xref: /openbmc/linux/kernel/time/timekeeping.c (revision 33a03aad)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* NTP adjusted clock multiplier */
29 	u32	mult;
30 	/* The shift value of the current clocksource. */
31 	int	shift;
32 
33 	/* Number of clock cycles in one NTP interval. */
34 	cycle_t cycle_interval;
35 	/* Number of clock shifted nano seconds in one NTP interval. */
36 	u64	xtime_interval;
37 	/* shifted nano seconds left over when rounding cycle_interval */
38 	s64	xtime_remainder;
39 	/* Raw nano seconds accumulated per NTP interval. */
40 	u32	raw_interval;
41 
42 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 	u64	xtime_nsec;
44 	/* Difference between accumulated time and NTP time in ntp
45 	 * shifted nano seconds. */
46 	s64	ntp_error;
47 	/* Shift conversion between clock shifted nano seconds and
48 	 * ntp shifted nano seconds. */
49 	int	ntp_error_shift;
50 
51 	/* The current time */
52 	struct timespec xtime;
53 	/*
54 	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56 	 * at zero at system boot time, so wall_to_monotonic will be negative,
57 	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 	 * the usual normalization.
59 	 *
60 	 * wall_to_monotonic is moved after resume from suspend for the
61 	 * monotonic time not to jump. We need to add total_sleep_time to
62 	 * wall_to_monotonic to get the real boot based time offset.
63 	 *
64 	 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 	 * used instead.
66 	 */
67 	struct timespec wall_to_monotonic;
68 	/* time spent in suspend */
69 	struct timespec total_sleep_time;
70 	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 	struct timespec raw_time;
72 
73 	/* Seqlock for all timekeeper values */
74 	seqlock_t lock;
75 };
76 
77 static struct timekeeper timekeeper;
78 
79 /*
80  * This read-write spinlock protects us from races in SMP while
81  * playing with xtime.
82  */
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
84 
85 
86 /* flag for if timekeeping is suspended */
87 int __read_mostly timekeeping_suspended;
88 
89 
90 
91 /**
92  * timekeeper_setup_internals - Set up internals to use clocksource clock.
93  *
94  * @clock:		Pointer to clocksource.
95  *
96  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
97  * pair and interval request.
98  *
99  * Unless you're the timekeeping code, you should not be using this!
100  */
101 static void timekeeper_setup_internals(struct clocksource *clock)
102 {
103 	cycle_t interval;
104 	u64 tmp, ntpinterval;
105 
106 	timekeeper.clock = clock;
107 	clock->cycle_last = clock->read(clock);
108 
109 	/* Do the ns -> cycle conversion first, using original mult */
110 	tmp = NTP_INTERVAL_LENGTH;
111 	tmp <<= clock->shift;
112 	ntpinterval = tmp;
113 	tmp += clock->mult/2;
114 	do_div(tmp, clock->mult);
115 	if (tmp == 0)
116 		tmp = 1;
117 
118 	interval = (cycle_t) tmp;
119 	timekeeper.cycle_interval = interval;
120 
121 	/* Go back from cycles -> shifted ns */
122 	timekeeper.xtime_interval = (u64) interval * clock->mult;
123 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
124 	timekeeper.raw_interval =
125 		((u64) interval * clock->mult) >> clock->shift;
126 
127 	timekeeper.xtime_nsec = 0;
128 	timekeeper.shift = clock->shift;
129 
130 	timekeeper.ntp_error = 0;
131 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
132 
133 	/*
134 	 * The timekeeper keeps its own mult values for the currently
135 	 * active clocksource. These value will be adjusted via NTP
136 	 * to counteract clock drifting.
137 	 */
138 	timekeeper.mult = clock->mult;
139 }
140 
141 /* Timekeeper helper functions. */
142 static inline s64 timekeeping_get_ns(void)
143 {
144 	cycle_t cycle_now, cycle_delta;
145 	struct clocksource *clock;
146 
147 	/* read clocksource: */
148 	clock = timekeeper.clock;
149 	cycle_now = clock->read(clock);
150 
151 	/* calculate the delta since the last update_wall_time: */
152 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
153 
154 	/* return delta convert to nanoseconds using ntp adjusted mult. */
155 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
156 				  timekeeper.shift);
157 }
158 
159 static inline s64 timekeeping_get_ns_raw(void)
160 {
161 	cycle_t cycle_now, cycle_delta;
162 	struct clocksource *clock;
163 
164 	/* read clocksource: */
165 	clock = timekeeper.clock;
166 	cycle_now = clock->read(clock);
167 
168 	/* calculate the delta since the last update_wall_time: */
169 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
170 
171 	/* return delta convert to nanoseconds. */
172 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
173 }
174 
175 /* must hold write on timekeeper.lock */
176 static void timekeeping_update(bool clearntp)
177 {
178 	if (clearntp) {
179 		timekeeper.ntp_error = 0;
180 		ntp_clear();
181 	}
182 	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
183 			 timekeeper.clock, timekeeper.mult);
184 }
185 
186 
187 /**
188  * timekeeping_forward_now - update clock to the current time
189  *
190  * Forward the current clock to update its state since the last call to
191  * update_wall_time(). This is useful before significant clock changes,
192  * as it avoids having to deal with this time offset explicitly.
193  */
194 static void timekeeping_forward_now(void)
195 {
196 	cycle_t cycle_now, cycle_delta;
197 	struct clocksource *clock;
198 	s64 nsec;
199 
200 	clock = timekeeper.clock;
201 	cycle_now = clock->read(clock);
202 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
203 	clock->cycle_last = cycle_now;
204 
205 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
206 				  timekeeper.shift);
207 
208 	/* If arch requires, add in gettimeoffset() */
209 	nsec += arch_gettimeoffset();
210 
211 	timespec_add_ns(&timekeeper.xtime, nsec);
212 
213 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
214 	timespec_add_ns(&timekeeper.raw_time, nsec);
215 }
216 
217 /**
218  * getnstimeofday - Returns the time of day in a timespec
219  * @ts:		pointer to the timespec to be set
220  *
221  * Returns the time of day in a timespec.
222  */
223 void getnstimeofday(struct timespec *ts)
224 {
225 	unsigned long seq;
226 	s64 nsecs;
227 
228 	WARN_ON(timekeeping_suspended);
229 
230 	do {
231 		seq = read_seqbegin(&timekeeper.lock);
232 
233 		*ts = timekeeper.xtime;
234 		nsecs = timekeeping_get_ns();
235 
236 		/* If arch requires, add in gettimeoffset() */
237 		nsecs += arch_gettimeoffset();
238 
239 	} while (read_seqretry(&timekeeper.lock, seq));
240 
241 	timespec_add_ns(ts, nsecs);
242 }
243 EXPORT_SYMBOL(getnstimeofday);
244 
245 ktime_t ktime_get(void)
246 {
247 	unsigned int seq;
248 	s64 secs, nsecs;
249 
250 	WARN_ON(timekeeping_suspended);
251 
252 	do {
253 		seq = read_seqbegin(&timekeeper.lock);
254 		secs = timekeeper.xtime.tv_sec +
255 				timekeeper.wall_to_monotonic.tv_sec;
256 		nsecs = timekeeper.xtime.tv_nsec +
257 				timekeeper.wall_to_monotonic.tv_nsec;
258 		nsecs += timekeeping_get_ns();
259 		/* If arch requires, add in gettimeoffset() */
260 		nsecs += arch_gettimeoffset();
261 
262 	} while (read_seqretry(&timekeeper.lock, seq));
263 	/*
264 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
265 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
266 	 */
267 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
268 }
269 EXPORT_SYMBOL_GPL(ktime_get);
270 
271 /**
272  * ktime_get_ts - get the monotonic clock in timespec format
273  * @ts:		pointer to timespec variable
274  *
275  * The function calculates the monotonic clock from the realtime
276  * clock and the wall_to_monotonic offset and stores the result
277  * in normalized timespec format in the variable pointed to by @ts.
278  */
279 void ktime_get_ts(struct timespec *ts)
280 {
281 	struct timespec tomono;
282 	unsigned int seq;
283 	s64 nsecs;
284 
285 	WARN_ON(timekeeping_suspended);
286 
287 	do {
288 		seq = read_seqbegin(&timekeeper.lock);
289 		*ts = timekeeper.xtime;
290 		tomono = timekeeper.wall_to_monotonic;
291 		nsecs = timekeeping_get_ns();
292 		/* If arch requires, add in gettimeoffset() */
293 		nsecs += arch_gettimeoffset();
294 
295 	} while (read_seqretry(&timekeeper.lock, seq));
296 
297 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
298 				ts->tv_nsec + tomono.tv_nsec + nsecs);
299 }
300 EXPORT_SYMBOL_GPL(ktime_get_ts);
301 
302 #ifdef CONFIG_NTP_PPS
303 
304 /**
305  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
306  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
307  * @ts_real:	pointer to the timespec to be set to the time of day
308  *
309  * This function reads both the time of day and raw monotonic time at the
310  * same time atomically and stores the resulting timestamps in timespec
311  * format.
312  */
313 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
314 {
315 	unsigned long seq;
316 	s64 nsecs_raw, nsecs_real;
317 
318 	WARN_ON_ONCE(timekeeping_suspended);
319 
320 	do {
321 		u32 arch_offset;
322 
323 		seq = read_seqbegin(&timekeeper.lock);
324 
325 		*ts_raw = timekeeper.raw_time;
326 		*ts_real = timekeeper.xtime;
327 
328 		nsecs_raw = timekeeping_get_ns_raw();
329 		nsecs_real = timekeeping_get_ns();
330 
331 		/* If arch requires, add in gettimeoffset() */
332 		arch_offset = arch_gettimeoffset();
333 		nsecs_raw += arch_offset;
334 		nsecs_real += arch_offset;
335 
336 	} while (read_seqretry(&timekeeper.lock, seq));
337 
338 	timespec_add_ns(ts_raw, nsecs_raw);
339 	timespec_add_ns(ts_real, nsecs_real);
340 }
341 EXPORT_SYMBOL(getnstime_raw_and_real);
342 
343 #endif /* CONFIG_NTP_PPS */
344 
345 /**
346  * do_gettimeofday - Returns the time of day in a timeval
347  * @tv:		pointer to the timeval to be set
348  *
349  * NOTE: Users should be converted to using getnstimeofday()
350  */
351 void do_gettimeofday(struct timeval *tv)
352 {
353 	struct timespec now;
354 
355 	getnstimeofday(&now);
356 	tv->tv_sec = now.tv_sec;
357 	tv->tv_usec = now.tv_nsec/1000;
358 }
359 EXPORT_SYMBOL(do_gettimeofday);
360 
361 /**
362  * do_settimeofday - Sets the time of day
363  * @tv:		pointer to the timespec variable containing the new time
364  *
365  * Sets the time of day to the new time and update NTP and notify hrtimers
366  */
367 int do_settimeofday(const struct timespec *tv)
368 {
369 	struct timespec ts_delta;
370 	unsigned long flags;
371 
372 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
373 		return -EINVAL;
374 
375 	write_seqlock_irqsave(&timekeeper.lock, flags);
376 
377 	timekeeping_forward_now();
378 
379 	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
380 	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
381 	timekeeper.wall_to_monotonic =
382 			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
383 
384 	timekeeper.xtime = *tv;
385 	timekeeping_update(true);
386 
387 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
388 
389 	/* signal hrtimers about time change */
390 	clock_was_set();
391 
392 	return 0;
393 }
394 EXPORT_SYMBOL(do_settimeofday);
395 
396 
397 /**
398  * timekeeping_inject_offset - Adds or subtracts from the current time.
399  * @tv:		pointer to the timespec variable containing the offset
400  *
401  * Adds or subtracts an offset value from the current time.
402  */
403 int timekeeping_inject_offset(struct timespec *ts)
404 {
405 	unsigned long flags;
406 
407 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
408 		return -EINVAL;
409 
410 	write_seqlock_irqsave(&timekeeper.lock, flags);
411 
412 	timekeeping_forward_now();
413 
414 	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
415 	timekeeper.wall_to_monotonic =
416 				timespec_sub(timekeeper.wall_to_monotonic, *ts);
417 
418 	timekeeping_update(true);
419 
420 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
421 
422 	/* signal hrtimers about time change */
423 	clock_was_set();
424 
425 	return 0;
426 }
427 EXPORT_SYMBOL(timekeeping_inject_offset);
428 
429 /**
430  * change_clocksource - Swaps clocksources if a new one is available
431  *
432  * Accumulates current time interval and initializes new clocksource
433  */
434 static int change_clocksource(void *data)
435 {
436 	struct clocksource *new, *old;
437 	unsigned long flags;
438 
439 	new = (struct clocksource *) data;
440 
441 	write_seqlock_irqsave(&timekeeper.lock, flags);
442 
443 	timekeeping_forward_now();
444 	if (!new->enable || new->enable(new) == 0) {
445 		old = timekeeper.clock;
446 		timekeeper_setup_internals(new);
447 		if (old->disable)
448 			old->disable(old);
449 	}
450 	timekeeping_update(true);
451 
452 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
453 
454 	return 0;
455 }
456 
457 /**
458  * timekeeping_notify - Install a new clock source
459  * @clock:		pointer to the clock source
460  *
461  * This function is called from clocksource.c after a new, better clock
462  * source has been registered. The caller holds the clocksource_mutex.
463  */
464 void timekeeping_notify(struct clocksource *clock)
465 {
466 	if (timekeeper.clock == clock)
467 		return;
468 	stop_machine(change_clocksource, clock, NULL);
469 	tick_clock_notify();
470 }
471 
472 /**
473  * ktime_get_real - get the real (wall-) time in ktime_t format
474  *
475  * returns the time in ktime_t format
476  */
477 ktime_t ktime_get_real(void)
478 {
479 	struct timespec now;
480 
481 	getnstimeofday(&now);
482 
483 	return timespec_to_ktime(now);
484 }
485 EXPORT_SYMBOL_GPL(ktime_get_real);
486 
487 /**
488  * getrawmonotonic - Returns the raw monotonic time in a timespec
489  * @ts:		pointer to the timespec to be set
490  *
491  * Returns the raw monotonic time (completely un-modified by ntp)
492  */
493 void getrawmonotonic(struct timespec *ts)
494 {
495 	unsigned long seq;
496 	s64 nsecs;
497 
498 	do {
499 		seq = read_seqbegin(&timekeeper.lock);
500 		nsecs = timekeeping_get_ns_raw();
501 		*ts = timekeeper.raw_time;
502 
503 	} while (read_seqretry(&timekeeper.lock, seq));
504 
505 	timespec_add_ns(ts, nsecs);
506 }
507 EXPORT_SYMBOL(getrawmonotonic);
508 
509 
510 /**
511  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
512  */
513 int timekeeping_valid_for_hres(void)
514 {
515 	unsigned long seq;
516 	int ret;
517 
518 	do {
519 		seq = read_seqbegin(&timekeeper.lock);
520 
521 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
522 
523 	} while (read_seqretry(&timekeeper.lock, seq));
524 
525 	return ret;
526 }
527 
528 /**
529  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
530  */
531 u64 timekeeping_max_deferment(void)
532 {
533 	unsigned long seq;
534 	u64 ret;
535 	do {
536 		seq = read_seqbegin(&timekeeper.lock);
537 
538 		ret = timekeeper.clock->max_idle_ns;
539 
540 	} while (read_seqretry(&timekeeper.lock, seq));
541 
542 	return ret;
543 }
544 
545 /**
546  * read_persistent_clock -  Return time from the persistent clock.
547  *
548  * Weak dummy function for arches that do not yet support it.
549  * Reads the time from the battery backed persistent clock.
550  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
551  *
552  *  XXX - Do be sure to remove it once all arches implement it.
553  */
554 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
555 {
556 	ts->tv_sec = 0;
557 	ts->tv_nsec = 0;
558 }
559 
560 /**
561  * read_boot_clock -  Return time of the system start.
562  *
563  * Weak dummy function for arches that do not yet support it.
564  * Function to read the exact time the system has been started.
565  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
566  *
567  *  XXX - Do be sure to remove it once all arches implement it.
568  */
569 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
570 {
571 	ts->tv_sec = 0;
572 	ts->tv_nsec = 0;
573 }
574 
575 /*
576  * timekeeping_init - Initializes the clocksource and common timekeeping values
577  */
578 void __init timekeeping_init(void)
579 {
580 	struct clocksource *clock;
581 	unsigned long flags;
582 	struct timespec now, boot;
583 
584 	read_persistent_clock(&now);
585 	read_boot_clock(&boot);
586 
587 	seqlock_init(&timekeeper.lock);
588 
589 	ntp_init();
590 
591 	write_seqlock_irqsave(&timekeeper.lock, flags);
592 	clock = clocksource_default_clock();
593 	if (clock->enable)
594 		clock->enable(clock);
595 	timekeeper_setup_internals(clock);
596 
597 	timekeeper.xtime.tv_sec = now.tv_sec;
598 	timekeeper.xtime.tv_nsec = now.tv_nsec;
599 	timekeeper.raw_time.tv_sec = 0;
600 	timekeeper.raw_time.tv_nsec = 0;
601 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
602 		boot.tv_sec = timekeeper.xtime.tv_sec;
603 		boot.tv_nsec = timekeeper.xtime.tv_nsec;
604 	}
605 	set_normalized_timespec(&timekeeper.wall_to_monotonic,
606 				-boot.tv_sec, -boot.tv_nsec);
607 	timekeeper.total_sleep_time.tv_sec = 0;
608 	timekeeper.total_sleep_time.tv_nsec = 0;
609 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
610 }
611 
612 /* time in seconds when suspend began */
613 static struct timespec timekeeping_suspend_time;
614 
615 /**
616  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
617  * @delta: pointer to a timespec delta value
618  *
619  * Takes a timespec offset measuring a suspend interval and properly
620  * adds the sleep offset to the timekeeping variables.
621  */
622 static void __timekeeping_inject_sleeptime(struct timespec *delta)
623 {
624 	if (!timespec_valid(delta)) {
625 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
626 					"sleep delta value!\n");
627 		return;
628 	}
629 
630 	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
631 	timekeeper.wall_to_monotonic =
632 			timespec_sub(timekeeper.wall_to_monotonic, *delta);
633 	timekeeper.total_sleep_time = timespec_add(
634 					timekeeper.total_sleep_time, *delta);
635 }
636 
637 
638 /**
639  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
640  * @delta: pointer to a timespec delta value
641  *
642  * This hook is for architectures that cannot support read_persistent_clock
643  * because their RTC/persistent clock is only accessible when irqs are enabled.
644  *
645  * This function should only be called by rtc_resume(), and allows
646  * a suspend offset to be injected into the timekeeping values.
647  */
648 void timekeeping_inject_sleeptime(struct timespec *delta)
649 {
650 	unsigned long flags;
651 	struct timespec ts;
652 
653 	/* Make sure we don't set the clock twice */
654 	read_persistent_clock(&ts);
655 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
656 		return;
657 
658 	write_seqlock_irqsave(&timekeeper.lock, flags);
659 
660 	timekeeping_forward_now();
661 
662 	__timekeeping_inject_sleeptime(delta);
663 
664 	timekeeping_update(true);
665 
666 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
667 
668 	/* signal hrtimers about time change */
669 	clock_was_set();
670 }
671 
672 
673 /**
674  * timekeeping_resume - Resumes the generic timekeeping subsystem.
675  *
676  * This is for the generic clocksource timekeeping.
677  * xtime/wall_to_monotonic/jiffies/etc are
678  * still managed by arch specific suspend/resume code.
679  */
680 static void timekeeping_resume(void)
681 {
682 	unsigned long flags;
683 	struct timespec ts;
684 
685 	read_persistent_clock(&ts);
686 
687 	clocksource_resume();
688 
689 	write_seqlock_irqsave(&timekeeper.lock, flags);
690 
691 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
692 		ts = timespec_sub(ts, timekeeping_suspend_time);
693 		__timekeeping_inject_sleeptime(&ts);
694 	}
695 	/* re-base the last cycle value */
696 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
697 	timekeeper.ntp_error = 0;
698 	timekeeping_suspended = 0;
699 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
700 
701 	touch_softlockup_watchdog();
702 
703 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
704 
705 	/* Resume hrtimers */
706 	hrtimers_resume();
707 }
708 
709 static int timekeeping_suspend(void)
710 {
711 	unsigned long flags;
712 	struct timespec		delta, delta_delta;
713 	static struct timespec	old_delta;
714 
715 	read_persistent_clock(&timekeeping_suspend_time);
716 
717 	write_seqlock_irqsave(&timekeeper.lock, flags);
718 	timekeeping_forward_now();
719 	timekeeping_suspended = 1;
720 
721 	/*
722 	 * To avoid drift caused by repeated suspend/resumes,
723 	 * which each can add ~1 second drift error,
724 	 * try to compensate so the difference in system time
725 	 * and persistent_clock time stays close to constant.
726 	 */
727 	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
728 	delta_delta = timespec_sub(delta, old_delta);
729 	if (abs(delta_delta.tv_sec)  >= 2) {
730 		/*
731 		 * if delta_delta is too large, assume time correction
732 		 * has occured and set old_delta to the current delta.
733 		 */
734 		old_delta = delta;
735 	} else {
736 		/* Otherwise try to adjust old_system to compensate */
737 		timekeeping_suspend_time =
738 			timespec_add(timekeeping_suspend_time, delta_delta);
739 	}
740 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
741 
742 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
743 	clocksource_suspend();
744 
745 	return 0;
746 }
747 
748 /* sysfs resume/suspend bits for timekeeping */
749 static struct syscore_ops timekeeping_syscore_ops = {
750 	.resume		= timekeeping_resume,
751 	.suspend	= timekeeping_suspend,
752 };
753 
754 static int __init timekeeping_init_ops(void)
755 {
756 	register_syscore_ops(&timekeeping_syscore_ops);
757 	return 0;
758 }
759 
760 device_initcall(timekeeping_init_ops);
761 
762 /*
763  * If the error is already larger, we look ahead even further
764  * to compensate for late or lost adjustments.
765  */
766 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
767 						 s64 *offset)
768 {
769 	s64 tick_error, i;
770 	u32 look_ahead, adj;
771 	s32 error2, mult;
772 
773 	/*
774 	 * Use the current error value to determine how much to look ahead.
775 	 * The larger the error the slower we adjust for it to avoid problems
776 	 * with losing too many ticks, otherwise we would overadjust and
777 	 * produce an even larger error.  The smaller the adjustment the
778 	 * faster we try to adjust for it, as lost ticks can do less harm
779 	 * here.  This is tuned so that an error of about 1 msec is adjusted
780 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
781 	 */
782 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
783 	error2 = abs(error2);
784 	for (look_ahead = 0; error2 > 0; look_ahead++)
785 		error2 >>= 2;
786 
787 	/*
788 	 * Now calculate the error in (1 << look_ahead) ticks, but first
789 	 * remove the single look ahead already included in the error.
790 	 */
791 	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
792 	tick_error -= timekeeper.xtime_interval >> 1;
793 	error = ((error - tick_error) >> look_ahead) + tick_error;
794 
795 	/* Finally calculate the adjustment shift value.  */
796 	i = *interval;
797 	mult = 1;
798 	if (error < 0) {
799 		error = -error;
800 		*interval = -*interval;
801 		*offset = -*offset;
802 		mult = -1;
803 	}
804 	for (adj = 0; error > i; adj++)
805 		error >>= 1;
806 
807 	*interval <<= adj;
808 	*offset <<= adj;
809 	return mult << adj;
810 }
811 
812 /*
813  * Adjust the multiplier to reduce the error value,
814  * this is optimized for the most common adjustments of -1,0,1,
815  * for other values we can do a bit more work.
816  */
817 static void timekeeping_adjust(s64 offset)
818 {
819 	s64 error, interval = timekeeper.cycle_interval;
820 	int adj;
821 
822 	/*
823 	 * The point of this is to check if the error is greater than half
824 	 * an interval.
825 	 *
826 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
827 	 *
828 	 * Note we subtract one in the shift, so that error is really error*2.
829 	 * This "saves" dividing(shifting) interval twice, but keeps the
830 	 * (error > interval) comparison as still measuring if error is
831 	 * larger than half an interval.
832 	 *
833 	 * Note: It does not "save" on aggravation when reading the code.
834 	 */
835 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
836 	if (error > interval) {
837 		/*
838 		 * We now divide error by 4(via shift), which checks if
839 		 * the error is greater than twice the interval.
840 		 * If it is greater, we need a bigadjust, if its smaller,
841 		 * we can adjust by 1.
842 		 */
843 		error >>= 2;
844 		/*
845 		 * XXX - In update_wall_time, we round up to the next
846 		 * nanosecond, and store the amount rounded up into
847 		 * the error. This causes the likely below to be unlikely.
848 		 *
849 		 * The proper fix is to avoid rounding up by using
850 		 * the high precision timekeeper.xtime_nsec instead of
851 		 * xtime.tv_nsec everywhere. Fixing this will take some
852 		 * time.
853 		 */
854 		if (likely(error <= interval))
855 			adj = 1;
856 		else
857 			adj = timekeeping_bigadjust(error, &interval, &offset);
858 	} else if (error < -interval) {
859 		/* See comment above, this is just switched for the negative */
860 		error >>= 2;
861 		if (likely(error >= -interval)) {
862 			adj = -1;
863 			interval = -interval;
864 			offset = -offset;
865 		} else
866 			adj = timekeeping_bigadjust(error, &interval, &offset);
867 	} else /* No adjustment needed */
868 		return;
869 
870 	if (unlikely(timekeeper.clock->maxadj &&
871 			(timekeeper.mult + adj >
872 			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
873 		printk_once(KERN_WARNING
874 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
875 			timekeeper.clock->name, (long)timekeeper.mult + adj,
876 			(long)timekeeper.clock->mult +
877 				timekeeper.clock->maxadj);
878 	}
879 	/*
880 	 * So the following can be confusing.
881 	 *
882 	 * To keep things simple, lets assume adj == 1 for now.
883 	 *
884 	 * When adj != 1, remember that the interval and offset values
885 	 * have been appropriately scaled so the math is the same.
886 	 *
887 	 * The basic idea here is that we're increasing the multiplier
888 	 * by one, this causes the xtime_interval to be incremented by
889 	 * one cycle_interval. This is because:
890 	 *	xtime_interval = cycle_interval * mult
891 	 * So if mult is being incremented by one:
892 	 *	xtime_interval = cycle_interval * (mult + 1)
893 	 * Its the same as:
894 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
895 	 * Which can be shortened to:
896 	 *	xtime_interval += cycle_interval
897 	 *
898 	 * So offset stores the non-accumulated cycles. Thus the current
899 	 * time (in shifted nanoseconds) is:
900 	 *	now = (offset * adj) + xtime_nsec
901 	 * Now, even though we're adjusting the clock frequency, we have
902 	 * to keep time consistent. In other words, we can't jump back
903 	 * in time, and we also want to avoid jumping forward in time.
904 	 *
905 	 * So given the same offset value, we need the time to be the same
906 	 * both before and after the freq adjustment.
907 	 *	now = (offset * adj_1) + xtime_nsec_1
908 	 *	now = (offset * adj_2) + xtime_nsec_2
909 	 * So:
910 	 *	(offset * adj_1) + xtime_nsec_1 =
911 	 *		(offset * adj_2) + xtime_nsec_2
912 	 * And we know:
913 	 *	adj_2 = adj_1 + 1
914 	 * So:
915 	 *	(offset * adj_1) + xtime_nsec_1 =
916 	 *		(offset * (adj_1+1)) + xtime_nsec_2
917 	 *	(offset * adj_1) + xtime_nsec_1 =
918 	 *		(offset * adj_1) + offset + xtime_nsec_2
919 	 * Canceling the sides:
920 	 *	xtime_nsec_1 = offset + xtime_nsec_2
921 	 * Which gives us:
922 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
923 	 * Which simplfies to:
924 	 *	xtime_nsec -= offset
925 	 *
926 	 * XXX - TODO: Doc ntp_error calculation.
927 	 */
928 	timekeeper.mult += adj;
929 	timekeeper.xtime_interval += interval;
930 	timekeeper.xtime_nsec -= offset;
931 	timekeeper.ntp_error -= (interval - offset) <<
932 				timekeeper.ntp_error_shift;
933 }
934 
935 
936 /**
937  * logarithmic_accumulation - shifted accumulation of cycles
938  *
939  * This functions accumulates a shifted interval of cycles into
940  * into a shifted interval nanoseconds. Allows for O(log) accumulation
941  * loop.
942  *
943  * Returns the unconsumed cycles.
944  */
945 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
946 {
947 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
948 	u64 raw_nsecs;
949 
950 	/* If the offset is smaller than a shifted interval, do nothing */
951 	if (offset < timekeeper.cycle_interval<<shift)
952 		return offset;
953 
954 	/* Accumulate one shifted interval */
955 	offset -= timekeeper.cycle_interval << shift;
956 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
957 
958 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
959 	while (timekeeper.xtime_nsec >= nsecps) {
960 		int leap;
961 		timekeeper.xtime_nsec -= nsecps;
962 		timekeeper.xtime.tv_sec++;
963 		leap = second_overflow(timekeeper.xtime.tv_sec);
964 		timekeeper.xtime.tv_sec += leap;
965 	}
966 
967 	/* Accumulate raw time */
968 	raw_nsecs = timekeeper.raw_interval << shift;
969 	raw_nsecs += timekeeper.raw_time.tv_nsec;
970 	if (raw_nsecs >= NSEC_PER_SEC) {
971 		u64 raw_secs = raw_nsecs;
972 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
973 		timekeeper.raw_time.tv_sec += raw_secs;
974 	}
975 	timekeeper.raw_time.tv_nsec = raw_nsecs;
976 
977 	/* Accumulate error between NTP and clock interval */
978 	timekeeper.ntp_error += ntp_tick_length() << shift;
979 	timekeeper.ntp_error -=
980 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
981 				(timekeeper.ntp_error_shift + shift);
982 
983 	return offset;
984 }
985 
986 
987 /**
988  * update_wall_time - Uses the current clocksource to increment the wall time
989  *
990  */
991 static void update_wall_time(void)
992 {
993 	struct clocksource *clock;
994 	cycle_t offset;
995 	int shift = 0, maxshift;
996 	unsigned long flags;
997 
998 	write_seqlock_irqsave(&timekeeper.lock, flags);
999 
1000 	/* Make sure we're fully resumed: */
1001 	if (unlikely(timekeeping_suspended))
1002 		goto out;
1003 
1004 	clock = timekeeper.clock;
1005 
1006 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1007 	offset = timekeeper.cycle_interval;
1008 #else
1009 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1010 #endif
1011 	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1012 						timekeeper.shift;
1013 
1014 	/*
1015 	 * With NO_HZ we may have to accumulate many cycle_intervals
1016 	 * (think "ticks") worth of time at once. To do this efficiently,
1017 	 * we calculate the largest doubling multiple of cycle_intervals
1018 	 * that is smaller than the offset.  We then accumulate that
1019 	 * chunk in one go, and then try to consume the next smaller
1020 	 * doubled multiple.
1021 	 */
1022 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1023 	shift = max(0, shift);
1024 	/* Bound shift to one less than what overflows tick_length */
1025 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1026 	shift = min(shift, maxshift);
1027 	while (offset >= timekeeper.cycle_interval) {
1028 		offset = logarithmic_accumulation(offset, shift);
1029 		if(offset < timekeeper.cycle_interval<<shift)
1030 			shift--;
1031 	}
1032 
1033 	/* correct the clock when NTP error is too big */
1034 	timekeeping_adjust(offset);
1035 
1036 	/*
1037 	 * Since in the loop above, we accumulate any amount of time
1038 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1039 	 * xtime_nsec to be fairly small after the loop. Further, if we're
1040 	 * slightly speeding the clocksource up in timekeeping_adjust(),
1041 	 * its possible the required corrective factor to xtime_nsec could
1042 	 * cause it to underflow.
1043 	 *
1044 	 * Now, we cannot simply roll the accumulated second back, since
1045 	 * the NTP subsystem has been notified via second_overflow. So
1046 	 * instead we push xtime_nsec forward by the amount we underflowed,
1047 	 * and add that amount into the error.
1048 	 *
1049 	 * We'll correct this error next time through this function, when
1050 	 * xtime_nsec is not as small.
1051 	 */
1052 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1053 		s64 neg = -(s64)timekeeper.xtime_nsec;
1054 		timekeeper.xtime_nsec = 0;
1055 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1056 	}
1057 
1058 
1059 	/*
1060 	 * Store full nanoseconds into xtime after rounding it up and
1061 	 * add the remainder to the error difference.
1062 	 */
1063 	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1064 						timekeeper.shift) + 1;
1065 	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1066 						timekeeper.shift;
1067 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
1068 				timekeeper.ntp_error_shift;
1069 
1070 	/*
1071 	 * Finally, make sure that after the rounding
1072 	 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
1073 	 */
1074 	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1075 		int leap;
1076 		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1077 		timekeeper.xtime.tv_sec++;
1078 		leap = second_overflow(timekeeper.xtime.tv_sec);
1079 		timekeeper.xtime.tv_sec += leap;
1080 	}
1081 
1082 	timekeeping_update(false);
1083 
1084 out:
1085 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
1086 
1087 }
1088 
1089 /**
1090  * getboottime - Return the real time of system boot.
1091  * @ts:		pointer to the timespec to be set
1092  *
1093  * Returns the wall-time of boot in a timespec.
1094  *
1095  * This is based on the wall_to_monotonic offset and the total suspend
1096  * time. Calls to settimeofday will affect the value returned (which
1097  * basically means that however wrong your real time clock is at boot time,
1098  * you get the right time here).
1099  */
1100 void getboottime(struct timespec *ts)
1101 {
1102 	struct timespec boottime = {
1103 		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1104 				timekeeper.total_sleep_time.tv_sec,
1105 		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1106 				timekeeper.total_sleep_time.tv_nsec
1107 	};
1108 
1109 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1110 }
1111 EXPORT_SYMBOL_GPL(getboottime);
1112 
1113 
1114 /**
1115  * get_monotonic_boottime - Returns monotonic time since boot
1116  * @ts:		pointer to the timespec to be set
1117  *
1118  * Returns the monotonic time since boot in a timespec.
1119  *
1120  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1121  * includes the time spent in suspend.
1122  */
1123 void get_monotonic_boottime(struct timespec *ts)
1124 {
1125 	struct timespec tomono, sleep;
1126 	unsigned int seq;
1127 	s64 nsecs;
1128 
1129 	WARN_ON(timekeeping_suspended);
1130 
1131 	do {
1132 		seq = read_seqbegin(&timekeeper.lock);
1133 		*ts = timekeeper.xtime;
1134 		tomono = timekeeper.wall_to_monotonic;
1135 		sleep = timekeeper.total_sleep_time;
1136 		nsecs = timekeeping_get_ns();
1137 
1138 	} while (read_seqretry(&timekeeper.lock, seq));
1139 
1140 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1141 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1142 }
1143 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1144 
1145 /**
1146  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1147  *
1148  * Returns the monotonic time since boot in a ktime
1149  *
1150  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1151  * includes the time spent in suspend.
1152  */
1153 ktime_t ktime_get_boottime(void)
1154 {
1155 	struct timespec ts;
1156 
1157 	get_monotonic_boottime(&ts);
1158 	return timespec_to_ktime(ts);
1159 }
1160 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1161 
1162 /**
1163  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1164  * @ts:		pointer to the timespec to be converted
1165  */
1166 void monotonic_to_bootbased(struct timespec *ts)
1167 {
1168 	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
1169 }
1170 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1171 
1172 unsigned long get_seconds(void)
1173 {
1174 	return timekeeper.xtime.tv_sec;
1175 }
1176 EXPORT_SYMBOL(get_seconds);
1177 
1178 struct timespec __current_kernel_time(void)
1179 {
1180 	return timekeeper.xtime;
1181 }
1182 
1183 struct timespec current_kernel_time(void)
1184 {
1185 	struct timespec now;
1186 	unsigned long seq;
1187 
1188 	do {
1189 		seq = read_seqbegin(&timekeeper.lock);
1190 
1191 		now = timekeeper.xtime;
1192 	} while (read_seqretry(&timekeeper.lock, seq));
1193 
1194 	return now;
1195 }
1196 EXPORT_SYMBOL(current_kernel_time);
1197 
1198 struct timespec get_monotonic_coarse(void)
1199 {
1200 	struct timespec now, mono;
1201 	unsigned long seq;
1202 
1203 	do {
1204 		seq = read_seqbegin(&timekeeper.lock);
1205 
1206 		now = timekeeper.xtime;
1207 		mono = timekeeper.wall_to_monotonic;
1208 	} while (read_seqretry(&timekeeper.lock, seq));
1209 
1210 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1211 				now.tv_nsec + mono.tv_nsec);
1212 	return now;
1213 }
1214 
1215 /*
1216  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1217  * without sampling the sequence number in xtime_lock.
1218  * jiffies is defined in the linker script...
1219  */
1220 void do_timer(unsigned long ticks)
1221 {
1222 	jiffies_64 += ticks;
1223 	update_wall_time();
1224 	calc_global_load(ticks);
1225 }
1226 
1227 /**
1228  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1229  *    and sleep offsets.
1230  * @xtim:	pointer to timespec to be set with xtime
1231  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1232  * @sleep:	pointer to timespec to be set with time in suspend
1233  */
1234 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1235 				struct timespec *wtom, struct timespec *sleep)
1236 {
1237 	unsigned long seq;
1238 
1239 	do {
1240 		seq = read_seqbegin(&timekeeper.lock);
1241 		*xtim = timekeeper.xtime;
1242 		*wtom = timekeeper.wall_to_monotonic;
1243 		*sleep = timekeeper.total_sleep_time;
1244 	} while (read_seqretry(&timekeeper.lock, seq));
1245 }
1246 
1247 /**
1248  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1249  */
1250 ktime_t ktime_get_monotonic_offset(void)
1251 {
1252 	unsigned long seq;
1253 	struct timespec wtom;
1254 
1255 	do {
1256 		seq = read_seqbegin(&timekeeper.lock);
1257 		wtom = timekeeper.wall_to_monotonic;
1258 	} while (read_seqretry(&timekeeper.lock, seq));
1259 
1260 	return timespec_to_ktime(wtom);
1261 }
1262 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1263 
1264 
1265 /**
1266  * xtime_update() - advances the timekeeping infrastructure
1267  * @ticks:	number of ticks, that have elapsed since the last call.
1268  *
1269  * Must be called with interrupts disabled.
1270  */
1271 void xtime_update(unsigned long ticks)
1272 {
1273 	write_seqlock(&xtime_lock);
1274 	do_timer(ticks);
1275 	write_sequnlock(&xtime_lock);
1276 }
1277