xref: /openbmc/linux/kernel/time/timekeeping.c (revision 297ce026)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25 
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29 
30 #define TK_CLEAR_NTP		(1 << 0)
31 #define TK_MIRROR		(1 << 1)
32 #define TK_CLOCK_WAS_SET	(1 << 2)
33 
34 enum timekeeping_adv_mode {
35 	/* Update timekeeper when a tick has passed */
36 	TK_ADV_TICK,
37 
38 	/* Update timekeeper on a direct frequency change */
39 	TK_ADV_FREQ
40 };
41 
42 DEFINE_RAW_SPINLOCK(timekeeper_lock);
43 
44 /*
45  * The most important data for readout fits into a single 64 byte
46  * cache line.
47  */
48 static struct {
49 	seqcount_raw_spinlock_t	seq;
50 	struct timekeeper	timekeeper;
51 } tk_core ____cacheline_aligned = {
52 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
53 };
54 
55 static struct timekeeper shadow_timekeeper;
56 
57 /* flag for if timekeeping is suspended */
58 int __read_mostly timekeeping_suspended;
59 
60 /**
61  * struct tk_fast - NMI safe timekeeper
62  * @seq:	Sequence counter for protecting updates. The lowest bit
63  *		is the index for the tk_read_base array
64  * @base:	tk_read_base array. Access is indexed by the lowest bit of
65  *		@seq.
66  *
67  * See @update_fast_timekeeper() below.
68  */
69 struct tk_fast {
70 	seqcount_latch_t	seq;
71 	struct tk_read_base	base[2];
72 };
73 
74 /* Suspend-time cycles value for halted fast timekeeper. */
75 static u64 cycles_at_suspend;
76 
77 static u64 dummy_clock_read(struct clocksource *cs)
78 {
79 	if (timekeeping_suspended)
80 		return cycles_at_suspend;
81 	return local_clock();
82 }
83 
84 static struct clocksource dummy_clock = {
85 	.read = dummy_clock_read,
86 };
87 
88 /*
89  * Boot time initialization which allows local_clock() to be utilized
90  * during early boot when clocksources are not available. local_clock()
91  * returns nanoseconds already so no conversion is required, hence mult=1
92  * and shift=0. When the first proper clocksource is installed then
93  * the fast time keepers are updated with the correct values.
94  */
95 #define FAST_TK_INIT						\
96 	{							\
97 		.clock		= &dummy_clock,			\
98 		.mask		= CLOCKSOURCE_MASK(64),		\
99 		.mult		= 1,				\
100 		.shift		= 0,				\
101 	}
102 
103 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
104 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
105 	.base[0] = FAST_TK_INIT,
106 	.base[1] = FAST_TK_INIT,
107 };
108 
109 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
110 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
111 	.base[0] = FAST_TK_INIT,
112 	.base[1] = FAST_TK_INIT,
113 };
114 
115 static inline void tk_normalize_xtime(struct timekeeper *tk)
116 {
117 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
118 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
119 		tk->xtime_sec++;
120 	}
121 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
122 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
123 		tk->raw_sec++;
124 	}
125 }
126 
127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
128 {
129 	struct timespec64 ts;
130 
131 	ts.tv_sec = tk->xtime_sec;
132 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
133 	return ts;
134 }
135 
136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
137 {
138 	tk->xtime_sec = ts->tv_sec;
139 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
140 }
141 
142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
143 {
144 	tk->xtime_sec += ts->tv_sec;
145 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
146 	tk_normalize_xtime(tk);
147 }
148 
149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
150 {
151 	struct timespec64 tmp;
152 
153 	/*
154 	 * Verify consistency of: offset_real = -wall_to_monotonic
155 	 * before modifying anything
156 	 */
157 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
158 					-tk->wall_to_monotonic.tv_nsec);
159 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
160 	tk->wall_to_monotonic = wtm;
161 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
162 	tk->offs_real = timespec64_to_ktime(tmp);
163 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
164 }
165 
166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
167 {
168 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
169 	/*
170 	 * Timespec representation for VDSO update to avoid 64bit division
171 	 * on every update.
172 	 */
173 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
174 }
175 
176 /*
177  * tk_clock_read - atomic clocksource read() helper
178  *
179  * This helper is necessary to use in the read paths because, while the
180  * seqcount ensures we don't return a bad value while structures are updated,
181  * it doesn't protect from potential crashes. There is the possibility that
182  * the tkr's clocksource may change between the read reference, and the
183  * clock reference passed to the read function.  This can cause crashes if
184  * the wrong clocksource is passed to the wrong read function.
185  * This isn't necessary to use when holding the timekeeper_lock or doing
186  * a read of the fast-timekeeper tkrs (which is protected by its own locking
187  * and update logic).
188  */
189 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
190 {
191 	struct clocksource *clock = READ_ONCE(tkr->clock);
192 
193 	return clock->read(clock);
194 }
195 
196 #ifdef CONFIG_DEBUG_TIMEKEEPING
197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
198 
199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
200 {
201 
202 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
203 	const char *name = tk->tkr_mono.clock->name;
204 
205 	if (offset > max_cycles) {
206 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
207 				offset, name, max_cycles);
208 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
209 	} else {
210 		if (offset > (max_cycles >> 1)) {
211 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
212 					offset, name, max_cycles >> 1);
213 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
214 		}
215 	}
216 
217 	if (tk->underflow_seen) {
218 		if (jiffies - tk->last_warning > WARNING_FREQ) {
219 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
220 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
221 			printk_deferred("         Your kernel is probably still fine.\n");
222 			tk->last_warning = jiffies;
223 		}
224 		tk->underflow_seen = 0;
225 	}
226 
227 	if (tk->overflow_seen) {
228 		if (jiffies - tk->last_warning > WARNING_FREQ) {
229 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
230 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
231 			printk_deferred("         Your kernel is probably still fine.\n");
232 			tk->last_warning = jiffies;
233 		}
234 		tk->overflow_seen = 0;
235 	}
236 }
237 
238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
239 {
240 	struct timekeeper *tk = &tk_core.timekeeper;
241 	u64 now, last, mask, max, delta;
242 	unsigned int seq;
243 
244 	/*
245 	 * Since we're called holding a seqcount, the data may shift
246 	 * under us while we're doing the calculation. This can cause
247 	 * false positives, since we'd note a problem but throw the
248 	 * results away. So nest another seqcount here to atomically
249 	 * grab the points we are checking with.
250 	 */
251 	do {
252 		seq = read_seqcount_begin(&tk_core.seq);
253 		now = tk_clock_read(tkr);
254 		last = tkr->cycle_last;
255 		mask = tkr->mask;
256 		max = tkr->clock->max_cycles;
257 	} while (read_seqcount_retry(&tk_core.seq, seq));
258 
259 	delta = clocksource_delta(now, last, mask);
260 
261 	/*
262 	 * Try to catch underflows by checking if we are seeing small
263 	 * mask-relative negative values.
264 	 */
265 	if (unlikely((~delta & mask) < (mask >> 3))) {
266 		tk->underflow_seen = 1;
267 		delta = 0;
268 	}
269 
270 	/* Cap delta value to the max_cycles values to avoid mult overflows */
271 	if (unlikely(delta > max)) {
272 		tk->overflow_seen = 1;
273 		delta = tkr->clock->max_cycles;
274 	}
275 
276 	return delta;
277 }
278 #else
279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
280 {
281 }
282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
283 {
284 	u64 cycle_now, delta;
285 
286 	/* read clocksource */
287 	cycle_now = tk_clock_read(tkr);
288 
289 	/* calculate the delta since the last update_wall_time */
290 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
291 
292 	return delta;
293 }
294 #endif
295 
296 /**
297  * tk_setup_internals - Set up internals to use clocksource clock.
298  *
299  * @tk:		The target timekeeper to setup.
300  * @clock:		Pointer to clocksource.
301  *
302  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
303  * pair and interval request.
304  *
305  * Unless you're the timekeeping code, you should not be using this!
306  */
307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
308 {
309 	u64 interval;
310 	u64 tmp, ntpinterval;
311 	struct clocksource *old_clock;
312 
313 	++tk->cs_was_changed_seq;
314 	old_clock = tk->tkr_mono.clock;
315 	tk->tkr_mono.clock = clock;
316 	tk->tkr_mono.mask = clock->mask;
317 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
318 
319 	tk->tkr_raw.clock = clock;
320 	tk->tkr_raw.mask = clock->mask;
321 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
322 
323 	/* Do the ns -> cycle conversion first, using original mult */
324 	tmp = NTP_INTERVAL_LENGTH;
325 	tmp <<= clock->shift;
326 	ntpinterval = tmp;
327 	tmp += clock->mult/2;
328 	do_div(tmp, clock->mult);
329 	if (tmp == 0)
330 		tmp = 1;
331 
332 	interval = (u64) tmp;
333 	tk->cycle_interval = interval;
334 
335 	/* Go back from cycles -> shifted ns */
336 	tk->xtime_interval = interval * clock->mult;
337 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
338 	tk->raw_interval = interval * clock->mult;
339 
340 	 /* if changing clocks, convert xtime_nsec shift units */
341 	if (old_clock) {
342 		int shift_change = clock->shift - old_clock->shift;
343 		if (shift_change < 0) {
344 			tk->tkr_mono.xtime_nsec >>= -shift_change;
345 			tk->tkr_raw.xtime_nsec >>= -shift_change;
346 		} else {
347 			tk->tkr_mono.xtime_nsec <<= shift_change;
348 			tk->tkr_raw.xtime_nsec <<= shift_change;
349 		}
350 	}
351 
352 	tk->tkr_mono.shift = clock->shift;
353 	tk->tkr_raw.shift = clock->shift;
354 
355 	tk->ntp_error = 0;
356 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
357 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
358 
359 	/*
360 	 * The timekeeper keeps its own mult values for the currently
361 	 * active clocksource. These value will be adjusted via NTP
362 	 * to counteract clock drifting.
363 	 */
364 	tk->tkr_mono.mult = clock->mult;
365 	tk->tkr_raw.mult = clock->mult;
366 	tk->ntp_err_mult = 0;
367 	tk->skip_second_overflow = 0;
368 }
369 
370 /* Timekeeper helper functions. */
371 
372 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
373 {
374 	u64 nsec;
375 
376 	nsec = delta * tkr->mult + tkr->xtime_nsec;
377 	nsec >>= tkr->shift;
378 
379 	return nsec;
380 }
381 
382 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
383 {
384 	u64 delta;
385 
386 	delta = timekeeping_get_delta(tkr);
387 	return timekeeping_delta_to_ns(tkr, delta);
388 }
389 
390 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
391 {
392 	u64 delta;
393 
394 	/* calculate the delta since the last update_wall_time */
395 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
396 	return timekeeping_delta_to_ns(tkr, delta);
397 }
398 
399 /**
400  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
401  * @tkr: Timekeeping readout base from which we take the update
402  * @tkf: Pointer to NMI safe timekeeper
403  *
404  * We want to use this from any context including NMI and tracing /
405  * instrumenting the timekeeping code itself.
406  *
407  * Employ the latch technique; see @raw_write_seqcount_latch.
408  *
409  * So if a NMI hits the update of base[0] then it will use base[1]
410  * which is still consistent. In the worst case this can result is a
411  * slightly wrong timestamp (a few nanoseconds). See
412  * @ktime_get_mono_fast_ns.
413  */
414 static void update_fast_timekeeper(const struct tk_read_base *tkr,
415 				   struct tk_fast *tkf)
416 {
417 	struct tk_read_base *base = tkf->base;
418 
419 	/* Force readers off to base[1] */
420 	raw_write_seqcount_latch(&tkf->seq);
421 
422 	/* Update base[0] */
423 	memcpy(base, tkr, sizeof(*base));
424 
425 	/* Force readers back to base[0] */
426 	raw_write_seqcount_latch(&tkf->seq);
427 
428 	/* Update base[1] */
429 	memcpy(base + 1, base, sizeof(*base));
430 }
431 
432 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
433 {
434 	struct tk_read_base *tkr;
435 	unsigned int seq;
436 	u64 now;
437 
438 	do {
439 		seq = raw_read_seqcount_latch(&tkf->seq);
440 		tkr = tkf->base + (seq & 0x01);
441 		now = ktime_to_ns(tkr->base);
442 
443 		now += timekeeping_delta_to_ns(tkr,
444 				clocksource_delta(
445 					tk_clock_read(tkr),
446 					tkr->cycle_last,
447 					tkr->mask));
448 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
449 
450 	return now;
451 }
452 
453 /**
454  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
455  *
456  * This timestamp is not guaranteed to be monotonic across an update.
457  * The timestamp is calculated by:
458  *
459  *	now = base_mono + clock_delta * slope
460  *
461  * So if the update lowers the slope, readers who are forced to the
462  * not yet updated second array are still using the old steeper slope.
463  *
464  * tmono
465  * ^
466  * |    o  n
467  * |   o n
468  * |  u
469  * | o
470  * |o
471  * |12345678---> reader order
472  *
473  * o = old slope
474  * u = update
475  * n = new slope
476  *
477  * So reader 6 will observe time going backwards versus reader 5.
478  *
479  * While other CPUs are likely to be able to observe that, the only way
480  * for a CPU local observation is when an NMI hits in the middle of
481  * the update. Timestamps taken from that NMI context might be ahead
482  * of the following timestamps. Callers need to be aware of that and
483  * deal with it.
484  */
485 u64 notrace ktime_get_mono_fast_ns(void)
486 {
487 	return __ktime_get_fast_ns(&tk_fast_mono);
488 }
489 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
490 
491 /**
492  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
493  *
494  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
495  * conversion factor is not affected by NTP/PTP correction.
496  */
497 u64 notrace ktime_get_raw_fast_ns(void)
498 {
499 	return __ktime_get_fast_ns(&tk_fast_raw);
500 }
501 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
502 
503 /**
504  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
505  *
506  * To keep it NMI safe since we're accessing from tracing, we're not using a
507  * separate timekeeper with updates to monotonic clock and boot offset
508  * protected with seqcounts. This has the following minor side effects:
509  *
510  * (1) Its possible that a timestamp be taken after the boot offset is updated
511  * but before the timekeeper is updated. If this happens, the new boot offset
512  * is added to the old timekeeping making the clock appear to update slightly
513  * earlier:
514  *    CPU 0                                        CPU 1
515  *    timekeeping_inject_sleeptime64()
516  *    __timekeeping_inject_sleeptime(tk, delta);
517  *                                                 timestamp();
518  *    timekeeping_update(tk, TK_CLEAR_NTP...);
519  *
520  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
521  * partially updated.  Since the tk->offs_boot update is a rare event, this
522  * should be a rare occurrence which postprocessing should be able to handle.
523  *
524  * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
525  * apply as well.
526  */
527 u64 notrace ktime_get_boot_fast_ns(void)
528 {
529 	struct timekeeper *tk = &tk_core.timekeeper;
530 
531 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
532 }
533 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
534 
535 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
536 {
537 	struct tk_read_base *tkr;
538 	u64 basem, baser, delta;
539 	unsigned int seq;
540 
541 	do {
542 		seq = raw_read_seqcount_latch(&tkf->seq);
543 		tkr = tkf->base + (seq & 0x01);
544 		basem = ktime_to_ns(tkr->base);
545 		baser = ktime_to_ns(tkr->base_real);
546 
547 		delta = timekeeping_delta_to_ns(tkr,
548 				clocksource_delta(tk_clock_read(tkr),
549 				tkr->cycle_last, tkr->mask));
550 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
551 
552 	if (mono)
553 		*mono = basem + delta;
554 	return baser + delta;
555 }
556 
557 /**
558  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
559  *
560  * See ktime_get_fast_ns() for documentation of the time stamp ordering.
561  */
562 u64 ktime_get_real_fast_ns(void)
563 {
564 	return __ktime_get_real_fast(&tk_fast_mono, NULL);
565 }
566 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
567 
568 /**
569  * ktime_get_fast_timestamps: - NMI safe timestamps
570  * @snapshot:	Pointer to timestamp storage
571  *
572  * Stores clock monotonic, boottime and realtime timestamps.
573  *
574  * Boot time is a racy access on 32bit systems if the sleep time injection
575  * happens late during resume and not in timekeeping_resume(). That could
576  * be avoided by expanding struct tk_read_base with boot offset for 32bit
577  * and adding more overhead to the update. As this is a hard to observe
578  * once per resume event which can be filtered with reasonable effort using
579  * the accurate mono/real timestamps, it's probably not worth the trouble.
580  *
581  * Aside of that it might be possible on 32 and 64 bit to observe the
582  * following when the sleep time injection happens late:
583  *
584  * CPU 0				CPU 1
585  * timekeeping_resume()
586  * ktime_get_fast_timestamps()
587  *	mono, real = __ktime_get_real_fast()
588  *					inject_sleep_time()
589  *					   update boot offset
590  *	boot = mono + bootoffset;
591  *
592  * That means that boot time already has the sleep time adjustment, but
593  * real time does not. On the next readout both are in sync again.
594  *
595  * Preventing this for 64bit is not really feasible without destroying the
596  * careful cache layout of the timekeeper because the sequence count and
597  * struct tk_read_base would then need two cache lines instead of one.
598  *
599  * Access to the time keeper clock source is disabled across the innermost
600  * steps of suspend/resume. The accessors still work, but the timestamps
601  * are frozen until time keeping is resumed which happens very early.
602  *
603  * For regular suspend/resume there is no observable difference vs. sched
604  * clock, but it might affect some of the nasty low level debug printks.
605  *
606  * OTOH, access to sched clock is not guaranteed across suspend/resume on
607  * all systems either so it depends on the hardware in use.
608  *
609  * If that turns out to be a real problem then this could be mitigated by
610  * using sched clock in a similar way as during early boot. But it's not as
611  * trivial as on early boot because it needs some careful protection
612  * against the clock monotonic timestamp jumping backwards on resume.
613  */
614 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
615 {
616 	struct timekeeper *tk = &tk_core.timekeeper;
617 
618 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
619 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
620 }
621 
622 /**
623  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
624  * @tk: Timekeeper to snapshot.
625  *
626  * It generally is unsafe to access the clocksource after timekeeping has been
627  * suspended, so take a snapshot of the readout base of @tk and use it as the
628  * fast timekeeper's readout base while suspended.  It will return the same
629  * number of cycles every time until timekeeping is resumed at which time the
630  * proper readout base for the fast timekeeper will be restored automatically.
631  */
632 static void halt_fast_timekeeper(const struct timekeeper *tk)
633 {
634 	static struct tk_read_base tkr_dummy;
635 	const struct tk_read_base *tkr = &tk->tkr_mono;
636 
637 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
638 	cycles_at_suspend = tk_clock_read(tkr);
639 	tkr_dummy.clock = &dummy_clock;
640 	tkr_dummy.base_real = tkr->base + tk->offs_real;
641 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
642 
643 	tkr = &tk->tkr_raw;
644 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
645 	tkr_dummy.clock = &dummy_clock;
646 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
647 }
648 
649 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
650 
651 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
652 {
653 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
654 }
655 
656 /**
657  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
658  * @nb: Pointer to the notifier block to register
659  */
660 int pvclock_gtod_register_notifier(struct notifier_block *nb)
661 {
662 	struct timekeeper *tk = &tk_core.timekeeper;
663 	unsigned long flags;
664 	int ret;
665 
666 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
667 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
668 	update_pvclock_gtod(tk, true);
669 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
670 
671 	return ret;
672 }
673 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
674 
675 /**
676  * pvclock_gtod_unregister_notifier - unregister a pvclock
677  * timedata update listener
678  * @nb: Pointer to the notifier block to unregister
679  */
680 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
681 {
682 	unsigned long flags;
683 	int ret;
684 
685 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
686 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
687 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
688 
689 	return ret;
690 }
691 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
692 
693 /*
694  * tk_update_leap_state - helper to update the next_leap_ktime
695  */
696 static inline void tk_update_leap_state(struct timekeeper *tk)
697 {
698 	tk->next_leap_ktime = ntp_get_next_leap();
699 	if (tk->next_leap_ktime != KTIME_MAX)
700 		/* Convert to monotonic time */
701 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
702 }
703 
704 /*
705  * Update the ktime_t based scalar nsec members of the timekeeper
706  */
707 static inline void tk_update_ktime_data(struct timekeeper *tk)
708 {
709 	u64 seconds;
710 	u32 nsec;
711 
712 	/*
713 	 * The xtime based monotonic readout is:
714 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
715 	 * The ktime based monotonic readout is:
716 	 *	nsec = base_mono + now();
717 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
718 	 */
719 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
720 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
721 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
722 
723 	/*
724 	 * The sum of the nanoseconds portions of xtime and
725 	 * wall_to_monotonic can be greater/equal one second. Take
726 	 * this into account before updating tk->ktime_sec.
727 	 */
728 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
729 	if (nsec >= NSEC_PER_SEC)
730 		seconds++;
731 	tk->ktime_sec = seconds;
732 
733 	/* Update the monotonic raw base */
734 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
735 }
736 
737 /* must hold timekeeper_lock */
738 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
739 {
740 	if (action & TK_CLEAR_NTP) {
741 		tk->ntp_error = 0;
742 		ntp_clear();
743 	}
744 
745 	tk_update_leap_state(tk);
746 	tk_update_ktime_data(tk);
747 
748 	update_vsyscall(tk);
749 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
750 
751 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
752 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
753 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
754 
755 	if (action & TK_CLOCK_WAS_SET)
756 		tk->clock_was_set_seq++;
757 	/*
758 	 * The mirroring of the data to the shadow-timekeeper needs
759 	 * to happen last here to ensure we don't over-write the
760 	 * timekeeper structure on the next update with stale data
761 	 */
762 	if (action & TK_MIRROR)
763 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
764 		       sizeof(tk_core.timekeeper));
765 }
766 
767 /**
768  * timekeeping_forward_now - update clock to the current time
769  * @tk:		Pointer to the timekeeper to update
770  *
771  * Forward the current clock to update its state since the last call to
772  * update_wall_time(). This is useful before significant clock changes,
773  * as it avoids having to deal with this time offset explicitly.
774  */
775 static void timekeeping_forward_now(struct timekeeper *tk)
776 {
777 	u64 cycle_now, delta;
778 
779 	cycle_now = tk_clock_read(&tk->tkr_mono);
780 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
781 	tk->tkr_mono.cycle_last = cycle_now;
782 	tk->tkr_raw.cycle_last  = cycle_now;
783 
784 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
785 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
786 
787 	tk_normalize_xtime(tk);
788 }
789 
790 /**
791  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
792  * @ts:		pointer to the timespec to be set
793  *
794  * Returns the time of day in a timespec64 (WARN if suspended).
795  */
796 void ktime_get_real_ts64(struct timespec64 *ts)
797 {
798 	struct timekeeper *tk = &tk_core.timekeeper;
799 	unsigned int seq;
800 	u64 nsecs;
801 
802 	WARN_ON(timekeeping_suspended);
803 
804 	do {
805 		seq = read_seqcount_begin(&tk_core.seq);
806 
807 		ts->tv_sec = tk->xtime_sec;
808 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
809 
810 	} while (read_seqcount_retry(&tk_core.seq, seq));
811 
812 	ts->tv_nsec = 0;
813 	timespec64_add_ns(ts, nsecs);
814 }
815 EXPORT_SYMBOL(ktime_get_real_ts64);
816 
817 ktime_t ktime_get(void)
818 {
819 	struct timekeeper *tk = &tk_core.timekeeper;
820 	unsigned int seq;
821 	ktime_t base;
822 	u64 nsecs;
823 
824 	WARN_ON(timekeeping_suspended);
825 
826 	do {
827 		seq = read_seqcount_begin(&tk_core.seq);
828 		base = tk->tkr_mono.base;
829 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
830 
831 	} while (read_seqcount_retry(&tk_core.seq, seq));
832 
833 	return ktime_add_ns(base, nsecs);
834 }
835 EXPORT_SYMBOL_GPL(ktime_get);
836 
837 u32 ktime_get_resolution_ns(void)
838 {
839 	struct timekeeper *tk = &tk_core.timekeeper;
840 	unsigned int seq;
841 	u32 nsecs;
842 
843 	WARN_ON(timekeeping_suspended);
844 
845 	do {
846 		seq = read_seqcount_begin(&tk_core.seq);
847 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
848 	} while (read_seqcount_retry(&tk_core.seq, seq));
849 
850 	return nsecs;
851 }
852 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
853 
854 static ktime_t *offsets[TK_OFFS_MAX] = {
855 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
856 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
857 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
858 };
859 
860 ktime_t ktime_get_with_offset(enum tk_offsets offs)
861 {
862 	struct timekeeper *tk = &tk_core.timekeeper;
863 	unsigned int seq;
864 	ktime_t base, *offset = offsets[offs];
865 	u64 nsecs;
866 
867 	WARN_ON(timekeeping_suspended);
868 
869 	do {
870 		seq = read_seqcount_begin(&tk_core.seq);
871 		base = ktime_add(tk->tkr_mono.base, *offset);
872 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
873 
874 	} while (read_seqcount_retry(&tk_core.seq, seq));
875 
876 	return ktime_add_ns(base, nsecs);
877 
878 }
879 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
880 
881 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
882 {
883 	struct timekeeper *tk = &tk_core.timekeeper;
884 	unsigned int seq;
885 	ktime_t base, *offset = offsets[offs];
886 	u64 nsecs;
887 
888 	WARN_ON(timekeeping_suspended);
889 
890 	do {
891 		seq = read_seqcount_begin(&tk_core.seq);
892 		base = ktime_add(tk->tkr_mono.base, *offset);
893 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
894 
895 	} while (read_seqcount_retry(&tk_core.seq, seq));
896 
897 	return ktime_add_ns(base, nsecs);
898 }
899 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
900 
901 /**
902  * ktime_mono_to_any() - convert monotonic time to any other time
903  * @tmono:	time to convert.
904  * @offs:	which offset to use
905  */
906 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
907 {
908 	ktime_t *offset = offsets[offs];
909 	unsigned int seq;
910 	ktime_t tconv;
911 
912 	do {
913 		seq = read_seqcount_begin(&tk_core.seq);
914 		tconv = ktime_add(tmono, *offset);
915 	} while (read_seqcount_retry(&tk_core.seq, seq));
916 
917 	return tconv;
918 }
919 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
920 
921 /**
922  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
923  */
924 ktime_t ktime_get_raw(void)
925 {
926 	struct timekeeper *tk = &tk_core.timekeeper;
927 	unsigned int seq;
928 	ktime_t base;
929 	u64 nsecs;
930 
931 	do {
932 		seq = read_seqcount_begin(&tk_core.seq);
933 		base = tk->tkr_raw.base;
934 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
935 
936 	} while (read_seqcount_retry(&tk_core.seq, seq));
937 
938 	return ktime_add_ns(base, nsecs);
939 }
940 EXPORT_SYMBOL_GPL(ktime_get_raw);
941 
942 /**
943  * ktime_get_ts64 - get the monotonic clock in timespec64 format
944  * @ts:		pointer to timespec variable
945  *
946  * The function calculates the monotonic clock from the realtime
947  * clock and the wall_to_monotonic offset and stores the result
948  * in normalized timespec64 format in the variable pointed to by @ts.
949  */
950 void ktime_get_ts64(struct timespec64 *ts)
951 {
952 	struct timekeeper *tk = &tk_core.timekeeper;
953 	struct timespec64 tomono;
954 	unsigned int seq;
955 	u64 nsec;
956 
957 	WARN_ON(timekeeping_suspended);
958 
959 	do {
960 		seq = read_seqcount_begin(&tk_core.seq);
961 		ts->tv_sec = tk->xtime_sec;
962 		nsec = timekeeping_get_ns(&tk->tkr_mono);
963 		tomono = tk->wall_to_monotonic;
964 
965 	} while (read_seqcount_retry(&tk_core.seq, seq));
966 
967 	ts->tv_sec += tomono.tv_sec;
968 	ts->tv_nsec = 0;
969 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
970 }
971 EXPORT_SYMBOL_GPL(ktime_get_ts64);
972 
973 /**
974  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
975  *
976  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
977  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
978  * works on both 32 and 64 bit systems. On 32 bit systems the readout
979  * covers ~136 years of uptime which should be enough to prevent
980  * premature wrap arounds.
981  */
982 time64_t ktime_get_seconds(void)
983 {
984 	struct timekeeper *tk = &tk_core.timekeeper;
985 
986 	WARN_ON(timekeeping_suspended);
987 	return tk->ktime_sec;
988 }
989 EXPORT_SYMBOL_GPL(ktime_get_seconds);
990 
991 /**
992  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
993  *
994  * Returns the wall clock seconds since 1970.
995  *
996  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
997  * 32bit systems the access must be protected with the sequence
998  * counter to provide "atomic" access to the 64bit tk->xtime_sec
999  * value.
1000  */
1001 time64_t ktime_get_real_seconds(void)
1002 {
1003 	struct timekeeper *tk = &tk_core.timekeeper;
1004 	time64_t seconds;
1005 	unsigned int seq;
1006 
1007 	if (IS_ENABLED(CONFIG_64BIT))
1008 		return tk->xtime_sec;
1009 
1010 	do {
1011 		seq = read_seqcount_begin(&tk_core.seq);
1012 		seconds = tk->xtime_sec;
1013 
1014 	} while (read_seqcount_retry(&tk_core.seq, seq));
1015 
1016 	return seconds;
1017 }
1018 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1019 
1020 /**
1021  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1022  * but without the sequence counter protect. This internal function
1023  * is called just when timekeeping lock is already held.
1024  */
1025 noinstr time64_t __ktime_get_real_seconds(void)
1026 {
1027 	struct timekeeper *tk = &tk_core.timekeeper;
1028 
1029 	return tk->xtime_sec;
1030 }
1031 
1032 /**
1033  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1034  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1035  */
1036 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1037 {
1038 	struct timekeeper *tk = &tk_core.timekeeper;
1039 	unsigned int seq;
1040 	ktime_t base_raw;
1041 	ktime_t base_real;
1042 	u64 nsec_raw;
1043 	u64 nsec_real;
1044 	u64 now;
1045 
1046 	WARN_ON_ONCE(timekeeping_suspended);
1047 
1048 	do {
1049 		seq = read_seqcount_begin(&tk_core.seq);
1050 		now = tk_clock_read(&tk->tkr_mono);
1051 		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1052 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1053 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1054 		base_real = ktime_add(tk->tkr_mono.base,
1055 				      tk_core.timekeeper.offs_real);
1056 		base_raw = tk->tkr_raw.base;
1057 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1058 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1059 	} while (read_seqcount_retry(&tk_core.seq, seq));
1060 
1061 	systime_snapshot->cycles = now;
1062 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1063 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1064 }
1065 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1066 
1067 /* Scale base by mult/div checking for overflow */
1068 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1069 {
1070 	u64 tmp, rem;
1071 
1072 	tmp = div64_u64_rem(*base, div, &rem);
1073 
1074 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1075 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1076 		return -EOVERFLOW;
1077 	tmp *= mult;
1078 
1079 	rem = div64_u64(rem * mult, div);
1080 	*base = tmp + rem;
1081 	return 0;
1082 }
1083 
1084 /**
1085  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1086  * @history:			Snapshot representing start of history
1087  * @partial_history_cycles:	Cycle offset into history (fractional part)
1088  * @total_history_cycles:	Total history length in cycles
1089  * @discontinuity:		True indicates clock was set on history period
1090  * @ts:				Cross timestamp that should be adjusted using
1091  *	partial/total ratio
1092  *
1093  * Helper function used by get_device_system_crosststamp() to correct the
1094  * crosstimestamp corresponding to the start of the current interval to the
1095  * system counter value (timestamp point) provided by the driver. The
1096  * total_history_* quantities are the total history starting at the provided
1097  * reference point and ending at the start of the current interval. The cycle
1098  * count between the driver timestamp point and the start of the current
1099  * interval is partial_history_cycles.
1100  */
1101 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1102 					 u64 partial_history_cycles,
1103 					 u64 total_history_cycles,
1104 					 bool discontinuity,
1105 					 struct system_device_crosststamp *ts)
1106 {
1107 	struct timekeeper *tk = &tk_core.timekeeper;
1108 	u64 corr_raw, corr_real;
1109 	bool interp_forward;
1110 	int ret;
1111 
1112 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1113 		return 0;
1114 
1115 	/* Interpolate shortest distance from beginning or end of history */
1116 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1117 	partial_history_cycles = interp_forward ?
1118 		total_history_cycles - partial_history_cycles :
1119 		partial_history_cycles;
1120 
1121 	/*
1122 	 * Scale the monotonic raw time delta by:
1123 	 *	partial_history_cycles / total_history_cycles
1124 	 */
1125 	corr_raw = (u64)ktime_to_ns(
1126 		ktime_sub(ts->sys_monoraw, history->raw));
1127 	ret = scale64_check_overflow(partial_history_cycles,
1128 				     total_history_cycles, &corr_raw);
1129 	if (ret)
1130 		return ret;
1131 
1132 	/*
1133 	 * If there is a discontinuity in the history, scale monotonic raw
1134 	 *	correction by:
1135 	 *	mult(real)/mult(raw) yielding the realtime correction
1136 	 * Otherwise, calculate the realtime correction similar to monotonic
1137 	 *	raw calculation
1138 	 */
1139 	if (discontinuity) {
1140 		corr_real = mul_u64_u32_div
1141 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1142 	} else {
1143 		corr_real = (u64)ktime_to_ns(
1144 			ktime_sub(ts->sys_realtime, history->real));
1145 		ret = scale64_check_overflow(partial_history_cycles,
1146 					     total_history_cycles, &corr_real);
1147 		if (ret)
1148 			return ret;
1149 	}
1150 
1151 	/* Fixup monotonic raw and real time time values */
1152 	if (interp_forward) {
1153 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1154 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1155 	} else {
1156 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1157 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * cycle_between - true if test occurs chronologically between before and after
1165  */
1166 static bool cycle_between(u64 before, u64 test, u64 after)
1167 {
1168 	if (test > before && test < after)
1169 		return true;
1170 	if (test < before && before > after)
1171 		return true;
1172 	return false;
1173 }
1174 
1175 /**
1176  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1177  * @get_time_fn:	Callback to get simultaneous device time and
1178  *	system counter from the device driver
1179  * @ctx:		Context passed to get_time_fn()
1180  * @history_begin:	Historical reference point used to interpolate system
1181  *	time when counter provided by the driver is before the current interval
1182  * @xtstamp:		Receives simultaneously captured system and device time
1183  *
1184  * Reads a timestamp from a device and correlates it to system time
1185  */
1186 int get_device_system_crosststamp(int (*get_time_fn)
1187 				  (ktime_t *device_time,
1188 				   struct system_counterval_t *sys_counterval,
1189 				   void *ctx),
1190 				  void *ctx,
1191 				  struct system_time_snapshot *history_begin,
1192 				  struct system_device_crosststamp *xtstamp)
1193 {
1194 	struct system_counterval_t system_counterval;
1195 	struct timekeeper *tk = &tk_core.timekeeper;
1196 	u64 cycles, now, interval_start;
1197 	unsigned int clock_was_set_seq = 0;
1198 	ktime_t base_real, base_raw;
1199 	u64 nsec_real, nsec_raw;
1200 	u8 cs_was_changed_seq;
1201 	unsigned int seq;
1202 	bool do_interp;
1203 	int ret;
1204 
1205 	do {
1206 		seq = read_seqcount_begin(&tk_core.seq);
1207 		/*
1208 		 * Try to synchronously capture device time and a system
1209 		 * counter value calling back into the device driver
1210 		 */
1211 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1212 		if (ret)
1213 			return ret;
1214 
1215 		/*
1216 		 * Verify that the clocksource associated with the captured
1217 		 * system counter value is the same as the currently installed
1218 		 * timekeeper clocksource
1219 		 */
1220 		if (tk->tkr_mono.clock != system_counterval.cs)
1221 			return -ENODEV;
1222 		cycles = system_counterval.cycles;
1223 
1224 		/*
1225 		 * Check whether the system counter value provided by the
1226 		 * device driver is on the current timekeeping interval.
1227 		 */
1228 		now = tk_clock_read(&tk->tkr_mono);
1229 		interval_start = tk->tkr_mono.cycle_last;
1230 		if (!cycle_between(interval_start, cycles, now)) {
1231 			clock_was_set_seq = tk->clock_was_set_seq;
1232 			cs_was_changed_seq = tk->cs_was_changed_seq;
1233 			cycles = interval_start;
1234 			do_interp = true;
1235 		} else {
1236 			do_interp = false;
1237 		}
1238 
1239 		base_real = ktime_add(tk->tkr_mono.base,
1240 				      tk_core.timekeeper.offs_real);
1241 		base_raw = tk->tkr_raw.base;
1242 
1243 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1244 						     system_counterval.cycles);
1245 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1246 						    system_counterval.cycles);
1247 	} while (read_seqcount_retry(&tk_core.seq, seq));
1248 
1249 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1250 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1251 
1252 	/*
1253 	 * Interpolate if necessary, adjusting back from the start of the
1254 	 * current interval
1255 	 */
1256 	if (do_interp) {
1257 		u64 partial_history_cycles, total_history_cycles;
1258 		bool discontinuity;
1259 
1260 		/*
1261 		 * Check that the counter value occurs after the provided
1262 		 * history reference and that the history doesn't cross a
1263 		 * clocksource change
1264 		 */
1265 		if (!history_begin ||
1266 		    !cycle_between(history_begin->cycles,
1267 				   system_counterval.cycles, cycles) ||
1268 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1269 			return -EINVAL;
1270 		partial_history_cycles = cycles - system_counterval.cycles;
1271 		total_history_cycles = cycles - history_begin->cycles;
1272 		discontinuity =
1273 			history_begin->clock_was_set_seq != clock_was_set_seq;
1274 
1275 		ret = adjust_historical_crosststamp(history_begin,
1276 						    partial_history_cycles,
1277 						    total_history_cycles,
1278 						    discontinuity, xtstamp);
1279 		if (ret)
1280 			return ret;
1281 	}
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1286 
1287 /**
1288  * do_settimeofday64 - Sets the time of day.
1289  * @ts:     pointer to the timespec64 variable containing the new time
1290  *
1291  * Sets the time of day to the new time and update NTP and notify hrtimers
1292  */
1293 int do_settimeofday64(const struct timespec64 *ts)
1294 {
1295 	struct timekeeper *tk = &tk_core.timekeeper;
1296 	struct timespec64 ts_delta, xt;
1297 	unsigned long flags;
1298 	int ret = 0;
1299 
1300 	if (!timespec64_valid_settod(ts))
1301 		return -EINVAL;
1302 
1303 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1304 	write_seqcount_begin(&tk_core.seq);
1305 
1306 	timekeeping_forward_now(tk);
1307 
1308 	xt = tk_xtime(tk);
1309 	ts_delta = timespec64_sub(*ts, xt);
1310 
1311 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1312 		ret = -EINVAL;
1313 		goto out;
1314 	}
1315 
1316 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1317 
1318 	tk_set_xtime(tk, ts);
1319 out:
1320 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1321 
1322 	write_seqcount_end(&tk_core.seq);
1323 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1324 
1325 	/* Signal hrtimers about time change */
1326 	clock_was_set(CLOCK_SET_WALL);
1327 
1328 	if (!ret)
1329 		audit_tk_injoffset(ts_delta);
1330 
1331 	return ret;
1332 }
1333 EXPORT_SYMBOL(do_settimeofday64);
1334 
1335 /**
1336  * timekeeping_inject_offset - Adds or subtracts from the current time.
1337  * @ts:		Pointer to the timespec variable containing the offset
1338  *
1339  * Adds or subtracts an offset value from the current time.
1340  */
1341 static int timekeeping_inject_offset(const struct timespec64 *ts)
1342 {
1343 	struct timekeeper *tk = &tk_core.timekeeper;
1344 	unsigned long flags;
1345 	struct timespec64 tmp;
1346 	int ret = 0;
1347 
1348 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1349 		return -EINVAL;
1350 
1351 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1352 	write_seqcount_begin(&tk_core.seq);
1353 
1354 	timekeeping_forward_now(tk);
1355 
1356 	/* Make sure the proposed value is valid */
1357 	tmp = timespec64_add(tk_xtime(tk), *ts);
1358 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1359 	    !timespec64_valid_settod(&tmp)) {
1360 		ret = -EINVAL;
1361 		goto error;
1362 	}
1363 
1364 	tk_xtime_add(tk, ts);
1365 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1366 
1367 error: /* even if we error out, we forwarded the time, so call update */
1368 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1369 
1370 	write_seqcount_end(&tk_core.seq);
1371 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1372 
1373 	/* Signal hrtimers about time change */
1374 	clock_was_set(CLOCK_SET_WALL);
1375 
1376 	return ret;
1377 }
1378 
1379 /*
1380  * Indicates if there is an offset between the system clock and the hardware
1381  * clock/persistent clock/rtc.
1382  */
1383 int persistent_clock_is_local;
1384 
1385 /*
1386  * Adjust the time obtained from the CMOS to be UTC time instead of
1387  * local time.
1388  *
1389  * This is ugly, but preferable to the alternatives.  Otherwise we
1390  * would either need to write a program to do it in /etc/rc (and risk
1391  * confusion if the program gets run more than once; it would also be
1392  * hard to make the program warp the clock precisely n hours)  or
1393  * compile in the timezone information into the kernel.  Bad, bad....
1394  *
1395  *						- TYT, 1992-01-01
1396  *
1397  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1398  * as real UNIX machines always do it. This avoids all headaches about
1399  * daylight saving times and warping kernel clocks.
1400  */
1401 void timekeeping_warp_clock(void)
1402 {
1403 	if (sys_tz.tz_minuteswest != 0) {
1404 		struct timespec64 adjust;
1405 
1406 		persistent_clock_is_local = 1;
1407 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1408 		adjust.tv_nsec = 0;
1409 		timekeeping_inject_offset(&adjust);
1410 	}
1411 }
1412 
1413 /*
1414  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1415  */
1416 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1417 {
1418 	tk->tai_offset = tai_offset;
1419 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1420 }
1421 
1422 /*
1423  * change_clocksource - Swaps clocksources if a new one is available
1424  *
1425  * Accumulates current time interval and initializes new clocksource
1426  */
1427 static int change_clocksource(void *data)
1428 {
1429 	struct timekeeper *tk = &tk_core.timekeeper;
1430 	struct clocksource *new, *old = NULL;
1431 	unsigned long flags;
1432 	bool change = false;
1433 
1434 	new = (struct clocksource *) data;
1435 
1436 	/*
1437 	 * If the cs is in module, get a module reference. Succeeds
1438 	 * for built-in code (owner == NULL) as well.
1439 	 */
1440 	if (try_module_get(new->owner)) {
1441 		if (!new->enable || new->enable(new) == 0)
1442 			change = true;
1443 		else
1444 			module_put(new->owner);
1445 	}
1446 
1447 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1448 	write_seqcount_begin(&tk_core.seq);
1449 
1450 	timekeeping_forward_now(tk);
1451 
1452 	if (change) {
1453 		old = tk->tkr_mono.clock;
1454 		tk_setup_internals(tk, new);
1455 	}
1456 
1457 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1458 
1459 	write_seqcount_end(&tk_core.seq);
1460 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1461 
1462 	if (old) {
1463 		if (old->disable)
1464 			old->disable(old);
1465 
1466 		module_put(old->owner);
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 /**
1473  * timekeeping_notify - Install a new clock source
1474  * @clock:		pointer to the clock source
1475  *
1476  * This function is called from clocksource.c after a new, better clock
1477  * source has been registered. The caller holds the clocksource_mutex.
1478  */
1479 int timekeeping_notify(struct clocksource *clock)
1480 {
1481 	struct timekeeper *tk = &tk_core.timekeeper;
1482 
1483 	if (tk->tkr_mono.clock == clock)
1484 		return 0;
1485 	stop_machine(change_clocksource, clock, NULL);
1486 	tick_clock_notify();
1487 	return tk->tkr_mono.clock == clock ? 0 : -1;
1488 }
1489 
1490 /**
1491  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1492  * @ts:		pointer to the timespec64 to be set
1493  *
1494  * Returns the raw monotonic time (completely un-modified by ntp)
1495  */
1496 void ktime_get_raw_ts64(struct timespec64 *ts)
1497 {
1498 	struct timekeeper *tk = &tk_core.timekeeper;
1499 	unsigned int seq;
1500 	u64 nsecs;
1501 
1502 	do {
1503 		seq = read_seqcount_begin(&tk_core.seq);
1504 		ts->tv_sec = tk->raw_sec;
1505 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1506 
1507 	} while (read_seqcount_retry(&tk_core.seq, seq));
1508 
1509 	ts->tv_nsec = 0;
1510 	timespec64_add_ns(ts, nsecs);
1511 }
1512 EXPORT_SYMBOL(ktime_get_raw_ts64);
1513 
1514 
1515 /**
1516  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1517  */
1518 int timekeeping_valid_for_hres(void)
1519 {
1520 	struct timekeeper *tk = &tk_core.timekeeper;
1521 	unsigned int seq;
1522 	int ret;
1523 
1524 	do {
1525 		seq = read_seqcount_begin(&tk_core.seq);
1526 
1527 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1528 
1529 	} while (read_seqcount_retry(&tk_core.seq, seq));
1530 
1531 	return ret;
1532 }
1533 
1534 /**
1535  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1536  */
1537 u64 timekeeping_max_deferment(void)
1538 {
1539 	struct timekeeper *tk = &tk_core.timekeeper;
1540 	unsigned int seq;
1541 	u64 ret;
1542 
1543 	do {
1544 		seq = read_seqcount_begin(&tk_core.seq);
1545 
1546 		ret = tk->tkr_mono.clock->max_idle_ns;
1547 
1548 	} while (read_seqcount_retry(&tk_core.seq, seq));
1549 
1550 	return ret;
1551 }
1552 
1553 /**
1554  * read_persistent_clock64 -  Return time from the persistent clock.
1555  * @ts: Pointer to the storage for the readout value
1556  *
1557  * Weak dummy function for arches that do not yet support it.
1558  * Reads the time from the battery backed persistent clock.
1559  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1560  *
1561  *  XXX - Do be sure to remove it once all arches implement it.
1562  */
1563 void __weak read_persistent_clock64(struct timespec64 *ts)
1564 {
1565 	ts->tv_sec = 0;
1566 	ts->tv_nsec = 0;
1567 }
1568 
1569 /**
1570  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1571  *                                        from the boot.
1572  *
1573  * Weak dummy function for arches that do not yet support it.
1574  * @wall_time:	- current time as returned by persistent clock
1575  * @boot_offset: - offset that is defined as wall_time - boot_time
1576  *
1577  * The default function calculates offset based on the current value of
1578  * local_clock(). This way architectures that support sched_clock() but don't
1579  * support dedicated boot time clock will provide the best estimate of the
1580  * boot time.
1581  */
1582 void __weak __init
1583 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1584 				     struct timespec64 *boot_offset)
1585 {
1586 	read_persistent_clock64(wall_time);
1587 	*boot_offset = ns_to_timespec64(local_clock());
1588 }
1589 
1590 /*
1591  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1592  *
1593  * The flag starts of false and is only set when a suspend reaches
1594  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1595  * timekeeper clocksource is not stopping across suspend and has been
1596  * used to update sleep time. If the timekeeper clocksource has stopped
1597  * then the flag stays true and is used by the RTC resume code to decide
1598  * whether sleeptime must be injected and if so the flag gets false then.
1599  *
1600  * If a suspend fails before reaching timekeeping_resume() then the flag
1601  * stays false and prevents erroneous sleeptime injection.
1602  */
1603 static bool suspend_timing_needed;
1604 
1605 /* Flag for if there is a persistent clock on this platform */
1606 static bool persistent_clock_exists;
1607 
1608 /*
1609  * timekeeping_init - Initializes the clocksource and common timekeeping values
1610  */
1611 void __init timekeeping_init(void)
1612 {
1613 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1614 	struct timekeeper *tk = &tk_core.timekeeper;
1615 	struct clocksource *clock;
1616 	unsigned long flags;
1617 
1618 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1619 	if (timespec64_valid_settod(&wall_time) &&
1620 	    timespec64_to_ns(&wall_time) > 0) {
1621 		persistent_clock_exists = true;
1622 	} else if (timespec64_to_ns(&wall_time) != 0) {
1623 		pr_warn("Persistent clock returned invalid value");
1624 		wall_time = (struct timespec64){0};
1625 	}
1626 
1627 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1628 		boot_offset = (struct timespec64){0};
1629 
1630 	/*
1631 	 * We want set wall_to_mono, so the following is true:
1632 	 * wall time + wall_to_mono = boot time
1633 	 */
1634 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1635 
1636 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1637 	write_seqcount_begin(&tk_core.seq);
1638 	ntp_init();
1639 
1640 	clock = clocksource_default_clock();
1641 	if (clock->enable)
1642 		clock->enable(clock);
1643 	tk_setup_internals(tk, clock);
1644 
1645 	tk_set_xtime(tk, &wall_time);
1646 	tk->raw_sec = 0;
1647 
1648 	tk_set_wall_to_mono(tk, wall_to_mono);
1649 
1650 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1651 
1652 	write_seqcount_end(&tk_core.seq);
1653 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1654 }
1655 
1656 /* time in seconds when suspend began for persistent clock */
1657 static struct timespec64 timekeeping_suspend_time;
1658 
1659 /**
1660  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1661  * @tk:		Pointer to the timekeeper to be updated
1662  * @delta:	Pointer to the delta value in timespec64 format
1663  *
1664  * Takes a timespec offset measuring a suspend interval and properly
1665  * adds the sleep offset to the timekeeping variables.
1666  */
1667 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1668 					   const struct timespec64 *delta)
1669 {
1670 	if (!timespec64_valid_strict(delta)) {
1671 		printk_deferred(KERN_WARNING
1672 				"__timekeeping_inject_sleeptime: Invalid "
1673 				"sleep delta value!\n");
1674 		return;
1675 	}
1676 	tk_xtime_add(tk, delta);
1677 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1678 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1679 	tk_debug_account_sleep_time(delta);
1680 }
1681 
1682 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1683 /**
1684  * We have three kinds of time sources to use for sleep time
1685  * injection, the preference order is:
1686  * 1) non-stop clocksource
1687  * 2) persistent clock (ie: RTC accessible when irqs are off)
1688  * 3) RTC
1689  *
1690  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1691  * If system has neither 1) nor 2), 3) will be used finally.
1692  *
1693  *
1694  * If timekeeping has injected sleeptime via either 1) or 2),
1695  * 3) becomes needless, so in this case we don't need to call
1696  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1697  * means.
1698  */
1699 bool timekeeping_rtc_skipresume(void)
1700 {
1701 	return !suspend_timing_needed;
1702 }
1703 
1704 /**
1705  * 1) can be determined whether to use or not only when doing
1706  * timekeeping_resume() which is invoked after rtc_suspend(),
1707  * so we can't skip rtc_suspend() surely if system has 1).
1708  *
1709  * But if system has 2), 2) will definitely be used, so in this
1710  * case we don't need to call rtc_suspend(), and this is what
1711  * timekeeping_rtc_skipsuspend() means.
1712  */
1713 bool timekeeping_rtc_skipsuspend(void)
1714 {
1715 	return persistent_clock_exists;
1716 }
1717 
1718 /**
1719  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1720  * @delta: pointer to a timespec64 delta value
1721  *
1722  * This hook is for architectures that cannot support read_persistent_clock64
1723  * because their RTC/persistent clock is only accessible when irqs are enabled.
1724  * and also don't have an effective nonstop clocksource.
1725  *
1726  * This function should only be called by rtc_resume(), and allows
1727  * a suspend offset to be injected into the timekeeping values.
1728  */
1729 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1730 {
1731 	struct timekeeper *tk = &tk_core.timekeeper;
1732 	unsigned long flags;
1733 
1734 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1735 	write_seqcount_begin(&tk_core.seq);
1736 
1737 	suspend_timing_needed = false;
1738 
1739 	timekeeping_forward_now(tk);
1740 
1741 	__timekeeping_inject_sleeptime(tk, delta);
1742 
1743 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1744 
1745 	write_seqcount_end(&tk_core.seq);
1746 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1747 
1748 	/* Signal hrtimers about time change */
1749 	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1750 }
1751 #endif
1752 
1753 /**
1754  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1755  */
1756 void timekeeping_resume(void)
1757 {
1758 	struct timekeeper *tk = &tk_core.timekeeper;
1759 	struct clocksource *clock = tk->tkr_mono.clock;
1760 	unsigned long flags;
1761 	struct timespec64 ts_new, ts_delta;
1762 	u64 cycle_now, nsec;
1763 	bool inject_sleeptime = false;
1764 
1765 	read_persistent_clock64(&ts_new);
1766 
1767 	clockevents_resume();
1768 	clocksource_resume();
1769 
1770 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1771 	write_seqcount_begin(&tk_core.seq);
1772 
1773 	/*
1774 	 * After system resumes, we need to calculate the suspended time and
1775 	 * compensate it for the OS time. There are 3 sources that could be
1776 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1777 	 * device.
1778 	 *
1779 	 * One specific platform may have 1 or 2 or all of them, and the
1780 	 * preference will be:
1781 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1782 	 * The less preferred source will only be tried if there is no better
1783 	 * usable source. The rtc part is handled separately in rtc core code.
1784 	 */
1785 	cycle_now = tk_clock_read(&tk->tkr_mono);
1786 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1787 	if (nsec > 0) {
1788 		ts_delta = ns_to_timespec64(nsec);
1789 		inject_sleeptime = true;
1790 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1791 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1792 		inject_sleeptime = true;
1793 	}
1794 
1795 	if (inject_sleeptime) {
1796 		suspend_timing_needed = false;
1797 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1798 	}
1799 
1800 	/* Re-base the last cycle value */
1801 	tk->tkr_mono.cycle_last = cycle_now;
1802 	tk->tkr_raw.cycle_last  = cycle_now;
1803 
1804 	tk->ntp_error = 0;
1805 	timekeeping_suspended = 0;
1806 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1807 	write_seqcount_end(&tk_core.seq);
1808 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1809 
1810 	touch_softlockup_watchdog();
1811 
1812 	/* Resume the clockevent device(s) and hrtimers */
1813 	tick_resume();
1814 	/* Notify timerfd as resume is equivalent to clock_was_set() */
1815 	timerfd_resume();
1816 }
1817 
1818 int timekeeping_suspend(void)
1819 {
1820 	struct timekeeper *tk = &tk_core.timekeeper;
1821 	unsigned long flags;
1822 	struct timespec64		delta, delta_delta;
1823 	static struct timespec64	old_delta;
1824 	struct clocksource *curr_clock;
1825 	u64 cycle_now;
1826 
1827 	read_persistent_clock64(&timekeeping_suspend_time);
1828 
1829 	/*
1830 	 * On some systems the persistent_clock can not be detected at
1831 	 * timekeeping_init by its return value, so if we see a valid
1832 	 * value returned, update the persistent_clock_exists flag.
1833 	 */
1834 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1835 		persistent_clock_exists = true;
1836 
1837 	suspend_timing_needed = true;
1838 
1839 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1840 	write_seqcount_begin(&tk_core.seq);
1841 	timekeeping_forward_now(tk);
1842 	timekeeping_suspended = 1;
1843 
1844 	/*
1845 	 * Since we've called forward_now, cycle_last stores the value
1846 	 * just read from the current clocksource. Save this to potentially
1847 	 * use in suspend timing.
1848 	 */
1849 	curr_clock = tk->tkr_mono.clock;
1850 	cycle_now = tk->tkr_mono.cycle_last;
1851 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1852 
1853 	if (persistent_clock_exists) {
1854 		/*
1855 		 * To avoid drift caused by repeated suspend/resumes,
1856 		 * which each can add ~1 second drift error,
1857 		 * try to compensate so the difference in system time
1858 		 * and persistent_clock time stays close to constant.
1859 		 */
1860 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1861 		delta_delta = timespec64_sub(delta, old_delta);
1862 		if (abs(delta_delta.tv_sec) >= 2) {
1863 			/*
1864 			 * if delta_delta is too large, assume time correction
1865 			 * has occurred and set old_delta to the current delta.
1866 			 */
1867 			old_delta = delta;
1868 		} else {
1869 			/* Otherwise try to adjust old_system to compensate */
1870 			timekeeping_suspend_time =
1871 				timespec64_add(timekeeping_suspend_time, delta_delta);
1872 		}
1873 	}
1874 
1875 	timekeeping_update(tk, TK_MIRROR);
1876 	halt_fast_timekeeper(tk);
1877 	write_seqcount_end(&tk_core.seq);
1878 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1879 
1880 	tick_suspend();
1881 	clocksource_suspend();
1882 	clockevents_suspend();
1883 
1884 	return 0;
1885 }
1886 
1887 /* sysfs resume/suspend bits for timekeeping */
1888 static struct syscore_ops timekeeping_syscore_ops = {
1889 	.resume		= timekeeping_resume,
1890 	.suspend	= timekeeping_suspend,
1891 };
1892 
1893 static int __init timekeeping_init_ops(void)
1894 {
1895 	register_syscore_ops(&timekeeping_syscore_ops);
1896 	return 0;
1897 }
1898 device_initcall(timekeeping_init_ops);
1899 
1900 /*
1901  * Apply a multiplier adjustment to the timekeeper
1902  */
1903 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1904 							 s64 offset,
1905 							 s32 mult_adj)
1906 {
1907 	s64 interval = tk->cycle_interval;
1908 
1909 	if (mult_adj == 0) {
1910 		return;
1911 	} else if (mult_adj == -1) {
1912 		interval = -interval;
1913 		offset = -offset;
1914 	} else if (mult_adj != 1) {
1915 		interval *= mult_adj;
1916 		offset *= mult_adj;
1917 	}
1918 
1919 	/*
1920 	 * So the following can be confusing.
1921 	 *
1922 	 * To keep things simple, lets assume mult_adj == 1 for now.
1923 	 *
1924 	 * When mult_adj != 1, remember that the interval and offset values
1925 	 * have been appropriately scaled so the math is the same.
1926 	 *
1927 	 * The basic idea here is that we're increasing the multiplier
1928 	 * by one, this causes the xtime_interval to be incremented by
1929 	 * one cycle_interval. This is because:
1930 	 *	xtime_interval = cycle_interval * mult
1931 	 * So if mult is being incremented by one:
1932 	 *	xtime_interval = cycle_interval * (mult + 1)
1933 	 * Its the same as:
1934 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1935 	 * Which can be shortened to:
1936 	 *	xtime_interval += cycle_interval
1937 	 *
1938 	 * So offset stores the non-accumulated cycles. Thus the current
1939 	 * time (in shifted nanoseconds) is:
1940 	 *	now = (offset * adj) + xtime_nsec
1941 	 * Now, even though we're adjusting the clock frequency, we have
1942 	 * to keep time consistent. In other words, we can't jump back
1943 	 * in time, and we also want to avoid jumping forward in time.
1944 	 *
1945 	 * So given the same offset value, we need the time to be the same
1946 	 * both before and after the freq adjustment.
1947 	 *	now = (offset * adj_1) + xtime_nsec_1
1948 	 *	now = (offset * adj_2) + xtime_nsec_2
1949 	 * So:
1950 	 *	(offset * adj_1) + xtime_nsec_1 =
1951 	 *		(offset * adj_2) + xtime_nsec_2
1952 	 * And we know:
1953 	 *	adj_2 = adj_1 + 1
1954 	 * So:
1955 	 *	(offset * adj_1) + xtime_nsec_1 =
1956 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1957 	 *	(offset * adj_1) + xtime_nsec_1 =
1958 	 *		(offset * adj_1) + offset + xtime_nsec_2
1959 	 * Canceling the sides:
1960 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1961 	 * Which gives us:
1962 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1963 	 * Which simplifies to:
1964 	 *	xtime_nsec -= offset
1965 	 */
1966 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1967 		/* NTP adjustment caused clocksource mult overflow */
1968 		WARN_ON_ONCE(1);
1969 		return;
1970 	}
1971 
1972 	tk->tkr_mono.mult += mult_adj;
1973 	tk->xtime_interval += interval;
1974 	tk->tkr_mono.xtime_nsec -= offset;
1975 }
1976 
1977 /*
1978  * Adjust the timekeeper's multiplier to the correct frequency
1979  * and also to reduce the accumulated error value.
1980  */
1981 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1982 {
1983 	u32 mult;
1984 
1985 	/*
1986 	 * Determine the multiplier from the current NTP tick length.
1987 	 * Avoid expensive division when the tick length doesn't change.
1988 	 */
1989 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1990 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1991 	} else {
1992 		tk->ntp_tick = ntp_tick_length();
1993 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1994 				 tk->xtime_remainder, tk->cycle_interval);
1995 	}
1996 
1997 	/*
1998 	 * If the clock is behind the NTP time, increase the multiplier by 1
1999 	 * to catch up with it. If it's ahead and there was a remainder in the
2000 	 * tick division, the clock will slow down. Otherwise it will stay
2001 	 * ahead until the tick length changes to a non-divisible value.
2002 	 */
2003 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2004 	mult += tk->ntp_err_mult;
2005 
2006 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2007 
2008 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2009 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2010 			> tk->tkr_mono.clock->maxadj))) {
2011 		printk_once(KERN_WARNING
2012 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2013 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2014 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2015 	}
2016 
2017 	/*
2018 	 * It may be possible that when we entered this function, xtime_nsec
2019 	 * was very small.  Further, if we're slightly speeding the clocksource
2020 	 * in the code above, its possible the required corrective factor to
2021 	 * xtime_nsec could cause it to underflow.
2022 	 *
2023 	 * Now, since we have already accumulated the second and the NTP
2024 	 * subsystem has been notified via second_overflow(), we need to skip
2025 	 * the next update.
2026 	 */
2027 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2028 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2029 							tk->tkr_mono.shift;
2030 		tk->xtime_sec--;
2031 		tk->skip_second_overflow = 1;
2032 	}
2033 }
2034 
2035 /*
2036  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2037  *
2038  * Helper function that accumulates the nsecs greater than a second
2039  * from the xtime_nsec field to the xtime_secs field.
2040  * It also calls into the NTP code to handle leapsecond processing.
2041  */
2042 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2043 {
2044 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2045 	unsigned int clock_set = 0;
2046 
2047 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2048 		int leap;
2049 
2050 		tk->tkr_mono.xtime_nsec -= nsecps;
2051 		tk->xtime_sec++;
2052 
2053 		/*
2054 		 * Skip NTP update if this second was accumulated before,
2055 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2056 		 */
2057 		if (unlikely(tk->skip_second_overflow)) {
2058 			tk->skip_second_overflow = 0;
2059 			continue;
2060 		}
2061 
2062 		/* Figure out if its a leap sec and apply if needed */
2063 		leap = second_overflow(tk->xtime_sec);
2064 		if (unlikely(leap)) {
2065 			struct timespec64 ts;
2066 
2067 			tk->xtime_sec += leap;
2068 
2069 			ts.tv_sec = leap;
2070 			ts.tv_nsec = 0;
2071 			tk_set_wall_to_mono(tk,
2072 				timespec64_sub(tk->wall_to_monotonic, ts));
2073 
2074 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2075 
2076 			clock_set = TK_CLOCK_WAS_SET;
2077 		}
2078 	}
2079 	return clock_set;
2080 }
2081 
2082 /*
2083  * logarithmic_accumulation - shifted accumulation of cycles
2084  *
2085  * This functions accumulates a shifted interval of cycles into
2086  * a shifted interval nanoseconds. Allows for O(log) accumulation
2087  * loop.
2088  *
2089  * Returns the unconsumed cycles.
2090  */
2091 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2092 				    u32 shift, unsigned int *clock_set)
2093 {
2094 	u64 interval = tk->cycle_interval << shift;
2095 	u64 snsec_per_sec;
2096 
2097 	/* If the offset is smaller than a shifted interval, do nothing */
2098 	if (offset < interval)
2099 		return offset;
2100 
2101 	/* Accumulate one shifted interval */
2102 	offset -= interval;
2103 	tk->tkr_mono.cycle_last += interval;
2104 	tk->tkr_raw.cycle_last  += interval;
2105 
2106 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2107 	*clock_set |= accumulate_nsecs_to_secs(tk);
2108 
2109 	/* Accumulate raw time */
2110 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2111 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2112 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2113 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2114 		tk->raw_sec++;
2115 	}
2116 
2117 	/* Accumulate error between NTP and clock interval */
2118 	tk->ntp_error += tk->ntp_tick << shift;
2119 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2120 						(tk->ntp_error_shift + shift);
2121 
2122 	return offset;
2123 }
2124 
2125 /*
2126  * timekeeping_advance - Updates the timekeeper to the current time and
2127  * current NTP tick length
2128  */
2129 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2130 {
2131 	struct timekeeper *real_tk = &tk_core.timekeeper;
2132 	struct timekeeper *tk = &shadow_timekeeper;
2133 	u64 offset;
2134 	int shift = 0, maxshift;
2135 	unsigned int clock_set = 0;
2136 	unsigned long flags;
2137 
2138 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2139 
2140 	/* Make sure we're fully resumed: */
2141 	if (unlikely(timekeeping_suspended))
2142 		goto out;
2143 
2144 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2145 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2146 
2147 	/* Check if there's really nothing to do */
2148 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2149 		goto out;
2150 
2151 	/* Do some additional sanity checking */
2152 	timekeeping_check_update(tk, offset);
2153 
2154 	/*
2155 	 * With NO_HZ we may have to accumulate many cycle_intervals
2156 	 * (think "ticks") worth of time at once. To do this efficiently,
2157 	 * we calculate the largest doubling multiple of cycle_intervals
2158 	 * that is smaller than the offset.  We then accumulate that
2159 	 * chunk in one go, and then try to consume the next smaller
2160 	 * doubled multiple.
2161 	 */
2162 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2163 	shift = max(0, shift);
2164 	/* Bound shift to one less than what overflows tick_length */
2165 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2166 	shift = min(shift, maxshift);
2167 	while (offset >= tk->cycle_interval) {
2168 		offset = logarithmic_accumulation(tk, offset, shift,
2169 							&clock_set);
2170 		if (offset < tk->cycle_interval<<shift)
2171 			shift--;
2172 	}
2173 
2174 	/* Adjust the multiplier to correct NTP error */
2175 	timekeeping_adjust(tk, offset);
2176 
2177 	/*
2178 	 * Finally, make sure that after the rounding
2179 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2180 	 */
2181 	clock_set |= accumulate_nsecs_to_secs(tk);
2182 
2183 	write_seqcount_begin(&tk_core.seq);
2184 	/*
2185 	 * Update the real timekeeper.
2186 	 *
2187 	 * We could avoid this memcpy by switching pointers, but that
2188 	 * requires changes to all other timekeeper usage sites as
2189 	 * well, i.e. move the timekeeper pointer getter into the
2190 	 * spinlocked/seqcount protected sections. And we trade this
2191 	 * memcpy under the tk_core.seq against one before we start
2192 	 * updating.
2193 	 */
2194 	timekeeping_update(tk, clock_set);
2195 	memcpy(real_tk, tk, sizeof(*tk));
2196 	/* The memcpy must come last. Do not put anything here! */
2197 	write_seqcount_end(&tk_core.seq);
2198 out:
2199 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2200 
2201 	return !!clock_set;
2202 }
2203 
2204 /**
2205  * update_wall_time - Uses the current clocksource to increment the wall time
2206  *
2207  */
2208 void update_wall_time(void)
2209 {
2210 	if (timekeeping_advance(TK_ADV_TICK))
2211 		clock_was_set_delayed();
2212 }
2213 
2214 /**
2215  * getboottime64 - Return the real time of system boot.
2216  * @ts:		pointer to the timespec64 to be set
2217  *
2218  * Returns the wall-time of boot in a timespec64.
2219  *
2220  * This is based on the wall_to_monotonic offset and the total suspend
2221  * time. Calls to settimeofday will affect the value returned (which
2222  * basically means that however wrong your real time clock is at boot time,
2223  * you get the right time here).
2224  */
2225 void getboottime64(struct timespec64 *ts)
2226 {
2227 	struct timekeeper *tk = &tk_core.timekeeper;
2228 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2229 
2230 	*ts = ktime_to_timespec64(t);
2231 }
2232 EXPORT_SYMBOL_GPL(getboottime64);
2233 
2234 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2235 {
2236 	struct timekeeper *tk = &tk_core.timekeeper;
2237 	unsigned int seq;
2238 
2239 	do {
2240 		seq = read_seqcount_begin(&tk_core.seq);
2241 
2242 		*ts = tk_xtime(tk);
2243 	} while (read_seqcount_retry(&tk_core.seq, seq));
2244 }
2245 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2246 
2247 void ktime_get_coarse_ts64(struct timespec64 *ts)
2248 {
2249 	struct timekeeper *tk = &tk_core.timekeeper;
2250 	struct timespec64 now, mono;
2251 	unsigned int seq;
2252 
2253 	do {
2254 		seq = read_seqcount_begin(&tk_core.seq);
2255 
2256 		now = tk_xtime(tk);
2257 		mono = tk->wall_to_monotonic;
2258 	} while (read_seqcount_retry(&tk_core.seq, seq));
2259 
2260 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2261 				now.tv_nsec + mono.tv_nsec);
2262 }
2263 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2264 
2265 /*
2266  * Must hold jiffies_lock
2267  */
2268 void do_timer(unsigned long ticks)
2269 {
2270 	jiffies_64 += ticks;
2271 	calc_global_load();
2272 }
2273 
2274 /**
2275  * ktime_get_update_offsets_now - hrtimer helper
2276  * @cwsseq:	pointer to check and store the clock was set sequence number
2277  * @offs_real:	pointer to storage for monotonic -> realtime offset
2278  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2279  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2280  *
2281  * Returns current monotonic time and updates the offsets if the
2282  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2283  * different.
2284  *
2285  * Called from hrtimer_interrupt() or retrigger_next_event()
2286  */
2287 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2288 				     ktime_t *offs_boot, ktime_t *offs_tai)
2289 {
2290 	struct timekeeper *tk = &tk_core.timekeeper;
2291 	unsigned int seq;
2292 	ktime_t base;
2293 	u64 nsecs;
2294 
2295 	do {
2296 		seq = read_seqcount_begin(&tk_core.seq);
2297 
2298 		base = tk->tkr_mono.base;
2299 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2300 		base = ktime_add_ns(base, nsecs);
2301 
2302 		if (*cwsseq != tk->clock_was_set_seq) {
2303 			*cwsseq = tk->clock_was_set_seq;
2304 			*offs_real = tk->offs_real;
2305 			*offs_boot = tk->offs_boot;
2306 			*offs_tai = tk->offs_tai;
2307 		}
2308 
2309 		/* Handle leapsecond insertion adjustments */
2310 		if (unlikely(base >= tk->next_leap_ktime))
2311 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2312 
2313 	} while (read_seqcount_retry(&tk_core.seq, seq));
2314 
2315 	return base;
2316 }
2317 
2318 /*
2319  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2320  */
2321 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2322 {
2323 	if (txc->modes & ADJ_ADJTIME) {
2324 		/* singleshot must not be used with any other mode bits */
2325 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2326 			return -EINVAL;
2327 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2328 		    !capable(CAP_SYS_TIME))
2329 			return -EPERM;
2330 	} else {
2331 		/* In order to modify anything, you gotta be super-user! */
2332 		if (txc->modes && !capable(CAP_SYS_TIME))
2333 			return -EPERM;
2334 		/*
2335 		 * if the quartz is off by more than 10% then
2336 		 * something is VERY wrong!
2337 		 */
2338 		if (txc->modes & ADJ_TICK &&
2339 		    (txc->tick <  900000/USER_HZ ||
2340 		     txc->tick > 1100000/USER_HZ))
2341 			return -EINVAL;
2342 	}
2343 
2344 	if (txc->modes & ADJ_SETOFFSET) {
2345 		/* In order to inject time, you gotta be super-user! */
2346 		if (!capable(CAP_SYS_TIME))
2347 			return -EPERM;
2348 
2349 		/*
2350 		 * Validate if a timespec/timeval used to inject a time
2351 		 * offset is valid.  Offsets can be positive or negative, so
2352 		 * we don't check tv_sec. The value of the timeval/timespec
2353 		 * is the sum of its fields,but *NOTE*:
2354 		 * The field tv_usec/tv_nsec must always be non-negative and
2355 		 * we can't have more nanoseconds/microseconds than a second.
2356 		 */
2357 		if (txc->time.tv_usec < 0)
2358 			return -EINVAL;
2359 
2360 		if (txc->modes & ADJ_NANO) {
2361 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2362 				return -EINVAL;
2363 		} else {
2364 			if (txc->time.tv_usec >= USEC_PER_SEC)
2365 				return -EINVAL;
2366 		}
2367 	}
2368 
2369 	/*
2370 	 * Check for potential multiplication overflows that can
2371 	 * only happen on 64-bit systems:
2372 	 */
2373 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2374 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2375 			return -EINVAL;
2376 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2377 			return -EINVAL;
2378 	}
2379 
2380 	return 0;
2381 }
2382 
2383 
2384 /**
2385  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2386  */
2387 int do_adjtimex(struct __kernel_timex *txc)
2388 {
2389 	struct timekeeper *tk = &tk_core.timekeeper;
2390 	struct audit_ntp_data ad;
2391 	bool clock_set = false;
2392 	struct timespec64 ts;
2393 	unsigned long flags;
2394 	s32 orig_tai, tai;
2395 	int ret;
2396 
2397 	/* Validate the data before disabling interrupts */
2398 	ret = timekeeping_validate_timex(txc);
2399 	if (ret)
2400 		return ret;
2401 
2402 	if (txc->modes & ADJ_SETOFFSET) {
2403 		struct timespec64 delta;
2404 		delta.tv_sec  = txc->time.tv_sec;
2405 		delta.tv_nsec = txc->time.tv_usec;
2406 		if (!(txc->modes & ADJ_NANO))
2407 			delta.tv_nsec *= 1000;
2408 		ret = timekeeping_inject_offset(&delta);
2409 		if (ret)
2410 			return ret;
2411 
2412 		audit_tk_injoffset(delta);
2413 	}
2414 
2415 	audit_ntp_init(&ad);
2416 
2417 	ktime_get_real_ts64(&ts);
2418 
2419 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2420 	write_seqcount_begin(&tk_core.seq);
2421 
2422 	orig_tai = tai = tk->tai_offset;
2423 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2424 
2425 	if (tai != orig_tai) {
2426 		__timekeeping_set_tai_offset(tk, tai);
2427 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2428 		clock_set = true;
2429 	}
2430 	tk_update_leap_state(tk);
2431 
2432 	write_seqcount_end(&tk_core.seq);
2433 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2434 
2435 	audit_ntp_log(&ad);
2436 
2437 	/* Update the multiplier immediately if frequency was set directly */
2438 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2439 		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2440 
2441 	if (clock_set)
2442 		clock_was_set(CLOCK_REALTIME);
2443 
2444 	ntp_notify_cmos_timer();
2445 
2446 	return ret;
2447 }
2448 
2449 #ifdef CONFIG_NTP_PPS
2450 /**
2451  * hardpps() - Accessor function to NTP __hardpps function
2452  */
2453 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2454 {
2455 	unsigned long flags;
2456 
2457 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2458 	write_seqcount_begin(&tk_core.seq);
2459 
2460 	__hardpps(phase_ts, raw_ts);
2461 
2462 	write_seqcount_end(&tk_core.seq);
2463 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2464 }
2465 EXPORT_SYMBOL(hardpps);
2466 #endif /* CONFIG_NTP_PPS */
2467