1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* NTP adjusted clock multiplier */ 29 u32 mult; 30 /* The shift value of the current clocksource. */ 31 int shift; 32 33 /* Number of clock cycles in one NTP interval. */ 34 cycle_t cycle_interval; 35 /* Number of clock shifted nano seconds in one NTP interval. */ 36 u64 xtime_interval; 37 /* shifted nano seconds left over when rounding cycle_interval */ 38 s64 xtime_remainder; 39 /* Raw nano seconds accumulated per NTP interval. */ 40 u32 raw_interval; 41 42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ 43 u64 xtime_nsec; 44 /* Difference between accumulated time and NTP time in ntp 45 * shifted nano seconds. */ 46 s64 ntp_error; 47 /* Shift conversion between clock shifted nano seconds and 48 * ntp shifted nano seconds. */ 49 int ntp_error_shift; 50 51 /* The current time */ 52 struct timespec xtime; 53 /* 54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 56 * at zero at system boot time, so wall_to_monotonic will be negative, 57 * however, we will ALWAYS keep the tv_nsec part positive so we can use 58 * the usual normalization. 59 * 60 * wall_to_monotonic is moved after resume from suspend for the 61 * monotonic time not to jump. We need to add total_sleep_time to 62 * wall_to_monotonic to get the real boot based time offset. 63 * 64 * - wall_to_monotonic is no longer the boot time, getboottime must be 65 * used instead. 66 */ 67 struct timespec wall_to_monotonic; 68 /* time spent in suspend */ 69 struct timespec total_sleep_time; 70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ 71 struct timespec raw_time; 72 73 /* Seqlock for all timekeeper values */ 74 seqlock_t lock; 75 }; 76 77 static struct timekeeper timekeeper; 78 79 /* 80 * This read-write spinlock protects us from races in SMP while 81 * playing with xtime. 82 */ 83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 84 85 86 /* flag for if timekeeping is suspended */ 87 int __read_mostly timekeeping_suspended; 88 89 90 91 /** 92 * timekeeper_setup_internals - Set up internals to use clocksource clock. 93 * 94 * @clock: Pointer to clocksource. 95 * 96 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 97 * pair and interval request. 98 * 99 * Unless you're the timekeeping code, you should not be using this! 100 */ 101 static void timekeeper_setup_internals(struct clocksource *clock) 102 { 103 cycle_t interval; 104 u64 tmp, ntpinterval; 105 106 timekeeper.clock = clock; 107 clock->cycle_last = clock->read(clock); 108 109 /* Do the ns -> cycle conversion first, using original mult */ 110 tmp = NTP_INTERVAL_LENGTH; 111 tmp <<= clock->shift; 112 ntpinterval = tmp; 113 tmp += clock->mult/2; 114 do_div(tmp, clock->mult); 115 if (tmp == 0) 116 tmp = 1; 117 118 interval = (cycle_t) tmp; 119 timekeeper.cycle_interval = interval; 120 121 /* Go back from cycles -> shifted ns */ 122 timekeeper.xtime_interval = (u64) interval * clock->mult; 123 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval; 124 timekeeper.raw_interval = 125 ((u64) interval * clock->mult) >> clock->shift; 126 127 timekeeper.xtime_nsec = 0; 128 timekeeper.shift = clock->shift; 129 130 timekeeper.ntp_error = 0; 131 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 132 133 /* 134 * The timekeeper keeps its own mult values for the currently 135 * active clocksource. These value will be adjusted via NTP 136 * to counteract clock drifting. 137 */ 138 timekeeper.mult = clock->mult; 139 } 140 141 /* Timekeeper helper functions. */ 142 static inline s64 timekeeping_get_ns(void) 143 { 144 cycle_t cycle_now, cycle_delta; 145 struct clocksource *clock; 146 147 /* read clocksource: */ 148 clock = timekeeper.clock; 149 cycle_now = clock->read(clock); 150 151 /* calculate the delta since the last update_wall_time: */ 152 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 153 154 /* return delta convert to nanoseconds using ntp adjusted mult. */ 155 return clocksource_cyc2ns(cycle_delta, timekeeper.mult, 156 timekeeper.shift); 157 } 158 159 static inline s64 timekeeping_get_ns_raw(void) 160 { 161 cycle_t cycle_now, cycle_delta; 162 struct clocksource *clock; 163 164 /* read clocksource: */ 165 clock = timekeeper.clock; 166 cycle_now = clock->read(clock); 167 168 /* calculate the delta since the last update_wall_time: */ 169 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 170 171 /* return delta convert to nanoseconds. */ 172 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 173 } 174 175 /* must hold write on timekeeper.lock */ 176 static void timekeeping_update(bool clearntp) 177 { 178 if (clearntp) { 179 timekeeper.ntp_error = 0; 180 ntp_clear(); 181 } 182 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic, 183 timekeeper.clock, timekeeper.mult); 184 } 185 186 187 /** 188 * timekeeping_forward_now - update clock to the current time 189 * 190 * Forward the current clock to update its state since the last call to 191 * update_wall_time(). This is useful before significant clock changes, 192 * as it avoids having to deal with this time offset explicitly. 193 */ 194 static void timekeeping_forward_now(void) 195 { 196 cycle_t cycle_now, cycle_delta; 197 struct clocksource *clock; 198 s64 nsec; 199 200 clock = timekeeper.clock; 201 cycle_now = clock->read(clock); 202 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 203 clock->cycle_last = cycle_now; 204 205 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, 206 timekeeper.shift); 207 208 /* If arch requires, add in gettimeoffset() */ 209 nsec += arch_gettimeoffset(); 210 211 timespec_add_ns(&timekeeper.xtime, nsec); 212 213 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 214 timespec_add_ns(&timekeeper.raw_time, nsec); 215 } 216 217 /** 218 * getnstimeofday - Returns the time of day in a timespec 219 * @ts: pointer to the timespec to be set 220 * 221 * Returns the time of day in a timespec. 222 */ 223 void getnstimeofday(struct timespec *ts) 224 { 225 unsigned long seq; 226 s64 nsecs; 227 228 WARN_ON(timekeeping_suspended); 229 230 do { 231 seq = read_seqbegin(&timekeeper.lock); 232 233 *ts = timekeeper.xtime; 234 nsecs = timekeeping_get_ns(); 235 236 /* If arch requires, add in gettimeoffset() */ 237 nsecs += arch_gettimeoffset(); 238 239 } while (read_seqretry(&timekeeper.lock, seq)); 240 241 timespec_add_ns(ts, nsecs); 242 } 243 EXPORT_SYMBOL(getnstimeofday); 244 245 ktime_t ktime_get(void) 246 { 247 unsigned int seq; 248 s64 secs, nsecs; 249 250 WARN_ON(timekeeping_suspended); 251 252 do { 253 seq = read_seqbegin(&timekeeper.lock); 254 secs = timekeeper.xtime.tv_sec + 255 timekeeper.wall_to_monotonic.tv_sec; 256 nsecs = timekeeper.xtime.tv_nsec + 257 timekeeper.wall_to_monotonic.tv_nsec; 258 nsecs += timekeeping_get_ns(); 259 /* If arch requires, add in gettimeoffset() */ 260 nsecs += arch_gettimeoffset(); 261 262 } while (read_seqretry(&timekeeper.lock, seq)); 263 /* 264 * Use ktime_set/ktime_add_ns to create a proper ktime on 265 * 32-bit architectures without CONFIG_KTIME_SCALAR. 266 */ 267 return ktime_add_ns(ktime_set(secs, 0), nsecs); 268 } 269 EXPORT_SYMBOL_GPL(ktime_get); 270 271 /** 272 * ktime_get_ts - get the monotonic clock in timespec format 273 * @ts: pointer to timespec variable 274 * 275 * The function calculates the monotonic clock from the realtime 276 * clock and the wall_to_monotonic offset and stores the result 277 * in normalized timespec format in the variable pointed to by @ts. 278 */ 279 void ktime_get_ts(struct timespec *ts) 280 { 281 struct timespec tomono; 282 unsigned int seq; 283 s64 nsecs; 284 285 WARN_ON(timekeeping_suspended); 286 287 do { 288 seq = read_seqbegin(&timekeeper.lock); 289 *ts = timekeeper.xtime; 290 tomono = timekeeper.wall_to_monotonic; 291 nsecs = timekeeping_get_ns(); 292 /* If arch requires, add in gettimeoffset() */ 293 nsecs += arch_gettimeoffset(); 294 295 } while (read_seqretry(&timekeeper.lock, seq)); 296 297 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 298 ts->tv_nsec + tomono.tv_nsec + nsecs); 299 } 300 EXPORT_SYMBOL_GPL(ktime_get_ts); 301 302 #ifdef CONFIG_NTP_PPS 303 304 /** 305 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 306 * @ts_raw: pointer to the timespec to be set to raw monotonic time 307 * @ts_real: pointer to the timespec to be set to the time of day 308 * 309 * This function reads both the time of day and raw monotonic time at the 310 * same time atomically and stores the resulting timestamps in timespec 311 * format. 312 */ 313 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 314 { 315 unsigned long seq; 316 s64 nsecs_raw, nsecs_real; 317 318 WARN_ON_ONCE(timekeeping_suspended); 319 320 do { 321 u32 arch_offset; 322 323 seq = read_seqbegin(&timekeeper.lock); 324 325 *ts_raw = timekeeper.raw_time; 326 *ts_real = timekeeper.xtime; 327 328 nsecs_raw = timekeeping_get_ns_raw(); 329 nsecs_real = timekeeping_get_ns(); 330 331 /* If arch requires, add in gettimeoffset() */ 332 arch_offset = arch_gettimeoffset(); 333 nsecs_raw += arch_offset; 334 nsecs_real += arch_offset; 335 336 } while (read_seqretry(&timekeeper.lock, seq)); 337 338 timespec_add_ns(ts_raw, nsecs_raw); 339 timespec_add_ns(ts_real, nsecs_real); 340 } 341 EXPORT_SYMBOL(getnstime_raw_and_real); 342 343 #endif /* CONFIG_NTP_PPS */ 344 345 /** 346 * do_gettimeofday - Returns the time of day in a timeval 347 * @tv: pointer to the timeval to be set 348 * 349 * NOTE: Users should be converted to using getnstimeofday() 350 */ 351 void do_gettimeofday(struct timeval *tv) 352 { 353 struct timespec now; 354 355 getnstimeofday(&now); 356 tv->tv_sec = now.tv_sec; 357 tv->tv_usec = now.tv_nsec/1000; 358 } 359 EXPORT_SYMBOL(do_gettimeofday); 360 361 /** 362 * do_settimeofday - Sets the time of day 363 * @tv: pointer to the timespec variable containing the new time 364 * 365 * Sets the time of day to the new time and update NTP and notify hrtimers 366 */ 367 int do_settimeofday(const struct timespec *tv) 368 { 369 struct timespec ts_delta; 370 unsigned long flags; 371 372 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 373 return -EINVAL; 374 375 write_seqlock_irqsave(&timekeeper.lock, flags); 376 377 timekeeping_forward_now(); 378 379 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec; 380 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec; 381 timekeeper.wall_to_monotonic = 382 timespec_sub(timekeeper.wall_to_monotonic, ts_delta); 383 384 timekeeper.xtime = *tv; 385 timekeeping_update(true); 386 387 write_sequnlock_irqrestore(&timekeeper.lock, flags); 388 389 /* signal hrtimers about time change */ 390 clock_was_set(); 391 392 return 0; 393 } 394 EXPORT_SYMBOL(do_settimeofday); 395 396 397 /** 398 * timekeeping_inject_offset - Adds or subtracts from the current time. 399 * @tv: pointer to the timespec variable containing the offset 400 * 401 * Adds or subtracts an offset value from the current time. 402 */ 403 int timekeeping_inject_offset(struct timespec *ts) 404 { 405 unsigned long flags; 406 407 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 408 return -EINVAL; 409 410 write_seqlock_irqsave(&timekeeper.lock, flags); 411 412 timekeeping_forward_now(); 413 414 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts); 415 timekeeper.wall_to_monotonic = 416 timespec_sub(timekeeper.wall_to_monotonic, *ts); 417 418 timekeeping_update(true); 419 420 write_sequnlock_irqrestore(&timekeeper.lock, flags); 421 422 /* signal hrtimers about time change */ 423 clock_was_set(); 424 425 return 0; 426 } 427 EXPORT_SYMBOL(timekeeping_inject_offset); 428 429 /** 430 * change_clocksource - Swaps clocksources if a new one is available 431 * 432 * Accumulates current time interval and initializes new clocksource 433 */ 434 static int change_clocksource(void *data) 435 { 436 struct clocksource *new, *old; 437 unsigned long flags; 438 439 new = (struct clocksource *) data; 440 441 write_seqlock_irqsave(&timekeeper.lock, flags); 442 443 timekeeping_forward_now(); 444 if (!new->enable || new->enable(new) == 0) { 445 old = timekeeper.clock; 446 timekeeper_setup_internals(new); 447 if (old->disable) 448 old->disable(old); 449 } 450 timekeeping_update(true); 451 452 write_sequnlock_irqrestore(&timekeeper.lock, flags); 453 454 return 0; 455 } 456 457 /** 458 * timekeeping_notify - Install a new clock source 459 * @clock: pointer to the clock source 460 * 461 * This function is called from clocksource.c after a new, better clock 462 * source has been registered. The caller holds the clocksource_mutex. 463 */ 464 void timekeeping_notify(struct clocksource *clock) 465 { 466 if (timekeeper.clock == clock) 467 return; 468 stop_machine(change_clocksource, clock, NULL); 469 tick_clock_notify(); 470 } 471 472 /** 473 * ktime_get_real - get the real (wall-) time in ktime_t format 474 * 475 * returns the time in ktime_t format 476 */ 477 ktime_t ktime_get_real(void) 478 { 479 struct timespec now; 480 481 getnstimeofday(&now); 482 483 return timespec_to_ktime(now); 484 } 485 EXPORT_SYMBOL_GPL(ktime_get_real); 486 487 /** 488 * getrawmonotonic - Returns the raw monotonic time in a timespec 489 * @ts: pointer to the timespec to be set 490 * 491 * Returns the raw monotonic time (completely un-modified by ntp) 492 */ 493 void getrawmonotonic(struct timespec *ts) 494 { 495 unsigned long seq; 496 s64 nsecs; 497 498 do { 499 seq = read_seqbegin(&timekeeper.lock); 500 nsecs = timekeeping_get_ns_raw(); 501 *ts = timekeeper.raw_time; 502 503 } while (read_seqretry(&timekeeper.lock, seq)); 504 505 timespec_add_ns(ts, nsecs); 506 } 507 EXPORT_SYMBOL(getrawmonotonic); 508 509 510 /** 511 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 512 */ 513 int timekeeping_valid_for_hres(void) 514 { 515 unsigned long seq; 516 int ret; 517 518 do { 519 seq = read_seqbegin(&timekeeper.lock); 520 521 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 522 523 } while (read_seqretry(&timekeeper.lock, seq)); 524 525 return ret; 526 } 527 528 /** 529 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 530 */ 531 u64 timekeeping_max_deferment(void) 532 { 533 unsigned long seq; 534 u64 ret; 535 do { 536 seq = read_seqbegin(&timekeeper.lock); 537 538 ret = timekeeper.clock->max_idle_ns; 539 540 } while (read_seqretry(&timekeeper.lock, seq)); 541 542 return ret; 543 } 544 545 /** 546 * read_persistent_clock - Return time from the persistent clock. 547 * 548 * Weak dummy function for arches that do not yet support it. 549 * Reads the time from the battery backed persistent clock. 550 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 551 * 552 * XXX - Do be sure to remove it once all arches implement it. 553 */ 554 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 555 { 556 ts->tv_sec = 0; 557 ts->tv_nsec = 0; 558 } 559 560 /** 561 * read_boot_clock - Return time of the system start. 562 * 563 * Weak dummy function for arches that do not yet support it. 564 * Function to read the exact time the system has been started. 565 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 566 * 567 * XXX - Do be sure to remove it once all arches implement it. 568 */ 569 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 570 { 571 ts->tv_sec = 0; 572 ts->tv_nsec = 0; 573 } 574 575 /* 576 * timekeeping_init - Initializes the clocksource and common timekeeping values 577 */ 578 void __init timekeeping_init(void) 579 { 580 struct clocksource *clock; 581 unsigned long flags; 582 struct timespec now, boot; 583 584 read_persistent_clock(&now); 585 read_boot_clock(&boot); 586 587 seqlock_init(&timekeeper.lock); 588 589 ntp_init(); 590 591 write_seqlock_irqsave(&timekeeper.lock, flags); 592 clock = clocksource_default_clock(); 593 if (clock->enable) 594 clock->enable(clock); 595 timekeeper_setup_internals(clock); 596 597 timekeeper.xtime.tv_sec = now.tv_sec; 598 timekeeper.xtime.tv_nsec = now.tv_nsec; 599 timekeeper.raw_time.tv_sec = 0; 600 timekeeper.raw_time.tv_nsec = 0; 601 if (boot.tv_sec == 0 && boot.tv_nsec == 0) { 602 boot.tv_sec = timekeeper.xtime.tv_sec; 603 boot.tv_nsec = timekeeper.xtime.tv_nsec; 604 } 605 set_normalized_timespec(&timekeeper.wall_to_monotonic, 606 -boot.tv_sec, -boot.tv_nsec); 607 timekeeper.total_sleep_time.tv_sec = 0; 608 timekeeper.total_sleep_time.tv_nsec = 0; 609 write_sequnlock_irqrestore(&timekeeper.lock, flags); 610 } 611 612 /* time in seconds when suspend began */ 613 static struct timespec timekeeping_suspend_time; 614 615 /** 616 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 617 * @delta: pointer to a timespec delta value 618 * 619 * Takes a timespec offset measuring a suspend interval and properly 620 * adds the sleep offset to the timekeeping variables. 621 */ 622 static void __timekeeping_inject_sleeptime(struct timespec *delta) 623 { 624 if (!timespec_valid(delta)) { 625 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 626 "sleep delta value!\n"); 627 return; 628 } 629 630 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta); 631 timekeeper.wall_to_monotonic = 632 timespec_sub(timekeeper.wall_to_monotonic, *delta); 633 timekeeper.total_sleep_time = timespec_add( 634 timekeeper.total_sleep_time, *delta); 635 } 636 637 638 /** 639 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 640 * @delta: pointer to a timespec delta value 641 * 642 * This hook is for architectures that cannot support read_persistent_clock 643 * because their RTC/persistent clock is only accessible when irqs are enabled. 644 * 645 * This function should only be called by rtc_resume(), and allows 646 * a suspend offset to be injected into the timekeeping values. 647 */ 648 void timekeeping_inject_sleeptime(struct timespec *delta) 649 { 650 unsigned long flags; 651 struct timespec ts; 652 653 /* Make sure we don't set the clock twice */ 654 read_persistent_clock(&ts); 655 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) 656 return; 657 658 write_seqlock_irqsave(&timekeeper.lock, flags); 659 660 timekeeping_forward_now(); 661 662 __timekeeping_inject_sleeptime(delta); 663 664 timekeeping_update(true); 665 666 write_sequnlock_irqrestore(&timekeeper.lock, flags); 667 668 /* signal hrtimers about time change */ 669 clock_was_set(); 670 } 671 672 673 /** 674 * timekeeping_resume - Resumes the generic timekeeping subsystem. 675 * 676 * This is for the generic clocksource timekeeping. 677 * xtime/wall_to_monotonic/jiffies/etc are 678 * still managed by arch specific suspend/resume code. 679 */ 680 static void timekeeping_resume(void) 681 { 682 unsigned long flags; 683 struct timespec ts; 684 685 read_persistent_clock(&ts); 686 687 clocksource_resume(); 688 689 write_seqlock_irqsave(&timekeeper.lock, flags); 690 691 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 692 ts = timespec_sub(ts, timekeeping_suspend_time); 693 __timekeeping_inject_sleeptime(&ts); 694 } 695 /* re-base the last cycle value */ 696 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); 697 timekeeper.ntp_error = 0; 698 timekeeping_suspended = 0; 699 write_sequnlock_irqrestore(&timekeeper.lock, flags); 700 701 touch_softlockup_watchdog(); 702 703 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 704 705 /* Resume hrtimers */ 706 hrtimers_resume(); 707 } 708 709 static int timekeeping_suspend(void) 710 { 711 unsigned long flags; 712 struct timespec delta, delta_delta; 713 static struct timespec old_delta; 714 715 read_persistent_clock(&timekeeping_suspend_time); 716 717 write_seqlock_irqsave(&timekeeper.lock, flags); 718 timekeeping_forward_now(); 719 timekeeping_suspended = 1; 720 721 /* 722 * To avoid drift caused by repeated suspend/resumes, 723 * which each can add ~1 second drift error, 724 * try to compensate so the difference in system time 725 * and persistent_clock time stays close to constant. 726 */ 727 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time); 728 delta_delta = timespec_sub(delta, old_delta); 729 if (abs(delta_delta.tv_sec) >= 2) { 730 /* 731 * if delta_delta is too large, assume time correction 732 * has occured and set old_delta to the current delta. 733 */ 734 old_delta = delta; 735 } else { 736 /* Otherwise try to adjust old_system to compensate */ 737 timekeeping_suspend_time = 738 timespec_add(timekeeping_suspend_time, delta_delta); 739 } 740 write_sequnlock_irqrestore(&timekeeper.lock, flags); 741 742 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 743 clocksource_suspend(); 744 745 return 0; 746 } 747 748 /* sysfs resume/suspend bits for timekeeping */ 749 static struct syscore_ops timekeeping_syscore_ops = { 750 .resume = timekeeping_resume, 751 .suspend = timekeeping_suspend, 752 }; 753 754 static int __init timekeeping_init_ops(void) 755 { 756 register_syscore_ops(&timekeeping_syscore_ops); 757 return 0; 758 } 759 760 device_initcall(timekeeping_init_ops); 761 762 /* 763 * If the error is already larger, we look ahead even further 764 * to compensate for late or lost adjustments. 765 */ 766 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, 767 s64 *offset) 768 { 769 s64 tick_error, i; 770 u32 look_ahead, adj; 771 s32 error2, mult; 772 773 /* 774 * Use the current error value to determine how much to look ahead. 775 * The larger the error the slower we adjust for it to avoid problems 776 * with losing too many ticks, otherwise we would overadjust and 777 * produce an even larger error. The smaller the adjustment the 778 * faster we try to adjust for it, as lost ticks can do less harm 779 * here. This is tuned so that an error of about 1 msec is adjusted 780 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 781 */ 782 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 783 error2 = abs(error2); 784 for (look_ahead = 0; error2 > 0; look_ahead++) 785 error2 >>= 2; 786 787 /* 788 * Now calculate the error in (1 << look_ahead) ticks, but first 789 * remove the single look ahead already included in the error. 790 */ 791 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1); 792 tick_error -= timekeeper.xtime_interval >> 1; 793 error = ((error - tick_error) >> look_ahead) + tick_error; 794 795 /* Finally calculate the adjustment shift value. */ 796 i = *interval; 797 mult = 1; 798 if (error < 0) { 799 error = -error; 800 *interval = -*interval; 801 *offset = -*offset; 802 mult = -1; 803 } 804 for (adj = 0; error > i; adj++) 805 error >>= 1; 806 807 *interval <<= adj; 808 *offset <<= adj; 809 return mult << adj; 810 } 811 812 /* 813 * Adjust the multiplier to reduce the error value, 814 * this is optimized for the most common adjustments of -1,0,1, 815 * for other values we can do a bit more work. 816 */ 817 static void timekeeping_adjust(s64 offset) 818 { 819 s64 error, interval = timekeeper.cycle_interval; 820 int adj; 821 822 /* 823 * The point of this is to check if the error is greater than half 824 * an interval. 825 * 826 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 827 * 828 * Note we subtract one in the shift, so that error is really error*2. 829 * This "saves" dividing(shifting) interval twice, but keeps the 830 * (error > interval) comparison as still measuring if error is 831 * larger than half an interval. 832 * 833 * Note: It does not "save" on aggravation when reading the code. 834 */ 835 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); 836 if (error > interval) { 837 /* 838 * We now divide error by 4(via shift), which checks if 839 * the error is greater than twice the interval. 840 * If it is greater, we need a bigadjust, if its smaller, 841 * we can adjust by 1. 842 */ 843 error >>= 2; 844 /* 845 * XXX - In update_wall_time, we round up to the next 846 * nanosecond, and store the amount rounded up into 847 * the error. This causes the likely below to be unlikely. 848 * 849 * The proper fix is to avoid rounding up by using 850 * the high precision timekeeper.xtime_nsec instead of 851 * xtime.tv_nsec everywhere. Fixing this will take some 852 * time. 853 */ 854 if (likely(error <= interval)) 855 adj = 1; 856 else 857 adj = timekeeping_bigadjust(error, &interval, &offset); 858 } else if (error < -interval) { 859 /* See comment above, this is just switched for the negative */ 860 error >>= 2; 861 if (likely(error >= -interval)) { 862 adj = -1; 863 interval = -interval; 864 offset = -offset; 865 } else 866 adj = timekeeping_bigadjust(error, &interval, &offset); 867 } else /* No adjustment needed */ 868 return; 869 870 if (unlikely(timekeeper.clock->maxadj && 871 (timekeeper.mult + adj > 872 timekeeper.clock->mult + timekeeper.clock->maxadj))) { 873 printk_once(KERN_WARNING 874 "Adjusting %s more than 11%% (%ld vs %ld)\n", 875 timekeeper.clock->name, (long)timekeeper.mult + adj, 876 (long)timekeeper.clock->mult + 877 timekeeper.clock->maxadj); 878 } 879 /* 880 * So the following can be confusing. 881 * 882 * To keep things simple, lets assume adj == 1 for now. 883 * 884 * When adj != 1, remember that the interval and offset values 885 * have been appropriately scaled so the math is the same. 886 * 887 * The basic idea here is that we're increasing the multiplier 888 * by one, this causes the xtime_interval to be incremented by 889 * one cycle_interval. This is because: 890 * xtime_interval = cycle_interval * mult 891 * So if mult is being incremented by one: 892 * xtime_interval = cycle_interval * (mult + 1) 893 * Its the same as: 894 * xtime_interval = (cycle_interval * mult) + cycle_interval 895 * Which can be shortened to: 896 * xtime_interval += cycle_interval 897 * 898 * So offset stores the non-accumulated cycles. Thus the current 899 * time (in shifted nanoseconds) is: 900 * now = (offset * adj) + xtime_nsec 901 * Now, even though we're adjusting the clock frequency, we have 902 * to keep time consistent. In other words, we can't jump back 903 * in time, and we also want to avoid jumping forward in time. 904 * 905 * So given the same offset value, we need the time to be the same 906 * both before and after the freq adjustment. 907 * now = (offset * adj_1) + xtime_nsec_1 908 * now = (offset * adj_2) + xtime_nsec_2 909 * So: 910 * (offset * adj_1) + xtime_nsec_1 = 911 * (offset * adj_2) + xtime_nsec_2 912 * And we know: 913 * adj_2 = adj_1 + 1 914 * So: 915 * (offset * adj_1) + xtime_nsec_1 = 916 * (offset * (adj_1+1)) + xtime_nsec_2 917 * (offset * adj_1) + xtime_nsec_1 = 918 * (offset * adj_1) + offset + xtime_nsec_2 919 * Canceling the sides: 920 * xtime_nsec_1 = offset + xtime_nsec_2 921 * Which gives us: 922 * xtime_nsec_2 = xtime_nsec_1 - offset 923 * Which simplfies to: 924 * xtime_nsec -= offset 925 * 926 * XXX - TODO: Doc ntp_error calculation. 927 */ 928 timekeeper.mult += adj; 929 timekeeper.xtime_interval += interval; 930 timekeeper.xtime_nsec -= offset; 931 timekeeper.ntp_error -= (interval - offset) << 932 timekeeper.ntp_error_shift; 933 } 934 935 936 /** 937 * logarithmic_accumulation - shifted accumulation of cycles 938 * 939 * This functions accumulates a shifted interval of cycles into 940 * into a shifted interval nanoseconds. Allows for O(log) accumulation 941 * loop. 942 * 943 * Returns the unconsumed cycles. 944 */ 945 static cycle_t logarithmic_accumulation(cycle_t offset, int shift) 946 { 947 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; 948 u64 raw_nsecs; 949 950 /* If the offset is smaller than a shifted interval, do nothing */ 951 if (offset < timekeeper.cycle_interval<<shift) 952 return offset; 953 954 /* Accumulate one shifted interval */ 955 offset -= timekeeper.cycle_interval << shift; 956 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift; 957 958 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift; 959 while (timekeeper.xtime_nsec >= nsecps) { 960 int leap; 961 timekeeper.xtime_nsec -= nsecps; 962 timekeeper.xtime.tv_sec++; 963 leap = second_overflow(timekeeper.xtime.tv_sec); 964 timekeeper.xtime.tv_sec += leap; 965 } 966 967 /* Accumulate raw time */ 968 raw_nsecs = timekeeper.raw_interval << shift; 969 raw_nsecs += timekeeper.raw_time.tv_nsec; 970 if (raw_nsecs >= NSEC_PER_SEC) { 971 u64 raw_secs = raw_nsecs; 972 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 973 timekeeper.raw_time.tv_sec += raw_secs; 974 } 975 timekeeper.raw_time.tv_nsec = raw_nsecs; 976 977 /* Accumulate error between NTP and clock interval */ 978 timekeeper.ntp_error += ntp_tick_length() << shift; 979 timekeeper.ntp_error -= 980 (timekeeper.xtime_interval + timekeeper.xtime_remainder) << 981 (timekeeper.ntp_error_shift + shift); 982 983 return offset; 984 } 985 986 987 /** 988 * update_wall_time - Uses the current clocksource to increment the wall time 989 * 990 */ 991 static void update_wall_time(void) 992 { 993 struct clocksource *clock; 994 cycle_t offset; 995 int shift = 0, maxshift; 996 unsigned long flags; 997 998 write_seqlock_irqsave(&timekeeper.lock, flags); 999 1000 /* Make sure we're fully resumed: */ 1001 if (unlikely(timekeeping_suspended)) 1002 goto out; 1003 1004 clock = timekeeper.clock; 1005 1006 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1007 offset = timekeeper.cycle_interval; 1008 #else 1009 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1010 #endif 1011 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec << 1012 timekeeper.shift; 1013 1014 /* 1015 * With NO_HZ we may have to accumulate many cycle_intervals 1016 * (think "ticks") worth of time at once. To do this efficiently, 1017 * we calculate the largest doubling multiple of cycle_intervals 1018 * that is smaller than the offset. We then accumulate that 1019 * chunk in one go, and then try to consume the next smaller 1020 * doubled multiple. 1021 */ 1022 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); 1023 shift = max(0, shift); 1024 /* Bound shift to one less than what overflows tick_length */ 1025 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1026 shift = min(shift, maxshift); 1027 while (offset >= timekeeper.cycle_interval) { 1028 offset = logarithmic_accumulation(offset, shift); 1029 if(offset < timekeeper.cycle_interval<<shift) 1030 shift--; 1031 } 1032 1033 /* correct the clock when NTP error is too big */ 1034 timekeeping_adjust(offset); 1035 1036 /* 1037 * Since in the loop above, we accumulate any amount of time 1038 * in xtime_nsec over a second into xtime.tv_sec, its possible for 1039 * xtime_nsec to be fairly small after the loop. Further, if we're 1040 * slightly speeding the clocksource up in timekeeping_adjust(), 1041 * its possible the required corrective factor to xtime_nsec could 1042 * cause it to underflow. 1043 * 1044 * Now, we cannot simply roll the accumulated second back, since 1045 * the NTP subsystem has been notified via second_overflow. So 1046 * instead we push xtime_nsec forward by the amount we underflowed, 1047 * and add that amount into the error. 1048 * 1049 * We'll correct this error next time through this function, when 1050 * xtime_nsec is not as small. 1051 */ 1052 if (unlikely((s64)timekeeper.xtime_nsec < 0)) { 1053 s64 neg = -(s64)timekeeper.xtime_nsec; 1054 timekeeper.xtime_nsec = 0; 1055 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; 1056 } 1057 1058 1059 /* 1060 * Store full nanoseconds into xtime after rounding it up and 1061 * add the remainder to the error difference. 1062 */ 1063 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >> 1064 timekeeper.shift) + 1; 1065 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec << 1066 timekeeper.shift; 1067 timekeeper.ntp_error += timekeeper.xtime_nsec << 1068 timekeeper.ntp_error_shift; 1069 1070 /* 1071 * Finally, make sure that after the rounding 1072 * xtime.tv_nsec isn't larger than NSEC_PER_SEC 1073 */ 1074 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) { 1075 int leap; 1076 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC; 1077 timekeeper.xtime.tv_sec++; 1078 leap = second_overflow(timekeeper.xtime.tv_sec); 1079 timekeeper.xtime.tv_sec += leap; 1080 } 1081 1082 timekeeping_update(false); 1083 1084 out: 1085 write_sequnlock_irqrestore(&timekeeper.lock, flags); 1086 1087 } 1088 1089 /** 1090 * getboottime - Return the real time of system boot. 1091 * @ts: pointer to the timespec to be set 1092 * 1093 * Returns the wall-time of boot in a timespec. 1094 * 1095 * This is based on the wall_to_monotonic offset and the total suspend 1096 * time. Calls to settimeofday will affect the value returned (which 1097 * basically means that however wrong your real time clock is at boot time, 1098 * you get the right time here). 1099 */ 1100 void getboottime(struct timespec *ts) 1101 { 1102 struct timespec boottime = { 1103 .tv_sec = timekeeper.wall_to_monotonic.tv_sec + 1104 timekeeper.total_sleep_time.tv_sec, 1105 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec + 1106 timekeeper.total_sleep_time.tv_nsec 1107 }; 1108 1109 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1110 } 1111 EXPORT_SYMBOL_GPL(getboottime); 1112 1113 1114 /** 1115 * get_monotonic_boottime - Returns monotonic time since boot 1116 * @ts: pointer to the timespec to be set 1117 * 1118 * Returns the monotonic time since boot in a timespec. 1119 * 1120 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1121 * includes the time spent in suspend. 1122 */ 1123 void get_monotonic_boottime(struct timespec *ts) 1124 { 1125 struct timespec tomono, sleep; 1126 unsigned int seq; 1127 s64 nsecs; 1128 1129 WARN_ON(timekeeping_suspended); 1130 1131 do { 1132 seq = read_seqbegin(&timekeeper.lock); 1133 *ts = timekeeper.xtime; 1134 tomono = timekeeper.wall_to_monotonic; 1135 sleep = timekeeper.total_sleep_time; 1136 nsecs = timekeeping_get_ns(); 1137 1138 } while (read_seqretry(&timekeeper.lock, seq)); 1139 1140 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec, 1141 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs); 1142 } 1143 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1144 1145 /** 1146 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1147 * 1148 * Returns the monotonic time since boot in a ktime 1149 * 1150 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1151 * includes the time spent in suspend. 1152 */ 1153 ktime_t ktime_get_boottime(void) 1154 { 1155 struct timespec ts; 1156 1157 get_monotonic_boottime(&ts); 1158 return timespec_to_ktime(ts); 1159 } 1160 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1161 1162 /** 1163 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1164 * @ts: pointer to the timespec to be converted 1165 */ 1166 void monotonic_to_bootbased(struct timespec *ts) 1167 { 1168 *ts = timespec_add(*ts, timekeeper.total_sleep_time); 1169 } 1170 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1171 1172 unsigned long get_seconds(void) 1173 { 1174 return timekeeper.xtime.tv_sec; 1175 } 1176 EXPORT_SYMBOL(get_seconds); 1177 1178 struct timespec __current_kernel_time(void) 1179 { 1180 return timekeeper.xtime; 1181 } 1182 1183 struct timespec current_kernel_time(void) 1184 { 1185 struct timespec now; 1186 unsigned long seq; 1187 1188 do { 1189 seq = read_seqbegin(&timekeeper.lock); 1190 1191 now = timekeeper.xtime; 1192 } while (read_seqretry(&timekeeper.lock, seq)); 1193 1194 return now; 1195 } 1196 EXPORT_SYMBOL(current_kernel_time); 1197 1198 struct timespec get_monotonic_coarse(void) 1199 { 1200 struct timespec now, mono; 1201 unsigned long seq; 1202 1203 do { 1204 seq = read_seqbegin(&timekeeper.lock); 1205 1206 now = timekeeper.xtime; 1207 mono = timekeeper.wall_to_monotonic; 1208 } while (read_seqretry(&timekeeper.lock, seq)); 1209 1210 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1211 now.tv_nsec + mono.tv_nsec); 1212 return now; 1213 } 1214 1215 /* 1216 * The 64-bit jiffies value is not atomic - you MUST NOT read it 1217 * without sampling the sequence number in xtime_lock. 1218 * jiffies is defined in the linker script... 1219 */ 1220 void do_timer(unsigned long ticks) 1221 { 1222 jiffies_64 += ticks; 1223 update_wall_time(); 1224 calc_global_load(ticks); 1225 } 1226 1227 /** 1228 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1229 * and sleep offsets. 1230 * @xtim: pointer to timespec to be set with xtime 1231 * @wtom: pointer to timespec to be set with wall_to_monotonic 1232 * @sleep: pointer to timespec to be set with time in suspend 1233 */ 1234 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1235 struct timespec *wtom, struct timespec *sleep) 1236 { 1237 unsigned long seq; 1238 1239 do { 1240 seq = read_seqbegin(&timekeeper.lock); 1241 *xtim = timekeeper.xtime; 1242 *wtom = timekeeper.wall_to_monotonic; 1243 *sleep = timekeeper.total_sleep_time; 1244 } while (read_seqretry(&timekeeper.lock, seq)); 1245 } 1246 1247 /** 1248 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1249 */ 1250 ktime_t ktime_get_monotonic_offset(void) 1251 { 1252 unsigned long seq; 1253 struct timespec wtom; 1254 1255 do { 1256 seq = read_seqbegin(&timekeeper.lock); 1257 wtom = timekeeper.wall_to_monotonic; 1258 } while (read_seqretry(&timekeeper.lock, seq)); 1259 1260 return timespec_to_ktime(wtom); 1261 } 1262 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1263 1264 1265 /** 1266 * xtime_update() - advances the timekeeping infrastructure 1267 * @ticks: number of ticks, that have elapsed since the last call. 1268 * 1269 * Must be called with interrupts disabled. 1270 */ 1271 void xtime_update(unsigned long ticks) 1272 { 1273 write_seqlock(&xtime_lock); 1274 do_timer(ticks); 1275 write_sequnlock(&xtime_lock); 1276 } 1277