc->modes & ADJ_SETOFFSET) { 2007 struct timespec delta; 2008 delta.tv_sec = txc->time.tv_sec; 2009 delta.tv_nsec = txc->time.tv_usec; 2010 if (!(txc->modes & ADJ_NANO)) 2011 delta.tv_nsec *= 1000; 2012 ret = timekeeping_inject_offset(&delta); 2013 if (ret) 2014 return ret; 2015 } 2016 2017 getnstimeofday64(&ts); 2018 2019 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2020 write_seqcount_begin(&tk_core.seq); 2021 2022 orig_tai = tai = tk->tai_offset; 2023 ret = __do_adjtimex(txc, &ts, &tai); 2024 2025 if (tai != orig_tai) { 2026 __timekeeping_set_tai_offset(tk, tai); 2027 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2028 } 2029 tk_update_leap_state(tk); 2030 2031 write_seqcount_end(&tk_core.seq); 2032 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2033 2034 if (tai != orig_tai) 2035 clock_was_set(); 2036 2037 ntp_notify_cmos_timer(); 2038 2039 return ret; 2040 } 2041 2042 #ifdef CONFIG_NTP_PPS 2043 /** 2044 * hardpps() - Accessor function to NTP __hardpps function 2045 */ 2046 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 2047 { 2048 unsigned long flags; 2049 2050 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2051 write_seqcount_begin(&tk_core.seq); 2052 2053 __hardpps(phase_ts, raw_ts); 2054 2055 write_seqcount_end(&tk_core.seq); 2056 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2057 } 2058 EXPORT_SYMBOL(hardpps); 2059 #endif 2060 2061 /** 2062 * xtime_update() - advances the timekeeping infrastructure 2063 * @ticks: number of ticks, that have elapsed since the last call. 2064 * 2065 * Must be called with interrupts disabled. 2066 */ 2067 void xtime_update(unsigned long ticks) 2068 { 2069 write_seqlock(&jiffies_lock); 2070 do_timer(ticks); 2071 write_sequnlock(&jiffies_lock); 2072 update_wall_time(); 2073 } 2074