1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/tick.h> 21 #include <linux/stop_machine.h> 22 #include <linux/pvclock_gtod.h> 23 #include <linux/compiler.h> 24 #include <linux/audit.h> 25 26 #include "tick-internal.h" 27 #include "ntp_internal.h" 28 #include "timekeeping_internal.h" 29 30 #define TK_CLEAR_NTP (1 << 0) 31 #define TK_MIRROR (1 << 1) 32 #define TK_CLOCK_WAS_SET (1 << 2) 33 34 enum timekeeping_adv_mode { 35 /* Update timekeeper when a tick has passed */ 36 TK_ADV_TICK, 37 38 /* Update timekeeper on a direct frequency change */ 39 TK_ADV_FREQ 40 }; 41 42 DEFINE_RAW_SPINLOCK(timekeeper_lock); 43 44 /* 45 * The most important data for readout fits into a single 64 byte 46 * cache line. 47 */ 48 static struct { 49 seqcount_raw_spinlock_t seq; 50 struct timekeeper timekeeper; 51 } tk_core ____cacheline_aligned = { 52 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 53 }; 54 55 static struct timekeeper shadow_timekeeper; 56 57 /* flag for if timekeeping is suspended */ 58 int __read_mostly timekeeping_suspended; 59 60 /** 61 * struct tk_fast - NMI safe timekeeper 62 * @seq: Sequence counter for protecting updates. The lowest bit 63 * is the index for the tk_read_base array 64 * @base: tk_read_base array. Access is indexed by the lowest bit of 65 * @seq. 66 * 67 * See @update_fast_timekeeper() below. 68 */ 69 struct tk_fast { 70 seqcount_latch_t seq; 71 struct tk_read_base base[2]; 72 }; 73 74 /* Suspend-time cycles value for halted fast timekeeper. */ 75 static u64 cycles_at_suspend; 76 77 static u64 dummy_clock_read(struct clocksource *cs) 78 { 79 if (timekeeping_suspended) 80 return cycles_at_suspend; 81 return local_clock(); 82 } 83 84 static struct clocksource dummy_clock = { 85 .read = dummy_clock_read, 86 }; 87 88 /* 89 * Boot time initialization which allows local_clock() to be utilized 90 * during early boot when clocksources are not available. local_clock() 91 * returns nanoseconds already so no conversion is required, hence mult=1 92 * and shift=0. When the first proper clocksource is installed then 93 * the fast time keepers are updated with the correct values. 94 */ 95 #define FAST_TK_INIT \ 96 { \ 97 .clock = &dummy_clock, \ 98 .mask = CLOCKSOURCE_MASK(64), \ 99 .mult = 1, \ 100 .shift = 0, \ 101 } 102 103 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 104 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 105 .base[0] = FAST_TK_INIT, 106 .base[1] = FAST_TK_INIT, 107 }; 108 109 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 110 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 111 .base[0] = FAST_TK_INIT, 112 .base[1] = FAST_TK_INIT, 113 }; 114 115 static inline void tk_normalize_xtime(struct timekeeper *tk) 116 { 117 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 118 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 119 tk->xtime_sec++; 120 } 121 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 122 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 123 tk->raw_sec++; 124 } 125 } 126 127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 128 { 129 struct timespec64 ts; 130 131 ts.tv_sec = tk->xtime_sec; 132 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 133 return ts; 134 } 135 136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 137 { 138 tk->xtime_sec = ts->tv_sec; 139 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 140 } 141 142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 143 { 144 tk->xtime_sec += ts->tv_sec; 145 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 146 tk_normalize_xtime(tk); 147 } 148 149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 150 { 151 struct timespec64 tmp; 152 153 /* 154 * Verify consistency of: offset_real = -wall_to_monotonic 155 * before modifying anything 156 */ 157 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 158 -tk->wall_to_monotonic.tv_nsec); 159 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 160 tk->wall_to_monotonic = wtm; 161 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 162 tk->offs_real = timespec64_to_ktime(tmp); 163 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 164 } 165 166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 167 { 168 tk->offs_boot = ktime_add(tk->offs_boot, delta); 169 /* 170 * Timespec representation for VDSO update to avoid 64bit division 171 * on every update. 172 */ 173 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 174 } 175 176 /* 177 * tk_clock_read - atomic clocksource read() helper 178 * 179 * This helper is necessary to use in the read paths because, while the 180 * seqcount ensures we don't return a bad value while structures are updated, 181 * it doesn't protect from potential crashes. There is the possibility that 182 * the tkr's clocksource may change between the read reference, and the 183 * clock reference passed to the read function. This can cause crashes if 184 * the wrong clocksource is passed to the wrong read function. 185 * This isn't necessary to use when holding the timekeeper_lock or doing 186 * a read of the fast-timekeeper tkrs (which is protected by its own locking 187 * and update logic). 188 */ 189 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 190 { 191 struct clocksource *clock = READ_ONCE(tkr->clock); 192 193 return clock->read(clock); 194 } 195 196 #ifdef CONFIG_DEBUG_TIMEKEEPING 197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 198 199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 200 { 201 202 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 203 const char *name = tk->tkr_mono.clock->name; 204 205 if (offset > max_cycles) { 206 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 207 offset, name, max_cycles); 208 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 209 } else { 210 if (offset > (max_cycles >> 1)) { 211 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 212 offset, name, max_cycles >> 1); 213 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 214 } 215 } 216 217 if (tk->underflow_seen) { 218 if (jiffies - tk->last_warning > WARNING_FREQ) { 219 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 220 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 221 printk_deferred(" Your kernel is probably still fine.\n"); 222 tk->last_warning = jiffies; 223 } 224 tk->underflow_seen = 0; 225 } 226 227 if (tk->overflow_seen) { 228 if (jiffies - tk->last_warning > WARNING_FREQ) { 229 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 230 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 231 printk_deferred(" Your kernel is probably still fine.\n"); 232 tk->last_warning = jiffies; 233 } 234 tk->overflow_seen = 0; 235 } 236 } 237 238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 239 { 240 struct timekeeper *tk = &tk_core.timekeeper; 241 u64 now, last, mask, max, delta; 242 unsigned int seq; 243 244 /* 245 * Since we're called holding a seqcount, the data may shift 246 * under us while we're doing the calculation. This can cause 247 * false positives, since we'd note a problem but throw the 248 * results away. So nest another seqcount here to atomically 249 * grab the points we are checking with. 250 */ 251 do { 252 seq = read_seqcount_begin(&tk_core.seq); 253 now = tk_clock_read(tkr); 254 last = tkr->cycle_last; 255 mask = tkr->mask; 256 max = tkr->clock->max_cycles; 257 } while (read_seqcount_retry(&tk_core.seq, seq)); 258 259 delta = clocksource_delta(now, last, mask); 260 261 /* 262 * Try to catch underflows by checking if we are seeing small 263 * mask-relative negative values. 264 */ 265 if (unlikely((~delta & mask) < (mask >> 3))) { 266 tk->underflow_seen = 1; 267 delta = 0; 268 } 269 270 /* Cap delta value to the max_cycles values to avoid mult overflows */ 271 if (unlikely(delta > max)) { 272 tk->overflow_seen = 1; 273 delta = tkr->clock->max_cycles; 274 } 275 276 return delta; 277 } 278 #else 279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 280 { 281 } 282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 283 { 284 u64 cycle_now, delta; 285 286 /* read clocksource */ 287 cycle_now = tk_clock_read(tkr); 288 289 /* calculate the delta since the last update_wall_time */ 290 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 291 292 return delta; 293 } 294 #endif 295 296 /** 297 * tk_setup_internals - Set up internals to use clocksource clock. 298 * 299 * @tk: The target timekeeper to setup. 300 * @clock: Pointer to clocksource. 301 * 302 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 303 * pair and interval request. 304 * 305 * Unless you're the timekeeping code, you should not be using this! 306 */ 307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 308 { 309 u64 interval; 310 u64 tmp, ntpinterval; 311 struct clocksource *old_clock; 312 313 ++tk->cs_was_changed_seq; 314 old_clock = tk->tkr_mono.clock; 315 tk->tkr_mono.clock = clock; 316 tk->tkr_mono.mask = clock->mask; 317 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 318 319 tk->tkr_raw.clock = clock; 320 tk->tkr_raw.mask = clock->mask; 321 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 322 323 /* Do the ns -> cycle conversion first, using original mult */ 324 tmp = NTP_INTERVAL_LENGTH; 325 tmp <<= clock->shift; 326 ntpinterval = tmp; 327 tmp += clock->mult/2; 328 do_div(tmp, clock->mult); 329 if (tmp == 0) 330 tmp = 1; 331 332 interval = (u64) tmp; 333 tk->cycle_interval = interval; 334 335 /* Go back from cycles -> shifted ns */ 336 tk->xtime_interval = interval * clock->mult; 337 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 338 tk->raw_interval = interval * clock->mult; 339 340 /* if changing clocks, convert xtime_nsec shift units */ 341 if (old_clock) { 342 int shift_change = clock->shift - old_clock->shift; 343 if (shift_change < 0) { 344 tk->tkr_mono.xtime_nsec >>= -shift_change; 345 tk->tkr_raw.xtime_nsec >>= -shift_change; 346 } else { 347 tk->tkr_mono.xtime_nsec <<= shift_change; 348 tk->tkr_raw.xtime_nsec <<= shift_change; 349 } 350 } 351 352 tk->tkr_mono.shift = clock->shift; 353 tk->tkr_raw.shift = clock->shift; 354 355 tk->ntp_error = 0; 356 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 357 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 358 359 /* 360 * The timekeeper keeps its own mult values for the currently 361 * active clocksource. These value will be adjusted via NTP 362 * to counteract clock drifting. 363 */ 364 tk->tkr_mono.mult = clock->mult; 365 tk->tkr_raw.mult = clock->mult; 366 tk->ntp_err_mult = 0; 367 tk->skip_second_overflow = 0; 368 } 369 370 /* Timekeeper helper functions. */ 371 372 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 373 static u32 default_arch_gettimeoffset(void) { return 0; } 374 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 375 #else 376 static inline u32 arch_gettimeoffset(void) { return 0; } 377 #endif 378 379 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 380 { 381 u64 nsec; 382 383 nsec = delta * tkr->mult + tkr->xtime_nsec; 384 nsec >>= tkr->shift; 385 386 /* If arch requires, add in get_arch_timeoffset() */ 387 return nsec + arch_gettimeoffset(); 388 } 389 390 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 391 { 392 u64 delta; 393 394 delta = timekeeping_get_delta(tkr); 395 return timekeeping_delta_to_ns(tkr, delta); 396 } 397 398 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 399 { 400 u64 delta; 401 402 /* calculate the delta since the last update_wall_time */ 403 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 404 return timekeeping_delta_to_ns(tkr, delta); 405 } 406 407 /** 408 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 409 * @tkr: Timekeeping readout base from which we take the update 410 * 411 * We want to use this from any context including NMI and tracing / 412 * instrumenting the timekeeping code itself. 413 * 414 * Employ the latch technique; see @raw_write_seqcount_latch. 415 * 416 * So if a NMI hits the update of base[0] then it will use base[1] 417 * which is still consistent. In the worst case this can result is a 418 * slightly wrong timestamp (a few nanoseconds). See 419 * @ktime_get_mono_fast_ns. 420 */ 421 static void update_fast_timekeeper(const struct tk_read_base *tkr, 422 struct tk_fast *tkf) 423 { 424 struct tk_read_base *base = tkf->base; 425 426 /* Force readers off to base[1] */ 427 raw_write_seqcount_latch(&tkf->seq); 428 429 /* Update base[0] */ 430 memcpy(base, tkr, sizeof(*base)); 431 432 /* Force readers back to base[0] */ 433 raw_write_seqcount_latch(&tkf->seq); 434 435 /* Update base[1] */ 436 memcpy(base + 1, base, sizeof(*base)); 437 } 438 439 /** 440 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 441 * 442 * This timestamp is not guaranteed to be monotonic across an update. 443 * The timestamp is calculated by: 444 * 445 * now = base_mono + clock_delta * slope 446 * 447 * So if the update lowers the slope, readers who are forced to the 448 * not yet updated second array are still using the old steeper slope. 449 * 450 * tmono 451 * ^ 452 * | o n 453 * | o n 454 * | u 455 * | o 456 * |o 457 * |12345678---> reader order 458 * 459 * o = old slope 460 * u = update 461 * n = new slope 462 * 463 * So reader 6 will observe time going backwards versus reader 5. 464 * 465 * While other CPUs are likely to be able observe that, the only way 466 * for a CPU local observation is when an NMI hits in the middle of 467 * the update. Timestamps taken from that NMI context might be ahead 468 * of the following timestamps. Callers need to be aware of that and 469 * deal with it. 470 */ 471 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 472 { 473 struct tk_read_base *tkr; 474 unsigned int seq; 475 u64 now; 476 477 do { 478 seq = raw_read_seqcount_latch(&tkf->seq); 479 tkr = tkf->base + (seq & 0x01); 480 now = ktime_to_ns(tkr->base); 481 482 now += timekeeping_delta_to_ns(tkr, 483 clocksource_delta( 484 tk_clock_read(tkr), 485 tkr->cycle_last, 486 tkr->mask)); 487 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 488 489 return now; 490 } 491 492 u64 ktime_get_mono_fast_ns(void) 493 { 494 return __ktime_get_fast_ns(&tk_fast_mono); 495 } 496 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 497 498 u64 ktime_get_raw_fast_ns(void) 499 { 500 return __ktime_get_fast_ns(&tk_fast_raw); 501 } 502 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 503 504 /** 505 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 506 * 507 * To keep it NMI safe since we're accessing from tracing, we're not using a 508 * separate timekeeper with updates to monotonic clock and boot offset 509 * protected with seqcounts. This has the following minor side effects: 510 * 511 * (1) Its possible that a timestamp be taken after the boot offset is updated 512 * but before the timekeeper is updated. If this happens, the new boot offset 513 * is added to the old timekeeping making the clock appear to update slightly 514 * earlier: 515 * CPU 0 CPU 1 516 * timekeeping_inject_sleeptime64() 517 * __timekeeping_inject_sleeptime(tk, delta); 518 * timestamp(); 519 * timekeeping_update(tk, TK_CLEAR_NTP...); 520 * 521 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 522 * partially updated. Since the tk->offs_boot update is a rare event, this 523 * should be a rare occurrence which postprocessing should be able to handle. 524 */ 525 u64 notrace ktime_get_boot_fast_ns(void) 526 { 527 struct timekeeper *tk = &tk_core.timekeeper; 528 529 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 530 } 531 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 532 533 /* 534 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 535 */ 536 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 537 { 538 struct tk_read_base *tkr; 539 u64 basem, baser, delta; 540 unsigned int seq; 541 542 do { 543 seq = raw_read_seqcount_latch(&tkf->seq); 544 tkr = tkf->base + (seq & 0x01); 545 basem = ktime_to_ns(tkr->base); 546 baser = ktime_to_ns(tkr->base_real); 547 548 delta = timekeeping_delta_to_ns(tkr, 549 clocksource_delta(tk_clock_read(tkr), 550 tkr->cycle_last, tkr->mask)); 551 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 552 553 if (mono) 554 *mono = basem + delta; 555 return baser + delta; 556 } 557 558 /** 559 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 560 */ 561 u64 ktime_get_real_fast_ns(void) 562 { 563 return __ktime_get_real_fast(&tk_fast_mono, NULL); 564 } 565 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 566 567 /** 568 * ktime_get_fast_timestamps: - NMI safe timestamps 569 * @snapshot: Pointer to timestamp storage 570 * 571 * Stores clock monotonic, boottime and realtime timestamps. 572 * 573 * Boot time is a racy access on 32bit systems if the sleep time injection 574 * happens late during resume and not in timekeeping_resume(). That could 575 * be avoided by expanding struct tk_read_base with boot offset for 32bit 576 * and adding more overhead to the update. As this is a hard to observe 577 * once per resume event which can be filtered with reasonable effort using 578 * the accurate mono/real timestamps, it's probably not worth the trouble. 579 * 580 * Aside of that it might be possible on 32 and 64 bit to observe the 581 * following when the sleep time injection happens late: 582 * 583 * CPU 0 CPU 1 584 * timekeeping_resume() 585 * ktime_get_fast_timestamps() 586 * mono, real = __ktime_get_real_fast() 587 * inject_sleep_time() 588 * update boot offset 589 * boot = mono + bootoffset; 590 * 591 * That means that boot time already has the sleep time adjustment, but 592 * real time does not. On the next readout both are in sync again. 593 * 594 * Preventing this for 64bit is not really feasible without destroying the 595 * careful cache layout of the timekeeper because the sequence count and 596 * struct tk_read_base would then need two cache lines instead of one. 597 * 598 * Access to the time keeper clock source is disabled accross the innermost 599 * steps of suspend/resume. The accessors still work, but the timestamps 600 * are frozen until time keeping is resumed which happens very early. 601 * 602 * For regular suspend/resume there is no observable difference vs. sched 603 * clock, but it might affect some of the nasty low level debug printks. 604 * 605 * OTOH, access to sched clock is not guaranteed accross suspend/resume on 606 * all systems either so it depends on the hardware in use. 607 * 608 * If that turns out to be a real problem then this could be mitigated by 609 * using sched clock in a similar way as during early boot. But it's not as 610 * trivial as on early boot because it needs some careful protection 611 * against the clock monotonic timestamp jumping backwards on resume. 612 */ 613 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 614 { 615 struct timekeeper *tk = &tk_core.timekeeper; 616 617 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 618 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 619 } 620 621 /** 622 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 623 * @tk: Timekeeper to snapshot. 624 * 625 * It generally is unsafe to access the clocksource after timekeeping has been 626 * suspended, so take a snapshot of the readout base of @tk and use it as the 627 * fast timekeeper's readout base while suspended. It will return the same 628 * number of cycles every time until timekeeping is resumed at which time the 629 * proper readout base for the fast timekeeper will be restored automatically. 630 */ 631 static void halt_fast_timekeeper(const struct timekeeper *tk) 632 { 633 static struct tk_read_base tkr_dummy; 634 const struct tk_read_base *tkr = &tk->tkr_mono; 635 636 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 637 cycles_at_suspend = tk_clock_read(tkr); 638 tkr_dummy.clock = &dummy_clock; 639 tkr_dummy.base_real = tkr->base + tk->offs_real; 640 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 641 642 tkr = &tk->tkr_raw; 643 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 644 tkr_dummy.clock = &dummy_clock; 645 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 646 } 647 648 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 649 650 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 651 { 652 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 653 } 654 655 /** 656 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 657 */ 658 int pvclock_gtod_register_notifier(struct notifier_block *nb) 659 { 660 struct timekeeper *tk = &tk_core.timekeeper; 661 unsigned long flags; 662 int ret; 663 664 raw_spin_lock_irqsave(&timekeeper_lock, flags); 665 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 666 update_pvclock_gtod(tk, true); 667 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 668 669 return ret; 670 } 671 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 672 673 /** 674 * pvclock_gtod_unregister_notifier - unregister a pvclock 675 * timedata update listener 676 */ 677 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 678 { 679 unsigned long flags; 680 int ret; 681 682 raw_spin_lock_irqsave(&timekeeper_lock, flags); 683 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 684 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 685 686 return ret; 687 } 688 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 689 690 /* 691 * tk_update_leap_state - helper to update the next_leap_ktime 692 */ 693 static inline void tk_update_leap_state(struct timekeeper *tk) 694 { 695 tk->next_leap_ktime = ntp_get_next_leap(); 696 if (tk->next_leap_ktime != KTIME_MAX) 697 /* Convert to monotonic time */ 698 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 699 } 700 701 /* 702 * Update the ktime_t based scalar nsec members of the timekeeper 703 */ 704 static inline void tk_update_ktime_data(struct timekeeper *tk) 705 { 706 u64 seconds; 707 u32 nsec; 708 709 /* 710 * The xtime based monotonic readout is: 711 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 712 * The ktime based monotonic readout is: 713 * nsec = base_mono + now(); 714 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 715 */ 716 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 717 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 718 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 719 720 /* 721 * The sum of the nanoseconds portions of xtime and 722 * wall_to_monotonic can be greater/equal one second. Take 723 * this into account before updating tk->ktime_sec. 724 */ 725 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 726 if (nsec >= NSEC_PER_SEC) 727 seconds++; 728 tk->ktime_sec = seconds; 729 730 /* Update the monotonic raw base */ 731 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 732 } 733 734 /* must hold timekeeper_lock */ 735 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 736 { 737 if (action & TK_CLEAR_NTP) { 738 tk->ntp_error = 0; 739 ntp_clear(); 740 } 741 742 tk_update_leap_state(tk); 743 tk_update_ktime_data(tk); 744 745 update_vsyscall(tk); 746 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 747 748 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 749 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 750 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 751 752 if (action & TK_CLOCK_WAS_SET) 753 tk->clock_was_set_seq++; 754 /* 755 * The mirroring of the data to the shadow-timekeeper needs 756 * to happen last here to ensure we don't over-write the 757 * timekeeper structure on the next update with stale data 758 */ 759 if (action & TK_MIRROR) 760 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 761 sizeof(tk_core.timekeeper)); 762 } 763 764 /** 765 * timekeeping_forward_now - update clock to the current time 766 * 767 * Forward the current clock to update its state since the last call to 768 * update_wall_time(). This is useful before significant clock changes, 769 * as it avoids having to deal with this time offset explicitly. 770 */ 771 static void timekeeping_forward_now(struct timekeeper *tk) 772 { 773 u64 cycle_now, delta; 774 775 cycle_now = tk_clock_read(&tk->tkr_mono); 776 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 777 tk->tkr_mono.cycle_last = cycle_now; 778 tk->tkr_raw.cycle_last = cycle_now; 779 780 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 781 782 /* If arch requires, add in get_arch_timeoffset() */ 783 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 784 785 786 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 787 788 /* If arch requires, add in get_arch_timeoffset() */ 789 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 790 791 tk_normalize_xtime(tk); 792 } 793 794 /** 795 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 796 * @ts: pointer to the timespec to be set 797 * 798 * Returns the time of day in a timespec64 (WARN if suspended). 799 */ 800 void ktime_get_real_ts64(struct timespec64 *ts) 801 { 802 struct timekeeper *tk = &tk_core.timekeeper; 803 unsigned int seq; 804 u64 nsecs; 805 806 WARN_ON(timekeeping_suspended); 807 808 do { 809 seq = read_seqcount_begin(&tk_core.seq); 810 811 ts->tv_sec = tk->xtime_sec; 812 nsecs = timekeeping_get_ns(&tk->tkr_mono); 813 814 } while (read_seqcount_retry(&tk_core.seq, seq)); 815 816 ts->tv_nsec = 0; 817 timespec64_add_ns(ts, nsecs); 818 } 819 EXPORT_SYMBOL(ktime_get_real_ts64); 820 821 ktime_t ktime_get(void) 822 { 823 struct timekeeper *tk = &tk_core.timekeeper; 824 unsigned int seq; 825 ktime_t base; 826 u64 nsecs; 827 828 WARN_ON(timekeeping_suspended); 829 830 do { 831 seq = read_seqcount_begin(&tk_core.seq); 832 base = tk->tkr_mono.base; 833 nsecs = timekeeping_get_ns(&tk->tkr_mono); 834 835 } while (read_seqcount_retry(&tk_core.seq, seq)); 836 837 return ktime_add_ns(base, nsecs); 838 } 839 EXPORT_SYMBOL_GPL(ktime_get); 840 841 u32 ktime_get_resolution_ns(void) 842 { 843 struct timekeeper *tk = &tk_core.timekeeper; 844 unsigned int seq; 845 u32 nsecs; 846 847 WARN_ON(timekeeping_suspended); 848 849 do { 850 seq = read_seqcount_begin(&tk_core.seq); 851 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 852 } while (read_seqcount_retry(&tk_core.seq, seq)); 853 854 return nsecs; 855 } 856 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 857 858 static ktime_t *offsets[TK_OFFS_MAX] = { 859 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 860 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 861 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 862 }; 863 864 ktime_t ktime_get_with_offset(enum tk_offsets offs) 865 { 866 struct timekeeper *tk = &tk_core.timekeeper; 867 unsigned int seq; 868 ktime_t base, *offset = offsets[offs]; 869 u64 nsecs; 870 871 WARN_ON(timekeeping_suspended); 872 873 do { 874 seq = read_seqcount_begin(&tk_core.seq); 875 base = ktime_add(tk->tkr_mono.base, *offset); 876 nsecs = timekeeping_get_ns(&tk->tkr_mono); 877 878 } while (read_seqcount_retry(&tk_core.seq, seq)); 879 880 return ktime_add_ns(base, nsecs); 881 882 } 883 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 884 885 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 886 { 887 struct timekeeper *tk = &tk_core.timekeeper; 888 unsigned int seq; 889 ktime_t base, *offset = offsets[offs]; 890 u64 nsecs; 891 892 WARN_ON(timekeeping_suspended); 893 894 do { 895 seq = read_seqcount_begin(&tk_core.seq); 896 base = ktime_add(tk->tkr_mono.base, *offset); 897 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 898 899 } while (read_seqcount_retry(&tk_core.seq, seq)); 900 901 return ktime_add_ns(base, nsecs); 902 } 903 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 904 905 /** 906 * ktime_mono_to_any() - convert mononotic time to any other time 907 * @tmono: time to convert. 908 * @offs: which offset to use 909 */ 910 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 911 { 912 ktime_t *offset = offsets[offs]; 913 unsigned int seq; 914 ktime_t tconv; 915 916 do { 917 seq = read_seqcount_begin(&tk_core.seq); 918 tconv = ktime_add(tmono, *offset); 919 } while (read_seqcount_retry(&tk_core.seq, seq)); 920 921 return tconv; 922 } 923 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 924 925 /** 926 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 927 */ 928 ktime_t ktime_get_raw(void) 929 { 930 struct timekeeper *tk = &tk_core.timekeeper; 931 unsigned int seq; 932 ktime_t base; 933 u64 nsecs; 934 935 do { 936 seq = read_seqcount_begin(&tk_core.seq); 937 base = tk->tkr_raw.base; 938 nsecs = timekeeping_get_ns(&tk->tkr_raw); 939 940 } while (read_seqcount_retry(&tk_core.seq, seq)); 941 942 return ktime_add_ns(base, nsecs); 943 } 944 EXPORT_SYMBOL_GPL(ktime_get_raw); 945 946 /** 947 * ktime_get_ts64 - get the monotonic clock in timespec64 format 948 * @ts: pointer to timespec variable 949 * 950 * The function calculates the monotonic clock from the realtime 951 * clock and the wall_to_monotonic offset and stores the result 952 * in normalized timespec64 format in the variable pointed to by @ts. 953 */ 954 void ktime_get_ts64(struct timespec64 *ts) 955 { 956 struct timekeeper *tk = &tk_core.timekeeper; 957 struct timespec64 tomono; 958 unsigned int seq; 959 u64 nsec; 960 961 WARN_ON(timekeeping_suspended); 962 963 do { 964 seq = read_seqcount_begin(&tk_core.seq); 965 ts->tv_sec = tk->xtime_sec; 966 nsec = timekeeping_get_ns(&tk->tkr_mono); 967 tomono = tk->wall_to_monotonic; 968 969 } while (read_seqcount_retry(&tk_core.seq, seq)); 970 971 ts->tv_sec += tomono.tv_sec; 972 ts->tv_nsec = 0; 973 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 974 } 975 EXPORT_SYMBOL_GPL(ktime_get_ts64); 976 977 /** 978 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 979 * 980 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 981 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 982 * works on both 32 and 64 bit systems. On 32 bit systems the readout 983 * covers ~136 years of uptime which should be enough to prevent 984 * premature wrap arounds. 985 */ 986 time64_t ktime_get_seconds(void) 987 { 988 struct timekeeper *tk = &tk_core.timekeeper; 989 990 WARN_ON(timekeeping_suspended); 991 return tk->ktime_sec; 992 } 993 EXPORT_SYMBOL_GPL(ktime_get_seconds); 994 995 /** 996 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 997 * 998 * Returns the wall clock seconds since 1970. This replaces the 999 * get_seconds() interface which is not y2038 safe on 32bit systems. 1000 * 1001 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1002 * 32bit systems the access must be protected with the sequence 1003 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1004 * value. 1005 */ 1006 time64_t ktime_get_real_seconds(void) 1007 { 1008 struct timekeeper *tk = &tk_core.timekeeper; 1009 time64_t seconds; 1010 unsigned int seq; 1011 1012 if (IS_ENABLED(CONFIG_64BIT)) 1013 return tk->xtime_sec; 1014 1015 do { 1016 seq = read_seqcount_begin(&tk_core.seq); 1017 seconds = tk->xtime_sec; 1018 1019 } while (read_seqcount_retry(&tk_core.seq, seq)); 1020 1021 return seconds; 1022 } 1023 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1024 1025 /** 1026 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1027 * but without the sequence counter protect. This internal function 1028 * is called just when timekeeping lock is already held. 1029 */ 1030 noinstr time64_t __ktime_get_real_seconds(void) 1031 { 1032 struct timekeeper *tk = &tk_core.timekeeper; 1033 1034 return tk->xtime_sec; 1035 } 1036 1037 /** 1038 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1039 * @systime_snapshot: pointer to struct receiving the system time snapshot 1040 */ 1041 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1042 { 1043 struct timekeeper *tk = &tk_core.timekeeper; 1044 unsigned int seq; 1045 ktime_t base_raw; 1046 ktime_t base_real; 1047 u64 nsec_raw; 1048 u64 nsec_real; 1049 u64 now; 1050 1051 WARN_ON_ONCE(timekeeping_suspended); 1052 1053 do { 1054 seq = read_seqcount_begin(&tk_core.seq); 1055 now = tk_clock_read(&tk->tkr_mono); 1056 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1057 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1058 base_real = ktime_add(tk->tkr_mono.base, 1059 tk_core.timekeeper.offs_real); 1060 base_raw = tk->tkr_raw.base; 1061 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1062 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1063 } while (read_seqcount_retry(&tk_core.seq, seq)); 1064 1065 systime_snapshot->cycles = now; 1066 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1067 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1068 } 1069 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1070 1071 /* Scale base by mult/div checking for overflow */ 1072 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1073 { 1074 u64 tmp, rem; 1075 1076 tmp = div64_u64_rem(*base, div, &rem); 1077 1078 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1079 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1080 return -EOVERFLOW; 1081 tmp *= mult; 1082 1083 rem = div64_u64(rem * mult, div); 1084 *base = tmp + rem; 1085 return 0; 1086 } 1087 1088 /** 1089 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1090 * @history: Snapshot representing start of history 1091 * @partial_history_cycles: Cycle offset into history (fractional part) 1092 * @total_history_cycles: Total history length in cycles 1093 * @discontinuity: True indicates clock was set on history period 1094 * @ts: Cross timestamp that should be adjusted using 1095 * partial/total ratio 1096 * 1097 * Helper function used by get_device_system_crosststamp() to correct the 1098 * crosstimestamp corresponding to the start of the current interval to the 1099 * system counter value (timestamp point) provided by the driver. The 1100 * total_history_* quantities are the total history starting at the provided 1101 * reference point and ending at the start of the current interval. The cycle 1102 * count between the driver timestamp point and the start of the current 1103 * interval is partial_history_cycles. 1104 */ 1105 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1106 u64 partial_history_cycles, 1107 u64 total_history_cycles, 1108 bool discontinuity, 1109 struct system_device_crosststamp *ts) 1110 { 1111 struct timekeeper *tk = &tk_core.timekeeper; 1112 u64 corr_raw, corr_real; 1113 bool interp_forward; 1114 int ret; 1115 1116 if (total_history_cycles == 0 || partial_history_cycles == 0) 1117 return 0; 1118 1119 /* Interpolate shortest distance from beginning or end of history */ 1120 interp_forward = partial_history_cycles > total_history_cycles / 2; 1121 partial_history_cycles = interp_forward ? 1122 total_history_cycles - partial_history_cycles : 1123 partial_history_cycles; 1124 1125 /* 1126 * Scale the monotonic raw time delta by: 1127 * partial_history_cycles / total_history_cycles 1128 */ 1129 corr_raw = (u64)ktime_to_ns( 1130 ktime_sub(ts->sys_monoraw, history->raw)); 1131 ret = scale64_check_overflow(partial_history_cycles, 1132 total_history_cycles, &corr_raw); 1133 if (ret) 1134 return ret; 1135 1136 /* 1137 * If there is a discontinuity in the history, scale monotonic raw 1138 * correction by: 1139 * mult(real)/mult(raw) yielding the realtime correction 1140 * Otherwise, calculate the realtime correction similar to monotonic 1141 * raw calculation 1142 */ 1143 if (discontinuity) { 1144 corr_real = mul_u64_u32_div 1145 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1146 } else { 1147 corr_real = (u64)ktime_to_ns( 1148 ktime_sub(ts->sys_realtime, history->real)); 1149 ret = scale64_check_overflow(partial_history_cycles, 1150 total_history_cycles, &corr_real); 1151 if (ret) 1152 return ret; 1153 } 1154 1155 /* Fixup monotonic raw and real time time values */ 1156 if (interp_forward) { 1157 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1158 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1159 } else { 1160 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1161 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1162 } 1163 1164 return 0; 1165 } 1166 1167 /* 1168 * cycle_between - true if test occurs chronologically between before and after 1169 */ 1170 static bool cycle_between(u64 before, u64 test, u64 after) 1171 { 1172 if (test > before && test < after) 1173 return true; 1174 if (test < before && before > after) 1175 return true; 1176 return false; 1177 } 1178 1179 /** 1180 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1181 * @get_time_fn: Callback to get simultaneous device time and 1182 * system counter from the device driver 1183 * @ctx: Context passed to get_time_fn() 1184 * @history_begin: Historical reference point used to interpolate system 1185 * time when counter provided by the driver is before the current interval 1186 * @xtstamp: Receives simultaneously captured system and device time 1187 * 1188 * Reads a timestamp from a device and correlates it to system time 1189 */ 1190 int get_device_system_crosststamp(int (*get_time_fn) 1191 (ktime_t *device_time, 1192 struct system_counterval_t *sys_counterval, 1193 void *ctx), 1194 void *ctx, 1195 struct system_time_snapshot *history_begin, 1196 struct system_device_crosststamp *xtstamp) 1197 { 1198 struct system_counterval_t system_counterval; 1199 struct timekeeper *tk = &tk_core.timekeeper; 1200 u64 cycles, now, interval_start; 1201 unsigned int clock_was_set_seq = 0; 1202 ktime_t base_real, base_raw; 1203 u64 nsec_real, nsec_raw; 1204 u8 cs_was_changed_seq; 1205 unsigned int seq; 1206 bool do_interp; 1207 int ret; 1208 1209 do { 1210 seq = read_seqcount_begin(&tk_core.seq); 1211 /* 1212 * Try to synchronously capture device time and a system 1213 * counter value calling back into the device driver 1214 */ 1215 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1216 if (ret) 1217 return ret; 1218 1219 /* 1220 * Verify that the clocksource associated with the captured 1221 * system counter value is the same as the currently installed 1222 * timekeeper clocksource 1223 */ 1224 if (tk->tkr_mono.clock != system_counterval.cs) 1225 return -ENODEV; 1226 cycles = system_counterval.cycles; 1227 1228 /* 1229 * Check whether the system counter value provided by the 1230 * device driver is on the current timekeeping interval. 1231 */ 1232 now = tk_clock_read(&tk->tkr_mono); 1233 interval_start = tk->tkr_mono.cycle_last; 1234 if (!cycle_between(interval_start, cycles, now)) { 1235 clock_was_set_seq = tk->clock_was_set_seq; 1236 cs_was_changed_seq = tk->cs_was_changed_seq; 1237 cycles = interval_start; 1238 do_interp = true; 1239 } else { 1240 do_interp = false; 1241 } 1242 1243 base_real = ktime_add(tk->tkr_mono.base, 1244 tk_core.timekeeper.offs_real); 1245 base_raw = tk->tkr_raw.base; 1246 1247 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1248 system_counterval.cycles); 1249 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1250 system_counterval.cycles); 1251 } while (read_seqcount_retry(&tk_core.seq, seq)); 1252 1253 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1254 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1255 1256 /* 1257 * Interpolate if necessary, adjusting back from the start of the 1258 * current interval 1259 */ 1260 if (do_interp) { 1261 u64 partial_history_cycles, total_history_cycles; 1262 bool discontinuity; 1263 1264 /* 1265 * Check that the counter value occurs after the provided 1266 * history reference and that the history doesn't cross a 1267 * clocksource change 1268 */ 1269 if (!history_begin || 1270 !cycle_between(history_begin->cycles, 1271 system_counterval.cycles, cycles) || 1272 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1273 return -EINVAL; 1274 partial_history_cycles = cycles - system_counterval.cycles; 1275 total_history_cycles = cycles - history_begin->cycles; 1276 discontinuity = 1277 history_begin->clock_was_set_seq != clock_was_set_seq; 1278 1279 ret = adjust_historical_crosststamp(history_begin, 1280 partial_history_cycles, 1281 total_history_cycles, 1282 discontinuity, xtstamp); 1283 if (ret) 1284 return ret; 1285 } 1286 1287 return 0; 1288 } 1289 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1290 1291 /** 1292 * do_settimeofday64 - Sets the time of day. 1293 * @ts: pointer to the timespec64 variable containing the new time 1294 * 1295 * Sets the time of day to the new time and update NTP and notify hrtimers 1296 */ 1297 int do_settimeofday64(const struct timespec64 *ts) 1298 { 1299 struct timekeeper *tk = &tk_core.timekeeper; 1300 struct timespec64 ts_delta, xt; 1301 unsigned long flags; 1302 int ret = 0; 1303 1304 if (!timespec64_valid_settod(ts)) 1305 return -EINVAL; 1306 1307 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1308 write_seqcount_begin(&tk_core.seq); 1309 1310 timekeeping_forward_now(tk); 1311 1312 xt = tk_xtime(tk); 1313 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1314 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1315 1316 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1317 ret = -EINVAL; 1318 goto out; 1319 } 1320 1321 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1322 1323 tk_set_xtime(tk, ts); 1324 out: 1325 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1326 1327 write_seqcount_end(&tk_core.seq); 1328 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1329 1330 /* signal hrtimers about time change */ 1331 clock_was_set(); 1332 1333 if (!ret) 1334 audit_tk_injoffset(ts_delta); 1335 1336 return ret; 1337 } 1338 EXPORT_SYMBOL(do_settimeofday64); 1339 1340 /** 1341 * timekeeping_inject_offset - Adds or subtracts from the current time. 1342 * @tv: pointer to the timespec variable containing the offset 1343 * 1344 * Adds or subtracts an offset value from the current time. 1345 */ 1346 static int timekeeping_inject_offset(const struct timespec64 *ts) 1347 { 1348 struct timekeeper *tk = &tk_core.timekeeper; 1349 unsigned long flags; 1350 struct timespec64 tmp; 1351 int ret = 0; 1352 1353 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1354 return -EINVAL; 1355 1356 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1357 write_seqcount_begin(&tk_core.seq); 1358 1359 timekeeping_forward_now(tk); 1360 1361 /* Make sure the proposed value is valid */ 1362 tmp = timespec64_add(tk_xtime(tk), *ts); 1363 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1364 !timespec64_valid_settod(&tmp)) { 1365 ret = -EINVAL; 1366 goto error; 1367 } 1368 1369 tk_xtime_add(tk, ts); 1370 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1371 1372 error: /* even if we error out, we forwarded the time, so call update */ 1373 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1374 1375 write_seqcount_end(&tk_core.seq); 1376 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1377 1378 /* signal hrtimers about time change */ 1379 clock_was_set(); 1380 1381 return ret; 1382 } 1383 1384 /* 1385 * Indicates if there is an offset between the system clock and the hardware 1386 * clock/persistent clock/rtc. 1387 */ 1388 int persistent_clock_is_local; 1389 1390 /* 1391 * Adjust the time obtained from the CMOS to be UTC time instead of 1392 * local time. 1393 * 1394 * This is ugly, but preferable to the alternatives. Otherwise we 1395 * would either need to write a program to do it in /etc/rc (and risk 1396 * confusion if the program gets run more than once; it would also be 1397 * hard to make the program warp the clock precisely n hours) or 1398 * compile in the timezone information into the kernel. Bad, bad.... 1399 * 1400 * - TYT, 1992-01-01 1401 * 1402 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1403 * as real UNIX machines always do it. This avoids all headaches about 1404 * daylight saving times and warping kernel clocks. 1405 */ 1406 void timekeeping_warp_clock(void) 1407 { 1408 if (sys_tz.tz_minuteswest != 0) { 1409 struct timespec64 adjust; 1410 1411 persistent_clock_is_local = 1; 1412 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1413 adjust.tv_nsec = 0; 1414 timekeeping_inject_offset(&adjust); 1415 } 1416 } 1417 1418 /** 1419 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1420 * 1421 */ 1422 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1423 { 1424 tk->tai_offset = tai_offset; 1425 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1426 } 1427 1428 /** 1429 * change_clocksource - Swaps clocksources if a new one is available 1430 * 1431 * Accumulates current time interval and initializes new clocksource 1432 */ 1433 static int change_clocksource(void *data) 1434 { 1435 struct timekeeper *tk = &tk_core.timekeeper; 1436 struct clocksource *new, *old; 1437 unsigned long flags; 1438 1439 new = (struct clocksource *) data; 1440 1441 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1442 write_seqcount_begin(&tk_core.seq); 1443 1444 timekeeping_forward_now(tk); 1445 /* 1446 * If the cs is in module, get a module reference. Succeeds 1447 * for built-in code (owner == NULL) as well. 1448 */ 1449 if (try_module_get(new->owner)) { 1450 if (!new->enable || new->enable(new) == 0) { 1451 old = tk->tkr_mono.clock; 1452 tk_setup_internals(tk, new); 1453 if (old->disable) 1454 old->disable(old); 1455 module_put(old->owner); 1456 } else { 1457 module_put(new->owner); 1458 } 1459 } 1460 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1461 1462 write_seqcount_end(&tk_core.seq); 1463 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1464 1465 return 0; 1466 } 1467 1468 /** 1469 * timekeeping_notify - Install a new clock source 1470 * @clock: pointer to the clock source 1471 * 1472 * This function is called from clocksource.c after a new, better clock 1473 * source has been registered. The caller holds the clocksource_mutex. 1474 */ 1475 int timekeeping_notify(struct clocksource *clock) 1476 { 1477 struct timekeeper *tk = &tk_core.timekeeper; 1478 1479 if (tk->tkr_mono.clock == clock) 1480 return 0; 1481 stop_machine(change_clocksource, clock, NULL); 1482 tick_clock_notify(); 1483 return tk->tkr_mono.clock == clock ? 0 : -1; 1484 } 1485 1486 /** 1487 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1488 * @ts: pointer to the timespec64 to be set 1489 * 1490 * Returns the raw monotonic time (completely un-modified by ntp) 1491 */ 1492 void ktime_get_raw_ts64(struct timespec64 *ts) 1493 { 1494 struct timekeeper *tk = &tk_core.timekeeper; 1495 unsigned int seq; 1496 u64 nsecs; 1497 1498 do { 1499 seq = read_seqcount_begin(&tk_core.seq); 1500 ts->tv_sec = tk->raw_sec; 1501 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1502 1503 } while (read_seqcount_retry(&tk_core.seq, seq)); 1504 1505 ts->tv_nsec = 0; 1506 timespec64_add_ns(ts, nsecs); 1507 } 1508 EXPORT_SYMBOL(ktime_get_raw_ts64); 1509 1510 1511 /** 1512 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1513 */ 1514 int timekeeping_valid_for_hres(void) 1515 { 1516 struct timekeeper *tk = &tk_core.timekeeper; 1517 unsigned int seq; 1518 int ret; 1519 1520 do { 1521 seq = read_seqcount_begin(&tk_core.seq); 1522 1523 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1524 1525 } while (read_seqcount_retry(&tk_core.seq, seq)); 1526 1527 return ret; 1528 } 1529 1530 /** 1531 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1532 */ 1533 u64 timekeeping_max_deferment(void) 1534 { 1535 struct timekeeper *tk = &tk_core.timekeeper; 1536 unsigned int seq; 1537 u64 ret; 1538 1539 do { 1540 seq = read_seqcount_begin(&tk_core.seq); 1541 1542 ret = tk->tkr_mono.clock->max_idle_ns; 1543 1544 } while (read_seqcount_retry(&tk_core.seq, seq)); 1545 1546 return ret; 1547 } 1548 1549 /** 1550 * read_persistent_clock64 - Return time from the persistent clock. 1551 * 1552 * Weak dummy function for arches that do not yet support it. 1553 * Reads the time from the battery backed persistent clock. 1554 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1555 * 1556 * XXX - Do be sure to remove it once all arches implement it. 1557 */ 1558 void __weak read_persistent_clock64(struct timespec64 *ts) 1559 { 1560 ts->tv_sec = 0; 1561 ts->tv_nsec = 0; 1562 } 1563 1564 /** 1565 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1566 * from the boot. 1567 * 1568 * Weak dummy function for arches that do not yet support it. 1569 * wall_time - current time as returned by persistent clock 1570 * boot_offset - offset that is defined as wall_time - boot_time 1571 * The default function calculates offset based on the current value of 1572 * local_clock(). This way architectures that support sched_clock() but don't 1573 * support dedicated boot time clock will provide the best estimate of the 1574 * boot time. 1575 */ 1576 void __weak __init 1577 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1578 struct timespec64 *boot_offset) 1579 { 1580 read_persistent_clock64(wall_time); 1581 *boot_offset = ns_to_timespec64(local_clock()); 1582 } 1583 1584 /* 1585 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1586 * 1587 * The flag starts of false and is only set when a suspend reaches 1588 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1589 * timekeeper clocksource is not stopping across suspend and has been 1590 * used to update sleep time. If the timekeeper clocksource has stopped 1591 * then the flag stays true and is used by the RTC resume code to decide 1592 * whether sleeptime must be injected and if so the flag gets false then. 1593 * 1594 * If a suspend fails before reaching timekeeping_resume() then the flag 1595 * stays false and prevents erroneous sleeptime injection. 1596 */ 1597 static bool suspend_timing_needed; 1598 1599 /* Flag for if there is a persistent clock on this platform */ 1600 static bool persistent_clock_exists; 1601 1602 /* 1603 * timekeeping_init - Initializes the clocksource and common timekeeping values 1604 */ 1605 void __init timekeeping_init(void) 1606 { 1607 struct timespec64 wall_time, boot_offset, wall_to_mono; 1608 struct timekeeper *tk = &tk_core.timekeeper; 1609 struct clocksource *clock; 1610 unsigned long flags; 1611 1612 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1613 if (timespec64_valid_settod(&wall_time) && 1614 timespec64_to_ns(&wall_time) > 0) { 1615 persistent_clock_exists = true; 1616 } else if (timespec64_to_ns(&wall_time) != 0) { 1617 pr_warn("Persistent clock returned invalid value"); 1618 wall_time = (struct timespec64){0}; 1619 } 1620 1621 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1622 boot_offset = (struct timespec64){0}; 1623 1624 /* 1625 * We want set wall_to_mono, so the following is true: 1626 * wall time + wall_to_mono = boot time 1627 */ 1628 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1629 1630 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1631 write_seqcount_begin(&tk_core.seq); 1632 ntp_init(); 1633 1634 clock = clocksource_default_clock(); 1635 if (clock->enable) 1636 clock->enable(clock); 1637 tk_setup_internals(tk, clock); 1638 1639 tk_set_xtime(tk, &wall_time); 1640 tk->raw_sec = 0; 1641 1642 tk_set_wall_to_mono(tk, wall_to_mono); 1643 1644 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1645 1646 write_seqcount_end(&tk_core.seq); 1647 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1648 } 1649 1650 /* time in seconds when suspend began for persistent clock */ 1651 static struct timespec64 timekeeping_suspend_time; 1652 1653 /** 1654 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1655 * @delta: pointer to a timespec delta value 1656 * 1657 * Takes a timespec offset measuring a suspend interval and properly 1658 * adds the sleep offset to the timekeeping variables. 1659 */ 1660 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1661 const struct timespec64 *delta) 1662 { 1663 if (!timespec64_valid_strict(delta)) { 1664 printk_deferred(KERN_WARNING 1665 "__timekeeping_inject_sleeptime: Invalid " 1666 "sleep delta value!\n"); 1667 return; 1668 } 1669 tk_xtime_add(tk, delta); 1670 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1671 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1672 tk_debug_account_sleep_time(delta); 1673 } 1674 1675 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1676 /** 1677 * We have three kinds of time sources to use for sleep time 1678 * injection, the preference order is: 1679 * 1) non-stop clocksource 1680 * 2) persistent clock (ie: RTC accessible when irqs are off) 1681 * 3) RTC 1682 * 1683 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1684 * If system has neither 1) nor 2), 3) will be used finally. 1685 * 1686 * 1687 * If timekeeping has injected sleeptime via either 1) or 2), 1688 * 3) becomes needless, so in this case we don't need to call 1689 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1690 * means. 1691 */ 1692 bool timekeeping_rtc_skipresume(void) 1693 { 1694 return !suspend_timing_needed; 1695 } 1696 1697 /** 1698 * 1) can be determined whether to use or not only when doing 1699 * timekeeping_resume() which is invoked after rtc_suspend(), 1700 * so we can't skip rtc_suspend() surely if system has 1). 1701 * 1702 * But if system has 2), 2) will definitely be used, so in this 1703 * case we don't need to call rtc_suspend(), and this is what 1704 * timekeeping_rtc_skipsuspend() means. 1705 */ 1706 bool timekeeping_rtc_skipsuspend(void) 1707 { 1708 return persistent_clock_exists; 1709 } 1710 1711 /** 1712 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1713 * @delta: pointer to a timespec64 delta value 1714 * 1715 * This hook is for architectures that cannot support read_persistent_clock64 1716 * because their RTC/persistent clock is only accessible when irqs are enabled. 1717 * and also don't have an effective nonstop clocksource. 1718 * 1719 * This function should only be called by rtc_resume(), and allows 1720 * a suspend offset to be injected into the timekeeping values. 1721 */ 1722 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1723 { 1724 struct timekeeper *tk = &tk_core.timekeeper; 1725 unsigned long flags; 1726 1727 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1728 write_seqcount_begin(&tk_core.seq); 1729 1730 suspend_timing_needed = false; 1731 1732 timekeeping_forward_now(tk); 1733 1734 __timekeeping_inject_sleeptime(tk, delta); 1735 1736 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1737 1738 write_seqcount_end(&tk_core.seq); 1739 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1740 1741 /* signal hrtimers about time change */ 1742 clock_was_set(); 1743 } 1744 #endif 1745 1746 /** 1747 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1748 */ 1749 void timekeeping_resume(void) 1750 { 1751 struct timekeeper *tk = &tk_core.timekeeper; 1752 struct clocksource *clock = tk->tkr_mono.clock; 1753 unsigned long flags; 1754 struct timespec64 ts_new, ts_delta; 1755 u64 cycle_now, nsec; 1756 bool inject_sleeptime = false; 1757 1758 read_persistent_clock64(&ts_new); 1759 1760 clockevents_resume(); 1761 clocksource_resume(); 1762 1763 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1764 write_seqcount_begin(&tk_core.seq); 1765 1766 /* 1767 * After system resumes, we need to calculate the suspended time and 1768 * compensate it for the OS time. There are 3 sources that could be 1769 * used: Nonstop clocksource during suspend, persistent clock and rtc 1770 * device. 1771 * 1772 * One specific platform may have 1 or 2 or all of them, and the 1773 * preference will be: 1774 * suspend-nonstop clocksource -> persistent clock -> rtc 1775 * The less preferred source will only be tried if there is no better 1776 * usable source. The rtc part is handled separately in rtc core code. 1777 */ 1778 cycle_now = tk_clock_read(&tk->tkr_mono); 1779 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1780 if (nsec > 0) { 1781 ts_delta = ns_to_timespec64(nsec); 1782 inject_sleeptime = true; 1783 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1784 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1785 inject_sleeptime = true; 1786 } 1787 1788 if (inject_sleeptime) { 1789 suspend_timing_needed = false; 1790 __timekeeping_inject_sleeptime(tk, &ts_delta); 1791 } 1792 1793 /* Re-base the last cycle value */ 1794 tk->tkr_mono.cycle_last = cycle_now; 1795 tk->tkr_raw.cycle_last = cycle_now; 1796 1797 tk->ntp_error = 0; 1798 timekeeping_suspended = 0; 1799 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1800 write_seqcount_end(&tk_core.seq); 1801 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1802 1803 touch_softlockup_watchdog(); 1804 1805 tick_resume(); 1806 hrtimers_resume(); 1807 } 1808 1809 int timekeeping_suspend(void) 1810 { 1811 struct timekeeper *tk = &tk_core.timekeeper; 1812 unsigned long flags; 1813 struct timespec64 delta, delta_delta; 1814 static struct timespec64 old_delta; 1815 struct clocksource *curr_clock; 1816 u64 cycle_now; 1817 1818 read_persistent_clock64(&timekeeping_suspend_time); 1819 1820 /* 1821 * On some systems the persistent_clock can not be detected at 1822 * timekeeping_init by its return value, so if we see a valid 1823 * value returned, update the persistent_clock_exists flag. 1824 */ 1825 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1826 persistent_clock_exists = true; 1827 1828 suspend_timing_needed = true; 1829 1830 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1831 write_seqcount_begin(&tk_core.seq); 1832 timekeeping_forward_now(tk); 1833 timekeeping_suspended = 1; 1834 1835 /* 1836 * Since we've called forward_now, cycle_last stores the value 1837 * just read from the current clocksource. Save this to potentially 1838 * use in suspend timing. 1839 */ 1840 curr_clock = tk->tkr_mono.clock; 1841 cycle_now = tk->tkr_mono.cycle_last; 1842 clocksource_start_suspend_timing(curr_clock, cycle_now); 1843 1844 if (persistent_clock_exists) { 1845 /* 1846 * To avoid drift caused by repeated suspend/resumes, 1847 * which each can add ~1 second drift error, 1848 * try to compensate so the difference in system time 1849 * and persistent_clock time stays close to constant. 1850 */ 1851 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1852 delta_delta = timespec64_sub(delta, old_delta); 1853 if (abs(delta_delta.tv_sec) >= 2) { 1854 /* 1855 * if delta_delta is too large, assume time correction 1856 * has occurred and set old_delta to the current delta. 1857 */ 1858 old_delta = delta; 1859 } else { 1860 /* Otherwise try to adjust old_system to compensate */ 1861 timekeeping_suspend_time = 1862 timespec64_add(timekeeping_suspend_time, delta_delta); 1863 } 1864 } 1865 1866 timekeeping_update(tk, TK_MIRROR); 1867 halt_fast_timekeeper(tk); 1868 write_seqcount_end(&tk_core.seq); 1869 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1870 1871 tick_suspend(); 1872 clocksource_suspend(); 1873 clockevents_suspend(); 1874 1875 return 0; 1876 } 1877 1878 /* sysfs resume/suspend bits for timekeeping */ 1879 static struct syscore_ops timekeeping_syscore_ops = { 1880 .resume = timekeeping_resume, 1881 .suspend = timekeeping_suspend, 1882 }; 1883 1884 static int __init timekeeping_init_ops(void) 1885 { 1886 register_syscore_ops(&timekeeping_syscore_ops); 1887 return 0; 1888 } 1889 device_initcall(timekeeping_init_ops); 1890 1891 /* 1892 * Apply a multiplier adjustment to the timekeeper 1893 */ 1894 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1895 s64 offset, 1896 s32 mult_adj) 1897 { 1898 s64 interval = tk->cycle_interval; 1899 1900 if (mult_adj == 0) { 1901 return; 1902 } else if (mult_adj == -1) { 1903 interval = -interval; 1904 offset = -offset; 1905 } else if (mult_adj != 1) { 1906 interval *= mult_adj; 1907 offset *= mult_adj; 1908 } 1909 1910 /* 1911 * So the following can be confusing. 1912 * 1913 * To keep things simple, lets assume mult_adj == 1 for now. 1914 * 1915 * When mult_adj != 1, remember that the interval and offset values 1916 * have been appropriately scaled so the math is the same. 1917 * 1918 * The basic idea here is that we're increasing the multiplier 1919 * by one, this causes the xtime_interval to be incremented by 1920 * one cycle_interval. This is because: 1921 * xtime_interval = cycle_interval * mult 1922 * So if mult is being incremented by one: 1923 * xtime_interval = cycle_interval * (mult + 1) 1924 * Its the same as: 1925 * xtime_interval = (cycle_interval * mult) + cycle_interval 1926 * Which can be shortened to: 1927 * xtime_interval += cycle_interval 1928 * 1929 * So offset stores the non-accumulated cycles. Thus the current 1930 * time (in shifted nanoseconds) is: 1931 * now = (offset * adj) + xtime_nsec 1932 * Now, even though we're adjusting the clock frequency, we have 1933 * to keep time consistent. In other words, we can't jump back 1934 * in time, and we also want to avoid jumping forward in time. 1935 * 1936 * So given the same offset value, we need the time to be the same 1937 * both before and after the freq adjustment. 1938 * now = (offset * adj_1) + xtime_nsec_1 1939 * now = (offset * adj_2) + xtime_nsec_2 1940 * So: 1941 * (offset * adj_1) + xtime_nsec_1 = 1942 * (offset * adj_2) + xtime_nsec_2 1943 * And we know: 1944 * adj_2 = adj_1 + 1 1945 * So: 1946 * (offset * adj_1) + xtime_nsec_1 = 1947 * (offset * (adj_1+1)) + xtime_nsec_2 1948 * (offset * adj_1) + xtime_nsec_1 = 1949 * (offset * adj_1) + offset + xtime_nsec_2 1950 * Canceling the sides: 1951 * xtime_nsec_1 = offset + xtime_nsec_2 1952 * Which gives us: 1953 * xtime_nsec_2 = xtime_nsec_1 - offset 1954 * Which simplfies to: 1955 * xtime_nsec -= offset 1956 */ 1957 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1958 /* NTP adjustment caused clocksource mult overflow */ 1959 WARN_ON_ONCE(1); 1960 return; 1961 } 1962 1963 tk->tkr_mono.mult += mult_adj; 1964 tk->xtime_interval += interval; 1965 tk->tkr_mono.xtime_nsec -= offset; 1966 } 1967 1968 /* 1969 * Adjust the timekeeper's multiplier to the correct frequency 1970 * and also to reduce the accumulated error value. 1971 */ 1972 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1973 { 1974 u32 mult; 1975 1976 /* 1977 * Determine the multiplier from the current NTP tick length. 1978 * Avoid expensive division when the tick length doesn't change. 1979 */ 1980 if (likely(tk->ntp_tick == ntp_tick_length())) { 1981 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1982 } else { 1983 tk->ntp_tick = ntp_tick_length(); 1984 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1985 tk->xtime_remainder, tk->cycle_interval); 1986 } 1987 1988 /* 1989 * If the clock is behind the NTP time, increase the multiplier by 1 1990 * to catch up with it. If it's ahead and there was a remainder in the 1991 * tick division, the clock will slow down. Otherwise it will stay 1992 * ahead until the tick length changes to a non-divisible value. 1993 */ 1994 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 1995 mult += tk->ntp_err_mult; 1996 1997 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 1998 1999 if (unlikely(tk->tkr_mono.clock->maxadj && 2000 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2001 > tk->tkr_mono.clock->maxadj))) { 2002 printk_once(KERN_WARNING 2003 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2004 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2005 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2006 } 2007 2008 /* 2009 * It may be possible that when we entered this function, xtime_nsec 2010 * was very small. Further, if we're slightly speeding the clocksource 2011 * in the code above, its possible the required corrective factor to 2012 * xtime_nsec could cause it to underflow. 2013 * 2014 * Now, since we have already accumulated the second and the NTP 2015 * subsystem has been notified via second_overflow(), we need to skip 2016 * the next update. 2017 */ 2018 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2019 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2020 tk->tkr_mono.shift; 2021 tk->xtime_sec--; 2022 tk->skip_second_overflow = 1; 2023 } 2024 } 2025 2026 /** 2027 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2028 * 2029 * Helper function that accumulates the nsecs greater than a second 2030 * from the xtime_nsec field to the xtime_secs field. 2031 * It also calls into the NTP code to handle leapsecond processing. 2032 * 2033 */ 2034 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2035 { 2036 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2037 unsigned int clock_set = 0; 2038 2039 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2040 int leap; 2041 2042 tk->tkr_mono.xtime_nsec -= nsecps; 2043 tk->xtime_sec++; 2044 2045 /* 2046 * Skip NTP update if this second was accumulated before, 2047 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2048 */ 2049 if (unlikely(tk->skip_second_overflow)) { 2050 tk->skip_second_overflow = 0; 2051 continue; 2052 } 2053 2054 /* Figure out if its a leap sec and apply if needed */ 2055 leap = second_overflow(tk->xtime_sec); 2056 if (unlikely(leap)) { 2057 struct timespec64 ts; 2058 2059 tk->xtime_sec += leap; 2060 2061 ts.tv_sec = leap; 2062 ts.tv_nsec = 0; 2063 tk_set_wall_to_mono(tk, 2064 timespec64_sub(tk->wall_to_monotonic, ts)); 2065 2066 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2067 2068 clock_set = TK_CLOCK_WAS_SET; 2069 } 2070 } 2071 return clock_set; 2072 } 2073 2074 /** 2075 * logarithmic_accumulation - shifted accumulation of cycles 2076 * 2077 * This functions accumulates a shifted interval of cycles into 2078 * a shifted interval nanoseconds. Allows for O(log) accumulation 2079 * loop. 2080 * 2081 * Returns the unconsumed cycles. 2082 */ 2083 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2084 u32 shift, unsigned int *clock_set) 2085 { 2086 u64 interval = tk->cycle_interval << shift; 2087 u64 snsec_per_sec; 2088 2089 /* If the offset is smaller than a shifted interval, do nothing */ 2090 if (offset < interval) 2091 return offset; 2092 2093 /* Accumulate one shifted interval */ 2094 offset -= interval; 2095 tk->tkr_mono.cycle_last += interval; 2096 tk->tkr_raw.cycle_last += interval; 2097 2098 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2099 *clock_set |= accumulate_nsecs_to_secs(tk); 2100 2101 /* Accumulate raw time */ 2102 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2103 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2104 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2105 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2106 tk->raw_sec++; 2107 } 2108 2109 /* Accumulate error between NTP and clock interval */ 2110 tk->ntp_error += tk->ntp_tick << shift; 2111 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2112 (tk->ntp_error_shift + shift); 2113 2114 return offset; 2115 } 2116 2117 /* 2118 * timekeeping_advance - Updates the timekeeper to the current time and 2119 * current NTP tick length 2120 */ 2121 static void timekeeping_advance(enum timekeeping_adv_mode mode) 2122 { 2123 struct timekeeper *real_tk = &tk_core.timekeeper; 2124 struct timekeeper *tk = &shadow_timekeeper; 2125 u64 offset; 2126 int shift = 0, maxshift; 2127 unsigned int clock_set = 0; 2128 unsigned long flags; 2129 2130 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2131 2132 /* Make sure we're fully resumed: */ 2133 if (unlikely(timekeeping_suspended)) 2134 goto out; 2135 2136 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2137 offset = real_tk->cycle_interval; 2138 2139 if (mode != TK_ADV_TICK) 2140 goto out; 2141 #else 2142 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2143 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2144 2145 /* Check if there's really nothing to do */ 2146 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2147 goto out; 2148 #endif 2149 2150 /* Do some additional sanity checking */ 2151 timekeeping_check_update(tk, offset); 2152 2153 /* 2154 * With NO_HZ we may have to accumulate many cycle_intervals 2155 * (think "ticks") worth of time at once. To do this efficiently, 2156 * we calculate the largest doubling multiple of cycle_intervals 2157 * that is smaller than the offset. We then accumulate that 2158 * chunk in one go, and then try to consume the next smaller 2159 * doubled multiple. 2160 */ 2161 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2162 shift = max(0, shift); 2163 /* Bound shift to one less than what overflows tick_length */ 2164 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2165 shift = min(shift, maxshift); 2166 while (offset >= tk->cycle_interval) { 2167 offset = logarithmic_accumulation(tk, offset, shift, 2168 &clock_set); 2169 if (offset < tk->cycle_interval<<shift) 2170 shift--; 2171 } 2172 2173 /* Adjust the multiplier to correct NTP error */ 2174 timekeeping_adjust(tk, offset); 2175 2176 /* 2177 * Finally, make sure that after the rounding 2178 * xtime_nsec isn't larger than NSEC_PER_SEC 2179 */ 2180 clock_set |= accumulate_nsecs_to_secs(tk); 2181 2182 write_seqcount_begin(&tk_core.seq); 2183 /* 2184 * Update the real timekeeper. 2185 * 2186 * We could avoid this memcpy by switching pointers, but that 2187 * requires changes to all other timekeeper usage sites as 2188 * well, i.e. move the timekeeper pointer getter into the 2189 * spinlocked/seqcount protected sections. And we trade this 2190 * memcpy under the tk_core.seq against one before we start 2191 * updating. 2192 */ 2193 timekeeping_update(tk, clock_set); 2194 memcpy(real_tk, tk, sizeof(*tk)); 2195 /* The memcpy must come last. Do not put anything here! */ 2196 write_seqcount_end(&tk_core.seq); 2197 out: 2198 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2199 if (clock_set) 2200 /* Have to call _delayed version, since in irq context*/ 2201 clock_was_set_delayed(); 2202 } 2203 2204 /** 2205 * update_wall_time - Uses the current clocksource to increment the wall time 2206 * 2207 */ 2208 void update_wall_time(void) 2209 { 2210 timekeeping_advance(TK_ADV_TICK); 2211 } 2212 2213 /** 2214 * getboottime64 - Return the real time of system boot. 2215 * @ts: pointer to the timespec64 to be set 2216 * 2217 * Returns the wall-time of boot in a timespec64. 2218 * 2219 * This is based on the wall_to_monotonic offset and the total suspend 2220 * time. Calls to settimeofday will affect the value returned (which 2221 * basically means that however wrong your real time clock is at boot time, 2222 * you get the right time here). 2223 */ 2224 void getboottime64(struct timespec64 *ts) 2225 { 2226 struct timekeeper *tk = &tk_core.timekeeper; 2227 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2228 2229 *ts = ktime_to_timespec64(t); 2230 } 2231 EXPORT_SYMBOL_GPL(getboottime64); 2232 2233 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2234 { 2235 struct timekeeper *tk = &tk_core.timekeeper; 2236 unsigned int seq; 2237 2238 do { 2239 seq = read_seqcount_begin(&tk_core.seq); 2240 2241 *ts = tk_xtime(tk); 2242 } while (read_seqcount_retry(&tk_core.seq, seq)); 2243 } 2244 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2245 2246 void ktime_get_coarse_ts64(struct timespec64 *ts) 2247 { 2248 struct timekeeper *tk = &tk_core.timekeeper; 2249 struct timespec64 now, mono; 2250 unsigned int seq; 2251 2252 do { 2253 seq = read_seqcount_begin(&tk_core.seq); 2254 2255 now = tk_xtime(tk); 2256 mono = tk->wall_to_monotonic; 2257 } while (read_seqcount_retry(&tk_core.seq, seq)); 2258 2259 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2260 now.tv_nsec + mono.tv_nsec); 2261 } 2262 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2263 2264 /* 2265 * Must hold jiffies_lock 2266 */ 2267 void do_timer(unsigned long ticks) 2268 { 2269 jiffies_64 += ticks; 2270 calc_global_load(); 2271 } 2272 2273 /** 2274 * ktime_get_update_offsets_now - hrtimer helper 2275 * @cwsseq: pointer to check and store the clock was set sequence number 2276 * @offs_real: pointer to storage for monotonic -> realtime offset 2277 * @offs_boot: pointer to storage for monotonic -> boottime offset 2278 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2279 * 2280 * Returns current monotonic time and updates the offsets if the 2281 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2282 * different. 2283 * 2284 * Called from hrtimer_interrupt() or retrigger_next_event() 2285 */ 2286 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2287 ktime_t *offs_boot, ktime_t *offs_tai) 2288 { 2289 struct timekeeper *tk = &tk_core.timekeeper; 2290 unsigned int seq; 2291 ktime_t base; 2292 u64 nsecs; 2293 2294 do { 2295 seq = read_seqcount_begin(&tk_core.seq); 2296 2297 base = tk->tkr_mono.base; 2298 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2299 base = ktime_add_ns(base, nsecs); 2300 2301 if (*cwsseq != tk->clock_was_set_seq) { 2302 *cwsseq = tk->clock_was_set_seq; 2303 *offs_real = tk->offs_real; 2304 *offs_boot = tk->offs_boot; 2305 *offs_tai = tk->offs_tai; 2306 } 2307 2308 /* Handle leapsecond insertion adjustments */ 2309 if (unlikely(base >= tk->next_leap_ktime)) 2310 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2311 2312 } while (read_seqcount_retry(&tk_core.seq, seq)); 2313 2314 return base; 2315 } 2316 2317 /** 2318 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2319 */ 2320 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2321 { 2322 if (txc->modes & ADJ_ADJTIME) { 2323 /* singleshot must not be used with any other mode bits */ 2324 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2325 return -EINVAL; 2326 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2327 !capable(CAP_SYS_TIME)) 2328 return -EPERM; 2329 } else { 2330 /* In order to modify anything, you gotta be super-user! */ 2331 if (txc->modes && !capable(CAP_SYS_TIME)) 2332 return -EPERM; 2333 /* 2334 * if the quartz is off by more than 10% then 2335 * something is VERY wrong! 2336 */ 2337 if (txc->modes & ADJ_TICK && 2338 (txc->tick < 900000/USER_HZ || 2339 txc->tick > 1100000/USER_HZ)) 2340 return -EINVAL; 2341 } 2342 2343 if (txc->modes & ADJ_SETOFFSET) { 2344 /* In order to inject time, you gotta be super-user! */ 2345 if (!capable(CAP_SYS_TIME)) 2346 return -EPERM; 2347 2348 /* 2349 * Validate if a timespec/timeval used to inject a time 2350 * offset is valid. Offsets can be postive or negative, so 2351 * we don't check tv_sec. The value of the timeval/timespec 2352 * is the sum of its fields,but *NOTE*: 2353 * The field tv_usec/tv_nsec must always be non-negative and 2354 * we can't have more nanoseconds/microseconds than a second. 2355 */ 2356 if (txc->time.tv_usec < 0) 2357 return -EINVAL; 2358 2359 if (txc->modes & ADJ_NANO) { 2360 if (txc->time.tv_usec >= NSEC_PER_SEC) 2361 return -EINVAL; 2362 } else { 2363 if (txc->time.tv_usec >= USEC_PER_SEC) 2364 return -EINVAL; 2365 } 2366 } 2367 2368 /* 2369 * Check for potential multiplication overflows that can 2370 * only happen on 64-bit systems: 2371 */ 2372 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2373 if (LLONG_MIN / PPM_SCALE > txc->freq) 2374 return -EINVAL; 2375 if (LLONG_MAX / PPM_SCALE < txc->freq) 2376 return -EINVAL; 2377 } 2378 2379 return 0; 2380 } 2381 2382 2383 /** 2384 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2385 */ 2386 int do_adjtimex(struct __kernel_timex *txc) 2387 { 2388 struct timekeeper *tk = &tk_core.timekeeper; 2389 struct audit_ntp_data ad; 2390 unsigned long flags; 2391 struct timespec64 ts; 2392 s32 orig_tai, tai; 2393 int ret; 2394 2395 /* Validate the data before disabling interrupts */ 2396 ret = timekeeping_validate_timex(txc); 2397 if (ret) 2398 return ret; 2399 2400 if (txc->modes & ADJ_SETOFFSET) { 2401 struct timespec64 delta; 2402 delta.tv_sec = txc->time.tv_sec; 2403 delta.tv_nsec = txc->time.tv_usec; 2404 if (!(txc->modes & ADJ_NANO)) 2405 delta.tv_nsec *= 1000; 2406 ret = timekeeping_inject_offset(&delta); 2407 if (ret) 2408 return ret; 2409 2410 audit_tk_injoffset(delta); 2411 } 2412 2413 audit_ntp_init(&ad); 2414 2415 ktime_get_real_ts64(&ts); 2416 2417 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2418 write_seqcount_begin(&tk_core.seq); 2419 2420 orig_tai = tai = tk->tai_offset; 2421 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2422 2423 if (tai != orig_tai) { 2424 __timekeeping_set_tai_offset(tk, tai); 2425 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2426 } 2427 tk_update_leap_state(tk); 2428 2429 write_seqcount_end(&tk_core.seq); 2430 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2431 2432 audit_ntp_log(&ad); 2433 2434 /* Update the multiplier immediately if frequency was set directly */ 2435 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2436 timekeeping_advance(TK_ADV_FREQ); 2437 2438 if (tai != orig_tai) 2439 clock_was_set(); 2440 2441 ntp_notify_cmos_timer(); 2442 2443 return ret; 2444 } 2445 2446 #ifdef CONFIG_NTP_PPS 2447 /** 2448 * hardpps() - Accessor function to NTP __hardpps function 2449 */ 2450 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2451 { 2452 unsigned long flags; 2453 2454 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2455 write_seqcount_begin(&tk_core.seq); 2456 2457 __hardpps(phase_ts, raw_ts); 2458 2459 write_seqcount_end(&tk_core.seq); 2460 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2461 } 2462 EXPORT_SYMBOL(hardpps); 2463 #endif /* CONFIG_NTP_PPS */ 2464 2465 /** 2466 * xtime_update() - advances the timekeeping infrastructure 2467 * @ticks: number of ticks, that have elapsed since the last call. 2468 * 2469 * Must be called with interrupts disabled. 2470 */ 2471 void xtime_update(unsigned long ticks) 2472 { 2473 raw_spin_lock(&jiffies_lock); 2474 write_seqcount_begin(&jiffies_seq); 2475 do_timer(ticks); 2476 write_seqcount_end(&jiffies_seq); 2477 raw_spin_unlock(&jiffies_lock); 2478 update_wall_time(); 2479 } 2480