1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/tick.h> 21 #include <linux/stop_machine.h> 22 #include <linux/pvclock_gtod.h> 23 #include <linux/compiler.h> 24 #include <linux/audit.h> 25 26 #include "tick-internal.h" 27 #include "ntp_internal.h" 28 #include "timekeeping_internal.h" 29 30 #define TK_CLEAR_NTP (1 << 0) 31 #define TK_MIRROR (1 << 1) 32 #define TK_CLOCK_WAS_SET (1 << 2) 33 34 enum timekeeping_adv_mode { 35 /* Update timekeeper when a tick has passed */ 36 TK_ADV_TICK, 37 38 /* Update timekeeper on a direct frequency change */ 39 TK_ADV_FREQ 40 }; 41 42 /* 43 * The most important data for readout fits into a single 64 byte 44 * cache line. 45 */ 46 static struct { 47 seqcount_t seq; 48 struct timekeeper timekeeper; 49 } tk_core ____cacheline_aligned = { 50 .seq = SEQCNT_ZERO(tk_core.seq), 51 }; 52 53 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 54 static struct timekeeper shadow_timekeeper; 55 56 /** 57 * struct tk_fast - NMI safe timekeeper 58 * @seq: Sequence counter for protecting updates. The lowest bit 59 * is the index for the tk_read_base array 60 * @base: tk_read_base array. Access is indexed by the lowest bit of 61 * @seq. 62 * 63 * See @update_fast_timekeeper() below. 64 */ 65 struct tk_fast { 66 seqcount_t seq; 67 struct tk_read_base base[2]; 68 }; 69 70 /* Suspend-time cycles value for halted fast timekeeper. */ 71 static u64 cycles_at_suspend; 72 73 static u64 dummy_clock_read(struct clocksource *cs) 74 { 75 return cycles_at_suspend; 76 } 77 78 static struct clocksource dummy_clock = { 79 .read = dummy_clock_read, 80 }; 81 82 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 83 .base[0] = { .clock = &dummy_clock, }, 84 .base[1] = { .clock = &dummy_clock, }, 85 }; 86 87 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 88 .base[0] = { .clock = &dummy_clock, }, 89 .base[1] = { .clock = &dummy_clock, }, 90 }; 91 92 /* flag for if timekeeping is suspended */ 93 int __read_mostly timekeeping_suspended; 94 95 static inline void tk_normalize_xtime(struct timekeeper *tk) 96 { 97 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 98 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 99 tk->xtime_sec++; 100 } 101 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 102 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 103 tk->raw_sec++; 104 } 105 } 106 107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 108 { 109 struct timespec64 ts; 110 111 ts.tv_sec = tk->xtime_sec; 112 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 113 return ts; 114 } 115 116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 117 { 118 tk->xtime_sec = ts->tv_sec; 119 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 120 } 121 122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 123 { 124 tk->xtime_sec += ts->tv_sec; 125 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 126 tk_normalize_xtime(tk); 127 } 128 129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 130 { 131 struct timespec64 tmp; 132 133 /* 134 * Verify consistency of: offset_real = -wall_to_monotonic 135 * before modifying anything 136 */ 137 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 138 -tk->wall_to_monotonic.tv_nsec); 139 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 140 tk->wall_to_monotonic = wtm; 141 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 142 tk->offs_real = timespec64_to_ktime(tmp); 143 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 144 } 145 146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 147 { 148 tk->offs_boot = ktime_add(tk->offs_boot, delta); 149 /* 150 * Timespec representation for VDSO update to avoid 64bit division 151 * on every update. 152 */ 153 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 154 } 155 156 /* 157 * tk_clock_read - atomic clocksource read() helper 158 * 159 * This helper is necessary to use in the read paths because, while the 160 * seqlock ensures we don't return a bad value while structures are updated, 161 * it doesn't protect from potential crashes. There is the possibility that 162 * the tkr's clocksource may change between the read reference, and the 163 * clock reference passed to the read function. This can cause crashes if 164 * the wrong clocksource is passed to the wrong read function. 165 * This isn't necessary to use when holding the timekeeper_lock or doing 166 * a read of the fast-timekeeper tkrs (which is protected by its own locking 167 * and update logic). 168 */ 169 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 170 { 171 struct clocksource *clock = READ_ONCE(tkr->clock); 172 173 return clock->read(clock); 174 } 175 176 #ifdef CONFIG_DEBUG_TIMEKEEPING 177 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 178 179 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 180 { 181 182 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 183 const char *name = tk->tkr_mono.clock->name; 184 185 if (offset > max_cycles) { 186 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 187 offset, name, max_cycles); 188 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 189 } else { 190 if (offset > (max_cycles >> 1)) { 191 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 192 offset, name, max_cycles >> 1); 193 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 194 } 195 } 196 197 if (tk->underflow_seen) { 198 if (jiffies - tk->last_warning > WARNING_FREQ) { 199 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 200 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 201 printk_deferred(" Your kernel is probably still fine.\n"); 202 tk->last_warning = jiffies; 203 } 204 tk->underflow_seen = 0; 205 } 206 207 if (tk->overflow_seen) { 208 if (jiffies - tk->last_warning > WARNING_FREQ) { 209 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 210 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 211 printk_deferred(" Your kernel is probably still fine.\n"); 212 tk->last_warning = jiffies; 213 } 214 tk->overflow_seen = 0; 215 } 216 } 217 218 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 219 { 220 struct timekeeper *tk = &tk_core.timekeeper; 221 u64 now, last, mask, max, delta; 222 unsigned int seq; 223 224 /* 225 * Since we're called holding a seqlock, the data may shift 226 * under us while we're doing the calculation. This can cause 227 * false positives, since we'd note a problem but throw the 228 * results away. So nest another seqlock here to atomically 229 * grab the points we are checking with. 230 */ 231 do { 232 seq = read_seqcount_begin(&tk_core.seq); 233 now = tk_clock_read(tkr); 234 last = tkr->cycle_last; 235 mask = tkr->mask; 236 max = tkr->clock->max_cycles; 237 } while (read_seqcount_retry(&tk_core.seq, seq)); 238 239 delta = clocksource_delta(now, last, mask); 240 241 /* 242 * Try to catch underflows by checking if we are seeing small 243 * mask-relative negative values. 244 */ 245 if (unlikely((~delta & mask) < (mask >> 3))) { 246 tk->underflow_seen = 1; 247 delta = 0; 248 } 249 250 /* Cap delta value to the max_cycles values to avoid mult overflows */ 251 if (unlikely(delta > max)) { 252 tk->overflow_seen = 1; 253 delta = tkr->clock->max_cycles; 254 } 255 256 return delta; 257 } 258 #else 259 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 260 { 261 } 262 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 263 { 264 u64 cycle_now, delta; 265 266 /* read clocksource */ 267 cycle_now = tk_clock_read(tkr); 268 269 /* calculate the delta since the last update_wall_time */ 270 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 271 272 return delta; 273 } 274 #endif 275 276 /** 277 * tk_setup_internals - Set up internals to use clocksource clock. 278 * 279 * @tk: The target timekeeper to setup. 280 * @clock: Pointer to clocksource. 281 * 282 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 283 * pair and interval request. 284 * 285 * Unless you're the timekeeping code, you should not be using this! 286 */ 287 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 288 { 289 u64 interval; 290 u64 tmp, ntpinterval; 291 struct clocksource *old_clock; 292 293 ++tk->cs_was_changed_seq; 294 old_clock = tk->tkr_mono.clock; 295 tk->tkr_mono.clock = clock; 296 tk->tkr_mono.mask = clock->mask; 297 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 298 299 tk->tkr_raw.clock = clock; 300 tk->tkr_raw.mask = clock->mask; 301 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 302 303 /* Do the ns -> cycle conversion first, using original mult */ 304 tmp = NTP_INTERVAL_LENGTH; 305 tmp <<= clock->shift; 306 ntpinterval = tmp; 307 tmp += clock->mult/2; 308 do_div(tmp, clock->mult); 309 if (tmp == 0) 310 tmp = 1; 311 312 interval = (u64) tmp; 313 tk->cycle_interval = interval; 314 315 /* Go back from cycles -> shifted ns */ 316 tk->xtime_interval = interval * clock->mult; 317 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 318 tk->raw_interval = interval * clock->mult; 319 320 /* if changing clocks, convert xtime_nsec shift units */ 321 if (old_clock) { 322 int shift_change = clock->shift - old_clock->shift; 323 if (shift_change < 0) { 324 tk->tkr_mono.xtime_nsec >>= -shift_change; 325 tk->tkr_raw.xtime_nsec >>= -shift_change; 326 } else { 327 tk->tkr_mono.xtime_nsec <<= shift_change; 328 tk->tkr_raw.xtime_nsec <<= shift_change; 329 } 330 } 331 332 tk->tkr_mono.shift = clock->shift; 333 tk->tkr_raw.shift = clock->shift; 334 335 tk->ntp_error = 0; 336 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 337 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 338 339 /* 340 * The timekeeper keeps its own mult values for the currently 341 * active clocksource. These value will be adjusted via NTP 342 * to counteract clock drifting. 343 */ 344 tk->tkr_mono.mult = clock->mult; 345 tk->tkr_raw.mult = clock->mult; 346 tk->ntp_err_mult = 0; 347 tk->skip_second_overflow = 0; 348 } 349 350 /* Timekeeper helper functions. */ 351 352 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 353 static u32 default_arch_gettimeoffset(void) { return 0; } 354 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 355 #else 356 static inline u32 arch_gettimeoffset(void) { return 0; } 357 #endif 358 359 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 360 { 361 u64 nsec; 362 363 nsec = delta * tkr->mult + tkr->xtime_nsec; 364 nsec >>= tkr->shift; 365 366 /* If arch requires, add in get_arch_timeoffset() */ 367 return nsec + arch_gettimeoffset(); 368 } 369 370 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 371 { 372 u64 delta; 373 374 delta = timekeeping_get_delta(tkr); 375 return timekeeping_delta_to_ns(tkr, delta); 376 } 377 378 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 379 { 380 u64 delta; 381 382 /* calculate the delta since the last update_wall_time */ 383 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 384 return timekeeping_delta_to_ns(tkr, delta); 385 } 386 387 /** 388 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 389 * @tkr: Timekeeping readout base from which we take the update 390 * 391 * We want to use this from any context including NMI and tracing / 392 * instrumenting the timekeeping code itself. 393 * 394 * Employ the latch technique; see @raw_write_seqcount_latch. 395 * 396 * So if a NMI hits the update of base[0] then it will use base[1] 397 * which is still consistent. In the worst case this can result is a 398 * slightly wrong timestamp (a few nanoseconds). See 399 * @ktime_get_mono_fast_ns. 400 */ 401 static void update_fast_timekeeper(const struct tk_read_base *tkr, 402 struct tk_fast *tkf) 403 { 404 struct tk_read_base *base = tkf->base; 405 406 /* Force readers off to base[1] */ 407 raw_write_seqcount_latch(&tkf->seq); 408 409 /* Update base[0] */ 410 memcpy(base, tkr, sizeof(*base)); 411 412 /* Force readers back to base[0] */ 413 raw_write_seqcount_latch(&tkf->seq); 414 415 /* Update base[1] */ 416 memcpy(base + 1, base, sizeof(*base)); 417 } 418 419 /** 420 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 421 * 422 * This timestamp is not guaranteed to be monotonic across an update. 423 * The timestamp is calculated by: 424 * 425 * now = base_mono + clock_delta * slope 426 * 427 * So if the update lowers the slope, readers who are forced to the 428 * not yet updated second array are still using the old steeper slope. 429 * 430 * tmono 431 * ^ 432 * | o n 433 * | o n 434 * | u 435 * | o 436 * |o 437 * |12345678---> reader order 438 * 439 * o = old slope 440 * u = update 441 * n = new slope 442 * 443 * So reader 6 will observe time going backwards versus reader 5. 444 * 445 * While other CPUs are likely to be able observe that, the only way 446 * for a CPU local observation is when an NMI hits in the middle of 447 * the update. Timestamps taken from that NMI context might be ahead 448 * of the following timestamps. Callers need to be aware of that and 449 * deal with it. 450 */ 451 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 452 { 453 struct tk_read_base *tkr; 454 unsigned int seq; 455 u64 now; 456 457 do { 458 seq = raw_read_seqcount_latch(&tkf->seq); 459 tkr = tkf->base + (seq & 0x01); 460 now = ktime_to_ns(tkr->base); 461 462 now += timekeeping_delta_to_ns(tkr, 463 clocksource_delta( 464 tk_clock_read(tkr), 465 tkr->cycle_last, 466 tkr->mask)); 467 } while (read_seqcount_retry(&tkf->seq, seq)); 468 469 return now; 470 } 471 472 u64 ktime_get_mono_fast_ns(void) 473 { 474 return __ktime_get_fast_ns(&tk_fast_mono); 475 } 476 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 477 478 u64 ktime_get_raw_fast_ns(void) 479 { 480 return __ktime_get_fast_ns(&tk_fast_raw); 481 } 482 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 483 484 /** 485 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 486 * 487 * To keep it NMI safe since we're accessing from tracing, we're not using a 488 * separate timekeeper with updates to monotonic clock and boot offset 489 * protected with seqlocks. This has the following minor side effects: 490 * 491 * (1) Its possible that a timestamp be taken after the boot offset is updated 492 * but before the timekeeper is updated. If this happens, the new boot offset 493 * is added to the old timekeeping making the clock appear to update slightly 494 * earlier: 495 * CPU 0 CPU 1 496 * timekeeping_inject_sleeptime64() 497 * __timekeeping_inject_sleeptime(tk, delta); 498 * timestamp(); 499 * timekeeping_update(tk, TK_CLEAR_NTP...); 500 * 501 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 502 * partially updated. Since the tk->offs_boot update is a rare event, this 503 * should be a rare occurrence which postprocessing should be able to handle. 504 */ 505 u64 notrace ktime_get_boot_fast_ns(void) 506 { 507 struct timekeeper *tk = &tk_core.timekeeper; 508 509 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 510 } 511 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 512 513 514 /* 515 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 516 */ 517 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) 518 { 519 struct tk_read_base *tkr; 520 unsigned int seq; 521 u64 now; 522 523 do { 524 seq = raw_read_seqcount_latch(&tkf->seq); 525 tkr = tkf->base + (seq & 0x01); 526 now = ktime_to_ns(tkr->base_real); 527 528 now += timekeeping_delta_to_ns(tkr, 529 clocksource_delta( 530 tk_clock_read(tkr), 531 tkr->cycle_last, 532 tkr->mask)); 533 } while (read_seqcount_retry(&tkf->seq, seq)); 534 535 return now; 536 } 537 538 /** 539 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 540 */ 541 u64 ktime_get_real_fast_ns(void) 542 { 543 return __ktime_get_real_fast_ns(&tk_fast_mono); 544 } 545 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 546 547 /** 548 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 549 * @tk: Timekeeper to snapshot. 550 * 551 * It generally is unsafe to access the clocksource after timekeeping has been 552 * suspended, so take a snapshot of the readout base of @tk and use it as the 553 * fast timekeeper's readout base while suspended. It will return the same 554 * number of cycles every time until timekeeping is resumed at which time the 555 * proper readout base for the fast timekeeper will be restored automatically. 556 */ 557 static void halt_fast_timekeeper(const struct timekeeper *tk) 558 { 559 static struct tk_read_base tkr_dummy; 560 const struct tk_read_base *tkr = &tk->tkr_mono; 561 562 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 563 cycles_at_suspend = tk_clock_read(tkr); 564 tkr_dummy.clock = &dummy_clock; 565 tkr_dummy.base_real = tkr->base + tk->offs_real; 566 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 567 568 tkr = &tk->tkr_raw; 569 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 570 tkr_dummy.clock = &dummy_clock; 571 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 572 } 573 574 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 575 576 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 577 { 578 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 579 } 580 581 /** 582 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 583 */ 584 int pvclock_gtod_register_notifier(struct notifier_block *nb) 585 { 586 struct timekeeper *tk = &tk_core.timekeeper; 587 unsigned long flags; 588 int ret; 589 590 raw_spin_lock_irqsave(&timekeeper_lock, flags); 591 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 592 update_pvclock_gtod(tk, true); 593 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 594 595 return ret; 596 } 597 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 598 599 /** 600 * pvclock_gtod_unregister_notifier - unregister a pvclock 601 * timedata update listener 602 */ 603 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 604 { 605 unsigned long flags; 606 int ret; 607 608 raw_spin_lock_irqsave(&timekeeper_lock, flags); 609 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 610 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 611 612 return ret; 613 } 614 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 615 616 /* 617 * tk_update_leap_state - helper to update the next_leap_ktime 618 */ 619 static inline void tk_update_leap_state(struct timekeeper *tk) 620 { 621 tk->next_leap_ktime = ntp_get_next_leap(); 622 if (tk->next_leap_ktime != KTIME_MAX) 623 /* Convert to monotonic time */ 624 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 625 } 626 627 /* 628 * Update the ktime_t based scalar nsec members of the timekeeper 629 */ 630 static inline void tk_update_ktime_data(struct timekeeper *tk) 631 { 632 u64 seconds; 633 u32 nsec; 634 635 /* 636 * The xtime based monotonic readout is: 637 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 638 * The ktime based monotonic readout is: 639 * nsec = base_mono + now(); 640 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 641 */ 642 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 643 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 644 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 645 646 /* 647 * The sum of the nanoseconds portions of xtime and 648 * wall_to_monotonic can be greater/equal one second. Take 649 * this into account before updating tk->ktime_sec. 650 */ 651 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 652 if (nsec >= NSEC_PER_SEC) 653 seconds++; 654 tk->ktime_sec = seconds; 655 656 /* Update the monotonic raw base */ 657 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 658 } 659 660 /* must hold timekeeper_lock */ 661 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 662 { 663 if (action & TK_CLEAR_NTP) { 664 tk->ntp_error = 0; 665 ntp_clear(); 666 } 667 668 tk_update_leap_state(tk); 669 tk_update_ktime_data(tk); 670 671 update_vsyscall(tk); 672 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 673 674 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 675 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 676 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 677 678 if (action & TK_CLOCK_WAS_SET) 679 tk->clock_was_set_seq++; 680 /* 681 * The mirroring of the data to the shadow-timekeeper needs 682 * to happen last here to ensure we don't over-write the 683 * timekeeper structure on the next update with stale data 684 */ 685 if (action & TK_MIRROR) 686 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 687 sizeof(tk_core.timekeeper)); 688 } 689 690 /** 691 * timekeeping_forward_now - update clock to the current time 692 * 693 * Forward the current clock to update its state since the last call to 694 * update_wall_time(). This is useful before significant clock changes, 695 * as it avoids having to deal with this time offset explicitly. 696 */ 697 static void timekeeping_forward_now(struct timekeeper *tk) 698 { 699 u64 cycle_now, delta; 700 701 cycle_now = tk_clock_read(&tk->tkr_mono); 702 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 703 tk->tkr_mono.cycle_last = cycle_now; 704 tk->tkr_raw.cycle_last = cycle_now; 705 706 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 707 708 /* If arch requires, add in get_arch_timeoffset() */ 709 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 710 711 712 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 713 714 /* If arch requires, add in get_arch_timeoffset() */ 715 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 716 717 tk_normalize_xtime(tk); 718 } 719 720 /** 721 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 722 * @ts: pointer to the timespec to be set 723 * 724 * Returns the time of day in a timespec64 (WARN if suspended). 725 */ 726 void ktime_get_real_ts64(struct timespec64 *ts) 727 { 728 struct timekeeper *tk = &tk_core.timekeeper; 729 unsigned int seq; 730 u64 nsecs; 731 732 WARN_ON(timekeeping_suspended); 733 734 do { 735 seq = read_seqcount_begin(&tk_core.seq); 736 737 ts->tv_sec = tk->xtime_sec; 738 nsecs = timekeeping_get_ns(&tk->tkr_mono); 739 740 } while (read_seqcount_retry(&tk_core.seq, seq)); 741 742 ts->tv_nsec = 0; 743 timespec64_add_ns(ts, nsecs); 744 } 745 EXPORT_SYMBOL(ktime_get_real_ts64); 746 747 ktime_t ktime_get(void) 748 { 749 struct timekeeper *tk = &tk_core.timekeeper; 750 unsigned int seq; 751 ktime_t base; 752 u64 nsecs; 753 754 WARN_ON(timekeeping_suspended); 755 756 do { 757 seq = read_seqcount_begin(&tk_core.seq); 758 base = tk->tkr_mono.base; 759 nsecs = timekeeping_get_ns(&tk->tkr_mono); 760 761 } while (read_seqcount_retry(&tk_core.seq, seq)); 762 763 return ktime_add_ns(base, nsecs); 764 } 765 EXPORT_SYMBOL_GPL(ktime_get); 766 767 u32 ktime_get_resolution_ns(void) 768 { 769 struct timekeeper *tk = &tk_core.timekeeper; 770 unsigned int seq; 771 u32 nsecs; 772 773 WARN_ON(timekeeping_suspended); 774 775 do { 776 seq = read_seqcount_begin(&tk_core.seq); 777 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 778 } while (read_seqcount_retry(&tk_core.seq, seq)); 779 780 return nsecs; 781 } 782 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 783 784 static ktime_t *offsets[TK_OFFS_MAX] = { 785 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 786 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 787 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 788 }; 789 790 ktime_t ktime_get_with_offset(enum tk_offsets offs) 791 { 792 struct timekeeper *tk = &tk_core.timekeeper; 793 unsigned int seq; 794 ktime_t base, *offset = offsets[offs]; 795 u64 nsecs; 796 797 WARN_ON(timekeeping_suspended); 798 799 do { 800 seq = read_seqcount_begin(&tk_core.seq); 801 base = ktime_add(tk->tkr_mono.base, *offset); 802 nsecs = timekeeping_get_ns(&tk->tkr_mono); 803 804 } while (read_seqcount_retry(&tk_core.seq, seq)); 805 806 return ktime_add_ns(base, nsecs); 807 808 } 809 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 810 811 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 812 { 813 struct timekeeper *tk = &tk_core.timekeeper; 814 unsigned int seq; 815 ktime_t base, *offset = offsets[offs]; 816 u64 nsecs; 817 818 WARN_ON(timekeeping_suspended); 819 820 do { 821 seq = read_seqcount_begin(&tk_core.seq); 822 base = ktime_add(tk->tkr_mono.base, *offset); 823 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 824 825 } while (read_seqcount_retry(&tk_core.seq, seq)); 826 827 return ktime_add_ns(base, nsecs); 828 } 829 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 830 831 /** 832 * ktime_mono_to_any() - convert mononotic time to any other time 833 * @tmono: time to convert. 834 * @offs: which offset to use 835 */ 836 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 837 { 838 ktime_t *offset = offsets[offs]; 839 unsigned int seq; 840 ktime_t tconv; 841 842 do { 843 seq = read_seqcount_begin(&tk_core.seq); 844 tconv = ktime_add(tmono, *offset); 845 } while (read_seqcount_retry(&tk_core.seq, seq)); 846 847 return tconv; 848 } 849 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 850 851 /** 852 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 853 */ 854 ktime_t ktime_get_raw(void) 855 { 856 struct timekeeper *tk = &tk_core.timekeeper; 857 unsigned int seq; 858 ktime_t base; 859 u64 nsecs; 860 861 do { 862 seq = read_seqcount_begin(&tk_core.seq); 863 base = tk->tkr_raw.base; 864 nsecs = timekeeping_get_ns(&tk->tkr_raw); 865 866 } while (read_seqcount_retry(&tk_core.seq, seq)); 867 868 return ktime_add_ns(base, nsecs); 869 } 870 EXPORT_SYMBOL_GPL(ktime_get_raw); 871 872 /** 873 * ktime_get_ts64 - get the monotonic clock in timespec64 format 874 * @ts: pointer to timespec variable 875 * 876 * The function calculates the monotonic clock from the realtime 877 * clock and the wall_to_monotonic offset and stores the result 878 * in normalized timespec64 format in the variable pointed to by @ts. 879 */ 880 void ktime_get_ts64(struct timespec64 *ts) 881 { 882 struct timekeeper *tk = &tk_core.timekeeper; 883 struct timespec64 tomono; 884 unsigned int seq; 885 u64 nsec; 886 887 WARN_ON(timekeeping_suspended); 888 889 do { 890 seq = read_seqcount_begin(&tk_core.seq); 891 ts->tv_sec = tk->xtime_sec; 892 nsec = timekeeping_get_ns(&tk->tkr_mono); 893 tomono = tk->wall_to_monotonic; 894 895 } while (read_seqcount_retry(&tk_core.seq, seq)); 896 897 ts->tv_sec += tomono.tv_sec; 898 ts->tv_nsec = 0; 899 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 900 } 901 EXPORT_SYMBOL_GPL(ktime_get_ts64); 902 903 /** 904 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 905 * 906 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 907 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 908 * works on both 32 and 64 bit systems. On 32 bit systems the readout 909 * covers ~136 years of uptime which should be enough to prevent 910 * premature wrap arounds. 911 */ 912 time64_t ktime_get_seconds(void) 913 { 914 struct timekeeper *tk = &tk_core.timekeeper; 915 916 WARN_ON(timekeeping_suspended); 917 return tk->ktime_sec; 918 } 919 EXPORT_SYMBOL_GPL(ktime_get_seconds); 920 921 /** 922 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 923 * 924 * Returns the wall clock seconds since 1970. This replaces the 925 * get_seconds() interface which is not y2038 safe on 32bit systems. 926 * 927 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 928 * 32bit systems the access must be protected with the sequence 929 * counter to provide "atomic" access to the 64bit tk->xtime_sec 930 * value. 931 */ 932 time64_t ktime_get_real_seconds(void) 933 { 934 struct timekeeper *tk = &tk_core.timekeeper; 935 time64_t seconds; 936 unsigned int seq; 937 938 if (IS_ENABLED(CONFIG_64BIT)) 939 return tk->xtime_sec; 940 941 do { 942 seq = read_seqcount_begin(&tk_core.seq); 943 seconds = tk->xtime_sec; 944 945 } while (read_seqcount_retry(&tk_core.seq, seq)); 946 947 return seconds; 948 } 949 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 950 951 /** 952 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 953 * but without the sequence counter protect. This internal function 954 * is called just when timekeeping lock is already held. 955 */ 956 noinstr time64_t __ktime_get_real_seconds(void) 957 { 958 struct timekeeper *tk = &tk_core.timekeeper; 959 960 return tk->xtime_sec; 961 } 962 963 /** 964 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 965 * @systime_snapshot: pointer to struct receiving the system time snapshot 966 */ 967 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 968 { 969 struct timekeeper *tk = &tk_core.timekeeper; 970 unsigned int seq; 971 ktime_t base_raw; 972 ktime_t base_real; 973 u64 nsec_raw; 974 u64 nsec_real; 975 u64 now; 976 977 WARN_ON_ONCE(timekeeping_suspended); 978 979 do { 980 seq = read_seqcount_begin(&tk_core.seq); 981 now = tk_clock_read(&tk->tkr_mono); 982 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 983 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 984 base_real = ktime_add(tk->tkr_mono.base, 985 tk_core.timekeeper.offs_real); 986 base_raw = tk->tkr_raw.base; 987 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 988 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 989 } while (read_seqcount_retry(&tk_core.seq, seq)); 990 991 systime_snapshot->cycles = now; 992 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 993 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 994 } 995 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 996 997 /* Scale base by mult/div checking for overflow */ 998 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 999 { 1000 u64 tmp, rem; 1001 1002 tmp = div64_u64_rem(*base, div, &rem); 1003 1004 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1005 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1006 return -EOVERFLOW; 1007 tmp *= mult; 1008 1009 rem = div64_u64(rem * mult, div); 1010 *base = tmp + rem; 1011 return 0; 1012 } 1013 1014 /** 1015 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1016 * @history: Snapshot representing start of history 1017 * @partial_history_cycles: Cycle offset into history (fractional part) 1018 * @total_history_cycles: Total history length in cycles 1019 * @discontinuity: True indicates clock was set on history period 1020 * @ts: Cross timestamp that should be adjusted using 1021 * partial/total ratio 1022 * 1023 * Helper function used by get_device_system_crosststamp() to correct the 1024 * crosstimestamp corresponding to the start of the current interval to the 1025 * system counter value (timestamp point) provided by the driver. The 1026 * total_history_* quantities are the total history starting at the provided 1027 * reference point and ending at the start of the current interval. The cycle 1028 * count between the driver timestamp point and the start of the current 1029 * interval is partial_history_cycles. 1030 */ 1031 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1032 u64 partial_history_cycles, 1033 u64 total_history_cycles, 1034 bool discontinuity, 1035 struct system_device_crosststamp *ts) 1036 { 1037 struct timekeeper *tk = &tk_core.timekeeper; 1038 u64 corr_raw, corr_real; 1039 bool interp_forward; 1040 int ret; 1041 1042 if (total_history_cycles == 0 || partial_history_cycles == 0) 1043 return 0; 1044 1045 /* Interpolate shortest distance from beginning or end of history */ 1046 interp_forward = partial_history_cycles > total_history_cycles / 2; 1047 partial_history_cycles = interp_forward ? 1048 total_history_cycles - partial_history_cycles : 1049 partial_history_cycles; 1050 1051 /* 1052 * Scale the monotonic raw time delta by: 1053 * partial_history_cycles / total_history_cycles 1054 */ 1055 corr_raw = (u64)ktime_to_ns( 1056 ktime_sub(ts->sys_monoraw, history->raw)); 1057 ret = scale64_check_overflow(partial_history_cycles, 1058 total_history_cycles, &corr_raw); 1059 if (ret) 1060 return ret; 1061 1062 /* 1063 * If there is a discontinuity in the history, scale monotonic raw 1064 * correction by: 1065 * mult(real)/mult(raw) yielding the realtime correction 1066 * Otherwise, calculate the realtime correction similar to monotonic 1067 * raw calculation 1068 */ 1069 if (discontinuity) { 1070 corr_real = mul_u64_u32_div 1071 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1072 } else { 1073 corr_real = (u64)ktime_to_ns( 1074 ktime_sub(ts->sys_realtime, history->real)); 1075 ret = scale64_check_overflow(partial_history_cycles, 1076 total_history_cycles, &corr_real); 1077 if (ret) 1078 return ret; 1079 } 1080 1081 /* Fixup monotonic raw and real time time values */ 1082 if (interp_forward) { 1083 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1084 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1085 } else { 1086 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1087 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1088 } 1089 1090 return 0; 1091 } 1092 1093 /* 1094 * cycle_between - true if test occurs chronologically between before and after 1095 */ 1096 static bool cycle_between(u64 before, u64 test, u64 after) 1097 { 1098 if (test > before && test < after) 1099 return true; 1100 if (test < before && before > after) 1101 return true; 1102 return false; 1103 } 1104 1105 /** 1106 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1107 * @get_time_fn: Callback to get simultaneous device time and 1108 * system counter from the device driver 1109 * @ctx: Context passed to get_time_fn() 1110 * @history_begin: Historical reference point used to interpolate system 1111 * time when counter provided by the driver is before the current interval 1112 * @xtstamp: Receives simultaneously captured system and device time 1113 * 1114 * Reads a timestamp from a device and correlates it to system time 1115 */ 1116 int get_device_system_crosststamp(int (*get_time_fn) 1117 (ktime_t *device_time, 1118 struct system_counterval_t *sys_counterval, 1119 void *ctx), 1120 void *ctx, 1121 struct system_time_snapshot *history_begin, 1122 struct system_device_crosststamp *xtstamp) 1123 { 1124 struct system_counterval_t system_counterval; 1125 struct timekeeper *tk = &tk_core.timekeeper; 1126 u64 cycles, now, interval_start; 1127 unsigned int clock_was_set_seq = 0; 1128 ktime_t base_real, base_raw; 1129 u64 nsec_real, nsec_raw; 1130 u8 cs_was_changed_seq; 1131 unsigned int seq; 1132 bool do_interp; 1133 int ret; 1134 1135 do { 1136 seq = read_seqcount_begin(&tk_core.seq); 1137 /* 1138 * Try to synchronously capture device time and a system 1139 * counter value calling back into the device driver 1140 */ 1141 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1142 if (ret) 1143 return ret; 1144 1145 /* 1146 * Verify that the clocksource associated with the captured 1147 * system counter value is the same as the currently installed 1148 * timekeeper clocksource 1149 */ 1150 if (tk->tkr_mono.clock != system_counterval.cs) 1151 return -ENODEV; 1152 cycles = system_counterval.cycles; 1153 1154 /* 1155 * Check whether the system counter value provided by the 1156 * device driver is on the current timekeeping interval. 1157 */ 1158 now = tk_clock_read(&tk->tkr_mono); 1159 interval_start = tk->tkr_mono.cycle_last; 1160 if (!cycle_between(interval_start, cycles, now)) { 1161 clock_was_set_seq = tk->clock_was_set_seq; 1162 cs_was_changed_seq = tk->cs_was_changed_seq; 1163 cycles = interval_start; 1164 do_interp = true; 1165 } else { 1166 do_interp = false; 1167 } 1168 1169 base_real = ktime_add(tk->tkr_mono.base, 1170 tk_core.timekeeper.offs_real); 1171 base_raw = tk->tkr_raw.base; 1172 1173 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1174 system_counterval.cycles); 1175 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1176 system_counterval.cycles); 1177 } while (read_seqcount_retry(&tk_core.seq, seq)); 1178 1179 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1180 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1181 1182 /* 1183 * Interpolate if necessary, adjusting back from the start of the 1184 * current interval 1185 */ 1186 if (do_interp) { 1187 u64 partial_history_cycles, total_history_cycles; 1188 bool discontinuity; 1189 1190 /* 1191 * Check that the counter value occurs after the provided 1192 * history reference and that the history doesn't cross a 1193 * clocksource change 1194 */ 1195 if (!history_begin || 1196 !cycle_between(history_begin->cycles, 1197 system_counterval.cycles, cycles) || 1198 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1199 return -EINVAL; 1200 partial_history_cycles = cycles - system_counterval.cycles; 1201 total_history_cycles = cycles - history_begin->cycles; 1202 discontinuity = 1203 history_begin->clock_was_set_seq != clock_was_set_seq; 1204 1205 ret = adjust_historical_crosststamp(history_begin, 1206 partial_history_cycles, 1207 total_history_cycles, 1208 discontinuity, xtstamp); 1209 if (ret) 1210 return ret; 1211 } 1212 1213 return 0; 1214 } 1215 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1216 1217 /** 1218 * do_settimeofday64 - Sets the time of day. 1219 * @ts: pointer to the timespec64 variable containing the new time 1220 * 1221 * Sets the time of day to the new time and update NTP and notify hrtimers 1222 */ 1223 int do_settimeofday64(const struct timespec64 *ts) 1224 { 1225 struct timekeeper *tk = &tk_core.timekeeper; 1226 struct timespec64 ts_delta, xt; 1227 unsigned long flags; 1228 int ret = 0; 1229 1230 if (!timespec64_valid_settod(ts)) 1231 return -EINVAL; 1232 1233 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1234 write_seqcount_begin(&tk_core.seq); 1235 1236 timekeeping_forward_now(tk); 1237 1238 xt = tk_xtime(tk); 1239 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1240 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1241 1242 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1243 ret = -EINVAL; 1244 goto out; 1245 } 1246 1247 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1248 1249 tk_set_xtime(tk, ts); 1250 out: 1251 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1252 1253 write_seqcount_end(&tk_core.seq); 1254 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1255 1256 /* signal hrtimers about time change */ 1257 clock_was_set(); 1258 1259 if (!ret) 1260 audit_tk_injoffset(ts_delta); 1261 1262 return ret; 1263 } 1264 EXPORT_SYMBOL(do_settimeofday64); 1265 1266 /** 1267 * timekeeping_inject_offset - Adds or subtracts from the current time. 1268 * @tv: pointer to the timespec variable containing the offset 1269 * 1270 * Adds or subtracts an offset value from the current time. 1271 */ 1272 static int timekeeping_inject_offset(const struct timespec64 *ts) 1273 { 1274 struct timekeeper *tk = &tk_core.timekeeper; 1275 unsigned long flags; 1276 struct timespec64 tmp; 1277 int ret = 0; 1278 1279 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1280 return -EINVAL; 1281 1282 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1283 write_seqcount_begin(&tk_core.seq); 1284 1285 timekeeping_forward_now(tk); 1286 1287 /* Make sure the proposed value is valid */ 1288 tmp = timespec64_add(tk_xtime(tk), *ts); 1289 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1290 !timespec64_valid_settod(&tmp)) { 1291 ret = -EINVAL; 1292 goto error; 1293 } 1294 1295 tk_xtime_add(tk, ts); 1296 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1297 1298 error: /* even if we error out, we forwarded the time, so call update */ 1299 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1300 1301 write_seqcount_end(&tk_core.seq); 1302 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1303 1304 /* signal hrtimers about time change */ 1305 clock_was_set(); 1306 1307 return ret; 1308 } 1309 1310 /* 1311 * Indicates if there is an offset between the system clock and the hardware 1312 * clock/persistent clock/rtc. 1313 */ 1314 int persistent_clock_is_local; 1315 1316 /* 1317 * Adjust the time obtained from the CMOS to be UTC time instead of 1318 * local time. 1319 * 1320 * This is ugly, but preferable to the alternatives. Otherwise we 1321 * would either need to write a program to do it in /etc/rc (and risk 1322 * confusion if the program gets run more than once; it would also be 1323 * hard to make the program warp the clock precisely n hours) or 1324 * compile in the timezone information into the kernel. Bad, bad.... 1325 * 1326 * - TYT, 1992-01-01 1327 * 1328 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1329 * as real UNIX machines always do it. This avoids all headaches about 1330 * daylight saving times and warping kernel clocks. 1331 */ 1332 void timekeeping_warp_clock(void) 1333 { 1334 if (sys_tz.tz_minuteswest != 0) { 1335 struct timespec64 adjust; 1336 1337 persistent_clock_is_local = 1; 1338 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1339 adjust.tv_nsec = 0; 1340 timekeeping_inject_offset(&adjust); 1341 } 1342 } 1343 1344 /** 1345 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1346 * 1347 */ 1348 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1349 { 1350 tk->tai_offset = tai_offset; 1351 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1352 } 1353 1354 /** 1355 * change_clocksource - Swaps clocksources if a new one is available 1356 * 1357 * Accumulates current time interval and initializes new clocksource 1358 */ 1359 static int change_clocksource(void *data) 1360 { 1361 struct timekeeper *tk = &tk_core.timekeeper; 1362 struct clocksource *new, *old; 1363 unsigned long flags; 1364 1365 new = (struct clocksource *) data; 1366 1367 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1368 write_seqcount_begin(&tk_core.seq); 1369 1370 timekeeping_forward_now(tk); 1371 /* 1372 * If the cs is in module, get a module reference. Succeeds 1373 * for built-in code (owner == NULL) as well. 1374 */ 1375 if (try_module_get(new->owner)) { 1376 if (!new->enable || new->enable(new) == 0) { 1377 old = tk->tkr_mono.clock; 1378 tk_setup_internals(tk, new); 1379 if (old->disable) 1380 old->disable(old); 1381 module_put(old->owner); 1382 } else { 1383 module_put(new->owner); 1384 } 1385 } 1386 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1387 1388 write_seqcount_end(&tk_core.seq); 1389 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1390 1391 return 0; 1392 } 1393 1394 /** 1395 * timekeeping_notify - Install a new clock source 1396 * @clock: pointer to the clock source 1397 * 1398 * This function is called from clocksource.c after a new, better clock 1399 * source has been registered. The caller holds the clocksource_mutex. 1400 */ 1401 int timekeeping_notify(struct clocksource *clock) 1402 { 1403 struct timekeeper *tk = &tk_core.timekeeper; 1404 1405 if (tk->tkr_mono.clock == clock) 1406 return 0; 1407 stop_machine(change_clocksource, clock, NULL); 1408 tick_clock_notify(); 1409 return tk->tkr_mono.clock == clock ? 0 : -1; 1410 } 1411 1412 /** 1413 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1414 * @ts: pointer to the timespec64 to be set 1415 * 1416 * Returns the raw monotonic time (completely un-modified by ntp) 1417 */ 1418 void ktime_get_raw_ts64(struct timespec64 *ts) 1419 { 1420 struct timekeeper *tk = &tk_core.timekeeper; 1421 unsigned int seq; 1422 u64 nsecs; 1423 1424 do { 1425 seq = read_seqcount_begin(&tk_core.seq); 1426 ts->tv_sec = tk->raw_sec; 1427 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1428 1429 } while (read_seqcount_retry(&tk_core.seq, seq)); 1430 1431 ts->tv_nsec = 0; 1432 timespec64_add_ns(ts, nsecs); 1433 } 1434 EXPORT_SYMBOL(ktime_get_raw_ts64); 1435 1436 1437 /** 1438 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1439 */ 1440 int timekeeping_valid_for_hres(void) 1441 { 1442 struct timekeeper *tk = &tk_core.timekeeper; 1443 unsigned int seq; 1444 int ret; 1445 1446 do { 1447 seq = read_seqcount_begin(&tk_core.seq); 1448 1449 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1450 1451 } while (read_seqcount_retry(&tk_core.seq, seq)); 1452 1453 return ret; 1454 } 1455 1456 /** 1457 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1458 */ 1459 u64 timekeeping_max_deferment(void) 1460 { 1461 struct timekeeper *tk = &tk_core.timekeeper; 1462 unsigned int seq; 1463 u64 ret; 1464 1465 do { 1466 seq = read_seqcount_begin(&tk_core.seq); 1467 1468 ret = tk->tkr_mono.clock->max_idle_ns; 1469 1470 } while (read_seqcount_retry(&tk_core.seq, seq)); 1471 1472 return ret; 1473 } 1474 1475 /** 1476 * read_persistent_clock64 - Return time from the persistent clock. 1477 * 1478 * Weak dummy function for arches that do not yet support it. 1479 * Reads the time from the battery backed persistent clock. 1480 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1481 * 1482 * XXX - Do be sure to remove it once all arches implement it. 1483 */ 1484 void __weak read_persistent_clock64(struct timespec64 *ts) 1485 { 1486 ts->tv_sec = 0; 1487 ts->tv_nsec = 0; 1488 } 1489 1490 /** 1491 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1492 * from the boot. 1493 * 1494 * Weak dummy function for arches that do not yet support it. 1495 * wall_time - current time as returned by persistent clock 1496 * boot_offset - offset that is defined as wall_time - boot_time 1497 * The default function calculates offset based on the current value of 1498 * local_clock(). This way architectures that support sched_clock() but don't 1499 * support dedicated boot time clock will provide the best estimate of the 1500 * boot time. 1501 */ 1502 void __weak __init 1503 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1504 struct timespec64 *boot_offset) 1505 { 1506 read_persistent_clock64(wall_time); 1507 *boot_offset = ns_to_timespec64(local_clock()); 1508 } 1509 1510 /* 1511 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1512 * 1513 * The flag starts of false and is only set when a suspend reaches 1514 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1515 * timekeeper clocksource is not stopping across suspend and has been 1516 * used to update sleep time. If the timekeeper clocksource has stopped 1517 * then the flag stays true and is used by the RTC resume code to decide 1518 * whether sleeptime must be injected and if so the flag gets false then. 1519 * 1520 * If a suspend fails before reaching timekeeping_resume() then the flag 1521 * stays false and prevents erroneous sleeptime injection. 1522 */ 1523 static bool suspend_timing_needed; 1524 1525 /* Flag for if there is a persistent clock on this platform */ 1526 static bool persistent_clock_exists; 1527 1528 /* 1529 * timekeeping_init - Initializes the clocksource and common timekeeping values 1530 */ 1531 void __init timekeeping_init(void) 1532 { 1533 struct timespec64 wall_time, boot_offset, wall_to_mono; 1534 struct timekeeper *tk = &tk_core.timekeeper; 1535 struct clocksource *clock; 1536 unsigned long flags; 1537 1538 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1539 if (timespec64_valid_settod(&wall_time) && 1540 timespec64_to_ns(&wall_time) > 0) { 1541 persistent_clock_exists = true; 1542 } else if (timespec64_to_ns(&wall_time) != 0) { 1543 pr_warn("Persistent clock returned invalid value"); 1544 wall_time = (struct timespec64){0}; 1545 } 1546 1547 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1548 boot_offset = (struct timespec64){0}; 1549 1550 /* 1551 * We want set wall_to_mono, so the following is true: 1552 * wall time + wall_to_mono = boot time 1553 */ 1554 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1555 1556 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1557 write_seqcount_begin(&tk_core.seq); 1558 ntp_init(); 1559 1560 clock = clocksource_default_clock(); 1561 if (clock->enable) 1562 clock->enable(clock); 1563 tk_setup_internals(tk, clock); 1564 1565 tk_set_xtime(tk, &wall_time); 1566 tk->raw_sec = 0; 1567 1568 tk_set_wall_to_mono(tk, wall_to_mono); 1569 1570 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1571 1572 write_seqcount_end(&tk_core.seq); 1573 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1574 } 1575 1576 /* time in seconds when suspend began for persistent clock */ 1577 static struct timespec64 timekeeping_suspend_time; 1578 1579 /** 1580 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1581 * @delta: pointer to a timespec delta value 1582 * 1583 * Takes a timespec offset measuring a suspend interval and properly 1584 * adds the sleep offset to the timekeeping variables. 1585 */ 1586 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1587 const struct timespec64 *delta) 1588 { 1589 if (!timespec64_valid_strict(delta)) { 1590 printk_deferred(KERN_WARNING 1591 "__timekeeping_inject_sleeptime: Invalid " 1592 "sleep delta value!\n"); 1593 return; 1594 } 1595 tk_xtime_add(tk, delta); 1596 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1597 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1598 tk_debug_account_sleep_time(delta); 1599 } 1600 1601 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1602 /** 1603 * We have three kinds of time sources to use for sleep time 1604 * injection, the preference order is: 1605 * 1) non-stop clocksource 1606 * 2) persistent clock (ie: RTC accessible when irqs are off) 1607 * 3) RTC 1608 * 1609 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1610 * If system has neither 1) nor 2), 3) will be used finally. 1611 * 1612 * 1613 * If timekeeping has injected sleeptime via either 1) or 2), 1614 * 3) becomes needless, so in this case we don't need to call 1615 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1616 * means. 1617 */ 1618 bool timekeeping_rtc_skipresume(void) 1619 { 1620 return !suspend_timing_needed; 1621 } 1622 1623 /** 1624 * 1) can be determined whether to use or not only when doing 1625 * timekeeping_resume() which is invoked after rtc_suspend(), 1626 * so we can't skip rtc_suspend() surely if system has 1). 1627 * 1628 * But if system has 2), 2) will definitely be used, so in this 1629 * case we don't need to call rtc_suspend(), and this is what 1630 * timekeeping_rtc_skipsuspend() means. 1631 */ 1632 bool timekeeping_rtc_skipsuspend(void) 1633 { 1634 return persistent_clock_exists; 1635 } 1636 1637 /** 1638 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1639 * @delta: pointer to a timespec64 delta value 1640 * 1641 * This hook is for architectures that cannot support read_persistent_clock64 1642 * because their RTC/persistent clock is only accessible when irqs are enabled. 1643 * and also don't have an effective nonstop clocksource. 1644 * 1645 * This function should only be called by rtc_resume(), and allows 1646 * a suspend offset to be injected into the timekeeping values. 1647 */ 1648 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1649 { 1650 struct timekeeper *tk = &tk_core.timekeeper; 1651 unsigned long flags; 1652 1653 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1654 write_seqcount_begin(&tk_core.seq); 1655 1656 suspend_timing_needed = false; 1657 1658 timekeeping_forward_now(tk); 1659 1660 __timekeeping_inject_sleeptime(tk, delta); 1661 1662 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1663 1664 write_seqcount_end(&tk_core.seq); 1665 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1666 1667 /* signal hrtimers about time change */ 1668 clock_was_set(); 1669 } 1670 #endif 1671 1672 /** 1673 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1674 */ 1675 void timekeeping_resume(void) 1676 { 1677 struct timekeeper *tk = &tk_core.timekeeper; 1678 struct clocksource *clock = tk->tkr_mono.clock; 1679 unsigned long flags; 1680 struct timespec64 ts_new, ts_delta; 1681 u64 cycle_now, nsec; 1682 bool inject_sleeptime = false; 1683 1684 read_persistent_clock64(&ts_new); 1685 1686 clockevents_resume(); 1687 clocksource_resume(); 1688 1689 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1690 write_seqcount_begin(&tk_core.seq); 1691 1692 /* 1693 * After system resumes, we need to calculate the suspended time and 1694 * compensate it for the OS time. There are 3 sources that could be 1695 * used: Nonstop clocksource during suspend, persistent clock and rtc 1696 * device. 1697 * 1698 * One specific platform may have 1 or 2 or all of them, and the 1699 * preference will be: 1700 * suspend-nonstop clocksource -> persistent clock -> rtc 1701 * The less preferred source will only be tried if there is no better 1702 * usable source. The rtc part is handled separately in rtc core code. 1703 */ 1704 cycle_now = tk_clock_read(&tk->tkr_mono); 1705 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1706 if (nsec > 0) { 1707 ts_delta = ns_to_timespec64(nsec); 1708 inject_sleeptime = true; 1709 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1710 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1711 inject_sleeptime = true; 1712 } 1713 1714 if (inject_sleeptime) { 1715 suspend_timing_needed = false; 1716 __timekeeping_inject_sleeptime(tk, &ts_delta); 1717 } 1718 1719 /* Re-base the last cycle value */ 1720 tk->tkr_mono.cycle_last = cycle_now; 1721 tk->tkr_raw.cycle_last = cycle_now; 1722 1723 tk->ntp_error = 0; 1724 timekeeping_suspended = 0; 1725 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1726 write_seqcount_end(&tk_core.seq); 1727 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1728 1729 touch_softlockup_watchdog(); 1730 1731 tick_resume(); 1732 hrtimers_resume(); 1733 } 1734 1735 int timekeeping_suspend(void) 1736 { 1737 struct timekeeper *tk = &tk_core.timekeeper; 1738 unsigned long flags; 1739 struct timespec64 delta, delta_delta; 1740 static struct timespec64 old_delta; 1741 struct clocksource *curr_clock; 1742 u64 cycle_now; 1743 1744 read_persistent_clock64(&timekeeping_suspend_time); 1745 1746 /* 1747 * On some systems the persistent_clock can not be detected at 1748 * timekeeping_init by its return value, so if we see a valid 1749 * value returned, update the persistent_clock_exists flag. 1750 */ 1751 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1752 persistent_clock_exists = true; 1753 1754 suspend_timing_needed = true; 1755 1756 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1757 write_seqcount_begin(&tk_core.seq); 1758 timekeeping_forward_now(tk); 1759 timekeeping_suspended = 1; 1760 1761 /* 1762 * Since we've called forward_now, cycle_last stores the value 1763 * just read from the current clocksource. Save this to potentially 1764 * use in suspend timing. 1765 */ 1766 curr_clock = tk->tkr_mono.clock; 1767 cycle_now = tk->tkr_mono.cycle_last; 1768 clocksource_start_suspend_timing(curr_clock, cycle_now); 1769 1770 if (persistent_clock_exists) { 1771 /* 1772 * To avoid drift caused by repeated suspend/resumes, 1773 * which each can add ~1 second drift error, 1774 * try to compensate so the difference in system time 1775 * and persistent_clock time stays close to constant. 1776 */ 1777 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1778 delta_delta = timespec64_sub(delta, old_delta); 1779 if (abs(delta_delta.tv_sec) >= 2) { 1780 /* 1781 * if delta_delta is too large, assume time correction 1782 * has occurred and set old_delta to the current delta. 1783 */ 1784 old_delta = delta; 1785 } else { 1786 /* Otherwise try to adjust old_system to compensate */ 1787 timekeeping_suspend_time = 1788 timespec64_add(timekeeping_suspend_time, delta_delta); 1789 } 1790 } 1791 1792 timekeeping_update(tk, TK_MIRROR); 1793 halt_fast_timekeeper(tk); 1794 write_seqcount_end(&tk_core.seq); 1795 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1796 1797 tick_suspend(); 1798 clocksource_suspend(); 1799 clockevents_suspend(); 1800 1801 return 0; 1802 } 1803 1804 /* sysfs resume/suspend bits for timekeeping */ 1805 static struct syscore_ops timekeeping_syscore_ops = { 1806 .resume = timekeeping_resume, 1807 .suspend = timekeeping_suspend, 1808 }; 1809 1810 static int __init timekeeping_init_ops(void) 1811 { 1812 register_syscore_ops(&timekeeping_syscore_ops); 1813 return 0; 1814 } 1815 device_initcall(timekeeping_init_ops); 1816 1817 /* 1818 * Apply a multiplier adjustment to the timekeeper 1819 */ 1820 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1821 s64 offset, 1822 s32 mult_adj) 1823 { 1824 s64 interval = tk->cycle_interval; 1825 1826 if (mult_adj == 0) { 1827 return; 1828 } else if (mult_adj == -1) { 1829 interval = -interval; 1830 offset = -offset; 1831 } else if (mult_adj != 1) { 1832 interval *= mult_adj; 1833 offset *= mult_adj; 1834 } 1835 1836 /* 1837 * So the following can be confusing. 1838 * 1839 * To keep things simple, lets assume mult_adj == 1 for now. 1840 * 1841 * When mult_adj != 1, remember that the interval and offset values 1842 * have been appropriately scaled so the math is the same. 1843 * 1844 * The basic idea here is that we're increasing the multiplier 1845 * by one, this causes the xtime_interval to be incremented by 1846 * one cycle_interval. This is because: 1847 * xtime_interval = cycle_interval * mult 1848 * So if mult is being incremented by one: 1849 * xtime_interval = cycle_interval * (mult + 1) 1850 * Its the same as: 1851 * xtime_interval = (cycle_interval * mult) + cycle_interval 1852 * Which can be shortened to: 1853 * xtime_interval += cycle_interval 1854 * 1855 * So offset stores the non-accumulated cycles. Thus the current 1856 * time (in shifted nanoseconds) is: 1857 * now = (offset * adj) + xtime_nsec 1858 * Now, even though we're adjusting the clock frequency, we have 1859 * to keep time consistent. In other words, we can't jump back 1860 * in time, and we also want to avoid jumping forward in time. 1861 * 1862 * So given the same offset value, we need the time to be the same 1863 * both before and after the freq adjustment. 1864 * now = (offset * adj_1) + xtime_nsec_1 1865 * now = (offset * adj_2) + xtime_nsec_2 1866 * So: 1867 * (offset * adj_1) + xtime_nsec_1 = 1868 * (offset * adj_2) + xtime_nsec_2 1869 * And we know: 1870 * adj_2 = adj_1 + 1 1871 * So: 1872 * (offset * adj_1) + xtime_nsec_1 = 1873 * (offset * (adj_1+1)) + xtime_nsec_2 1874 * (offset * adj_1) + xtime_nsec_1 = 1875 * (offset * adj_1) + offset + xtime_nsec_2 1876 * Canceling the sides: 1877 * xtime_nsec_1 = offset + xtime_nsec_2 1878 * Which gives us: 1879 * xtime_nsec_2 = xtime_nsec_1 - offset 1880 * Which simplfies to: 1881 * xtime_nsec -= offset 1882 */ 1883 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1884 /* NTP adjustment caused clocksource mult overflow */ 1885 WARN_ON_ONCE(1); 1886 return; 1887 } 1888 1889 tk->tkr_mono.mult += mult_adj; 1890 tk->xtime_interval += interval; 1891 tk->tkr_mono.xtime_nsec -= offset; 1892 } 1893 1894 /* 1895 * Adjust the timekeeper's multiplier to the correct frequency 1896 * and also to reduce the accumulated error value. 1897 */ 1898 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1899 { 1900 u32 mult; 1901 1902 /* 1903 * Determine the multiplier from the current NTP tick length. 1904 * Avoid expensive division when the tick length doesn't change. 1905 */ 1906 if (likely(tk->ntp_tick == ntp_tick_length())) { 1907 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1908 } else { 1909 tk->ntp_tick = ntp_tick_length(); 1910 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1911 tk->xtime_remainder, tk->cycle_interval); 1912 } 1913 1914 /* 1915 * If the clock is behind the NTP time, increase the multiplier by 1 1916 * to catch up with it. If it's ahead and there was a remainder in the 1917 * tick division, the clock will slow down. Otherwise it will stay 1918 * ahead until the tick length changes to a non-divisible value. 1919 */ 1920 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 1921 mult += tk->ntp_err_mult; 1922 1923 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 1924 1925 if (unlikely(tk->tkr_mono.clock->maxadj && 1926 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1927 > tk->tkr_mono.clock->maxadj))) { 1928 printk_once(KERN_WARNING 1929 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1930 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1931 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1932 } 1933 1934 /* 1935 * It may be possible that when we entered this function, xtime_nsec 1936 * was very small. Further, if we're slightly speeding the clocksource 1937 * in the code above, its possible the required corrective factor to 1938 * xtime_nsec could cause it to underflow. 1939 * 1940 * Now, since we have already accumulated the second and the NTP 1941 * subsystem has been notified via second_overflow(), we need to skip 1942 * the next update. 1943 */ 1944 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1945 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 1946 tk->tkr_mono.shift; 1947 tk->xtime_sec--; 1948 tk->skip_second_overflow = 1; 1949 } 1950 } 1951 1952 /** 1953 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1954 * 1955 * Helper function that accumulates the nsecs greater than a second 1956 * from the xtime_nsec field to the xtime_secs field. 1957 * It also calls into the NTP code to handle leapsecond processing. 1958 * 1959 */ 1960 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1961 { 1962 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1963 unsigned int clock_set = 0; 1964 1965 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1966 int leap; 1967 1968 tk->tkr_mono.xtime_nsec -= nsecps; 1969 tk->xtime_sec++; 1970 1971 /* 1972 * Skip NTP update if this second was accumulated before, 1973 * i.e. xtime_nsec underflowed in timekeeping_adjust() 1974 */ 1975 if (unlikely(tk->skip_second_overflow)) { 1976 tk->skip_second_overflow = 0; 1977 continue; 1978 } 1979 1980 /* Figure out if its a leap sec and apply if needed */ 1981 leap = second_overflow(tk->xtime_sec); 1982 if (unlikely(leap)) { 1983 struct timespec64 ts; 1984 1985 tk->xtime_sec += leap; 1986 1987 ts.tv_sec = leap; 1988 ts.tv_nsec = 0; 1989 tk_set_wall_to_mono(tk, 1990 timespec64_sub(tk->wall_to_monotonic, ts)); 1991 1992 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1993 1994 clock_set = TK_CLOCK_WAS_SET; 1995 } 1996 } 1997 return clock_set; 1998 } 1999 2000 /** 2001 * logarithmic_accumulation - shifted accumulation of cycles 2002 * 2003 * This functions accumulates a shifted interval of cycles into 2004 * into a shifted interval nanoseconds. Allows for O(log) accumulation 2005 * loop. 2006 * 2007 * Returns the unconsumed cycles. 2008 */ 2009 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2010 u32 shift, unsigned int *clock_set) 2011 { 2012 u64 interval = tk->cycle_interval << shift; 2013 u64 snsec_per_sec; 2014 2015 /* If the offset is smaller than a shifted interval, do nothing */ 2016 if (offset < interval) 2017 return offset; 2018 2019 /* Accumulate one shifted interval */ 2020 offset -= interval; 2021 tk->tkr_mono.cycle_last += interval; 2022 tk->tkr_raw.cycle_last += interval; 2023 2024 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2025 *clock_set |= accumulate_nsecs_to_secs(tk); 2026 2027 /* Accumulate raw time */ 2028 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2029 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2030 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2031 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2032 tk->raw_sec++; 2033 } 2034 2035 /* Accumulate error between NTP and clock interval */ 2036 tk->ntp_error += tk->ntp_tick << shift; 2037 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2038 (tk->ntp_error_shift + shift); 2039 2040 return offset; 2041 } 2042 2043 /* 2044 * timekeeping_advance - Updates the timekeeper to the current time and 2045 * current NTP tick length 2046 */ 2047 static void timekeeping_advance(enum timekeeping_adv_mode mode) 2048 { 2049 struct timekeeper *real_tk = &tk_core.timekeeper; 2050 struct timekeeper *tk = &shadow_timekeeper; 2051 u64 offset; 2052 int shift = 0, maxshift; 2053 unsigned int clock_set = 0; 2054 unsigned long flags; 2055 2056 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2057 2058 /* Make sure we're fully resumed: */ 2059 if (unlikely(timekeeping_suspended)) 2060 goto out; 2061 2062 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2063 offset = real_tk->cycle_interval; 2064 2065 if (mode != TK_ADV_TICK) 2066 goto out; 2067 #else 2068 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2069 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2070 2071 /* Check if there's really nothing to do */ 2072 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2073 goto out; 2074 #endif 2075 2076 /* Do some additional sanity checking */ 2077 timekeeping_check_update(tk, offset); 2078 2079 /* 2080 * With NO_HZ we may have to accumulate many cycle_intervals 2081 * (think "ticks") worth of time at once. To do this efficiently, 2082 * we calculate the largest doubling multiple of cycle_intervals 2083 * that is smaller than the offset. We then accumulate that 2084 * chunk in one go, and then try to consume the next smaller 2085 * doubled multiple. 2086 */ 2087 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2088 shift = max(0, shift); 2089 /* Bound shift to one less than what overflows tick_length */ 2090 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2091 shift = min(shift, maxshift); 2092 while (offset >= tk->cycle_interval) { 2093 offset = logarithmic_accumulation(tk, offset, shift, 2094 &clock_set); 2095 if (offset < tk->cycle_interval<<shift) 2096 shift--; 2097 } 2098 2099 /* Adjust the multiplier to correct NTP error */ 2100 timekeeping_adjust(tk, offset); 2101 2102 /* 2103 * Finally, make sure that after the rounding 2104 * xtime_nsec isn't larger than NSEC_PER_SEC 2105 */ 2106 clock_set |= accumulate_nsecs_to_secs(tk); 2107 2108 write_seqcount_begin(&tk_core.seq); 2109 /* 2110 * Update the real timekeeper. 2111 * 2112 * We could avoid this memcpy by switching pointers, but that 2113 * requires changes to all other timekeeper usage sites as 2114 * well, i.e. move the timekeeper pointer getter into the 2115 * spinlocked/seqcount protected sections. And we trade this 2116 * memcpy under the tk_core.seq against one before we start 2117 * updating. 2118 */ 2119 timekeeping_update(tk, clock_set); 2120 memcpy(real_tk, tk, sizeof(*tk)); 2121 /* The memcpy must come last. Do not put anything here! */ 2122 write_seqcount_end(&tk_core.seq); 2123 out: 2124 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2125 if (clock_set) 2126 /* Have to call _delayed version, since in irq context*/ 2127 clock_was_set_delayed(); 2128 } 2129 2130 /** 2131 * update_wall_time - Uses the current clocksource to increment the wall time 2132 * 2133 */ 2134 void update_wall_time(void) 2135 { 2136 timekeeping_advance(TK_ADV_TICK); 2137 } 2138 2139 /** 2140 * getboottime64 - Return the real time of system boot. 2141 * @ts: pointer to the timespec64 to be set 2142 * 2143 * Returns the wall-time of boot in a timespec64. 2144 * 2145 * This is based on the wall_to_monotonic offset and the total suspend 2146 * time. Calls to settimeofday will affect the value returned (which 2147 * basically means that however wrong your real time clock is at boot time, 2148 * you get the right time here). 2149 */ 2150 void getboottime64(struct timespec64 *ts) 2151 { 2152 struct timekeeper *tk = &tk_core.timekeeper; 2153 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2154 2155 *ts = ktime_to_timespec64(t); 2156 } 2157 EXPORT_SYMBOL_GPL(getboottime64); 2158 2159 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2160 { 2161 struct timekeeper *tk = &tk_core.timekeeper; 2162 unsigned int seq; 2163 2164 do { 2165 seq = read_seqcount_begin(&tk_core.seq); 2166 2167 *ts = tk_xtime(tk); 2168 } while (read_seqcount_retry(&tk_core.seq, seq)); 2169 } 2170 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2171 2172 void ktime_get_coarse_ts64(struct timespec64 *ts) 2173 { 2174 struct timekeeper *tk = &tk_core.timekeeper; 2175 struct timespec64 now, mono; 2176 unsigned int seq; 2177 2178 do { 2179 seq = read_seqcount_begin(&tk_core.seq); 2180 2181 now = tk_xtime(tk); 2182 mono = tk->wall_to_monotonic; 2183 } while (read_seqcount_retry(&tk_core.seq, seq)); 2184 2185 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2186 now.tv_nsec + mono.tv_nsec); 2187 } 2188 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2189 2190 /* 2191 * Must hold jiffies_lock 2192 */ 2193 void do_timer(unsigned long ticks) 2194 { 2195 jiffies_64 += ticks; 2196 calc_global_load(ticks); 2197 } 2198 2199 /** 2200 * ktime_get_update_offsets_now - hrtimer helper 2201 * @cwsseq: pointer to check and store the clock was set sequence number 2202 * @offs_real: pointer to storage for monotonic -> realtime offset 2203 * @offs_boot: pointer to storage for monotonic -> boottime offset 2204 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2205 * 2206 * Returns current monotonic time and updates the offsets if the 2207 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2208 * different. 2209 * 2210 * Called from hrtimer_interrupt() or retrigger_next_event() 2211 */ 2212 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2213 ktime_t *offs_boot, ktime_t *offs_tai) 2214 { 2215 struct timekeeper *tk = &tk_core.timekeeper; 2216 unsigned int seq; 2217 ktime_t base; 2218 u64 nsecs; 2219 2220 do { 2221 seq = read_seqcount_begin(&tk_core.seq); 2222 2223 base = tk->tkr_mono.base; 2224 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2225 base = ktime_add_ns(base, nsecs); 2226 2227 if (*cwsseq != tk->clock_was_set_seq) { 2228 *cwsseq = tk->clock_was_set_seq; 2229 *offs_real = tk->offs_real; 2230 *offs_boot = tk->offs_boot; 2231 *offs_tai = tk->offs_tai; 2232 } 2233 2234 /* Handle leapsecond insertion adjustments */ 2235 if (unlikely(base >= tk->next_leap_ktime)) 2236 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2237 2238 } while (read_seqcount_retry(&tk_core.seq, seq)); 2239 2240 return base; 2241 } 2242 2243 /** 2244 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2245 */ 2246 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2247 { 2248 if (txc->modes & ADJ_ADJTIME) { 2249 /* singleshot must not be used with any other mode bits */ 2250 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2251 return -EINVAL; 2252 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2253 !capable(CAP_SYS_TIME)) 2254 return -EPERM; 2255 } else { 2256 /* In order to modify anything, you gotta be super-user! */ 2257 if (txc->modes && !capable(CAP_SYS_TIME)) 2258 return -EPERM; 2259 /* 2260 * if the quartz is off by more than 10% then 2261 * something is VERY wrong! 2262 */ 2263 if (txc->modes & ADJ_TICK && 2264 (txc->tick < 900000/USER_HZ || 2265 txc->tick > 1100000/USER_HZ)) 2266 return -EINVAL; 2267 } 2268 2269 if (txc->modes & ADJ_SETOFFSET) { 2270 /* In order to inject time, you gotta be super-user! */ 2271 if (!capable(CAP_SYS_TIME)) 2272 return -EPERM; 2273 2274 /* 2275 * Validate if a timespec/timeval used to inject a time 2276 * offset is valid. Offsets can be postive or negative, so 2277 * we don't check tv_sec. The value of the timeval/timespec 2278 * is the sum of its fields,but *NOTE*: 2279 * The field tv_usec/tv_nsec must always be non-negative and 2280 * we can't have more nanoseconds/microseconds than a second. 2281 */ 2282 if (txc->time.tv_usec < 0) 2283 return -EINVAL; 2284 2285 if (txc->modes & ADJ_NANO) { 2286 if (txc->time.tv_usec >= NSEC_PER_SEC) 2287 return -EINVAL; 2288 } else { 2289 if (txc->time.tv_usec >= USEC_PER_SEC) 2290 return -EINVAL; 2291 } 2292 } 2293 2294 /* 2295 * Check for potential multiplication overflows that can 2296 * only happen on 64-bit systems: 2297 */ 2298 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2299 if (LLONG_MIN / PPM_SCALE > txc->freq) 2300 return -EINVAL; 2301 if (LLONG_MAX / PPM_SCALE < txc->freq) 2302 return -EINVAL; 2303 } 2304 2305 return 0; 2306 } 2307 2308 2309 /** 2310 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2311 */ 2312 int do_adjtimex(struct __kernel_timex *txc) 2313 { 2314 struct timekeeper *tk = &tk_core.timekeeper; 2315 struct audit_ntp_data ad; 2316 unsigned long flags; 2317 struct timespec64 ts; 2318 s32 orig_tai, tai; 2319 int ret; 2320 2321 /* Validate the data before disabling interrupts */ 2322 ret = timekeeping_validate_timex(txc); 2323 if (ret) 2324 return ret; 2325 2326 if (txc->modes & ADJ_SETOFFSET) { 2327 struct timespec64 delta; 2328 delta.tv_sec = txc->time.tv_sec; 2329 delta.tv_nsec = txc->time.tv_usec; 2330 if (!(txc->modes & ADJ_NANO)) 2331 delta.tv_nsec *= 1000; 2332 ret = timekeeping_inject_offset(&delta); 2333 if (ret) 2334 return ret; 2335 2336 audit_tk_injoffset(delta); 2337 } 2338 2339 audit_ntp_init(&ad); 2340 2341 ktime_get_real_ts64(&ts); 2342 2343 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2344 write_seqcount_begin(&tk_core.seq); 2345 2346 orig_tai = tai = tk->tai_offset; 2347 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2348 2349 if (tai != orig_tai) { 2350 __timekeeping_set_tai_offset(tk, tai); 2351 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2352 } 2353 tk_update_leap_state(tk); 2354 2355 write_seqcount_end(&tk_core.seq); 2356 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2357 2358 audit_ntp_log(&ad); 2359 2360 /* Update the multiplier immediately if frequency was set directly */ 2361 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2362 timekeeping_advance(TK_ADV_FREQ); 2363 2364 if (tai != orig_tai) 2365 clock_was_set(); 2366 2367 ntp_notify_cmos_timer(); 2368 2369 return ret; 2370 } 2371 2372 #ifdef CONFIG_NTP_PPS 2373 /** 2374 * hardpps() - Accessor function to NTP __hardpps function 2375 */ 2376 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2377 { 2378 unsigned long flags; 2379 2380 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2381 write_seqcount_begin(&tk_core.seq); 2382 2383 __hardpps(phase_ts, raw_ts); 2384 2385 write_seqcount_end(&tk_core.seq); 2386 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2387 } 2388 EXPORT_SYMBOL(hardpps); 2389 #endif /* CONFIG_NTP_PPS */ 2390 2391 /** 2392 * xtime_update() - advances the timekeeping infrastructure 2393 * @ticks: number of ticks, that have elapsed since the last call. 2394 * 2395 * Must be called with interrupts disabled. 2396 */ 2397 void xtime_update(unsigned long ticks) 2398 { 2399 raw_spin_lock(&jiffies_lock); 2400 write_seqcount_begin(&jiffies_seq); 2401 do_timer(ticks); 2402 write_seqcount_end(&jiffies_seq); 2403 raw_spin_unlock(&jiffies_lock); 2404 update_wall_time(); 2405 } 2406