xref: /openbmc/linux/kernel/time/timekeeping.c (revision 45471cd98decae5fced8b38e46c223f54a924814)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 }
74 
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 	struct timespec64 ts;
78 
79 	ts.tv_sec = tk->xtime_sec;
80 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 	return ts;
82 }
83 
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 	tk->xtime_sec = ts->tv_sec;
87 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89 
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec += ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 	tk_normalize_xtime(tk);
95 }
96 
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 	struct timespec64 tmp;
100 
101 	/*
102 	 * Verify consistency of: offset_real = -wall_to_monotonic
103 	 * before modifying anything
104 	 */
105 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 					-tk->wall_to_monotonic.tv_nsec);
107 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 	tk->wall_to_monotonic = wtm;
109 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 	tk->offs_real = timespec64_to_ktime(tmp);
111 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113 
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118 
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124 
125 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 	const char *name = tk->tkr_mono.clock->name;
127 
128 	if (offset > max_cycles) {
129 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 				offset, name, max_cycles);
131 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 	} else {
133 		if (offset > (max_cycles >> 1)) {
134 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 					offset, name, max_cycles >> 1);
136 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 		}
138 	}
139 
140 	if (tk->underflow_seen) {
141 		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144 			printk_deferred("         Your kernel is probably still fine.\n");
145 			tk->last_warning = jiffies;
146 		}
147 		tk->underflow_seen = 0;
148 	}
149 
150 	if (tk->overflow_seen) {
151 		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154 			printk_deferred("         Your kernel is probably still fine.\n");
155 			tk->last_warning = jiffies;
156 		}
157 		tk->overflow_seen = 0;
158 	}
159 }
160 
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 	struct timekeeper *tk = &tk_core.timekeeper;
164 	cycle_t now, last, mask, max, delta;
165 	unsigned int seq;
166 
167 	/*
168 	 * Since we're called holding a seqlock, the data may shift
169 	 * under us while we're doing the calculation. This can cause
170 	 * false positives, since we'd note a problem but throw the
171 	 * results away. So nest another seqlock here to atomically
172 	 * grab the points we are checking with.
173 	 */
174 	do {
175 		seq = read_seqcount_begin(&tk_core.seq);
176 		now = tkr->read(tkr->clock);
177 		last = tkr->cycle_last;
178 		mask = tkr->mask;
179 		max = tkr->clock->max_cycles;
180 	} while (read_seqcount_retry(&tk_core.seq, seq));
181 
182 	delta = clocksource_delta(now, last, mask);
183 
184 	/*
185 	 * Try to catch underflows by checking if we are seeing small
186 	 * mask-relative negative values.
187 	 */
188 	if (unlikely((~delta & mask) < (mask >> 3))) {
189 		tk->underflow_seen = 1;
190 		delta = 0;
191 	}
192 
193 	/* Cap delta value to the max_cycles values to avoid mult overflows */
194 	if (unlikely(delta > max)) {
195 		tk->overflow_seen = 1;
196 		delta = tkr->clock->max_cycles;
197 	}
198 
199 	return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 	cycle_t cycle_now, delta;
208 
209 	/* read clocksource */
210 	cycle_now = tkr->read(tkr->clock);
211 
212 	/* calculate the delta since the last update_wall_time */
213 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214 
215 	return delta;
216 }
217 #endif
218 
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:		The target timekeeper to setup.
223  * @clock:		Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 	cycle_t interval;
233 	u64 tmp, ntpinterval;
234 	struct clocksource *old_clock;
235 
236 	old_clock = tk->tkr_mono.clock;
237 	tk->tkr_mono.clock = clock;
238 	tk->tkr_mono.read = clock->read;
239 	tk->tkr_mono.mask = clock->mask;
240 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241 
242 	tk->tkr_raw.clock = clock;
243 	tk->tkr_raw.read = clock->read;
244 	tk->tkr_raw.mask = clock->mask;
245 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246 
247 	/* Do the ns -> cycle conversion first, using original mult */
248 	tmp = NTP_INTERVAL_LENGTH;
249 	tmp <<= clock->shift;
250 	ntpinterval = tmp;
251 	tmp += clock->mult/2;
252 	do_div(tmp, clock->mult);
253 	if (tmp == 0)
254 		tmp = 1;
255 
256 	interval = (cycle_t) tmp;
257 	tk->cycle_interval = interval;
258 
259 	/* Go back from cycles -> shifted ns */
260 	tk->xtime_interval = (u64) interval * clock->mult;
261 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262 	tk->raw_interval =
263 		((u64) interval * clock->mult) >> clock->shift;
264 
265 	 /* if changing clocks, convert xtime_nsec shift units */
266 	if (old_clock) {
267 		int shift_change = clock->shift - old_clock->shift;
268 		if (shift_change < 0)
269 			tk->tkr_mono.xtime_nsec >>= -shift_change;
270 		else
271 			tk->tkr_mono.xtime_nsec <<= shift_change;
272 	}
273 	tk->tkr_raw.xtime_nsec = 0;
274 
275 	tk->tkr_mono.shift = clock->shift;
276 	tk->tkr_raw.shift = clock->shift;
277 
278 	tk->ntp_error = 0;
279 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 
282 	/*
283 	 * The timekeeper keeps its own mult values for the currently
284 	 * active clocksource. These value will be adjusted via NTP
285 	 * to counteract clock drifting.
286 	 */
287 	tk->tkr_mono.mult = clock->mult;
288 	tk->tkr_raw.mult = clock->mult;
289 	tk->ntp_err_mult = 0;
290 }
291 
292 /* Timekeeper helper functions. */
293 
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300 
301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302 {
303 	cycle_t delta;
304 	s64 nsec;
305 
306 	delta = timekeeping_get_delta(tkr);
307 
308 	nsec = delta * tkr->mult + tkr->xtime_nsec;
309 	nsec >>= tkr->shift;
310 
311 	/* If arch requires, add in get_arch_timeoffset() */
312 	return nsec + arch_gettimeoffset();
313 }
314 
315 /**
316  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
317  * @tkr: Timekeeping readout base from which we take the update
318  *
319  * We want to use this from any context including NMI and tracing /
320  * instrumenting the timekeeping code itself.
321  *
322  * So we handle this differently than the other timekeeping accessor
323  * functions which retry when the sequence count has changed. The
324  * update side does:
325  *
326  * smp_wmb();	<- Ensure that the last base[1] update is visible
327  * tkf->seq++;
328  * smp_wmb();	<- Ensure that the seqcount update is visible
329  * update(tkf->base[0], tkr);
330  * smp_wmb();	<- Ensure that the base[0] update is visible
331  * tkf->seq++;
332  * smp_wmb();	<- Ensure that the seqcount update is visible
333  * update(tkf->base[1], tkr);
334  *
335  * The reader side does:
336  *
337  * do {
338  *	seq = tkf->seq;
339  *	smp_rmb();
340  *	idx = seq & 0x01;
341  *	now = now(tkf->base[idx]);
342  *	smp_rmb();
343  * } while (seq != tkf->seq)
344  *
345  * As long as we update base[0] readers are forced off to
346  * base[1]. Once base[0] is updated readers are redirected to base[0]
347  * and the base[1] update takes place.
348  *
349  * So if a NMI hits the update of base[0] then it will use base[1]
350  * which is still consistent. In the worst case this can result is a
351  * slightly wrong timestamp (a few nanoseconds). See
352  * @ktime_get_mono_fast_ns.
353  */
354 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
355 {
356 	struct tk_read_base *base = tkf->base;
357 
358 	/* Force readers off to base[1] */
359 	raw_write_seqcount_latch(&tkf->seq);
360 
361 	/* Update base[0] */
362 	memcpy(base, tkr, sizeof(*base));
363 
364 	/* Force readers back to base[0] */
365 	raw_write_seqcount_latch(&tkf->seq);
366 
367 	/* Update base[1] */
368 	memcpy(base + 1, base, sizeof(*base));
369 }
370 
371 /**
372  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
373  *
374  * This timestamp is not guaranteed to be monotonic across an update.
375  * The timestamp is calculated by:
376  *
377  *	now = base_mono + clock_delta * slope
378  *
379  * So if the update lowers the slope, readers who are forced to the
380  * not yet updated second array are still using the old steeper slope.
381  *
382  * tmono
383  * ^
384  * |    o  n
385  * |   o n
386  * |  u
387  * | o
388  * |o
389  * |12345678---> reader order
390  *
391  * o = old slope
392  * u = update
393  * n = new slope
394  *
395  * So reader 6 will observe time going backwards versus reader 5.
396  *
397  * While other CPUs are likely to be able observe that, the only way
398  * for a CPU local observation is when an NMI hits in the middle of
399  * the update. Timestamps taken from that NMI context might be ahead
400  * of the following timestamps. Callers need to be aware of that and
401  * deal with it.
402  */
403 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
404 {
405 	struct tk_read_base *tkr;
406 	unsigned int seq;
407 	u64 now;
408 
409 	do {
410 		seq = raw_read_seqcount(&tkf->seq);
411 		tkr = tkf->base + (seq & 0x01);
412 		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
413 	} while (read_seqcount_retry(&tkf->seq, seq));
414 
415 	return now;
416 }
417 
418 u64 ktime_get_mono_fast_ns(void)
419 {
420 	return __ktime_get_fast_ns(&tk_fast_mono);
421 }
422 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
423 
424 u64 ktime_get_raw_fast_ns(void)
425 {
426 	return __ktime_get_fast_ns(&tk_fast_raw);
427 }
428 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
429 
430 /* Suspend-time cycles value for halted fast timekeeper. */
431 static cycle_t cycles_at_suspend;
432 
433 static cycle_t dummy_clock_read(struct clocksource *cs)
434 {
435 	return cycles_at_suspend;
436 }
437 
438 /**
439  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
440  * @tk: Timekeeper to snapshot.
441  *
442  * It generally is unsafe to access the clocksource after timekeeping has been
443  * suspended, so take a snapshot of the readout base of @tk and use it as the
444  * fast timekeeper's readout base while suspended.  It will return the same
445  * number of cycles every time until timekeeping is resumed at which time the
446  * proper readout base for the fast timekeeper will be restored automatically.
447  */
448 static void halt_fast_timekeeper(struct timekeeper *tk)
449 {
450 	static struct tk_read_base tkr_dummy;
451 	struct tk_read_base *tkr = &tk->tkr_mono;
452 
453 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
454 	cycles_at_suspend = tkr->read(tkr->clock);
455 	tkr_dummy.read = dummy_clock_read;
456 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
457 
458 	tkr = &tk->tkr_raw;
459 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
460 	tkr_dummy.read = dummy_clock_read;
461 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
462 }
463 
464 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
465 
466 static inline void update_vsyscall(struct timekeeper *tk)
467 {
468 	struct timespec xt, wm;
469 
470 	xt = timespec64_to_timespec(tk_xtime(tk));
471 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
472 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
473 			    tk->tkr_mono.cycle_last);
474 }
475 
476 static inline void old_vsyscall_fixup(struct timekeeper *tk)
477 {
478 	s64 remainder;
479 
480 	/*
481 	* Store only full nanoseconds into xtime_nsec after rounding
482 	* it up and add the remainder to the error difference.
483 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
484 	* by truncating the remainder in vsyscalls. However, it causes
485 	* additional work to be done in timekeeping_adjust(). Once
486 	* the vsyscall implementations are converted to use xtime_nsec
487 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
488 	* users are removed, this can be killed.
489 	*/
490 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
491 	tk->tkr_mono.xtime_nsec -= remainder;
492 	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
493 	tk->ntp_error += remainder << tk->ntp_error_shift;
494 	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
495 }
496 #else
497 #define old_vsyscall_fixup(tk)
498 #endif
499 
500 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
501 
502 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503 {
504 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 }
506 
507 /**
508  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
509  */
510 int pvclock_gtod_register_notifier(struct notifier_block *nb)
511 {
512 	struct timekeeper *tk = &tk_core.timekeeper;
513 	unsigned long flags;
514 	int ret;
515 
516 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
517 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518 	update_pvclock_gtod(tk, true);
519 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520 
521 	return ret;
522 }
523 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
524 
525 /**
526  * pvclock_gtod_unregister_notifier - unregister a pvclock
527  * timedata update listener
528  */
529 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
530 {
531 	unsigned long flags;
532 	int ret;
533 
534 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
535 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537 
538 	return ret;
539 }
540 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
541 
542 /*
543  * tk_update_leap_state - helper to update the next_leap_ktime
544  */
545 static inline void tk_update_leap_state(struct timekeeper *tk)
546 {
547 	tk->next_leap_ktime = ntp_get_next_leap();
548 	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
549 		/* Convert to monotonic time */
550 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
551 }
552 
553 /*
554  * Update the ktime_t based scalar nsec members of the timekeeper
555  */
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 {
558 	u64 seconds;
559 	u32 nsec;
560 
561 	/*
562 	 * The xtime based monotonic readout is:
563 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564 	 * The ktime based monotonic readout is:
565 	 *	nsec = base_mono + now();
566 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567 	 */
568 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571 
572 	/* Update the monotonic raw base */
573 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574 
575 	/*
576 	 * The sum of the nanoseconds portions of xtime and
577 	 * wall_to_monotonic can be greater/equal one second. Take
578 	 * this into account before updating tk->ktime_sec.
579 	 */
580 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581 	if (nsec >= NSEC_PER_SEC)
582 		seconds++;
583 	tk->ktime_sec = seconds;
584 }
585 
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 {
589 	if (action & TK_CLEAR_NTP) {
590 		tk->ntp_error = 0;
591 		ntp_clear();
592 	}
593 
594 	tk_update_leap_state(tk);
595 	tk_update_ktime_data(tk);
596 
597 	update_vsyscall(tk);
598 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
599 
600 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
601 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
602 
603 	if (action & TK_CLOCK_WAS_SET)
604 		tk->clock_was_set_seq++;
605 	/*
606 	 * The mirroring of the data to the shadow-timekeeper needs
607 	 * to happen last here to ensure we don't over-write the
608 	 * timekeeper structure on the next update with stale data
609 	 */
610 	if (action & TK_MIRROR)
611 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
612 		       sizeof(tk_core.timekeeper));
613 }
614 
615 /**
616  * timekeeping_forward_now - update clock to the current time
617  *
618  * Forward the current clock to update its state since the last call to
619  * update_wall_time(). This is useful before significant clock changes,
620  * as it avoids having to deal with this time offset explicitly.
621  */
622 static void timekeeping_forward_now(struct timekeeper *tk)
623 {
624 	struct clocksource *clock = tk->tkr_mono.clock;
625 	cycle_t cycle_now, delta;
626 	s64 nsec;
627 
628 	cycle_now = tk->tkr_mono.read(clock);
629 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
630 	tk->tkr_mono.cycle_last = cycle_now;
631 	tk->tkr_raw.cycle_last  = cycle_now;
632 
633 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
634 
635 	/* If arch requires, add in get_arch_timeoffset() */
636 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
637 
638 	tk_normalize_xtime(tk);
639 
640 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
641 	timespec64_add_ns(&tk->raw_time, nsec);
642 }
643 
644 /**
645  * __getnstimeofday64 - Returns the time of day in a timespec64.
646  * @ts:		pointer to the timespec to be set
647  *
648  * Updates the time of day in the timespec.
649  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
650  */
651 int __getnstimeofday64(struct timespec64 *ts)
652 {
653 	struct timekeeper *tk = &tk_core.timekeeper;
654 	unsigned long seq;
655 	s64 nsecs = 0;
656 
657 	do {
658 		seq = read_seqcount_begin(&tk_core.seq);
659 
660 		ts->tv_sec = tk->xtime_sec;
661 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
662 
663 	} while (read_seqcount_retry(&tk_core.seq, seq));
664 
665 	ts->tv_nsec = 0;
666 	timespec64_add_ns(ts, nsecs);
667 
668 	/*
669 	 * Do not bail out early, in case there were callers still using
670 	 * the value, even in the face of the WARN_ON.
671 	 */
672 	if (unlikely(timekeeping_suspended))
673 		return -EAGAIN;
674 	return 0;
675 }
676 EXPORT_SYMBOL(__getnstimeofday64);
677 
678 /**
679  * getnstimeofday64 - Returns the time of day in a timespec64.
680  * @ts:		pointer to the timespec64 to be set
681  *
682  * Returns the time of day in a timespec64 (WARN if suspended).
683  */
684 void getnstimeofday64(struct timespec64 *ts)
685 {
686 	WARN_ON(__getnstimeofday64(ts));
687 }
688 EXPORT_SYMBOL(getnstimeofday64);
689 
690 ktime_t ktime_get(void)
691 {
692 	struct timekeeper *tk = &tk_core.timekeeper;
693 	unsigned int seq;
694 	ktime_t base;
695 	s64 nsecs;
696 
697 	WARN_ON(timekeeping_suspended);
698 
699 	do {
700 		seq = read_seqcount_begin(&tk_core.seq);
701 		base = tk->tkr_mono.base;
702 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
703 
704 	} while (read_seqcount_retry(&tk_core.seq, seq));
705 
706 	return ktime_add_ns(base, nsecs);
707 }
708 EXPORT_SYMBOL_GPL(ktime_get);
709 
710 u32 ktime_get_resolution_ns(void)
711 {
712 	struct timekeeper *tk = &tk_core.timekeeper;
713 	unsigned int seq;
714 	u32 nsecs;
715 
716 	WARN_ON(timekeeping_suspended);
717 
718 	do {
719 		seq = read_seqcount_begin(&tk_core.seq);
720 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
721 	} while (read_seqcount_retry(&tk_core.seq, seq));
722 
723 	return nsecs;
724 }
725 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
726 
727 static ktime_t *offsets[TK_OFFS_MAX] = {
728 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
729 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
730 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
731 };
732 
733 ktime_t ktime_get_with_offset(enum tk_offsets offs)
734 {
735 	struct timekeeper *tk = &tk_core.timekeeper;
736 	unsigned int seq;
737 	ktime_t base, *offset = offsets[offs];
738 	s64 nsecs;
739 
740 	WARN_ON(timekeeping_suspended);
741 
742 	do {
743 		seq = read_seqcount_begin(&tk_core.seq);
744 		base = ktime_add(tk->tkr_mono.base, *offset);
745 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
746 
747 	} while (read_seqcount_retry(&tk_core.seq, seq));
748 
749 	return ktime_add_ns(base, nsecs);
750 
751 }
752 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
753 
754 /**
755  * ktime_mono_to_any() - convert mononotic time to any other time
756  * @tmono:	time to convert.
757  * @offs:	which offset to use
758  */
759 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
760 {
761 	ktime_t *offset = offsets[offs];
762 	unsigned long seq;
763 	ktime_t tconv;
764 
765 	do {
766 		seq = read_seqcount_begin(&tk_core.seq);
767 		tconv = ktime_add(tmono, *offset);
768 	} while (read_seqcount_retry(&tk_core.seq, seq));
769 
770 	return tconv;
771 }
772 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
773 
774 /**
775  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
776  */
777 ktime_t ktime_get_raw(void)
778 {
779 	struct timekeeper *tk = &tk_core.timekeeper;
780 	unsigned int seq;
781 	ktime_t base;
782 	s64 nsecs;
783 
784 	do {
785 		seq = read_seqcount_begin(&tk_core.seq);
786 		base = tk->tkr_raw.base;
787 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
788 
789 	} while (read_seqcount_retry(&tk_core.seq, seq));
790 
791 	return ktime_add_ns(base, nsecs);
792 }
793 EXPORT_SYMBOL_GPL(ktime_get_raw);
794 
795 /**
796  * ktime_get_ts64 - get the monotonic clock in timespec64 format
797  * @ts:		pointer to timespec variable
798  *
799  * The function calculates the monotonic clock from the realtime
800  * clock and the wall_to_monotonic offset and stores the result
801  * in normalized timespec64 format in the variable pointed to by @ts.
802  */
803 void ktime_get_ts64(struct timespec64 *ts)
804 {
805 	struct timekeeper *tk = &tk_core.timekeeper;
806 	struct timespec64 tomono;
807 	s64 nsec;
808 	unsigned int seq;
809 
810 	WARN_ON(timekeeping_suspended);
811 
812 	do {
813 		seq = read_seqcount_begin(&tk_core.seq);
814 		ts->tv_sec = tk->xtime_sec;
815 		nsec = timekeeping_get_ns(&tk->tkr_mono);
816 		tomono = tk->wall_to_monotonic;
817 
818 	} while (read_seqcount_retry(&tk_core.seq, seq));
819 
820 	ts->tv_sec += tomono.tv_sec;
821 	ts->tv_nsec = 0;
822 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
823 }
824 EXPORT_SYMBOL_GPL(ktime_get_ts64);
825 
826 /**
827  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
828  *
829  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
830  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
831  * works on both 32 and 64 bit systems. On 32 bit systems the readout
832  * covers ~136 years of uptime which should be enough to prevent
833  * premature wrap arounds.
834  */
835 time64_t ktime_get_seconds(void)
836 {
837 	struct timekeeper *tk = &tk_core.timekeeper;
838 
839 	WARN_ON(timekeeping_suspended);
840 	return tk->ktime_sec;
841 }
842 EXPORT_SYMBOL_GPL(ktime_get_seconds);
843 
844 /**
845  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
846  *
847  * Returns the wall clock seconds since 1970. This replaces the
848  * get_seconds() interface which is not y2038 safe on 32bit systems.
849  *
850  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
851  * 32bit systems the access must be protected with the sequence
852  * counter to provide "atomic" access to the 64bit tk->xtime_sec
853  * value.
854  */
855 time64_t ktime_get_real_seconds(void)
856 {
857 	struct timekeeper *tk = &tk_core.timekeeper;
858 	time64_t seconds;
859 	unsigned int seq;
860 
861 	if (IS_ENABLED(CONFIG_64BIT))
862 		return tk->xtime_sec;
863 
864 	do {
865 		seq = read_seqcount_begin(&tk_core.seq);
866 		seconds = tk->xtime_sec;
867 
868 	} while (read_seqcount_retry(&tk_core.seq, seq));
869 
870 	return seconds;
871 }
872 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
873 
874 #ifdef CONFIG_NTP_PPS
875 
876 /**
877  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
878  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
879  * @ts_real:	pointer to the timespec to be set to the time of day
880  *
881  * This function reads both the time of day and raw monotonic time at the
882  * same time atomically and stores the resulting timestamps in timespec
883  * format.
884  */
885 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
886 {
887 	struct timekeeper *tk = &tk_core.timekeeper;
888 	unsigned long seq;
889 	s64 nsecs_raw, nsecs_real;
890 
891 	WARN_ON_ONCE(timekeeping_suspended);
892 
893 	do {
894 		seq = read_seqcount_begin(&tk_core.seq);
895 
896 		*ts_raw = timespec64_to_timespec(tk->raw_time);
897 		ts_real->tv_sec = tk->xtime_sec;
898 		ts_real->tv_nsec = 0;
899 
900 		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
901 		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
902 
903 	} while (read_seqcount_retry(&tk_core.seq, seq));
904 
905 	timespec_add_ns(ts_raw, nsecs_raw);
906 	timespec_add_ns(ts_real, nsecs_real);
907 }
908 EXPORT_SYMBOL(getnstime_raw_and_real);
909 
910 #endif /* CONFIG_NTP_PPS */
911 
912 /**
913  * do_gettimeofday - Returns the time of day in a timeval
914  * @tv:		pointer to the timeval to be set
915  *
916  * NOTE: Users should be converted to using getnstimeofday()
917  */
918 void do_gettimeofday(struct timeval *tv)
919 {
920 	struct timespec64 now;
921 
922 	getnstimeofday64(&now);
923 	tv->tv_sec = now.tv_sec;
924 	tv->tv_usec = now.tv_nsec/1000;
925 }
926 EXPORT_SYMBOL(do_gettimeofday);
927 
928 /**
929  * do_settimeofday64 - Sets the time of day.
930  * @ts:     pointer to the timespec64 variable containing the new time
931  *
932  * Sets the time of day to the new time and update NTP and notify hrtimers
933  */
934 int do_settimeofday64(const struct timespec64 *ts)
935 {
936 	struct timekeeper *tk = &tk_core.timekeeper;
937 	struct timespec64 ts_delta, xt;
938 	unsigned long flags;
939 
940 	if (!timespec64_valid_strict(ts))
941 		return -EINVAL;
942 
943 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
944 	write_seqcount_begin(&tk_core.seq);
945 
946 	timekeeping_forward_now(tk);
947 
948 	xt = tk_xtime(tk);
949 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
950 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
951 
952 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
953 
954 	tk_set_xtime(tk, ts);
955 
956 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
957 
958 	write_seqcount_end(&tk_core.seq);
959 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
960 
961 	/* signal hrtimers about time change */
962 	clock_was_set();
963 
964 	return 0;
965 }
966 EXPORT_SYMBOL(do_settimeofday64);
967 
968 /**
969  * timekeeping_inject_offset - Adds or subtracts from the current time.
970  * @tv:		pointer to the timespec variable containing the offset
971  *
972  * Adds or subtracts an offset value from the current time.
973  */
974 int timekeeping_inject_offset(struct timespec *ts)
975 {
976 	struct timekeeper *tk = &tk_core.timekeeper;
977 	unsigned long flags;
978 	struct timespec64 ts64, tmp;
979 	int ret = 0;
980 
981 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
982 		return -EINVAL;
983 
984 	ts64 = timespec_to_timespec64(*ts);
985 
986 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
987 	write_seqcount_begin(&tk_core.seq);
988 
989 	timekeeping_forward_now(tk);
990 
991 	/* Make sure the proposed value is valid */
992 	tmp = timespec64_add(tk_xtime(tk),  ts64);
993 	if (!timespec64_valid_strict(&tmp)) {
994 		ret = -EINVAL;
995 		goto error;
996 	}
997 
998 	tk_xtime_add(tk, &ts64);
999 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1000 
1001 error: /* even if we error out, we forwarded the time, so call update */
1002 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1003 
1004 	write_seqcount_end(&tk_core.seq);
1005 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1006 
1007 	/* signal hrtimers about time change */
1008 	clock_was_set();
1009 
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL(timekeeping_inject_offset);
1013 
1014 
1015 /**
1016  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1017  *
1018  */
1019 s32 timekeeping_get_tai_offset(void)
1020 {
1021 	struct timekeeper *tk = &tk_core.timekeeper;
1022 	unsigned int seq;
1023 	s32 ret;
1024 
1025 	do {
1026 		seq = read_seqcount_begin(&tk_core.seq);
1027 		ret = tk->tai_offset;
1028 	} while (read_seqcount_retry(&tk_core.seq, seq));
1029 
1030 	return ret;
1031 }
1032 
1033 /**
1034  * __timekeeping_set_tai_offset - Lock free worker function
1035  *
1036  */
1037 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1038 {
1039 	tk->tai_offset = tai_offset;
1040 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1041 }
1042 
1043 /**
1044  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1045  *
1046  */
1047 void timekeeping_set_tai_offset(s32 tai_offset)
1048 {
1049 	struct timekeeper *tk = &tk_core.timekeeper;
1050 	unsigned long flags;
1051 
1052 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1053 	write_seqcount_begin(&tk_core.seq);
1054 	__timekeeping_set_tai_offset(tk, tai_offset);
1055 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1056 	write_seqcount_end(&tk_core.seq);
1057 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1058 	clock_was_set();
1059 }
1060 
1061 /**
1062  * change_clocksource - Swaps clocksources if a new one is available
1063  *
1064  * Accumulates current time interval and initializes new clocksource
1065  */
1066 static int change_clocksource(void *data)
1067 {
1068 	struct timekeeper *tk = &tk_core.timekeeper;
1069 	struct clocksource *new, *old;
1070 	unsigned long flags;
1071 
1072 	new = (struct clocksource *) data;
1073 
1074 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1075 	write_seqcount_begin(&tk_core.seq);
1076 
1077 	timekeeping_forward_now(tk);
1078 	/*
1079 	 * If the cs is in module, get a module reference. Succeeds
1080 	 * for built-in code (owner == NULL) as well.
1081 	 */
1082 	if (try_module_get(new->owner)) {
1083 		if (!new->enable || new->enable(new) == 0) {
1084 			old = tk->tkr_mono.clock;
1085 			tk_setup_internals(tk, new);
1086 			if (old->disable)
1087 				old->disable(old);
1088 			module_put(old->owner);
1089 		} else {
1090 			module_put(new->owner);
1091 		}
1092 	}
1093 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1094 
1095 	write_seqcount_end(&tk_core.seq);
1096 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1097 
1098 	return 0;
1099 }
1100 
1101 /**
1102  * timekeeping_notify - Install a new clock source
1103  * @clock:		pointer to the clock source
1104  *
1105  * This function is called from clocksource.c after a new, better clock
1106  * source has been registered. The caller holds the clocksource_mutex.
1107  */
1108 int timekeeping_notify(struct clocksource *clock)
1109 {
1110 	struct timekeeper *tk = &tk_core.timekeeper;
1111 
1112 	if (tk->tkr_mono.clock == clock)
1113 		return 0;
1114 	stop_machine(change_clocksource, clock, NULL);
1115 	tick_clock_notify();
1116 	return tk->tkr_mono.clock == clock ? 0 : -1;
1117 }
1118 
1119 /**
1120  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1121  * @ts:		pointer to the timespec64 to be set
1122  *
1123  * Returns the raw monotonic time (completely un-modified by ntp)
1124  */
1125 void getrawmonotonic64(struct timespec64 *ts)
1126 {
1127 	struct timekeeper *tk = &tk_core.timekeeper;
1128 	struct timespec64 ts64;
1129 	unsigned long seq;
1130 	s64 nsecs;
1131 
1132 	do {
1133 		seq = read_seqcount_begin(&tk_core.seq);
1134 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1135 		ts64 = tk->raw_time;
1136 
1137 	} while (read_seqcount_retry(&tk_core.seq, seq));
1138 
1139 	timespec64_add_ns(&ts64, nsecs);
1140 	*ts = ts64;
1141 }
1142 EXPORT_SYMBOL(getrawmonotonic64);
1143 
1144 
1145 /**
1146  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1147  */
1148 int timekeeping_valid_for_hres(void)
1149 {
1150 	struct timekeeper *tk = &tk_core.timekeeper;
1151 	unsigned long seq;
1152 	int ret;
1153 
1154 	do {
1155 		seq = read_seqcount_begin(&tk_core.seq);
1156 
1157 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1158 
1159 	} while (read_seqcount_retry(&tk_core.seq, seq));
1160 
1161 	return ret;
1162 }
1163 
1164 /**
1165  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1166  */
1167 u64 timekeeping_max_deferment(void)
1168 {
1169 	struct timekeeper *tk = &tk_core.timekeeper;
1170 	unsigned long seq;
1171 	u64 ret;
1172 
1173 	do {
1174 		seq = read_seqcount_begin(&tk_core.seq);
1175 
1176 		ret = tk->tkr_mono.clock->max_idle_ns;
1177 
1178 	} while (read_seqcount_retry(&tk_core.seq, seq));
1179 
1180 	return ret;
1181 }
1182 
1183 /**
1184  * read_persistent_clock -  Return time from the persistent clock.
1185  *
1186  * Weak dummy function for arches that do not yet support it.
1187  * Reads the time from the battery backed persistent clock.
1188  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1189  *
1190  *  XXX - Do be sure to remove it once all arches implement it.
1191  */
1192 void __weak read_persistent_clock(struct timespec *ts)
1193 {
1194 	ts->tv_sec = 0;
1195 	ts->tv_nsec = 0;
1196 }
1197 
1198 void __weak read_persistent_clock64(struct timespec64 *ts64)
1199 {
1200 	struct timespec ts;
1201 
1202 	read_persistent_clock(&ts);
1203 	*ts64 = timespec_to_timespec64(ts);
1204 }
1205 
1206 /**
1207  * read_boot_clock64 -  Return time of the system start.
1208  *
1209  * Weak dummy function for arches that do not yet support it.
1210  * Function to read the exact time the system has been started.
1211  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1212  *
1213  *  XXX - Do be sure to remove it once all arches implement it.
1214  */
1215 void __weak read_boot_clock64(struct timespec64 *ts)
1216 {
1217 	ts->tv_sec = 0;
1218 	ts->tv_nsec = 0;
1219 }
1220 
1221 /* Flag for if timekeeping_resume() has injected sleeptime */
1222 static bool sleeptime_injected;
1223 
1224 /* Flag for if there is a persistent clock on this platform */
1225 static bool persistent_clock_exists;
1226 
1227 /*
1228  * timekeeping_init - Initializes the clocksource and common timekeeping values
1229  */
1230 void __init timekeeping_init(void)
1231 {
1232 	struct timekeeper *tk = &tk_core.timekeeper;
1233 	struct clocksource *clock;
1234 	unsigned long flags;
1235 	struct timespec64 now, boot, tmp;
1236 
1237 	read_persistent_clock64(&now);
1238 	if (!timespec64_valid_strict(&now)) {
1239 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1240 			"         Check your CMOS/BIOS settings.\n");
1241 		now.tv_sec = 0;
1242 		now.tv_nsec = 0;
1243 	} else if (now.tv_sec || now.tv_nsec)
1244 		persistent_clock_exists = true;
1245 
1246 	read_boot_clock64(&boot);
1247 	if (!timespec64_valid_strict(&boot)) {
1248 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1249 			"         Check your CMOS/BIOS settings.\n");
1250 		boot.tv_sec = 0;
1251 		boot.tv_nsec = 0;
1252 	}
1253 
1254 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1255 	write_seqcount_begin(&tk_core.seq);
1256 	ntp_init();
1257 
1258 	clock = clocksource_default_clock();
1259 	if (clock->enable)
1260 		clock->enable(clock);
1261 	tk_setup_internals(tk, clock);
1262 
1263 	tk_set_xtime(tk, &now);
1264 	tk->raw_time.tv_sec = 0;
1265 	tk->raw_time.tv_nsec = 0;
1266 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1267 		boot = tk_xtime(tk);
1268 
1269 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1270 	tk_set_wall_to_mono(tk, tmp);
1271 
1272 	timekeeping_update(tk, TK_MIRROR);
1273 
1274 	write_seqcount_end(&tk_core.seq);
1275 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1276 }
1277 
1278 /* time in seconds when suspend began for persistent clock */
1279 static struct timespec64 timekeeping_suspend_time;
1280 
1281 /**
1282  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1283  * @delta: pointer to a timespec delta value
1284  *
1285  * Takes a timespec offset measuring a suspend interval and properly
1286  * adds the sleep offset to the timekeeping variables.
1287  */
1288 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1289 					   struct timespec64 *delta)
1290 {
1291 	if (!timespec64_valid_strict(delta)) {
1292 		printk_deferred(KERN_WARNING
1293 				"__timekeeping_inject_sleeptime: Invalid "
1294 				"sleep delta value!\n");
1295 		return;
1296 	}
1297 	tk_xtime_add(tk, delta);
1298 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1299 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1300 	tk_debug_account_sleep_time(delta);
1301 }
1302 
1303 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1304 /**
1305  * We have three kinds of time sources to use for sleep time
1306  * injection, the preference order is:
1307  * 1) non-stop clocksource
1308  * 2) persistent clock (ie: RTC accessible when irqs are off)
1309  * 3) RTC
1310  *
1311  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1312  * If system has neither 1) nor 2), 3) will be used finally.
1313  *
1314  *
1315  * If timekeeping has injected sleeptime via either 1) or 2),
1316  * 3) becomes needless, so in this case we don't need to call
1317  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1318  * means.
1319  */
1320 bool timekeeping_rtc_skipresume(void)
1321 {
1322 	return sleeptime_injected;
1323 }
1324 
1325 /**
1326  * 1) can be determined whether to use or not only when doing
1327  * timekeeping_resume() which is invoked after rtc_suspend(),
1328  * so we can't skip rtc_suspend() surely if system has 1).
1329  *
1330  * But if system has 2), 2) will definitely be used, so in this
1331  * case we don't need to call rtc_suspend(), and this is what
1332  * timekeeping_rtc_skipsuspend() means.
1333  */
1334 bool timekeeping_rtc_skipsuspend(void)
1335 {
1336 	return persistent_clock_exists;
1337 }
1338 
1339 /**
1340  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1341  * @delta: pointer to a timespec64 delta value
1342  *
1343  * This hook is for architectures that cannot support read_persistent_clock64
1344  * because their RTC/persistent clock is only accessible when irqs are enabled.
1345  * and also don't have an effective nonstop clocksource.
1346  *
1347  * This function should only be called by rtc_resume(), and allows
1348  * a suspend offset to be injected into the timekeeping values.
1349  */
1350 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1351 {
1352 	struct timekeeper *tk = &tk_core.timekeeper;
1353 	unsigned long flags;
1354 
1355 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1356 	write_seqcount_begin(&tk_core.seq);
1357 
1358 	timekeeping_forward_now(tk);
1359 
1360 	__timekeeping_inject_sleeptime(tk, delta);
1361 
1362 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1363 
1364 	write_seqcount_end(&tk_core.seq);
1365 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1366 
1367 	/* signal hrtimers about time change */
1368 	clock_was_set();
1369 }
1370 #endif
1371 
1372 /**
1373  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1374  */
1375 void timekeeping_resume(void)
1376 {
1377 	struct timekeeper *tk = &tk_core.timekeeper;
1378 	struct clocksource *clock = tk->tkr_mono.clock;
1379 	unsigned long flags;
1380 	struct timespec64 ts_new, ts_delta;
1381 	cycle_t cycle_now, cycle_delta;
1382 
1383 	sleeptime_injected = false;
1384 	read_persistent_clock64(&ts_new);
1385 
1386 	clockevents_resume();
1387 	clocksource_resume();
1388 
1389 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1390 	write_seqcount_begin(&tk_core.seq);
1391 
1392 	/*
1393 	 * After system resumes, we need to calculate the suspended time and
1394 	 * compensate it for the OS time. There are 3 sources that could be
1395 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1396 	 * device.
1397 	 *
1398 	 * One specific platform may have 1 or 2 or all of them, and the
1399 	 * preference will be:
1400 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1401 	 * The less preferred source will only be tried if there is no better
1402 	 * usable source. The rtc part is handled separately in rtc core code.
1403 	 */
1404 	cycle_now = tk->tkr_mono.read(clock);
1405 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1406 		cycle_now > tk->tkr_mono.cycle_last) {
1407 		u64 num, max = ULLONG_MAX;
1408 		u32 mult = clock->mult;
1409 		u32 shift = clock->shift;
1410 		s64 nsec = 0;
1411 
1412 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1413 						tk->tkr_mono.mask);
1414 
1415 		/*
1416 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1417 		 * suspended time is too long. In that case we need do the
1418 		 * 64 bits math carefully
1419 		 */
1420 		do_div(max, mult);
1421 		if (cycle_delta > max) {
1422 			num = div64_u64(cycle_delta, max);
1423 			nsec = (((u64) max * mult) >> shift) * num;
1424 			cycle_delta -= num * max;
1425 		}
1426 		nsec += ((u64) cycle_delta * mult) >> shift;
1427 
1428 		ts_delta = ns_to_timespec64(nsec);
1429 		sleeptime_injected = true;
1430 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1431 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1432 		sleeptime_injected = true;
1433 	}
1434 
1435 	if (sleeptime_injected)
1436 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1437 
1438 	/* Re-base the last cycle value */
1439 	tk->tkr_mono.cycle_last = cycle_now;
1440 	tk->tkr_raw.cycle_last  = cycle_now;
1441 
1442 	tk->ntp_error = 0;
1443 	timekeeping_suspended = 0;
1444 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1445 	write_seqcount_end(&tk_core.seq);
1446 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1447 
1448 	touch_softlockup_watchdog();
1449 
1450 	tick_resume();
1451 	hrtimers_resume();
1452 }
1453 
1454 int timekeeping_suspend(void)
1455 {
1456 	struct timekeeper *tk = &tk_core.timekeeper;
1457 	unsigned long flags;
1458 	struct timespec64		delta, delta_delta;
1459 	static struct timespec64	old_delta;
1460 
1461 	read_persistent_clock64(&timekeeping_suspend_time);
1462 
1463 	/*
1464 	 * On some systems the persistent_clock can not be detected at
1465 	 * timekeeping_init by its return value, so if we see a valid
1466 	 * value returned, update the persistent_clock_exists flag.
1467 	 */
1468 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1469 		persistent_clock_exists = true;
1470 
1471 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1472 	write_seqcount_begin(&tk_core.seq);
1473 	timekeeping_forward_now(tk);
1474 	timekeeping_suspended = 1;
1475 
1476 	if (persistent_clock_exists) {
1477 		/*
1478 		 * To avoid drift caused by repeated suspend/resumes,
1479 		 * which each can add ~1 second drift error,
1480 		 * try to compensate so the difference in system time
1481 		 * and persistent_clock time stays close to constant.
1482 		 */
1483 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1484 		delta_delta = timespec64_sub(delta, old_delta);
1485 		if (abs(delta_delta.tv_sec) >= 2) {
1486 			/*
1487 			 * if delta_delta is too large, assume time correction
1488 			 * has occurred and set old_delta to the current delta.
1489 			 */
1490 			old_delta = delta;
1491 		} else {
1492 			/* Otherwise try to adjust old_system to compensate */
1493 			timekeeping_suspend_time =
1494 				timespec64_add(timekeeping_suspend_time, delta_delta);
1495 		}
1496 	}
1497 
1498 	timekeeping_update(tk, TK_MIRROR);
1499 	halt_fast_timekeeper(tk);
1500 	write_seqcount_end(&tk_core.seq);
1501 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1502 
1503 	tick_suspend();
1504 	clocksource_suspend();
1505 	clockevents_suspend();
1506 
1507 	return 0;
1508 }
1509 
1510 /* sysfs resume/suspend bits for timekeeping */
1511 static struct syscore_ops timekeeping_syscore_ops = {
1512 	.resume		= timekeeping_resume,
1513 	.suspend	= timekeeping_suspend,
1514 };
1515 
1516 static int __init timekeeping_init_ops(void)
1517 {
1518 	register_syscore_ops(&timekeeping_syscore_ops);
1519 	return 0;
1520 }
1521 device_initcall(timekeeping_init_ops);
1522 
1523 /*
1524  * Apply a multiplier adjustment to the timekeeper
1525  */
1526 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1527 							 s64 offset,
1528 							 bool negative,
1529 							 int adj_scale)
1530 {
1531 	s64 interval = tk->cycle_interval;
1532 	s32 mult_adj = 1;
1533 
1534 	if (negative) {
1535 		mult_adj = -mult_adj;
1536 		interval = -interval;
1537 		offset  = -offset;
1538 	}
1539 	mult_adj <<= adj_scale;
1540 	interval <<= adj_scale;
1541 	offset <<= adj_scale;
1542 
1543 	/*
1544 	 * So the following can be confusing.
1545 	 *
1546 	 * To keep things simple, lets assume mult_adj == 1 for now.
1547 	 *
1548 	 * When mult_adj != 1, remember that the interval and offset values
1549 	 * have been appropriately scaled so the math is the same.
1550 	 *
1551 	 * The basic idea here is that we're increasing the multiplier
1552 	 * by one, this causes the xtime_interval to be incremented by
1553 	 * one cycle_interval. This is because:
1554 	 *	xtime_interval = cycle_interval * mult
1555 	 * So if mult is being incremented by one:
1556 	 *	xtime_interval = cycle_interval * (mult + 1)
1557 	 * Its the same as:
1558 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1559 	 * Which can be shortened to:
1560 	 *	xtime_interval += cycle_interval
1561 	 *
1562 	 * So offset stores the non-accumulated cycles. Thus the current
1563 	 * time (in shifted nanoseconds) is:
1564 	 *	now = (offset * adj) + xtime_nsec
1565 	 * Now, even though we're adjusting the clock frequency, we have
1566 	 * to keep time consistent. In other words, we can't jump back
1567 	 * in time, and we also want to avoid jumping forward in time.
1568 	 *
1569 	 * So given the same offset value, we need the time to be the same
1570 	 * both before and after the freq adjustment.
1571 	 *	now = (offset * adj_1) + xtime_nsec_1
1572 	 *	now = (offset * adj_2) + xtime_nsec_2
1573 	 * So:
1574 	 *	(offset * adj_1) + xtime_nsec_1 =
1575 	 *		(offset * adj_2) + xtime_nsec_2
1576 	 * And we know:
1577 	 *	adj_2 = adj_1 + 1
1578 	 * So:
1579 	 *	(offset * adj_1) + xtime_nsec_1 =
1580 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1581 	 *	(offset * adj_1) + xtime_nsec_1 =
1582 	 *		(offset * adj_1) + offset + xtime_nsec_2
1583 	 * Canceling the sides:
1584 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1585 	 * Which gives us:
1586 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1587 	 * Which simplfies to:
1588 	 *	xtime_nsec -= offset
1589 	 *
1590 	 * XXX - TODO: Doc ntp_error calculation.
1591 	 */
1592 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1593 		/* NTP adjustment caused clocksource mult overflow */
1594 		WARN_ON_ONCE(1);
1595 		return;
1596 	}
1597 
1598 	tk->tkr_mono.mult += mult_adj;
1599 	tk->xtime_interval += interval;
1600 	tk->tkr_mono.xtime_nsec -= offset;
1601 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1602 }
1603 
1604 /*
1605  * Calculate the multiplier adjustment needed to match the frequency
1606  * specified by NTP
1607  */
1608 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1609 							s64 offset)
1610 {
1611 	s64 interval = tk->cycle_interval;
1612 	s64 xinterval = tk->xtime_interval;
1613 	s64 tick_error;
1614 	bool negative;
1615 	u32 adj;
1616 
1617 	/* Remove any current error adj from freq calculation */
1618 	if (tk->ntp_err_mult)
1619 		xinterval -= tk->cycle_interval;
1620 
1621 	tk->ntp_tick = ntp_tick_length();
1622 
1623 	/* Calculate current error per tick */
1624 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1625 	tick_error -= (xinterval + tk->xtime_remainder);
1626 
1627 	/* Don't worry about correcting it if its small */
1628 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1629 		return;
1630 
1631 	/* preserve the direction of correction */
1632 	negative = (tick_error < 0);
1633 
1634 	/* Sort out the magnitude of the correction */
1635 	tick_error = abs(tick_error);
1636 	for (adj = 0; tick_error > interval; adj++)
1637 		tick_error >>= 1;
1638 
1639 	/* scale the corrections */
1640 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1641 }
1642 
1643 /*
1644  * Adjust the timekeeper's multiplier to the correct frequency
1645  * and also to reduce the accumulated error value.
1646  */
1647 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1648 {
1649 	/* Correct for the current frequency error */
1650 	timekeeping_freqadjust(tk, offset);
1651 
1652 	/* Next make a small adjustment to fix any cumulative error */
1653 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1654 		tk->ntp_err_mult = 1;
1655 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1656 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1657 		/* Undo any existing error adjustment */
1658 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1659 		tk->ntp_err_mult = 0;
1660 	}
1661 
1662 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1663 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1664 			> tk->tkr_mono.clock->maxadj))) {
1665 		printk_once(KERN_WARNING
1666 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1667 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1668 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1669 	}
1670 
1671 	/*
1672 	 * It may be possible that when we entered this function, xtime_nsec
1673 	 * was very small.  Further, if we're slightly speeding the clocksource
1674 	 * in the code above, its possible the required corrective factor to
1675 	 * xtime_nsec could cause it to underflow.
1676 	 *
1677 	 * Now, since we already accumulated the second, cannot simply roll
1678 	 * the accumulated second back, since the NTP subsystem has been
1679 	 * notified via second_overflow. So instead we push xtime_nsec forward
1680 	 * by the amount we underflowed, and add that amount into the error.
1681 	 *
1682 	 * We'll correct this error next time through this function, when
1683 	 * xtime_nsec is not as small.
1684 	 */
1685 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1686 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1687 		tk->tkr_mono.xtime_nsec = 0;
1688 		tk->ntp_error += neg << tk->ntp_error_shift;
1689 	}
1690 }
1691 
1692 /**
1693  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1694  *
1695  * Helper function that accumulates a the nsecs greater then a second
1696  * from the xtime_nsec field to the xtime_secs field.
1697  * It also calls into the NTP code to handle leapsecond processing.
1698  *
1699  */
1700 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1701 {
1702 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1703 	unsigned int clock_set = 0;
1704 
1705 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1706 		int leap;
1707 
1708 		tk->tkr_mono.xtime_nsec -= nsecps;
1709 		tk->xtime_sec++;
1710 
1711 		/* Figure out if its a leap sec and apply if needed */
1712 		leap = second_overflow(tk->xtime_sec);
1713 		if (unlikely(leap)) {
1714 			struct timespec64 ts;
1715 
1716 			tk->xtime_sec += leap;
1717 
1718 			ts.tv_sec = leap;
1719 			ts.tv_nsec = 0;
1720 			tk_set_wall_to_mono(tk,
1721 				timespec64_sub(tk->wall_to_monotonic, ts));
1722 
1723 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1724 
1725 			clock_set = TK_CLOCK_WAS_SET;
1726 		}
1727 	}
1728 	return clock_set;
1729 }
1730 
1731 /**
1732  * logarithmic_accumulation - shifted accumulation of cycles
1733  *
1734  * This functions accumulates a shifted interval of cycles into
1735  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1736  * loop.
1737  *
1738  * Returns the unconsumed cycles.
1739  */
1740 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1741 						u32 shift,
1742 						unsigned int *clock_set)
1743 {
1744 	cycle_t interval = tk->cycle_interval << shift;
1745 	u64 raw_nsecs;
1746 
1747 	/* If the offset is smaller then a shifted interval, do nothing */
1748 	if (offset < interval)
1749 		return offset;
1750 
1751 	/* Accumulate one shifted interval */
1752 	offset -= interval;
1753 	tk->tkr_mono.cycle_last += interval;
1754 	tk->tkr_raw.cycle_last  += interval;
1755 
1756 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1757 	*clock_set |= accumulate_nsecs_to_secs(tk);
1758 
1759 	/* Accumulate raw time */
1760 	raw_nsecs = (u64)tk->raw_interval << shift;
1761 	raw_nsecs += tk->raw_time.tv_nsec;
1762 	if (raw_nsecs >= NSEC_PER_SEC) {
1763 		u64 raw_secs = raw_nsecs;
1764 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1765 		tk->raw_time.tv_sec += raw_secs;
1766 	}
1767 	tk->raw_time.tv_nsec = raw_nsecs;
1768 
1769 	/* Accumulate error between NTP and clock interval */
1770 	tk->ntp_error += tk->ntp_tick << shift;
1771 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1772 						(tk->ntp_error_shift + shift);
1773 
1774 	return offset;
1775 }
1776 
1777 /**
1778  * update_wall_time - Uses the current clocksource to increment the wall time
1779  *
1780  */
1781 void update_wall_time(void)
1782 {
1783 	struct timekeeper *real_tk = &tk_core.timekeeper;
1784 	struct timekeeper *tk = &shadow_timekeeper;
1785 	cycle_t offset;
1786 	int shift = 0, maxshift;
1787 	unsigned int clock_set = 0;
1788 	unsigned long flags;
1789 
1790 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1791 
1792 	/* Make sure we're fully resumed: */
1793 	if (unlikely(timekeeping_suspended))
1794 		goto out;
1795 
1796 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1797 	offset = real_tk->cycle_interval;
1798 #else
1799 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1800 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1801 #endif
1802 
1803 	/* Check if there's really nothing to do */
1804 	if (offset < real_tk->cycle_interval)
1805 		goto out;
1806 
1807 	/* Do some additional sanity checking */
1808 	timekeeping_check_update(real_tk, offset);
1809 
1810 	/*
1811 	 * With NO_HZ we may have to accumulate many cycle_intervals
1812 	 * (think "ticks") worth of time at once. To do this efficiently,
1813 	 * we calculate the largest doubling multiple of cycle_intervals
1814 	 * that is smaller than the offset.  We then accumulate that
1815 	 * chunk in one go, and then try to consume the next smaller
1816 	 * doubled multiple.
1817 	 */
1818 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1819 	shift = max(0, shift);
1820 	/* Bound shift to one less than what overflows tick_length */
1821 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1822 	shift = min(shift, maxshift);
1823 	while (offset >= tk->cycle_interval) {
1824 		offset = logarithmic_accumulation(tk, offset, shift,
1825 							&clock_set);
1826 		if (offset < tk->cycle_interval<<shift)
1827 			shift--;
1828 	}
1829 
1830 	/* correct the clock when NTP error is too big */
1831 	timekeeping_adjust(tk, offset);
1832 
1833 	/*
1834 	 * XXX This can be killed once everyone converts
1835 	 * to the new update_vsyscall.
1836 	 */
1837 	old_vsyscall_fixup(tk);
1838 
1839 	/*
1840 	 * Finally, make sure that after the rounding
1841 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1842 	 */
1843 	clock_set |= accumulate_nsecs_to_secs(tk);
1844 
1845 	write_seqcount_begin(&tk_core.seq);
1846 	/*
1847 	 * Update the real timekeeper.
1848 	 *
1849 	 * We could avoid this memcpy by switching pointers, but that
1850 	 * requires changes to all other timekeeper usage sites as
1851 	 * well, i.e. move the timekeeper pointer getter into the
1852 	 * spinlocked/seqcount protected sections. And we trade this
1853 	 * memcpy under the tk_core.seq against one before we start
1854 	 * updating.
1855 	 */
1856 	timekeeping_update(tk, clock_set);
1857 	memcpy(real_tk, tk, sizeof(*tk));
1858 	/* The memcpy must come last. Do not put anything here! */
1859 	write_seqcount_end(&tk_core.seq);
1860 out:
1861 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1862 	if (clock_set)
1863 		/* Have to call _delayed version, since in irq context*/
1864 		clock_was_set_delayed();
1865 }
1866 
1867 /**
1868  * getboottime64 - Return the real time of system boot.
1869  * @ts:		pointer to the timespec64 to be set
1870  *
1871  * Returns the wall-time of boot in a timespec64.
1872  *
1873  * This is based on the wall_to_monotonic offset and the total suspend
1874  * time. Calls to settimeofday will affect the value returned (which
1875  * basically means that however wrong your real time clock is at boot time,
1876  * you get the right time here).
1877  */
1878 void getboottime64(struct timespec64 *ts)
1879 {
1880 	struct timekeeper *tk = &tk_core.timekeeper;
1881 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1882 
1883 	*ts = ktime_to_timespec64(t);
1884 }
1885 EXPORT_SYMBOL_GPL(getboottime64);
1886 
1887 unsigned long get_seconds(void)
1888 {
1889 	struct timekeeper *tk = &tk_core.timekeeper;
1890 
1891 	return tk->xtime_sec;
1892 }
1893 EXPORT_SYMBOL(get_seconds);
1894 
1895 struct timespec __current_kernel_time(void)
1896 {
1897 	struct timekeeper *tk = &tk_core.timekeeper;
1898 
1899 	return timespec64_to_timespec(tk_xtime(tk));
1900 }
1901 
1902 struct timespec current_kernel_time(void)
1903 {
1904 	struct timekeeper *tk = &tk_core.timekeeper;
1905 	struct timespec64 now;
1906 	unsigned long seq;
1907 
1908 	do {
1909 		seq = read_seqcount_begin(&tk_core.seq);
1910 
1911 		now = tk_xtime(tk);
1912 	} while (read_seqcount_retry(&tk_core.seq, seq));
1913 
1914 	return timespec64_to_timespec(now);
1915 }
1916 EXPORT_SYMBOL(current_kernel_time);
1917 
1918 struct timespec64 get_monotonic_coarse64(void)
1919 {
1920 	struct timekeeper *tk = &tk_core.timekeeper;
1921 	struct timespec64 now, mono;
1922 	unsigned long seq;
1923 
1924 	do {
1925 		seq = read_seqcount_begin(&tk_core.seq);
1926 
1927 		now = tk_xtime(tk);
1928 		mono = tk->wall_to_monotonic;
1929 	} while (read_seqcount_retry(&tk_core.seq, seq));
1930 
1931 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1932 				now.tv_nsec + mono.tv_nsec);
1933 
1934 	return now;
1935 }
1936 
1937 /*
1938  * Must hold jiffies_lock
1939  */
1940 void do_timer(unsigned long ticks)
1941 {
1942 	jiffies_64 += ticks;
1943 	calc_global_load(ticks);
1944 }
1945 
1946 /**
1947  * ktime_get_update_offsets_now - hrtimer helper
1948  * @cwsseq:	pointer to check and store the clock was set sequence number
1949  * @offs_real:	pointer to storage for monotonic -> realtime offset
1950  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1951  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1952  *
1953  * Returns current monotonic time and updates the offsets if the
1954  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1955  * different.
1956  *
1957  * Called from hrtimer_interrupt() or retrigger_next_event()
1958  */
1959 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1960 				     ktime_t *offs_boot, ktime_t *offs_tai)
1961 {
1962 	struct timekeeper *tk = &tk_core.timekeeper;
1963 	unsigned int seq;
1964 	ktime_t base;
1965 	u64 nsecs;
1966 
1967 	do {
1968 		seq = read_seqcount_begin(&tk_core.seq);
1969 
1970 		base = tk->tkr_mono.base;
1971 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1972 		base = ktime_add_ns(base, nsecs);
1973 
1974 		if (*cwsseq != tk->clock_was_set_seq) {
1975 			*cwsseq = tk->clock_was_set_seq;
1976 			*offs_real = tk->offs_real;
1977 			*offs_boot = tk->offs_boot;
1978 			*offs_tai = tk->offs_tai;
1979 		}
1980 
1981 		/* Handle leapsecond insertion adjustments */
1982 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1983 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1984 
1985 	} while (read_seqcount_retry(&tk_core.seq, seq));
1986 
1987 	return base;
1988 }
1989 
1990 /**
1991  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1992  */
1993 int do_adjtimex(struct timex *txc)
1994 {
1995 	struct timekeeper *tk = &tk_core.timekeeper;
1996 	unsigned long flags;
1997 	struct timespec64 ts;
1998 	s32 orig_tai, tai;
1999 	int ret;
2000 
2001 	/* Validate the data before disabling interrupts */
2002 	ret = ntp_validate_timex(txc);
2003 	if (ret)
2004 		return ret;
2005 
2006 	if (txc->modes & ADJ_SETOFFSET) {
2007 		struct timespec delta;
2008 		delta.tv_sec  = txc->time.tv_sec;
2009 		delta.tv_nsec = txc->time.tv_usec;
2010 		if (!(txc->modes & ADJ_NANO))
2011 			delta.tv_nsec *= 1000;
2012 		ret = timekeeping_inject_offset(&delta);
2013 		if (ret)
2014 			return ret;
2015 	}
2016 
2017 	getnstimeofday64(&ts);
2018 
2019 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2020 	write_seqcount_begin(&tk_core.seq);
2021 
2022 	orig_tai = tai = tk->tai_offset;
2023 	ret = __do_adjtimex(txc, &ts, &tai);
2024 
2025 	if (tai != orig_tai) {
2026 		__timekeeping_set_tai_offset(tk, tai);
2027 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2028 	}
2029 	tk_update_leap_state(tk);
2030 
2031 	write_seqcount_end(&tk_core.seq);
2032 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2033 
2034 	if (tai != orig_tai)
2035 		clock_was_set();
2036 
2037 	ntp_notify_cmos_timer();
2038 
2039 	return ret;
2040 }
2041 
2042 #ifdef CONFIG_NTP_PPS
2043 /**
2044  * hardpps() - Accessor function to NTP __hardpps function
2045  */
2046 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2047 {
2048 	unsigned long flags;
2049 
2050 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2051 	write_seqcount_begin(&tk_core.seq);
2052 
2053 	__hardpps(phase_ts, raw_ts);
2054 
2055 	write_seqcount_end(&tk_core.seq);
2056 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2057 }
2058 EXPORT_SYMBOL(hardpps);
2059 #endif
2060 
2061 /**
2062  * xtime_update() - advances the timekeeping infrastructure
2063  * @ticks:	number of ticks, that have elapsed since the last call.
2064  *
2065  * Must be called with interrupts disabled.
2066  */
2067 void xtime_update(unsigned long ticks)
2068 {
2069 	write_seqlock(&jiffies_lock);
2070 	do_timer(ticks);
2071 	write_sequnlock(&jiffies_lock);
2072 	update_wall_time();
2073 }
2074