1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/tick.h> 21 #include <linux/stop_machine.h> 22 #include <linux/pvclock_gtod.h> 23 #include <linux/compiler.h> 24 #include <linux/audit.h> 25 26 #include "tick-internal.h" 27 #include "ntp_internal.h" 28 #include "timekeeping_internal.h" 29 30 #define TK_CLEAR_NTP (1 << 0) 31 #define TK_MIRROR (1 << 1) 32 #define TK_CLOCK_WAS_SET (1 << 2) 33 34 enum timekeeping_adv_mode { 35 /* Update timekeeper when a tick has passed */ 36 TK_ADV_TICK, 37 38 /* Update timekeeper on a direct frequency change */ 39 TK_ADV_FREQ 40 }; 41 42 DEFINE_RAW_SPINLOCK(timekeeper_lock); 43 44 /* 45 * The most important data for readout fits into a single 64 byte 46 * cache line. 47 */ 48 static struct { 49 seqcount_raw_spinlock_t seq; 50 struct timekeeper timekeeper; 51 } tk_core ____cacheline_aligned = { 52 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 53 }; 54 55 static struct timekeeper shadow_timekeeper; 56 57 /** 58 * struct tk_fast - NMI safe timekeeper 59 * @seq: Sequence counter for protecting updates. The lowest bit 60 * is the index for the tk_read_base array 61 * @base: tk_read_base array. Access is indexed by the lowest bit of 62 * @seq. 63 * 64 * See @update_fast_timekeeper() below. 65 */ 66 struct tk_fast { 67 seqcount_raw_spinlock_t seq; 68 struct tk_read_base base[2]; 69 }; 70 71 /* Suspend-time cycles value for halted fast timekeeper. */ 72 static u64 cycles_at_suspend; 73 74 static u64 dummy_clock_read(struct clocksource *cs) 75 { 76 return cycles_at_suspend; 77 } 78 79 static struct clocksource dummy_clock = { 80 .read = dummy_clock_read, 81 }; 82 83 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 84 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_mono.seq, &timekeeper_lock), 85 .base[0] = { .clock = &dummy_clock, }, 86 .base[1] = { .clock = &dummy_clock, }, 87 }; 88 89 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 90 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_raw.seq, &timekeeper_lock), 91 .base[0] = { .clock = &dummy_clock, }, 92 .base[1] = { .clock = &dummy_clock, }, 93 }; 94 95 /* flag for if timekeeping is suspended */ 96 int __read_mostly timekeeping_suspended; 97 98 static inline void tk_normalize_xtime(struct timekeeper *tk) 99 { 100 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 101 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 102 tk->xtime_sec++; 103 } 104 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 105 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 106 tk->raw_sec++; 107 } 108 } 109 110 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 111 { 112 struct timespec64 ts; 113 114 ts.tv_sec = tk->xtime_sec; 115 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 116 return ts; 117 } 118 119 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 120 { 121 tk->xtime_sec = ts->tv_sec; 122 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 123 } 124 125 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 126 { 127 tk->xtime_sec += ts->tv_sec; 128 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 129 tk_normalize_xtime(tk); 130 } 131 132 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 133 { 134 struct timespec64 tmp; 135 136 /* 137 * Verify consistency of: offset_real = -wall_to_monotonic 138 * before modifying anything 139 */ 140 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 141 -tk->wall_to_monotonic.tv_nsec); 142 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 143 tk->wall_to_monotonic = wtm; 144 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 145 tk->offs_real = timespec64_to_ktime(tmp); 146 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 147 } 148 149 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 150 { 151 tk->offs_boot = ktime_add(tk->offs_boot, delta); 152 /* 153 * Timespec representation for VDSO update to avoid 64bit division 154 * on every update. 155 */ 156 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 157 } 158 159 /* 160 * tk_clock_read - atomic clocksource read() helper 161 * 162 * This helper is necessary to use in the read paths because, while the 163 * seqcount ensures we don't return a bad value while structures are updated, 164 * it doesn't protect from potential crashes. There is the possibility that 165 * the tkr's clocksource may change between the read reference, and the 166 * clock reference passed to the read function. This can cause crashes if 167 * the wrong clocksource is passed to the wrong read function. 168 * This isn't necessary to use when holding the timekeeper_lock or doing 169 * a read of the fast-timekeeper tkrs (which is protected by its own locking 170 * and update logic). 171 */ 172 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 173 { 174 struct clocksource *clock = READ_ONCE(tkr->clock); 175 176 return clock->read(clock); 177 } 178 179 #ifdef CONFIG_DEBUG_TIMEKEEPING 180 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 181 182 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 183 { 184 185 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 186 const char *name = tk->tkr_mono.clock->name; 187 188 if (offset > max_cycles) { 189 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 190 offset, name, max_cycles); 191 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 192 } else { 193 if (offset > (max_cycles >> 1)) { 194 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 195 offset, name, max_cycles >> 1); 196 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 197 } 198 } 199 200 if (tk->underflow_seen) { 201 if (jiffies - tk->last_warning > WARNING_FREQ) { 202 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 203 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 204 printk_deferred(" Your kernel is probably still fine.\n"); 205 tk->last_warning = jiffies; 206 } 207 tk->underflow_seen = 0; 208 } 209 210 if (tk->overflow_seen) { 211 if (jiffies - tk->last_warning > WARNING_FREQ) { 212 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 213 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 214 printk_deferred(" Your kernel is probably still fine.\n"); 215 tk->last_warning = jiffies; 216 } 217 tk->overflow_seen = 0; 218 } 219 } 220 221 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 222 { 223 struct timekeeper *tk = &tk_core.timekeeper; 224 u64 now, last, mask, max, delta; 225 unsigned int seq; 226 227 /* 228 * Since we're called holding a seqcount, the data may shift 229 * under us while we're doing the calculation. This can cause 230 * false positives, since we'd note a problem but throw the 231 * results away. So nest another seqcount here to atomically 232 * grab the points we are checking with. 233 */ 234 do { 235 seq = read_seqcount_begin(&tk_core.seq); 236 now = tk_clock_read(tkr); 237 last = tkr->cycle_last; 238 mask = tkr->mask; 239 max = tkr->clock->max_cycles; 240 } while (read_seqcount_retry(&tk_core.seq, seq)); 241 242 delta = clocksource_delta(now, last, mask); 243 244 /* 245 * Try to catch underflows by checking if we are seeing small 246 * mask-relative negative values. 247 */ 248 if (unlikely((~delta & mask) < (mask >> 3))) { 249 tk->underflow_seen = 1; 250 delta = 0; 251 } 252 253 /* Cap delta value to the max_cycles values to avoid mult overflows */ 254 if (unlikely(delta > max)) { 255 tk->overflow_seen = 1; 256 delta = tkr->clock->max_cycles; 257 } 258 259 return delta; 260 } 261 #else 262 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 263 { 264 } 265 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 266 { 267 u64 cycle_now, delta; 268 269 /* read clocksource */ 270 cycle_now = tk_clock_read(tkr); 271 272 /* calculate the delta since the last update_wall_time */ 273 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 274 275 return delta; 276 } 277 #endif 278 279 /** 280 * tk_setup_internals - Set up internals to use clocksource clock. 281 * 282 * @tk: The target timekeeper to setup. 283 * @clock: Pointer to clocksource. 284 * 285 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 286 * pair and interval request. 287 * 288 * Unless you're the timekeeping code, you should not be using this! 289 */ 290 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 291 { 292 u64 interval; 293 u64 tmp, ntpinterval; 294 struct clocksource *old_clock; 295 296 ++tk->cs_was_changed_seq; 297 old_clock = tk->tkr_mono.clock; 298 tk->tkr_mono.clock = clock; 299 tk->tkr_mono.mask = clock->mask; 300 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 301 302 tk->tkr_raw.clock = clock; 303 tk->tkr_raw.mask = clock->mask; 304 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 305 306 /* Do the ns -> cycle conversion first, using original mult */ 307 tmp = NTP_INTERVAL_LENGTH; 308 tmp <<= clock->shift; 309 ntpinterval = tmp; 310 tmp += clock->mult/2; 311 do_div(tmp, clock->mult); 312 if (tmp == 0) 313 tmp = 1; 314 315 interval = (u64) tmp; 316 tk->cycle_interval = interval; 317 318 /* Go back from cycles -> shifted ns */ 319 tk->xtime_interval = interval * clock->mult; 320 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 321 tk->raw_interval = interval * clock->mult; 322 323 /* if changing clocks, convert xtime_nsec shift units */ 324 if (old_clock) { 325 int shift_change = clock->shift - old_clock->shift; 326 if (shift_change < 0) { 327 tk->tkr_mono.xtime_nsec >>= -shift_change; 328 tk->tkr_raw.xtime_nsec >>= -shift_change; 329 } else { 330 tk->tkr_mono.xtime_nsec <<= shift_change; 331 tk->tkr_raw.xtime_nsec <<= shift_change; 332 } 333 } 334 335 tk->tkr_mono.shift = clock->shift; 336 tk->tkr_raw.shift = clock->shift; 337 338 tk->ntp_error = 0; 339 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 340 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 341 342 /* 343 * The timekeeper keeps its own mult values for the currently 344 * active clocksource. These value will be adjusted via NTP 345 * to counteract clock drifting. 346 */ 347 tk->tkr_mono.mult = clock->mult; 348 tk->tkr_raw.mult = clock->mult; 349 tk->ntp_err_mult = 0; 350 tk->skip_second_overflow = 0; 351 } 352 353 /* Timekeeper helper functions. */ 354 355 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 356 static u32 default_arch_gettimeoffset(void) { return 0; } 357 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 358 #else 359 static inline u32 arch_gettimeoffset(void) { return 0; } 360 #endif 361 362 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 363 { 364 u64 nsec; 365 366 nsec = delta * tkr->mult + tkr->xtime_nsec; 367 nsec >>= tkr->shift; 368 369 /* If arch requires, add in get_arch_timeoffset() */ 370 return nsec + arch_gettimeoffset(); 371 } 372 373 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 374 { 375 u64 delta; 376 377 delta = timekeeping_get_delta(tkr); 378 return timekeeping_delta_to_ns(tkr, delta); 379 } 380 381 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 382 { 383 u64 delta; 384 385 /* calculate the delta since the last update_wall_time */ 386 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 387 return timekeeping_delta_to_ns(tkr, delta); 388 } 389 390 /** 391 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 392 * @tkr: Timekeeping readout base from which we take the update 393 * 394 * We want to use this from any context including NMI and tracing / 395 * instrumenting the timekeeping code itself. 396 * 397 * Employ the latch technique; see @raw_write_seqcount_latch. 398 * 399 * So if a NMI hits the update of base[0] then it will use base[1] 400 * which is still consistent. In the worst case this can result is a 401 * slightly wrong timestamp (a few nanoseconds). See 402 * @ktime_get_mono_fast_ns. 403 */ 404 static void update_fast_timekeeper(const struct tk_read_base *tkr, 405 struct tk_fast *tkf) 406 { 407 struct tk_read_base *base = tkf->base; 408 409 /* Force readers off to base[1] */ 410 raw_write_seqcount_latch(&tkf->seq); 411 412 /* Update base[0] */ 413 memcpy(base, tkr, sizeof(*base)); 414 415 /* Force readers back to base[0] */ 416 raw_write_seqcount_latch(&tkf->seq); 417 418 /* Update base[1] */ 419 memcpy(base + 1, base, sizeof(*base)); 420 } 421 422 /** 423 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 424 * 425 * This timestamp is not guaranteed to be monotonic across an update. 426 * The timestamp is calculated by: 427 * 428 * now = base_mono + clock_delta * slope 429 * 430 * So if the update lowers the slope, readers who are forced to the 431 * not yet updated second array are still using the old steeper slope. 432 * 433 * tmono 434 * ^ 435 * | o n 436 * | o n 437 * | u 438 * | o 439 * |o 440 * |12345678---> reader order 441 * 442 * o = old slope 443 * u = update 444 * n = new slope 445 * 446 * So reader 6 will observe time going backwards versus reader 5. 447 * 448 * While other CPUs are likely to be able observe that, the only way 449 * for a CPU local observation is when an NMI hits in the middle of 450 * the update. Timestamps taken from that NMI context might be ahead 451 * of the following timestamps. Callers need to be aware of that and 452 * deal with it. 453 */ 454 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 455 { 456 struct tk_read_base *tkr; 457 unsigned int seq; 458 u64 now; 459 460 do { 461 seq = raw_read_seqcount_latch(&tkf->seq); 462 tkr = tkf->base + (seq & 0x01); 463 now = ktime_to_ns(tkr->base); 464 465 now += timekeeping_delta_to_ns(tkr, 466 clocksource_delta( 467 tk_clock_read(tkr), 468 tkr->cycle_last, 469 tkr->mask)); 470 } while (read_seqcount_retry(&tkf->seq, seq)); 471 472 return now; 473 } 474 475 u64 ktime_get_mono_fast_ns(void) 476 { 477 return __ktime_get_fast_ns(&tk_fast_mono); 478 } 479 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 480 481 u64 ktime_get_raw_fast_ns(void) 482 { 483 return __ktime_get_fast_ns(&tk_fast_raw); 484 } 485 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 486 487 /** 488 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 489 * 490 * To keep it NMI safe since we're accessing from tracing, we're not using a 491 * separate timekeeper with updates to monotonic clock and boot offset 492 * protected with seqcounts. This has the following minor side effects: 493 * 494 * (1) Its possible that a timestamp be taken after the boot offset is updated 495 * but before the timekeeper is updated. If this happens, the new boot offset 496 * is added to the old timekeeping making the clock appear to update slightly 497 * earlier: 498 * CPU 0 CPU 1 499 * timekeeping_inject_sleeptime64() 500 * __timekeeping_inject_sleeptime(tk, delta); 501 * timestamp(); 502 * timekeeping_update(tk, TK_CLEAR_NTP...); 503 * 504 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 505 * partially updated. Since the tk->offs_boot update is a rare event, this 506 * should be a rare occurrence which postprocessing should be able to handle. 507 */ 508 u64 notrace ktime_get_boot_fast_ns(void) 509 { 510 struct timekeeper *tk = &tk_core.timekeeper; 511 512 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 513 } 514 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 515 516 517 /* 518 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 519 */ 520 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) 521 { 522 struct tk_read_base *tkr; 523 unsigned int seq; 524 u64 now; 525 526 do { 527 seq = raw_read_seqcount_latch(&tkf->seq); 528 tkr = tkf->base + (seq & 0x01); 529 now = ktime_to_ns(tkr->base_real); 530 531 now += timekeeping_delta_to_ns(tkr, 532 clocksource_delta( 533 tk_clock_read(tkr), 534 tkr->cycle_last, 535 tkr->mask)); 536 } while (read_seqcount_retry(&tkf->seq, seq)); 537 538 return now; 539 } 540 541 /** 542 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 543 */ 544 u64 ktime_get_real_fast_ns(void) 545 { 546 return __ktime_get_real_fast_ns(&tk_fast_mono); 547 } 548 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 549 550 /** 551 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 552 * @tk: Timekeeper to snapshot. 553 * 554 * It generally is unsafe to access the clocksource after timekeeping has been 555 * suspended, so take a snapshot of the readout base of @tk and use it as the 556 * fast timekeeper's readout base while suspended. It will return the same 557 * number of cycles every time until timekeeping is resumed at which time the 558 * proper readout base for the fast timekeeper will be restored automatically. 559 */ 560 static void halt_fast_timekeeper(const struct timekeeper *tk) 561 { 562 static struct tk_read_base tkr_dummy; 563 const struct tk_read_base *tkr = &tk->tkr_mono; 564 565 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 566 cycles_at_suspend = tk_clock_read(tkr); 567 tkr_dummy.clock = &dummy_clock; 568 tkr_dummy.base_real = tkr->base + tk->offs_real; 569 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 570 571 tkr = &tk->tkr_raw; 572 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 573 tkr_dummy.clock = &dummy_clock; 574 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 575 } 576 577 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 578 579 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 580 { 581 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 582 } 583 584 /** 585 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 586 */ 587 int pvclock_gtod_register_notifier(struct notifier_block *nb) 588 { 589 struct timekeeper *tk = &tk_core.timekeeper; 590 unsigned long flags; 591 int ret; 592 593 raw_spin_lock_irqsave(&timekeeper_lock, flags); 594 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 595 update_pvclock_gtod(tk, true); 596 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 597 598 return ret; 599 } 600 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 601 602 /** 603 * pvclock_gtod_unregister_notifier - unregister a pvclock 604 * timedata update listener 605 */ 606 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 607 { 608 unsigned long flags; 609 int ret; 610 611 raw_spin_lock_irqsave(&timekeeper_lock, flags); 612 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 613 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 614 615 return ret; 616 } 617 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 618 619 /* 620 * tk_update_leap_state - helper to update the next_leap_ktime 621 */ 622 static inline void tk_update_leap_state(struct timekeeper *tk) 623 { 624 tk->next_leap_ktime = ntp_get_next_leap(); 625 if (tk->next_leap_ktime != KTIME_MAX) 626 /* Convert to monotonic time */ 627 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 628 } 629 630 /* 631 * Update the ktime_t based scalar nsec members of the timekeeper 632 */ 633 static inline void tk_update_ktime_data(struct timekeeper *tk) 634 { 635 u64 seconds; 636 u32 nsec; 637 638 /* 639 * The xtime based monotonic readout is: 640 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 641 * The ktime based monotonic readout is: 642 * nsec = base_mono + now(); 643 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 644 */ 645 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 646 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 647 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 648 649 /* 650 * The sum of the nanoseconds portions of xtime and 651 * wall_to_monotonic can be greater/equal one second. Take 652 * this into account before updating tk->ktime_sec. 653 */ 654 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 655 if (nsec >= NSEC_PER_SEC) 656 seconds++; 657 tk->ktime_sec = seconds; 658 659 /* Update the monotonic raw base */ 660 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 661 } 662 663 /* must hold timekeeper_lock */ 664 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 665 { 666 if (action & TK_CLEAR_NTP) { 667 tk->ntp_error = 0; 668 ntp_clear(); 669 } 670 671 tk_update_leap_state(tk); 672 tk_update_ktime_data(tk); 673 674 update_vsyscall(tk); 675 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 676 677 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 678 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 679 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 680 681 if (action & TK_CLOCK_WAS_SET) 682 tk->clock_was_set_seq++; 683 /* 684 * The mirroring of the data to the shadow-timekeeper needs 685 * to happen last here to ensure we don't over-write the 686 * timekeeper structure on the next update with stale data 687 */ 688 if (action & TK_MIRROR) 689 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 690 sizeof(tk_core.timekeeper)); 691 } 692 693 /** 694 * timekeeping_forward_now - update clock to the current time 695 * 696 * Forward the current clock to update its state since the last call to 697 * update_wall_time(). This is useful before significant clock changes, 698 * as it avoids having to deal with this time offset explicitly. 699 */ 700 static void timekeeping_forward_now(struct timekeeper *tk) 701 { 702 u64 cycle_now, delta; 703 704 cycle_now = tk_clock_read(&tk->tkr_mono); 705 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 706 tk->tkr_mono.cycle_last = cycle_now; 707 tk->tkr_raw.cycle_last = cycle_now; 708 709 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 710 711 /* If arch requires, add in get_arch_timeoffset() */ 712 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 713 714 715 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 716 717 /* If arch requires, add in get_arch_timeoffset() */ 718 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 719 720 tk_normalize_xtime(tk); 721 } 722 723 /** 724 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 725 * @ts: pointer to the timespec to be set 726 * 727 * Returns the time of day in a timespec64 (WARN if suspended). 728 */ 729 void ktime_get_real_ts64(struct timespec64 *ts) 730 { 731 struct timekeeper *tk = &tk_core.timekeeper; 732 unsigned int seq; 733 u64 nsecs; 734 735 WARN_ON(timekeeping_suspended); 736 737 do { 738 seq = read_seqcount_begin(&tk_core.seq); 739 740 ts->tv_sec = tk->xtime_sec; 741 nsecs = timekeeping_get_ns(&tk->tkr_mono); 742 743 } while (read_seqcount_retry(&tk_core.seq, seq)); 744 745 ts->tv_nsec = 0; 746 timespec64_add_ns(ts, nsecs); 747 } 748 EXPORT_SYMBOL(ktime_get_real_ts64); 749 750 ktime_t ktime_get(void) 751 { 752 struct timekeeper *tk = &tk_core.timekeeper; 753 unsigned int seq; 754 ktime_t base; 755 u64 nsecs; 756 757 WARN_ON(timekeeping_suspended); 758 759 do { 760 seq = read_seqcount_begin(&tk_core.seq); 761 base = tk->tkr_mono.base; 762 nsecs = timekeeping_get_ns(&tk->tkr_mono); 763 764 } while (read_seqcount_retry(&tk_core.seq, seq)); 765 766 return ktime_add_ns(base, nsecs); 767 } 768 EXPORT_SYMBOL_GPL(ktime_get); 769 770 u32 ktime_get_resolution_ns(void) 771 { 772 struct timekeeper *tk = &tk_core.timekeeper; 773 unsigned int seq; 774 u32 nsecs; 775 776 WARN_ON(timekeeping_suspended); 777 778 do { 779 seq = read_seqcount_begin(&tk_core.seq); 780 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 781 } while (read_seqcount_retry(&tk_core.seq, seq)); 782 783 return nsecs; 784 } 785 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 786 787 static ktime_t *offsets[TK_OFFS_MAX] = { 788 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 789 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 790 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 791 }; 792 793 ktime_t ktime_get_with_offset(enum tk_offsets offs) 794 { 795 struct timekeeper *tk = &tk_core.timekeeper; 796 unsigned int seq; 797 ktime_t base, *offset = offsets[offs]; 798 u64 nsecs; 799 800 WARN_ON(timekeeping_suspended); 801 802 do { 803 seq = read_seqcount_begin(&tk_core.seq); 804 base = ktime_add(tk->tkr_mono.base, *offset); 805 nsecs = timekeeping_get_ns(&tk->tkr_mono); 806 807 } while (read_seqcount_retry(&tk_core.seq, seq)); 808 809 return ktime_add_ns(base, nsecs); 810 811 } 812 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 813 814 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 815 { 816 struct timekeeper *tk = &tk_core.timekeeper; 817 unsigned int seq; 818 ktime_t base, *offset = offsets[offs]; 819 u64 nsecs; 820 821 WARN_ON(timekeeping_suspended); 822 823 do { 824 seq = read_seqcount_begin(&tk_core.seq); 825 base = ktime_add(tk->tkr_mono.base, *offset); 826 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 827 828 } while (read_seqcount_retry(&tk_core.seq, seq)); 829 830 return ktime_add_ns(base, nsecs); 831 } 832 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 833 834 /** 835 * ktime_mono_to_any() - convert mononotic time to any other time 836 * @tmono: time to convert. 837 * @offs: which offset to use 838 */ 839 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 840 { 841 ktime_t *offset = offsets[offs]; 842 unsigned int seq; 843 ktime_t tconv; 844 845 do { 846 seq = read_seqcount_begin(&tk_core.seq); 847 tconv = ktime_add(tmono, *offset); 848 } while (read_seqcount_retry(&tk_core.seq, seq)); 849 850 return tconv; 851 } 852 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 853 854 /** 855 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 856 */ 857 ktime_t ktime_get_raw(void) 858 { 859 struct timekeeper *tk = &tk_core.timekeeper; 860 unsigned int seq; 861 ktime_t base; 862 u64 nsecs; 863 864 do { 865 seq = read_seqcount_begin(&tk_core.seq); 866 base = tk->tkr_raw.base; 867 nsecs = timekeeping_get_ns(&tk->tkr_raw); 868 869 } while (read_seqcount_retry(&tk_core.seq, seq)); 870 871 return ktime_add_ns(base, nsecs); 872 } 873 EXPORT_SYMBOL_GPL(ktime_get_raw); 874 875 /** 876 * ktime_get_ts64 - get the monotonic clock in timespec64 format 877 * @ts: pointer to timespec variable 878 * 879 * The function calculates the monotonic clock from the realtime 880 * clock and the wall_to_monotonic offset and stores the result 881 * in normalized timespec64 format in the variable pointed to by @ts. 882 */ 883 void ktime_get_ts64(struct timespec64 *ts) 884 { 885 struct timekeeper *tk = &tk_core.timekeeper; 886 struct timespec64 tomono; 887 unsigned int seq; 888 u64 nsec; 889 890 WARN_ON(timekeeping_suspended); 891 892 do { 893 seq = read_seqcount_begin(&tk_core.seq); 894 ts->tv_sec = tk->xtime_sec; 895 nsec = timekeeping_get_ns(&tk->tkr_mono); 896 tomono = tk->wall_to_monotonic; 897 898 } while (read_seqcount_retry(&tk_core.seq, seq)); 899 900 ts->tv_sec += tomono.tv_sec; 901 ts->tv_nsec = 0; 902 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 903 } 904 EXPORT_SYMBOL_GPL(ktime_get_ts64); 905 906 /** 907 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 908 * 909 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 910 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 911 * works on both 32 and 64 bit systems. On 32 bit systems the readout 912 * covers ~136 years of uptime which should be enough to prevent 913 * premature wrap arounds. 914 */ 915 time64_t ktime_get_seconds(void) 916 { 917 struct timekeeper *tk = &tk_core.timekeeper; 918 919 WARN_ON(timekeeping_suspended); 920 return tk->ktime_sec; 921 } 922 EXPORT_SYMBOL_GPL(ktime_get_seconds); 923 924 /** 925 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 926 * 927 * Returns the wall clock seconds since 1970. This replaces the 928 * get_seconds() interface which is not y2038 safe on 32bit systems. 929 * 930 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 931 * 32bit systems the access must be protected with the sequence 932 * counter to provide "atomic" access to the 64bit tk->xtime_sec 933 * value. 934 */ 935 time64_t ktime_get_real_seconds(void) 936 { 937 struct timekeeper *tk = &tk_core.timekeeper; 938 time64_t seconds; 939 unsigned int seq; 940 941 if (IS_ENABLED(CONFIG_64BIT)) 942 return tk->xtime_sec; 943 944 do { 945 seq = read_seqcount_begin(&tk_core.seq); 946 seconds = tk->xtime_sec; 947 948 } while (read_seqcount_retry(&tk_core.seq, seq)); 949 950 return seconds; 951 } 952 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 953 954 /** 955 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 956 * but without the sequence counter protect. This internal function 957 * is called just when timekeeping lock is already held. 958 */ 959 noinstr time64_t __ktime_get_real_seconds(void) 960 { 961 struct timekeeper *tk = &tk_core.timekeeper; 962 963 return tk->xtime_sec; 964 } 965 966 /** 967 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 968 * @systime_snapshot: pointer to struct receiving the system time snapshot 969 */ 970 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 971 { 972 struct timekeeper *tk = &tk_core.timekeeper; 973 unsigned int seq; 974 ktime_t base_raw; 975 ktime_t base_real; 976 u64 nsec_raw; 977 u64 nsec_real; 978 u64 now; 979 980 WARN_ON_ONCE(timekeeping_suspended); 981 982 do { 983 seq = read_seqcount_begin(&tk_core.seq); 984 now = tk_clock_read(&tk->tkr_mono); 985 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 986 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 987 base_real = ktime_add(tk->tkr_mono.base, 988 tk_core.timekeeper.offs_real); 989 base_raw = tk->tkr_raw.base; 990 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 991 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 992 } while (read_seqcount_retry(&tk_core.seq, seq)); 993 994 systime_snapshot->cycles = now; 995 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 996 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 997 } 998 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 999 1000 /* Scale base by mult/div checking for overflow */ 1001 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1002 { 1003 u64 tmp, rem; 1004 1005 tmp = div64_u64_rem(*base, div, &rem); 1006 1007 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1008 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1009 return -EOVERFLOW; 1010 tmp *= mult; 1011 1012 rem = div64_u64(rem * mult, div); 1013 *base = tmp + rem; 1014 return 0; 1015 } 1016 1017 /** 1018 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1019 * @history: Snapshot representing start of history 1020 * @partial_history_cycles: Cycle offset into history (fractional part) 1021 * @total_history_cycles: Total history length in cycles 1022 * @discontinuity: True indicates clock was set on history period 1023 * @ts: Cross timestamp that should be adjusted using 1024 * partial/total ratio 1025 * 1026 * Helper function used by get_device_system_crosststamp() to correct the 1027 * crosstimestamp corresponding to the start of the current interval to the 1028 * system counter value (timestamp point) provided by the driver. The 1029 * total_history_* quantities are the total history starting at the provided 1030 * reference point and ending at the start of the current interval. The cycle 1031 * count between the driver timestamp point and the start of the current 1032 * interval is partial_history_cycles. 1033 */ 1034 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1035 u64 partial_history_cycles, 1036 u64 total_history_cycles, 1037 bool discontinuity, 1038 struct system_device_crosststamp *ts) 1039 { 1040 struct timekeeper *tk = &tk_core.timekeeper; 1041 u64 corr_raw, corr_real; 1042 bool interp_forward; 1043 int ret; 1044 1045 if (total_history_cycles == 0 || partial_history_cycles == 0) 1046 return 0; 1047 1048 /* Interpolate shortest distance from beginning or end of history */ 1049 interp_forward = partial_history_cycles > total_history_cycles / 2; 1050 partial_history_cycles = interp_forward ? 1051 total_history_cycles - partial_history_cycles : 1052 partial_history_cycles; 1053 1054 /* 1055 * Scale the monotonic raw time delta by: 1056 * partial_history_cycles / total_history_cycles 1057 */ 1058 corr_raw = (u64)ktime_to_ns( 1059 ktime_sub(ts->sys_monoraw, history->raw)); 1060 ret = scale64_check_overflow(partial_history_cycles, 1061 total_history_cycles, &corr_raw); 1062 if (ret) 1063 return ret; 1064 1065 /* 1066 * If there is a discontinuity in the history, scale monotonic raw 1067 * correction by: 1068 * mult(real)/mult(raw) yielding the realtime correction 1069 * Otherwise, calculate the realtime correction similar to monotonic 1070 * raw calculation 1071 */ 1072 if (discontinuity) { 1073 corr_real = mul_u64_u32_div 1074 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1075 } else { 1076 corr_real = (u64)ktime_to_ns( 1077 ktime_sub(ts->sys_realtime, history->real)); 1078 ret = scale64_check_overflow(partial_history_cycles, 1079 total_history_cycles, &corr_real); 1080 if (ret) 1081 return ret; 1082 } 1083 1084 /* Fixup monotonic raw and real time time values */ 1085 if (interp_forward) { 1086 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1087 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1088 } else { 1089 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1090 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1091 } 1092 1093 return 0; 1094 } 1095 1096 /* 1097 * cycle_between - true if test occurs chronologically between before and after 1098 */ 1099 static bool cycle_between(u64 before, u64 test, u64 after) 1100 { 1101 if (test > before && test < after) 1102 return true; 1103 if (test < before && before > after) 1104 return true; 1105 return false; 1106 } 1107 1108 /** 1109 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1110 * @get_time_fn: Callback to get simultaneous device time and 1111 * system counter from the device driver 1112 * @ctx: Context passed to get_time_fn() 1113 * @history_begin: Historical reference point used to interpolate system 1114 * time when counter provided by the driver is before the current interval 1115 * @xtstamp: Receives simultaneously captured system and device time 1116 * 1117 * Reads a timestamp from a device and correlates it to system time 1118 */ 1119 int get_device_system_crosststamp(int (*get_time_fn) 1120 (ktime_t *device_time, 1121 struct system_counterval_t *sys_counterval, 1122 void *ctx), 1123 void *ctx, 1124 struct system_time_snapshot *history_begin, 1125 struct system_device_crosststamp *xtstamp) 1126 { 1127 struct system_counterval_t system_counterval; 1128 struct timekeeper *tk = &tk_core.timekeeper; 1129 u64 cycles, now, interval_start; 1130 unsigned int clock_was_set_seq = 0; 1131 ktime_t base_real, base_raw; 1132 u64 nsec_real, nsec_raw; 1133 u8 cs_was_changed_seq; 1134 unsigned int seq; 1135 bool do_interp; 1136 int ret; 1137 1138 do { 1139 seq = read_seqcount_begin(&tk_core.seq); 1140 /* 1141 * Try to synchronously capture device time and a system 1142 * counter value calling back into the device driver 1143 */ 1144 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1145 if (ret) 1146 return ret; 1147 1148 /* 1149 * Verify that the clocksource associated with the captured 1150 * system counter value is the same as the currently installed 1151 * timekeeper clocksource 1152 */ 1153 if (tk->tkr_mono.clock != system_counterval.cs) 1154 return -ENODEV; 1155 cycles = system_counterval.cycles; 1156 1157 /* 1158 * Check whether the system counter value provided by the 1159 * device driver is on the current timekeeping interval. 1160 */ 1161 now = tk_clock_read(&tk->tkr_mono); 1162 interval_start = tk->tkr_mono.cycle_last; 1163 if (!cycle_between(interval_start, cycles, now)) { 1164 clock_was_set_seq = tk->clock_was_set_seq; 1165 cs_was_changed_seq = tk->cs_was_changed_seq; 1166 cycles = interval_start; 1167 do_interp = true; 1168 } else { 1169 do_interp = false; 1170 } 1171 1172 base_real = ktime_add(tk->tkr_mono.base, 1173 tk_core.timekeeper.offs_real); 1174 base_raw = tk->tkr_raw.base; 1175 1176 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1177 system_counterval.cycles); 1178 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1179 system_counterval.cycles); 1180 } while (read_seqcount_retry(&tk_core.seq, seq)); 1181 1182 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1183 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1184 1185 /* 1186 * Interpolate if necessary, adjusting back from the start of the 1187 * current interval 1188 */ 1189 if (do_interp) { 1190 u64 partial_history_cycles, total_history_cycles; 1191 bool discontinuity; 1192 1193 /* 1194 * Check that the counter value occurs after the provided 1195 * history reference and that the history doesn't cross a 1196 * clocksource change 1197 */ 1198 if (!history_begin || 1199 !cycle_between(history_begin->cycles, 1200 system_counterval.cycles, cycles) || 1201 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1202 return -EINVAL; 1203 partial_history_cycles = cycles - system_counterval.cycles; 1204 total_history_cycles = cycles - history_begin->cycles; 1205 discontinuity = 1206 history_begin->clock_was_set_seq != clock_was_set_seq; 1207 1208 ret = adjust_historical_crosststamp(history_begin, 1209 partial_history_cycles, 1210 total_history_cycles, 1211 discontinuity, xtstamp); 1212 if (ret) 1213 return ret; 1214 } 1215 1216 return 0; 1217 } 1218 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1219 1220 /** 1221 * do_settimeofday64 - Sets the time of day. 1222 * @ts: pointer to the timespec64 variable containing the new time 1223 * 1224 * Sets the time of day to the new time and update NTP and notify hrtimers 1225 */ 1226 int do_settimeofday64(const struct timespec64 *ts) 1227 { 1228 struct timekeeper *tk = &tk_core.timekeeper; 1229 struct timespec64 ts_delta, xt; 1230 unsigned long flags; 1231 int ret = 0; 1232 1233 if (!timespec64_valid_settod(ts)) 1234 return -EINVAL; 1235 1236 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1237 write_seqcount_begin(&tk_core.seq); 1238 1239 timekeeping_forward_now(tk); 1240 1241 xt = tk_xtime(tk); 1242 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1243 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1244 1245 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1246 ret = -EINVAL; 1247 goto out; 1248 } 1249 1250 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1251 1252 tk_set_xtime(tk, ts); 1253 out: 1254 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1255 1256 write_seqcount_end(&tk_core.seq); 1257 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1258 1259 /* signal hrtimers about time change */ 1260 clock_was_set(); 1261 1262 if (!ret) 1263 audit_tk_injoffset(ts_delta); 1264 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(do_settimeofday64); 1268 1269 /** 1270 * timekeeping_inject_offset - Adds or subtracts from the current time. 1271 * @tv: pointer to the timespec variable containing the offset 1272 * 1273 * Adds or subtracts an offset value from the current time. 1274 */ 1275 static int timekeeping_inject_offset(const struct timespec64 *ts) 1276 { 1277 struct timekeeper *tk = &tk_core.timekeeper; 1278 unsigned long flags; 1279 struct timespec64 tmp; 1280 int ret = 0; 1281 1282 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1283 return -EINVAL; 1284 1285 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1286 write_seqcount_begin(&tk_core.seq); 1287 1288 timekeeping_forward_now(tk); 1289 1290 /* Make sure the proposed value is valid */ 1291 tmp = timespec64_add(tk_xtime(tk), *ts); 1292 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1293 !timespec64_valid_settod(&tmp)) { 1294 ret = -EINVAL; 1295 goto error; 1296 } 1297 1298 tk_xtime_add(tk, ts); 1299 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1300 1301 error: /* even if we error out, we forwarded the time, so call update */ 1302 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1303 1304 write_seqcount_end(&tk_core.seq); 1305 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1306 1307 /* signal hrtimers about time change */ 1308 clock_was_set(); 1309 1310 return ret; 1311 } 1312 1313 /* 1314 * Indicates if there is an offset between the system clock and the hardware 1315 * clock/persistent clock/rtc. 1316 */ 1317 int persistent_clock_is_local; 1318 1319 /* 1320 * Adjust the time obtained from the CMOS to be UTC time instead of 1321 * local time. 1322 * 1323 * This is ugly, but preferable to the alternatives. Otherwise we 1324 * would either need to write a program to do it in /etc/rc (and risk 1325 * confusion if the program gets run more than once; it would also be 1326 * hard to make the program warp the clock precisely n hours) or 1327 * compile in the timezone information into the kernel. Bad, bad.... 1328 * 1329 * - TYT, 1992-01-01 1330 * 1331 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1332 * as real UNIX machines always do it. This avoids all headaches about 1333 * daylight saving times and warping kernel clocks. 1334 */ 1335 void timekeeping_warp_clock(void) 1336 { 1337 if (sys_tz.tz_minuteswest != 0) { 1338 struct timespec64 adjust; 1339 1340 persistent_clock_is_local = 1; 1341 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1342 adjust.tv_nsec = 0; 1343 timekeeping_inject_offset(&adjust); 1344 } 1345 } 1346 1347 /** 1348 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1349 * 1350 */ 1351 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1352 { 1353 tk->tai_offset = tai_offset; 1354 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1355 } 1356 1357 /** 1358 * change_clocksource - Swaps clocksources if a new one is available 1359 * 1360 * Accumulates current time interval and initializes new clocksource 1361 */ 1362 static int change_clocksource(void *data) 1363 { 1364 struct timekeeper *tk = &tk_core.timekeeper; 1365 struct clocksource *new, *old; 1366 unsigned long flags; 1367 1368 new = (struct clocksource *) data; 1369 1370 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1371 write_seqcount_begin(&tk_core.seq); 1372 1373 timekeeping_forward_now(tk); 1374 /* 1375 * If the cs is in module, get a module reference. Succeeds 1376 * for built-in code (owner == NULL) as well. 1377 */ 1378 if (try_module_get(new->owner)) { 1379 if (!new->enable || new->enable(new) == 0) { 1380 old = tk->tkr_mono.clock; 1381 tk_setup_internals(tk, new); 1382 if (old->disable) 1383 old->disable(old); 1384 module_put(old->owner); 1385 } else { 1386 module_put(new->owner); 1387 } 1388 } 1389 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1390 1391 write_seqcount_end(&tk_core.seq); 1392 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1393 1394 return 0; 1395 } 1396 1397 /** 1398 * timekeeping_notify - Install a new clock source 1399 * @clock: pointer to the clock source 1400 * 1401 * This function is called from clocksource.c after a new, better clock 1402 * source has been registered. The caller holds the clocksource_mutex. 1403 */ 1404 int timekeeping_notify(struct clocksource *clock) 1405 { 1406 struct timekeeper *tk = &tk_core.timekeeper; 1407 1408 if (tk->tkr_mono.clock == clock) 1409 return 0; 1410 stop_machine(change_clocksource, clock, NULL); 1411 tick_clock_notify(); 1412 return tk->tkr_mono.clock == clock ? 0 : -1; 1413 } 1414 1415 /** 1416 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1417 * @ts: pointer to the timespec64 to be set 1418 * 1419 * Returns the raw monotonic time (completely un-modified by ntp) 1420 */ 1421 void ktime_get_raw_ts64(struct timespec64 *ts) 1422 { 1423 struct timekeeper *tk = &tk_core.timekeeper; 1424 unsigned int seq; 1425 u64 nsecs; 1426 1427 do { 1428 seq = read_seqcount_begin(&tk_core.seq); 1429 ts->tv_sec = tk->raw_sec; 1430 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1431 1432 } while (read_seqcount_retry(&tk_core.seq, seq)); 1433 1434 ts->tv_nsec = 0; 1435 timespec64_add_ns(ts, nsecs); 1436 } 1437 EXPORT_SYMBOL(ktime_get_raw_ts64); 1438 1439 1440 /** 1441 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1442 */ 1443 int timekeeping_valid_for_hres(void) 1444 { 1445 struct timekeeper *tk = &tk_core.timekeeper; 1446 unsigned int seq; 1447 int ret; 1448 1449 do { 1450 seq = read_seqcount_begin(&tk_core.seq); 1451 1452 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1453 1454 } while (read_seqcount_retry(&tk_core.seq, seq)); 1455 1456 return ret; 1457 } 1458 1459 /** 1460 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1461 */ 1462 u64 timekeeping_max_deferment(void) 1463 { 1464 struct timekeeper *tk = &tk_core.timekeeper; 1465 unsigned int seq; 1466 u64 ret; 1467 1468 do { 1469 seq = read_seqcount_begin(&tk_core.seq); 1470 1471 ret = tk->tkr_mono.clock->max_idle_ns; 1472 1473 } while (read_seqcount_retry(&tk_core.seq, seq)); 1474 1475 return ret; 1476 } 1477 1478 /** 1479 * read_persistent_clock64 - Return time from the persistent clock. 1480 * 1481 * Weak dummy function for arches that do not yet support it. 1482 * Reads the time from the battery backed persistent clock. 1483 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1484 * 1485 * XXX - Do be sure to remove it once all arches implement it. 1486 */ 1487 void __weak read_persistent_clock64(struct timespec64 *ts) 1488 { 1489 ts->tv_sec = 0; 1490 ts->tv_nsec = 0; 1491 } 1492 1493 /** 1494 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1495 * from the boot. 1496 * 1497 * Weak dummy function for arches that do not yet support it. 1498 * wall_time - current time as returned by persistent clock 1499 * boot_offset - offset that is defined as wall_time - boot_time 1500 * The default function calculates offset based on the current value of 1501 * local_clock(). This way architectures that support sched_clock() but don't 1502 * support dedicated boot time clock will provide the best estimate of the 1503 * boot time. 1504 */ 1505 void __weak __init 1506 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1507 struct timespec64 *boot_offset) 1508 { 1509 read_persistent_clock64(wall_time); 1510 *boot_offset = ns_to_timespec64(local_clock()); 1511 } 1512 1513 /* 1514 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1515 * 1516 * The flag starts of false and is only set when a suspend reaches 1517 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1518 * timekeeper clocksource is not stopping across suspend and has been 1519 * used to update sleep time. If the timekeeper clocksource has stopped 1520 * then the flag stays true and is used by the RTC resume code to decide 1521 * whether sleeptime must be injected and if so the flag gets false then. 1522 * 1523 * If a suspend fails before reaching timekeeping_resume() then the flag 1524 * stays false and prevents erroneous sleeptime injection. 1525 */ 1526 static bool suspend_timing_needed; 1527 1528 /* Flag for if there is a persistent clock on this platform */ 1529 static bool persistent_clock_exists; 1530 1531 /* 1532 * timekeeping_init - Initializes the clocksource and common timekeeping values 1533 */ 1534 void __init timekeeping_init(void) 1535 { 1536 struct timespec64 wall_time, boot_offset, wall_to_mono; 1537 struct timekeeper *tk = &tk_core.timekeeper; 1538 struct clocksource *clock; 1539 unsigned long flags; 1540 1541 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1542 if (timespec64_valid_settod(&wall_time) && 1543 timespec64_to_ns(&wall_time) > 0) { 1544 persistent_clock_exists = true; 1545 } else if (timespec64_to_ns(&wall_time) != 0) { 1546 pr_warn("Persistent clock returned invalid value"); 1547 wall_time = (struct timespec64){0}; 1548 } 1549 1550 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1551 boot_offset = (struct timespec64){0}; 1552 1553 /* 1554 * We want set wall_to_mono, so the following is true: 1555 * wall time + wall_to_mono = boot time 1556 */ 1557 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1558 1559 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1560 write_seqcount_begin(&tk_core.seq); 1561 ntp_init(); 1562 1563 clock = clocksource_default_clock(); 1564 if (clock->enable) 1565 clock->enable(clock); 1566 tk_setup_internals(tk, clock); 1567 1568 tk_set_xtime(tk, &wall_time); 1569 tk->raw_sec = 0; 1570 1571 tk_set_wall_to_mono(tk, wall_to_mono); 1572 1573 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1574 1575 write_seqcount_end(&tk_core.seq); 1576 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1577 } 1578 1579 /* time in seconds when suspend began for persistent clock */ 1580 static struct timespec64 timekeeping_suspend_time; 1581 1582 /** 1583 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1584 * @delta: pointer to a timespec delta value 1585 * 1586 * Takes a timespec offset measuring a suspend interval and properly 1587 * adds the sleep offset to the timekeeping variables. 1588 */ 1589 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1590 const struct timespec64 *delta) 1591 { 1592 if (!timespec64_valid_strict(delta)) { 1593 printk_deferred(KERN_WARNING 1594 "__timekeeping_inject_sleeptime: Invalid " 1595 "sleep delta value!\n"); 1596 return; 1597 } 1598 tk_xtime_add(tk, delta); 1599 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1600 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1601 tk_debug_account_sleep_time(delta); 1602 } 1603 1604 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1605 /** 1606 * We have three kinds of time sources to use for sleep time 1607 * injection, the preference order is: 1608 * 1) non-stop clocksource 1609 * 2) persistent clock (ie: RTC accessible when irqs are off) 1610 * 3) RTC 1611 * 1612 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1613 * If system has neither 1) nor 2), 3) will be used finally. 1614 * 1615 * 1616 * If timekeeping has injected sleeptime via either 1) or 2), 1617 * 3) becomes needless, so in this case we don't need to call 1618 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1619 * means. 1620 */ 1621 bool timekeeping_rtc_skipresume(void) 1622 { 1623 return !suspend_timing_needed; 1624 } 1625 1626 /** 1627 * 1) can be determined whether to use or not only when doing 1628 * timekeeping_resume() which is invoked after rtc_suspend(), 1629 * so we can't skip rtc_suspend() surely if system has 1). 1630 * 1631 * But if system has 2), 2) will definitely be used, so in this 1632 * case we don't need to call rtc_suspend(), and this is what 1633 * timekeeping_rtc_skipsuspend() means. 1634 */ 1635 bool timekeeping_rtc_skipsuspend(void) 1636 { 1637 return persistent_clock_exists; 1638 } 1639 1640 /** 1641 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1642 * @delta: pointer to a timespec64 delta value 1643 * 1644 * This hook is for architectures that cannot support read_persistent_clock64 1645 * because their RTC/persistent clock is only accessible when irqs are enabled. 1646 * and also don't have an effective nonstop clocksource. 1647 * 1648 * This function should only be called by rtc_resume(), and allows 1649 * a suspend offset to be injected into the timekeeping values. 1650 */ 1651 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1652 { 1653 struct timekeeper *tk = &tk_core.timekeeper; 1654 unsigned long flags; 1655 1656 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1657 write_seqcount_begin(&tk_core.seq); 1658 1659 suspend_timing_needed = false; 1660 1661 timekeeping_forward_now(tk); 1662 1663 __timekeeping_inject_sleeptime(tk, delta); 1664 1665 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1666 1667 write_seqcount_end(&tk_core.seq); 1668 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1669 1670 /* signal hrtimers about time change */ 1671 clock_was_set(); 1672 } 1673 #endif 1674 1675 /** 1676 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1677 */ 1678 void timekeeping_resume(void) 1679 { 1680 struct timekeeper *tk = &tk_core.timekeeper; 1681 struct clocksource *clock = tk->tkr_mono.clock; 1682 unsigned long flags; 1683 struct timespec64 ts_new, ts_delta; 1684 u64 cycle_now, nsec; 1685 bool inject_sleeptime = false; 1686 1687 read_persistent_clock64(&ts_new); 1688 1689 clockevents_resume(); 1690 clocksource_resume(); 1691 1692 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1693 write_seqcount_begin(&tk_core.seq); 1694 1695 /* 1696 * After system resumes, we need to calculate the suspended time and 1697 * compensate it for the OS time. There are 3 sources that could be 1698 * used: Nonstop clocksource during suspend, persistent clock and rtc 1699 * device. 1700 * 1701 * One specific platform may have 1 or 2 or all of them, and the 1702 * preference will be: 1703 * suspend-nonstop clocksource -> persistent clock -> rtc 1704 * The less preferred source will only be tried if there is no better 1705 * usable source. The rtc part is handled separately in rtc core code. 1706 */ 1707 cycle_now = tk_clock_read(&tk->tkr_mono); 1708 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1709 if (nsec > 0) { 1710 ts_delta = ns_to_timespec64(nsec); 1711 inject_sleeptime = true; 1712 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1713 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1714 inject_sleeptime = true; 1715 } 1716 1717 if (inject_sleeptime) { 1718 suspend_timing_needed = false; 1719 __timekeeping_inject_sleeptime(tk, &ts_delta); 1720 } 1721 1722 /* Re-base the last cycle value */ 1723 tk->tkr_mono.cycle_last = cycle_now; 1724 tk->tkr_raw.cycle_last = cycle_now; 1725 1726 tk->ntp_error = 0; 1727 timekeeping_suspended = 0; 1728 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1729 write_seqcount_end(&tk_core.seq); 1730 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1731 1732 touch_softlockup_watchdog(); 1733 1734 tick_resume(); 1735 hrtimers_resume(); 1736 } 1737 1738 int timekeeping_suspend(void) 1739 { 1740 struct timekeeper *tk = &tk_core.timekeeper; 1741 unsigned long flags; 1742 struct timespec64 delta, delta_delta; 1743 static struct timespec64 old_delta; 1744 struct clocksource *curr_clock; 1745 u64 cycle_now; 1746 1747 read_persistent_clock64(&timekeeping_suspend_time); 1748 1749 /* 1750 * On some systems the persistent_clock can not be detected at 1751 * timekeeping_init by its return value, so if we see a valid 1752 * value returned, update the persistent_clock_exists flag. 1753 */ 1754 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1755 persistent_clock_exists = true; 1756 1757 suspend_timing_needed = true; 1758 1759 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1760 write_seqcount_begin(&tk_core.seq); 1761 timekeeping_forward_now(tk); 1762 timekeeping_suspended = 1; 1763 1764 /* 1765 * Since we've called forward_now, cycle_last stores the value 1766 * just read from the current clocksource. Save this to potentially 1767 * use in suspend timing. 1768 */ 1769 curr_clock = tk->tkr_mono.clock; 1770 cycle_now = tk->tkr_mono.cycle_last; 1771 clocksource_start_suspend_timing(curr_clock, cycle_now); 1772 1773 if (persistent_clock_exists) { 1774 /* 1775 * To avoid drift caused by repeated suspend/resumes, 1776 * which each can add ~1 second drift error, 1777 * try to compensate so the difference in system time 1778 * and persistent_clock time stays close to constant. 1779 */ 1780 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1781 delta_delta = timespec64_sub(delta, old_delta); 1782 if (abs(delta_delta.tv_sec) >= 2) { 1783 /* 1784 * if delta_delta is too large, assume time correction 1785 * has occurred and set old_delta to the current delta. 1786 */ 1787 old_delta = delta; 1788 } else { 1789 /* Otherwise try to adjust old_system to compensate */ 1790 timekeeping_suspend_time = 1791 timespec64_add(timekeeping_suspend_time, delta_delta); 1792 } 1793 } 1794 1795 timekeeping_update(tk, TK_MIRROR); 1796 halt_fast_timekeeper(tk); 1797 write_seqcount_end(&tk_core.seq); 1798 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1799 1800 tick_suspend(); 1801 clocksource_suspend(); 1802 clockevents_suspend(); 1803 1804 return 0; 1805 } 1806 1807 /* sysfs resume/suspend bits for timekeeping */ 1808 static struct syscore_ops timekeeping_syscore_ops = { 1809 .resume = timekeeping_resume, 1810 .suspend = timekeeping_suspend, 1811 }; 1812 1813 static int __init timekeeping_init_ops(void) 1814 { 1815 register_syscore_ops(&timekeeping_syscore_ops); 1816 return 0; 1817 } 1818 device_initcall(timekeeping_init_ops); 1819 1820 /* 1821 * Apply a multiplier adjustment to the timekeeper 1822 */ 1823 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1824 s64 offset, 1825 s32 mult_adj) 1826 { 1827 s64 interval = tk->cycle_interval; 1828 1829 if (mult_adj == 0) { 1830 return; 1831 } else if (mult_adj == -1) { 1832 interval = -interval; 1833 offset = -offset; 1834 } else if (mult_adj != 1) { 1835 interval *= mult_adj; 1836 offset *= mult_adj; 1837 } 1838 1839 /* 1840 * So the following can be confusing. 1841 * 1842 * To keep things simple, lets assume mult_adj == 1 for now. 1843 * 1844 * When mult_adj != 1, remember that the interval and offset values 1845 * have been appropriately scaled so the math is the same. 1846 * 1847 * The basic idea here is that we're increasing the multiplier 1848 * by one, this causes the xtime_interval to be incremented by 1849 * one cycle_interval. This is because: 1850 * xtime_interval = cycle_interval * mult 1851 * So if mult is being incremented by one: 1852 * xtime_interval = cycle_interval * (mult + 1) 1853 * Its the same as: 1854 * xtime_interval = (cycle_interval * mult) + cycle_interval 1855 * Which can be shortened to: 1856 * xtime_interval += cycle_interval 1857 * 1858 * So offset stores the non-accumulated cycles. Thus the current 1859 * time (in shifted nanoseconds) is: 1860 * now = (offset * adj) + xtime_nsec 1861 * Now, even though we're adjusting the clock frequency, we have 1862 * to keep time consistent. In other words, we can't jump back 1863 * in time, and we also want to avoid jumping forward in time. 1864 * 1865 * So given the same offset value, we need the time to be the same 1866 * both before and after the freq adjustment. 1867 * now = (offset * adj_1) + xtime_nsec_1 1868 * now = (offset * adj_2) + xtime_nsec_2 1869 * So: 1870 * (offset * adj_1) + xtime_nsec_1 = 1871 * (offset * adj_2) + xtime_nsec_2 1872 * And we know: 1873 * adj_2 = adj_1 + 1 1874 * So: 1875 * (offset * adj_1) + xtime_nsec_1 = 1876 * (offset * (adj_1+1)) + xtime_nsec_2 1877 * (offset * adj_1) + xtime_nsec_1 = 1878 * (offset * adj_1) + offset + xtime_nsec_2 1879 * Canceling the sides: 1880 * xtime_nsec_1 = offset + xtime_nsec_2 1881 * Which gives us: 1882 * xtime_nsec_2 = xtime_nsec_1 - offset 1883 * Which simplfies to: 1884 * xtime_nsec -= offset 1885 */ 1886 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1887 /* NTP adjustment caused clocksource mult overflow */ 1888 WARN_ON_ONCE(1); 1889 return; 1890 } 1891 1892 tk->tkr_mono.mult += mult_adj; 1893 tk->xtime_interval += interval; 1894 tk->tkr_mono.xtime_nsec -= offset; 1895 } 1896 1897 /* 1898 * Adjust the timekeeper's multiplier to the correct frequency 1899 * and also to reduce the accumulated error value. 1900 */ 1901 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1902 { 1903 u32 mult; 1904 1905 /* 1906 * Determine the multiplier from the current NTP tick length. 1907 * Avoid expensive division when the tick length doesn't change. 1908 */ 1909 if (likely(tk->ntp_tick == ntp_tick_length())) { 1910 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1911 } else { 1912 tk->ntp_tick = ntp_tick_length(); 1913 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1914 tk->xtime_remainder, tk->cycle_interval); 1915 } 1916 1917 /* 1918 * If the clock is behind the NTP time, increase the multiplier by 1 1919 * to catch up with it. If it's ahead and there was a remainder in the 1920 * tick division, the clock will slow down. Otherwise it will stay 1921 * ahead until the tick length changes to a non-divisible value. 1922 */ 1923 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 1924 mult += tk->ntp_err_mult; 1925 1926 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 1927 1928 if (unlikely(tk->tkr_mono.clock->maxadj && 1929 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1930 > tk->tkr_mono.clock->maxadj))) { 1931 printk_once(KERN_WARNING 1932 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1933 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1934 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1935 } 1936 1937 /* 1938 * It may be possible that when we entered this function, xtime_nsec 1939 * was very small. Further, if we're slightly speeding the clocksource 1940 * in the code above, its possible the required corrective factor to 1941 * xtime_nsec could cause it to underflow. 1942 * 1943 * Now, since we have already accumulated the second and the NTP 1944 * subsystem has been notified via second_overflow(), we need to skip 1945 * the next update. 1946 */ 1947 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1948 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 1949 tk->tkr_mono.shift; 1950 tk->xtime_sec--; 1951 tk->skip_second_overflow = 1; 1952 } 1953 } 1954 1955 /** 1956 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1957 * 1958 * Helper function that accumulates the nsecs greater than a second 1959 * from the xtime_nsec field to the xtime_secs field. 1960 * It also calls into the NTP code to handle leapsecond processing. 1961 * 1962 */ 1963 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1964 { 1965 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1966 unsigned int clock_set = 0; 1967 1968 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1969 int leap; 1970 1971 tk->tkr_mono.xtime_nsec -= nsecps; 1972 tk->xtime_sec++; 1973 1974 /* 1975 * Skip NTP update if this second was accumulated before, 1976 * i.e. xtime_nsec underflowed in timekeeping_adjust() 1977 */ 1978 if (unlikely(tk->skip_second_overflow)) { 1979 tk->skip_second_overflow = 0; 1980 continue; 1981 } 1982 1983 /* Figure out if its a leap sec and apply if needed */ 1984 leap = second_overflow(tk->xtime_sec); 1985 if (unlikely(leap)) { 1986 struct timespec64 ts; 1987 1988 tk->xtime_sec += leap; 1989 1990 ts.tv_sec = leap; 1991 ts.tv_nsec = 0; 1992 tk_set_wall_to_mono(tk, 1993 timespec64_sub(tk->wall_to_monotonic, ts)); 1994 1995 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1996 1997 clock_set = TK_CLOCK_WAS_SET; 1998 } 1999 } 2000 return clock_set; 2001 } 2002 2003 /** 2004 * logarithmic_accumulation - shifted accumulation of cycles 2005 * 2006 * This functions accumulates a shifted interval of cycles into 2007 * a shifted interval nanoseconds. Allows for O(log) accumulation 2008 * loop. 2009 * 2010 * Returns the unconsumed cycles. 2011 */ 2012 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2013 u32 shift, unsigned int *clock_set) 2014 { 2015 u64 interval = tk->cycle_interval << shift; 2016 u64 snsec_per_sec; 2017 2018 /* If the offset is smaller than a shifted interval, do nothing */ 2019 if (offset < interval) 2020 return offset; 2021 2022 /* Accumulate one shifted interval */ 2023 offset -= interval; 2024 tk->tkr_mono.cycle_last += interval; 2025 tk->tkr_raw.cycle_last += interval; 2026 2027 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2028 *clock_set |= accumulate_nsecs_to_secs(tk); 2029 2030 /* Accumulate raw time */ 2031 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2032 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2033 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2034 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2035 tk->raw_sec++; 2036 } 2037 2038 /* Accumulate error between NTP and clock interval */ 2039 tk->ntp_error += tk->ntp_tick << shift; 2040 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2041 (tk->ntp_error_shift + shift); 2042 2043 return offset; 2044 } 2045 2046 /* 2047 * timekeeping_advance - Updates the timekeeper to the current time and 2048 * current NTP tick length 2049 */ 2050 static void timekeeping_advance(enum timekeeping_adv_mode mode) 2051 { 2052 struct timekeeper *real_tk = &tk_core.timekeeper; 2053 struct timekeeper *tk = &shadow_timekeeper; 2054 u64 offset; 2055 int shift = 0, maxshift; 2056 unsigned int clock_set = 0; 2057 unsigned long flags; 2058 2059 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2060 2061 /* Make sure we're fully resumed: */ 2062 if (unlikely(timekeeping_suspended)) 2063 goto out; 2064 2065 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2066 offset = real_tk->cycle_interval; 2067 2068 if (mode != TK_ADV_TICK) 2069 goto out; 2070 #else 2071 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2072 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2073 2074 /* Check if there's really nothing to do */ 2075 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2076 goto out; 2077 #endif 2078 2079 /* Do some additional sanity checking */ 2080 timekeeping_check_update(tk, offset); 2081 2082 /* 2083 * With NO_HZ we may have to accumulate many cycle_intervals 2084 * (think "ticks") worth of time at once. To do this efficiently, 2085 * we calculate the largest doubling multiple of cycle_intervals 2086 * that is smaller than the offset. We then accumulate that 2087 * chunk in one go, and then try to consume the next smaller 2088 * doubled multiple. 2089 */ 2090 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2091 shift = max(0, shift); 2092 /* Bound shift to one less than what overflows tick_length */ 2093 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2094 shift = min(shift, maxshift); 2095 while (offset >= tk->cycle_interval) { 2096 offset = logarithmic_accumulation(tk, offset, shift, 2097 &clock_set); 2098 if (offset < tk->cycle_interval<<shift) 2099 shift--; 2100 } 2101 2102 /* Adjust the multiplier to correct NTP error */ 2103 timekeeping_adjust(tk, offset); 2104 2105 /* 2106 * Finally, make sure that after the rounding 2107 * xtime_nsec isn't larger than NSEC_PER_SEC 2108 */ 2109 clock_set |= accumulate_nsecs_to_secs(tk); 2110 2111 write_seqcount_begin(&tk_core.seq); 2112 /* 2113 * Update the real timekeeper. 2114 * 2115 * We could avoid this memcpy by switching pointers, but that 2116 * requires changes to all other timekeeper usage sites as 2117 * well, i.e. move the timekeeper pointer getter into the 2118 * spinlocked/seqcount protected sections. And we trade this 2119 * memcpy under the tk_core.seq against one before we start 2120 * updating. 2121 */ 2122 timekeeping_update(tk, clock_set); 2123 memcpy(real_tk, tk, sizeof(*tk)); 2124 /* The memcpy must come last. Do not put anything here! */ 2125 write_seqcount_end(&tk_core.seq); 2126 out: 2127 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2128 if (clock_set) 2129 /* Have to call _delayed version, since in irq context*/ 2130 clock_was_set_delayed(); 2131 } 2132 2133 /** 2134 * update_wall_time - Uses the current clocksource to increment the wall time 2135 * 2136 */ 2137 void update_wall_time(void) 2138 { 2139 timekeeping_advance(TK_ADV_TICK); 2140 } 2141 2142 /** 2143 * getboottime64 - Return the real time of system boot. 2144 * @ts: pointer to the timespec64 to be set 2145 * 2146 * Returns the wall-time of boot in a timespec64. 2147 * 2148 * This is based on the wall_to_monotonic offset and the total suspend 2149 * time. Calls to settimeofday will affect the value returned (which 2150 * basically means that however wrong your real time clock is at boot time, 2151 * you get the right time here). 2152 */ 2153 void getboottime64(struct timespec64 *ts) 2154 { 2155 struct timekeeper *tk = &tk_core.timekeeper; 2156 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2157 2158 *ts = ktime_to_timespec64(t); 2159 } 2160 EXPORT_SYMBOL_GPL(getboottime64); 2161 2162 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2163 { 2164 struct timekeeper *tk = &tk_core.timekeeper; 2165 unsigned int seq; 2166 2167 do { 2168 seq = read_seqcount_begin(&tk_core.seq); 2169 2170 *ts = tk_xtime(tk); 2171 } while (read_seqcount_retry(&tk_core.seq, seq)); 2172 } 2173 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2174 2175 void ktime_get_coarse_ts64(struct timespec64 *ts) 2176 { 2177 struct timekeeper *tk = &tk_core.timekeeper; 2178 struct timespec64 now, mono; 2179 unsigned int seq; 2180 2181 do { 2182 seq = read_seqcount_begin(&tk_core.seq); 2183 2184 now = tk_xtime(tk); 2185 mono = tk->wall_to_monotonic; 2186 } while (read_seqcount_retry(&tk_core.seq, seq)); 2187 2188 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2189 now.tv_nsec + mono.tv_nsec); 2190 } 2191 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2192 2193 /* 2194 * Must hold jiffies_lock 2195 */ 2196 void do_timer(unsigned long ticks) 2197 { 2198 jiffies_64 += ticks; 2199 calc_global_load(); 2200 } 2201 2202 /** 2203 * ktime_get_update_offsets_now - hrtimer helper 2204 * @cwsseq: pointer to check and store the clock was set sequence number 2205 * @offs_real: pointer to storage for monotonic -> realtime offset 2206 * @offs_boot: pointer to storage for monotonic -> boottime offset 2207 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2208 * 2209 * Returns current monotonic time and updates the offsets if the 2210 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2211 * different. 2212 * 2213 * Called from hrtimer_interrupt() or retrigger_next_event() 2214 */ 2215 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2216 ktime_t *offs_boot, ktime_t *offs_tai) 2217 { 2218 struct timekeeper *tk = &tk_core.timekeeper; 2219 unsigned int seq; 2220 ktime_t base; 2221 u64 nsecs; 2222 2223 do { 2224 seq = read_seqcount_begin(&tk_core.seq); 2225 2226 base = tk->tkr_mono.base; 2227 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2228 base = ktime_add_ns(base, nsecs); 2229 2230 if (*cwsseq != tk->clock_was_set_seq) { 2231 *cwsseq = tk->clock_was_set_seq; 2232 *offs_real = tk->offs_real; 2233 *offs_boot = tk->offs_boot; 2234 *offs_tai = tk->offs_tai; 2235 } 2236 2237 /* Handle leapsecond insertion adjustments */ 2238 if (unlikely(base >= tk->next_leap_ktime)) 2239 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2240 2241 } while (read_seqcount_retry(&tk_core.seq, seq)); 2242 2243 return base; 2244 } 2245 2246 /** 2247 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2248 */ 2249 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2250 { 2251 if (txc->modes & ADJ_ADJTIME) { 2252 /* singleshot must not be used with any other mode bits */ 2253 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2254 return -EINVAL; 2255 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2256 !capable(CAP_SYS_TIME)) 2257 return -EPERM; 2258 } else { 2259 /* In order to modify anything, you gotta be super-user! */ 2260 if (txc->modes && !capable(CAP_SYS_TIME)) 2261 return -EPERM; 2262 /* 2263 * if the quartz is off by more than 10% then 2264 * something is VERY wrong! 2265 */ 2266 if (txc->modes & ADJ_TICK && 2267 (txc->tick < 900000/USER_HZ || 2268 txc->tick > 1100000/USER_HZ)) 2269 return -EINVAL; 2270 } 2271 2272 if (txc->modes & ADJ_SETOFFSET) { 2273 /* In order to inject time, you gotta be super-user! */ 2274 if (!capable(CAP_SYS_TIME)) 2275 return -EPERM; 2276 2277 /* 2278 * Validate if a timespec/timeval used to inject a time 2279 * offset is valid. Offsets can be postive or negative, so 2280 * we don't check tv_sec. The value of the timeval/timespec 2281 * is the sum of its fields,but *NOTE*: 2282 * The field tv_usec/tv_nsec must always be non-negative and 2283 * we can't have more nanoseconds/microseconds than a second. 2284 */ 2285 if (txc->time.tv_usec < 0) 2286 return -EINVAL; 2287 2288 if (txc->modes & ADJ_NANO) { 2289 if (txc->time.tv_usec >= NSEC_PER_SEC) 2290 return -EINVAL; 2291 } else { 2292 if (txc->time.tv_usec >= USEC_PER_SEC) 2293 return -EINVAL; 2294 } 2295 } 2296 2297 /* 2298 * Check for potential multiplication overflows that can 2299 * only happen on 64-bit systems: 2300 */ 2301 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2302 if (LLONG_MIN / PPM_SCALE > txc->freq) 2303 return -EINVAL; 2304 if (LLONG_MAX / PPM_SCALE < txc->freq) 2305 return -EINVAL; 2306 } 2307 2308 return 0; 2309 } 2310 2311 2312 /** 2313 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2314 */ 2315 int do_adjtimex(struct __kernel_timex *txc) 2316 { 2317 struct timekeeper *tk = &tk_core.timekeeper; 2318 struct audit_ntp_data ad; 2319 unsigned long flags; 2320 struct timespec64 ts; 2321 s32 orig_tai, tai; 2322 int ret; 2323 2324 /* Validate the data before disabling interrupts */ 2325 ret = timekeeping_validate_timex(txc); 2326 if (ret) 2327 return ret; 2328 2329 if (txc->modes & ADJ_SETOFFSET) { 2330 struct timespec64 delta; 2331 delta.tv_sec = txc->time.tv_sec; 2332 delta.tv_nsec = txc->time.tv_usec; 2333 if (!(txc->modes & ADJ_NANO)) 2334 delta.tv_nsec *= 1000; 2335 ret = timekeeping_inject_offset(&delta); 2336 if (ret) 2337 return ret; 2338 2339 audit_tk_injoffset(delta); 2340 } 2341 2342 audit_ntp_init(&ad); 2343 2344 ktime_get_real_ts64(&ts); 2345 2346 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2347 write_seqcount_begin(&tk_core.seq); 2348 2349 orig_tai = tai = tk->tai_offset; 2350 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2351 2352 if (tai != orig_tai) { 2353 __timekeeping_set_tai_offset(tk, tai); 2354 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2355 } 2356 tk_update_leap_state(tk); 2357 2358 write_seqcount_end(&tk_core.seq); 2359 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2360 2361 audit_ntp_log(&ad); 2362 2363 /* Update the multiplier immediately if frequency was set directly */ 2364 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2365 timekeeping_advance(TK_ADV_FREQ); 2366 2367 if (tai != orig_tai) 2368 clock_was_set(); 2369 2370 ntp_notify_cmos_timer(); 2371 2372 return ret; 2373 } 2374 2375 #ifdef CONFIG_NTP_PPS 2376 /** 2377 * hardpps() - Accessor function to NTP __hardpps function 2378 */ 2379 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2380 { 2381 unsigned long flags; 2382 2383 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2384 write_seqcount_begin(&tk_core.seq); 2385 2386 __hardpps(phase_ts, raw_ts); 2387 2388 write_seqcount_end(&tk_core.seq); 2389 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2390 } 2391 EXPORT_SYMBOL(hardpps); 2392 #endif /* CONFIG_NTP_PPS */ 2393 2394 /** 2395 * xtime_update() - advances the timekeeping infrastructure 2396 * @ticks: number of ticks, that have elapsed since the last call. 2397 * 2398 * Must be called with interrupts disabled. 2399 */ 2400 void xtime_update(unsigned long ticks) 2401 { 2402 raw_spin_lock(&jiffies_lock); 2403 write_seqcount_begin(&jiffies_seq); 2404 do_timer(ticks); 2405 write_seqcount_end(&jiffies_seq); 2406 raw_spin_unlock(&jiffies_lock); 2407 update_wall_time(); 2408 } 2409