xref: /openbmc/linux/kernel/time/timekeeping.c (revision 2791f47d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25 
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29 
30 #define TK_CLEAR_NTP		(1 << 0)
31 #define TK_MIRROR		(1 << 1)
32 #define TK_CLOCK_WAS_SET	(1 << 2)
33 
34 enum timekeeping_adv_mode {
35 	/* Update timekeeper when a tick has passed */
36 	TK_ADV_TICK,
37 
38 	/* Update timekeeper on a direct frequency change */
39 	TK_ADV_FREQ
40 };
41 
42 DEFINE_RAW_SPINLOCK(timekeeper_lock);
43 
44 /*
45  * The most important data for readout fits into a single 64 byte
46  * cache line.
47  */
48 static struct {
49 	seqcount_raw_spinlock_t	seq;
50 	struct timekeeper	timekeeper;
51 } tk_core ____cacheline_aligned = {
52 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
53 };
54 
55 static struct timekeeper shadow_timekeeper;
56 
57 /* flag for if timekeeping is suspended */
58 int __read_mostly timekeeping_suspended;
59 
60 /**
61  * struct tk_fast - NMI safe timekeeper
62  * @seq:	Sequence counter for protecting updates. The lowest bit
63  *		is the index for the tk_read_base array
64  * @base:	tk_read_base array. Access is indexed by the lowest bit of
65  *		@seq.
66  *
67  * See @update_fast_timekeeper() below.
68  */
69 struct tk_fast {
70 	seqcount_latch_t	seq;
71 	struct tk_read_base	base[2];
72 };
73 
74 /* Suspend-time cycles value for halted fast timekeeper. */
75 static u64 cycles_at_suspend;
76 
77 static u64 dummy_clock_read(struct clocksource *cs)
78 {
79 	if (timekeeping_suspended)
80 		return cycles_at_suspend;
81 	return local_clock();
82 }
83 
84 static struct clocksource dummy_clock = {
85 	.read = dummy_clock_read,
86 };
87 
88 /*
89  * Boot time initialization which allows local_clock() to be utilized
90  * during early boot when clocksources are not available. local_clock()
91  * returns nanoseconds already so no conversion is required, hence mult=1
92  * and shift=0. When the first proper clocksource is installed then
93  * the fast time keepers are updated with the correct values.
94  */
95 #define FAST_TK_INIT						\
96 	{							\
97 		.clock		= &dummy_clock,			\
98 		.mask		= CLOCKSOURCE_MASK(64),		\
99 		.mult		= 1,				\
100 		.shift		= 0,				\
101 	}
102 
103 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
104 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
105 	.base[0] = FAST_TK_INIT,
106 	.base[1] = FAST_TK_INIT,
107 };
108 
109 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
110 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
111 	.base[0] = FAST_TK_INIT,
112 	.base[1] = FAST_TK_INIT,
113 };
114 
115 static inline void tk_normalize_xtime(struct timekeeper *tk)
116 {
117 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
118 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
119 		tk->xtime_sec++;
120 	}
121 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
122 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
123 		tk->raw_sec++;
124 	}
125 }
126 
127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
128 {
129 	struct timespec64 ts;
130 
131 	ts.tv_sec = tk->xtime_sec;
132 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
133 	return ts;
134 }
135 
136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
137 {
138 	tk->xtime_sec = ts->tv_sec;
139 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
140 }
141 
142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
143 {
144 	tk->xtime_sec += ts->tv_sec;
145 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
146 	tk_normalize_xtime(tk);
147 }
148 
149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
150 {
151 	struct timespec64 tmp;
152 
153 	/*
154 	 * Verify consistency of: offset_real = -wall_to_monotonic
155 	 * before modifying anything
156 	 */
157 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
158 					-tk->wall_to_monotonic.tv_nsec);
159 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
160 	tk->wall_to_monotonic = wtm;
161 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
162 	tk->offs_real = timespec64_to_ktime(tmp);
163 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
164 }
165 
166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
167 {
168 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
169 	/*
170 	 * Timespec representation for VDSO update to avoid 64bit division
171 	 * on every update.
172 	 */
173 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
174 }
175 
176 /*
177  * tk_clock_read - atomic clocksource read() helper
178  *
179  * This helper is necessary to use in the read paths because, while the
180  * seqcount ensures we don't return a bad value while structures are updated,
181  * it doesn't protect from potential crashes. There is the possibility that
182  * the tkr's clocksource may change between the read reference, and the
183  * clock reference passed to the read function.  This can cause crashes if
184  * the wrong clocksource is passed to the wrong read function.
185  * This isn't necessary to use when holding the timekeeper_lock or doing
186  * a read of the fast-timekeeper tkrs (which is protected by its own locking
187  * and update logic).
188  */
189 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
190 {
191 	struct clocksource *clock = READ_ONCE(tkr->clock);
192 
193 	return clock->read(clock);
194 }
195 
196 #ifdef CONFIG_DEBUG_TIMEKEEPING
197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
198 
199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
200 {
201 
202 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
203 	const char *name = tk->tkr_mono.clock->name;
204 
205 	if (offset > max_cycles) {
206 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
207 				offset, name, max_cycles);
208 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
209 	} else {
210 		if (offset > (max_cycles >> 1)) {
211 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
212 					offset, name, max_cycles >> 1);
213 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
214 		}
215 	}
216 
217 	if (tk->underflow_seen) {
218 		if (jiffies - tk->last_warning > WARNING_FREQ) {
219 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
220 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
221 			printk_deferred("         Your kernel is probably still fine.\n");
222 			tk->last_warning = jiffies;
223 		}
224 		tk->underflow_seen = 0;
225 	}
226 
227 	if (tk->overflow_seen) {
228 		if (jiffies - tk->last_warning > WARNING_FREQ) {
229 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
230 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
231 			printk_deferred("         Your kernel is probably still fine.\n");
232 			tk->last_warning = jiffies;
233 		}
234 		tk->overflow_seen = 0;
235 	}
236 }
237 
238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
239 {
240 	struct timekeeper *tk = &tk_core.timekeeper;
241 	u64 now, last, mask, max, delta;
242 	unsigned int seq;
243 
244 	/*
245 	 * Since we're called holding a seqcount, the data may shift
246 	 * under us while we're doing the calculation. This can cause
247 	 * false positives, since we'd note a problem but throw the
248 	 * results away. So nest another seqcount here to atomically
249 	 * grab the points we are checking with.
250 	 */
251 	do {
252 		seq = read_seqcount_begin(&tk_core.seq);
253 		now = tk_clock_read(tkr);
254 		last = tkr->cycle_last;
255 		mask = tkr->mask;
256 		max = tkr->clock->max_cycles;
257 	} while (read_seqcount_retry(&tk_core.seq, seq));
258 
259 	delta = clocksource_delta(now, last, mask);
260 
261 	/*
262 	 * Try to catch underflows by checking if we are seeing small
263 	 * mask-relative negative values.
264 	 */
265 	if (unlikely((~delta & mask) < (mask >> 3))) {
266 		tk->underflow_seen = 1;
267 		delta = 0;
268 	}
269 
270 	/* Cap delta value to the max_cycles values to avoid mult overflows */
271 	if (unlikely(delta > max)) {
272 		tk->overflow_seen = 1;
273 		delta = tkr->clock->max_cycles;
274 	}
275 
276 	return delta;
277 }
278 #else
279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
280 {
281 }
282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
283 {
284 	u64 cycle_now, delta;
285 
286 	/* read clocksource */
287 	cycle_now = tk_clock_read(tkr);
288 
289 	/* calculate the delta since the last update_wall_time */
290 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
291 
292 	return delta;
293 }
294 #endif
295 
296 /**
297  * tk_setup_internals - Set up internals to use clocksource clock.
298  *
299  * @tk:		The target timekeeper to setup.
300  * @clock:		Pointer to clocksource.
301  *
302  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
303  * pair and interval request.
304  *
305  * Unless you're the timekeeping code, you should not be using this!
306  */
307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
308 {
309 	u64 interval;
310 	u64 tmp, ntpinterval;
311 	struct clocksource *old_clock;
312 
313 	++tk->cs_was_changed_seq;
314 	old_clock = tk->tkr_mono.clock;
315 	tk->tkr_mono.clock = clock;
316 	tk->tkr_mono.mask = clock->mask;
317 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
318 
319 	tk->tkr_raw.clock = clock;
320 	tk->tkr_raw.mask = clock->mask;
321 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
322 
323 	/* Do the ns -> cycle conversion first, using original mult */
324 	tmp = NTP_INTERVAL_LENGTH;
325 	tmp <<= clock->shift;
326 	ntpinterval = tmp;
327 	tmp += clock->mult/2;
328 	do_div(tmp, clock->mult);
329 	if (tmp == 0)
330 		tmp = 1;
331 
332 	interval = (u64) tmp;
333 	tk->cycle_interval = interval;
334 
335 	/* Go back from cycles -> shifted ns */
336 	tk->xtime_interval = interval * clock->mult;
337 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
338 	tk->raw_interval = interval * clock->mult;
339 
340 	 /* if changing clocks, convert xtime_nsec shift units */
341 	if (old_clock) {
342 		int shift_change = clock->shift - old_clock->shift;
343 		if (shift_change < 0) {
344 			tk->tkr_mono.xtime_nsec >>= -shift_change;
345 			tk->tkr_raw.xtime_nsec >>= -shift_change;
346 		} else {
347 			tk->tkr_mono.xtime_nsec <<= shift_change;
348 			tk->tkr_raw.xtime_nsec <<= shift_change;
349 		}
350 	}
351 
352 	tk->tkr_mono.shift = clock->shift;
353 	tk->tkr_raw.shift = clock->shift;
354 
355 	tk->ntp_error = 0;
356 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
357 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
358 
359 	/*
360 	 * The timekeeper keeps its own mult values for the currently
361 	 * active clocksource. These value will be adjusted via NTP
362 	 * to counteract clock drifting.
363 	 */
364 	tk->tkr_mono.mult = clock->mult;
365 	tk->tkr_raw.mult = clock->mult;
366 	tk->ntp_err_mult = 0;
367 	tk->skip_second_overflow = 0;
368 }
369 
370 /* Timekeeper helper functions. */
371 
372 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
373 static u32 default_arch_gettimeoffset(void) { return 0; }
374 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
375 #else
376 static inline u32 arch_gettimeoffset(void) { return 0; }
377 #endif
378 
379 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
380 {
381 	u64 nsec;
382 
383 	nsec = delta * tkr->mult + tkr->xtime_nsec;
384 	nsec >>= tkr->shift;
385 
386 	/* If arch requires, add in get_arch_timeoffset() */
387 	return nsec + arch_gettimeoffset();
388 }
389 
390 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
391 {
392 	u64 delta;
393 
394 	delta = timekeeping_get_delta(tkr);
395 	return timekeeping_delta_to_ns(tkr, delta);
396 }
397 
398 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
399 {
400 	u64 delta;
401 
402 	/* calculate the delta since the last update_wall_time */
403 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
404 	return timekeeping_delta_to_ns(tkr, delta);
405 }
406 
407 /**
408  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
409  * @tkr: Timekeeping readout base from which we take the update
410  *
411  * We want to use this from any context including NMI and tracing /
412  * instrumenting the timekeeping code itself.
413  *
414  * Employ the latch technique; see @raw_write_seqcount_latch.
415  *
416  * So if a NMI hits the update of base[0] then it will use base[1]
417  * which is still consistent. In the worst case this can result is a
418  * slightly wrong timestamp (a few nanoseconds). See
419  * @ktime_get_mono_fast_ns.
420  */
421 static void update_fast_timekeeper(const struct tk_read_base *tkr,
422 				   struct tk_fast *tkf)
423 {
424 	struct tk_read_base *base = tkf->base;
425 
426 	/* Force readers off to base[1] */
427 	raw_write_seqcount_latch(&tkf->seq);
428 
429 	/* Update base[0] */
430 	memcpy(base, tkr, sizeof(*base));
431 
432 	/* Force readers back to base[0] */
433 	raw_write_seqcount_latch(&tkf->seq);
434 
435 	/* Update base[1] */
436 	memcpy(base + 1, base, sizeof(*base));
437 }
438 
439 /**
440  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
441  *
442  * This timestamp is not guaranteed to be monotonic across an update.
443  * The timestamp is calculated by:
444  *
445  *	now = base_mono + clock_delta * slope
446  *
447  * So if the update lowers the slope, readers who are forced to the
448  * not yet updated second array are still using the old steeper slope.
449  *
450  * tmono
451  * ^
452  * |    o  n
453  * |   o n
454  * |  u
455  * | o
456  * |o
457  * |12345678---> reader order
458  *
459  * o = old slope
460  * u = update
461  * n = new slope
462  *
463  * So reader 6 will observe time going backwards versus reader 5.
464  *
465  * While other CPUs are likely to be able observe that, the only way
466  * for a CPU local observation is when an NMI hits in the middle of
467  * the update. Timestamps taken from that NMI context might be ahead
468  * of the following timestamps. Callers need to be aware of that and
469  * deal with it.
470  */
471 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
472 {
473 	struct tk_read_base *tkr;
474 	unsigned int seq;
475 	u64 now;
476 
477 	do {
478 		seq = raw_read_seqcount_latch(&tkf->seq);
479 		tkr = tkf->base + (seq & 0x01);
480 		now = ktime_to_ns(tkr->base);
481 
482 		now += timekeeping_delta_to_ns(tkr,
483 				clocksource_delta(
484 					tk_clock_read(tkr),
485 					tkr->cycle_last,
486 					tkr->mask));
487 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
488 
489 	return now;
490 }
491 
492 u64 ktime_get_mono_fast_ns(void)
493 {
494 	return __ktime_get_fast_ns(&tk_fast_mono);
495 }
496 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
497 
498 u64 ktime_get_raw_fast_ns(void)
499 {
500 	return __ktime_get_fast_ns(&tk_fast_raw);
501 }
502 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
503 
504 /**
505  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
506  *
507  * To keep it NMI safe since we're accessing from tracing, we're not using a
508  * separate timekeeper with updates to monotonic clock and boot offset
509  * protected with seqcounts. This has the following minor side effects:
510  *
511  * (1) Its possible that a timestamp be taken after the boot offset is updated
512  * but before the timekeeper is updated. If this happens, the new boot offset
513  * is added to the old timekeeping making the clock appear to update slightly
514  * earlier:
515  *    CPU 0                                        CPU 1
516  *    timekeeping_inject_sleeptime64()
517  *    __timekeeping_inject_sleeptime(tk, delta);
518  *                                                 timestamp();
519  *    timekeeping_update(tk, TK_CLEAR_NTP...);
520  *
521  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
522  * partially updated.  Since the tk->offs_boot update is a rare event, this
523  * should be a rare occurrence which postprocessing should be able to handle.
524  */
525 u64 notrace ktime_get_boot_fast_ns(void)
526 {
527 	struct timekeeper *tk = &tk_core.timekeeper;
528 
529 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
530 }
531 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
532 
533 /*
534  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
535  */
536 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
537 {
538 	struct tk_read_base *tkr;
539 	u64 basem, baser, delta;
540 	unsigned int seq;
541 
542 	do {
543 		seq = raw_read_seqcount_latch(&tkf->seq);
544 		tkr = tkf->base + (seq & 0x01);
545 		basem = ktime_to_ns(tkr->base);
546 		baser = ktime_to_ns(tkr->base_real);
547 
548 		delta = timekeeping_delta_to_ns(tkr,
549 				clocksource_delta(tk_clock_read(tkr),
550 				tkr->cycle_last, tkr->mask));
551 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
552 
553 	if (mono)
554 		*mono = basem + delta;
555 	return baser + delta;
556 }
557 
558 /**
559  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
560  */
561 u64 ktime_get_real_fast_ns(void)
562 {
563 	return __ktime_get_real_fast(&tk_fast_mono, NULL);
564 }
565 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
566 
567 /**
568  * ktime_get_fast_timestamps: - NMI safe timestamps
569  * @snapshot:	Pointer to timestamp storage
570  *
571  * Stores clock monotonic, boottime and realtime timestamps.
572  *
573  * Boot time is a racy access on 32bit systems if the sleep time injection
574  * happens late during resume and not in timekeeping_resume(). That could
575  * be avoided by expanding struct tk_read_base with boot offset for 32bit
576  * and adding more overhead to the update. As this is a hard to observe
577  * once per resume event which can be filtered with reasonable effort using
578  * the accurate mono/real timestamps, it's probably not worth the trouble.
579  *
580  * Aside of that it might be possible on 32 and 64 bit to observe the
581  * following when the sleep time injection happens late:
582  *
583  * CPU 0				CPU 1
584  * timekeeping_resume()
585  * ktime_get_fast_timestamps()
586  *	mono, real = __ktime_get_real_fast()
587  *					inject_sleep_time()
588  *					   update boot offset
589  *	boot = mono + bootoffset;
590  *
591  * That means that boot time already has the sleep time adjustment, but
592  * real time does not. On the next readout both are in sync again.
593  *
594  * Preventing this for 64bit is not really feasible without destroying the
595  * careful cache layout of the timekeeper because the sequence count and
596  * struct tk_read_base would then need two cache lines instead of one.
597  *
598  * Access to the time keeper clock source is disabled accross the innermost
599  * steps of suspend/resume. The accessors still work, but the timestamps
600  * are frozen until time keeping is resumed which happens very early.
601  *
602  * For regular suspend/resume there is no observable difference vs. sched
603  * clock, but it might affect some of the nasty low level debug printks.
604  *
605  * OTOH, access to sched clock is not guaranteed accross suspend/resume on
606  * all systems either so it depends on the hardware in use.
607  *
608  * If that turns out to be a real problem then this could be mitigated by
609  * using sched clock in a similar way as during early boot. But it's not as
610  * trivial as on early boot because it needs some careful protection
611  * against the clock monotonic timestamp jumping backwards on resume.
612  */
613 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
614 {
615 	struct timekeeper *tk = &tk_core.timekeeper;
616 
617 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
618 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
619 }
620 
621 /**
622  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
623  * @tk: Timekeeper to snapshot.
624  *
625  * It generally is unsafe to access the clocksource after timekeeping has been
626  * suspended, so take a snapshot of the readout base of @tk and use it as the
627  * fast timekeeper's readout base while suspended.  It will return the same
628  * number of cycles every time until timekeeping is resumed at which time the
629  * proper readout base for the fast timekeeper will be restored automatically.
630  */
631 static void halt_fast_timekeeper(const struct timekeeper *tk)
632 {
633 	static struct tk_read_base tkr_dummy;
634 	const struct tk_read_base *tkr = &tk->tkr_mono;
635 
636 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
637 	cycles_at_suspend = tk_clock_read(tkr);
638 	tkr_dummy.clock = &dummy_clock;
639 	tkr_dummy.base_real = tkr->base + tk->offs_real;
640 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
641 
642 	tkr = &tk->tkr_raw;
643 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
644 	tkr_dummy.clock = &dummy_clock;
645 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
646 }
647 
648 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
649 
650 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
651 {
652 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
653 }
654 
655 /**
656  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
657  */
658 int pvclock_gtod_register_notifier(struct notifier_block *nb)
659 {
660 	struct timekeeper *tk = &tk_core.timekeeper;
661 	unsigned long flags;
662 	int ret;
663 
664 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
665 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
666 	update_pvclock_gtod(tk, true);
667 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
672 
673 /**
674  * pvclock_gtod_unregister_notifier - unregister a pvclock
675  * timedata update listener
676  */
677 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
678 {
679 	unsigned long flags;
680 	int ret;
681 
682 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
683 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
684 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
685 
686 	return ret;
687 }
688 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
689 
690 /*
691  * tk_update_leap_state - helper to update the next_leap_ktime
692  */
693 static inline void tk_update_leap_state(struct timekeeper *tk)
694 {
695 	tk->next_leap_ktime = ntp_get_next_leap();
696 	if (tk->next_leap_ktime != KTIME_MAX)
697 		/* Convert to monotonic time */
698 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
699 }
700 
701 /*
702  * Update the ktime_t based scalar nsec members of the timekeeper
703  */
704 static inline void tk_update_ktime_data(struct timekeeper *tk)
705 {
706 	u64 seconds;
707 	u32 nsec;
708 
709 	/*
710 	 * The xtime based monotonic readout is:
711 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
712 	 * The ktime based monotonic readout is:
713 	 *	nsec = base_mono + now();
714 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
715 	 */
716 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
717 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
718 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
719 
720 	/*
721 	 * The sum of the nanoseconds portions of xtime and
722 	 * wall_to_monotonic can be greater/equal one second. Take
723 	 * this into account before updating tk->ktime_sec.
724 	 */
725 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
726 	if (nsec >= NSEC_PER_SEC)
727 		seconds++;
728 	tk->ktime_sec = seconds;
729 
730 	/* Update the monotonic raw base */
731 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
732 }
733 
734 /* must hold timekeeper_lock */
735 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
736 {
737 	if (action & TK_CLEAR_NTP) {
738 		tk->ntp_error = 0;
739 		ntp_clear();
740 	}
741 
742 	tk_update_leap_state(tk);
743 	tk_update_ktime_data(tk);
744 
745 	update_vsyscall(tk);
746 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
747 
748 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
749 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
750 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
751 
752 	if (action & TK_CLOCK_WAS_SET)
753 		tk->clock_was_set_seq++;
754 	/*
755 	 * The mirroring of the data to the shadow-timekeeper needs
756 	 * to happen last here to ensure we don't over-write the
757 	 * timekeeper structure on the next update with stale data
758 	 */
759 	if (action & TK_MIRROR)
760 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
761 		       sizeof(tk_core.timekeeper));
762 }
763 
764 /**
765  * timekeeping_forward_now - update clock to the current time
766  *
767  * Forward the current clock to update its state since the last call to
768  * update_wall_time(). This is useful before significant clock changes,
769  * as it avoids having to deal with this time offset explicitly.
770  */
771 static void timekeeping_forward_now(struct timekeeper *tk)
772 {
773 	u64 cycle_now, delta;
774 
775 	cycle_now = tk_clock_read(&tk->tkr_mono);
776 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
777 	tk->tkr_mono.cycle_last = cycle_now;
778 	tk->tkr_raw.cycle_last  = cycle_now;
779 
780 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
781 
782 	/* If arch requires, add in get_arch_timeoffset() */
783 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
784 
785 
786 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
787 
788 	/* If arch requires, add in get_arch_timeoffset() */
789 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
790 
791 	tk_normalize_xtime(tk);
792 }
793 
794 /**
795  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
796  * @ts:		pointer to the timespec to be set
797  *
798  * Returns the time of day in a timespec64 (WARN if suspended).
799  */
800 void ktime_get_real_ts64(struct timespec64 *ts)
801 {
802 	struct timekeeper *tk = &tk_core.timekeeper;
803 	unsigned int seq;
804 	u64 nsecs;
805 
806 	WARN_ON(timekeeping_suspended);
807 
808 	do {
809 		seq = read_seqcount_begin(&tk_core.seq);
810 
811 		ts->tv_sec = tk->xtime_sec;
812 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
813 
814 	} while (read_seqcount_retry(&tk_core.seq, seq));
815 
816 	ts->tv_nsec = 0;
817 	timespec64_add_ns(ts, nsecs);
818 }
819 EXPORT_SYMBOL(ktime_get_real_ts64);
820 
821 ktime_t ktime_get(void)
822 {
823 	struct timekeeper *tk = &tk_core.timekeeper;
824 	unsigned int seq;
825 	ktime_t base;
826 	u64 nsecs;
827 
828 	WARN_ON(timekeeping_suspended);
829 
830 	do {
831 		seq = read_seqcount_begin(&tk_core.seq);
832 		base = tk->tkr_mono.base;
833 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
834 
835 	} while (read_seqcount_retry(&tk_core.seq, seq));
836 
837 	return ktime_add_ns(base, nsecs);
838 }
839 EXPORT_SYMBOL_GPL(ktime_get);
840 
841 u32 ktime_get_resolution_ns(void)
842 {
843 	struct timekeeper *tk = &tk_core.timekeeper;
844 	unsigned int seq;
845 	u32 nsecs;
846 
847 	WARN_ON(timekeeping_suspended);
848 
849 	do {
850 		seq = read_seqcount_begin(&tk_core.seq);
851 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
852 	} while (read_seqcount_retry(&tk_core.seq, seq));
853 
854 	return nsecs;
855 }
856 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
857 
858 static ktime_t *offsets[TK_OFFS_MAX] = {
859 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
860 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
861 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
862 };
863 
864 ktime_t ktime_get_with_offset(enum tk_offsets offs)
865 {
866 	struct timekeeper *tk = &tk_core.timekeeper;
867 	unsigned int seq;
868 	ktime_t base, *offset = offsets[offs];
869 	u64 nsecs;
870 
871 	WARN_ON(timekeeping_suspended);
872 
873 	do {
874 		seq = read_seqcount_begin(&tk_core.seq);
875 		base = ktime_add(tk->tkr_mono.base, *offset);
876 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
877 
878 	} while (read_seqcount_retry(&tk_core.seq, seq));
879 
880 	return ktime_add_ns(base, nsecs);
881 
882 }
883 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
884 
885 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
886 {
887 	struct timekeeper *tk = &tk_core.timekeeper;
888 	unsigned int seq;
889 	ktime_t base, *offset = offsets[offs];
890 	u64 nsecs;
891 
892 	WARN_ON(timekeeping_suspended);
893 
894 	do {
895 		seq = read_seqcount_begin(&tk_core.seq);
896 		base = ktime_add(tk->tkr_mono.base, *offset);
897 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
898 
899 	} while (read_seqcount_retry(&tk_core.seq, seq));
900 
901 	return ktime_add_ns(base, nsecs);
902 }
903 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
904 
905 /**
906  * ktime_mono_to_any() - convert mononotic time to any other time
907  * @tmono:	time to convert.
908  * @offs:	which offset to use
909  */
910 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
911 {
912 	ktime_t *offset = offsets[offs];
913 	unsigned int seq;
914 	ktime_t tconv;
915 
916 	do {
917 		seq = read_seqcount_begin(&tk_core.seq);
918 		tconv = ktime_add(tmono, *offset);
919 	} while (read_seqcount_retry(&tk_core.seq, seq));
920 
921 	return tconv;
922 }
923 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
924 
925 /**
926  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
927  */
928 ktime_t ktime_get_raw(void)
929 {
930 	struct timekeeper *tk = &tk_core.timekeeper;
931 	unsigned int seq;
932 	ktime_t base;
933 	u64 nsecs;
934 
935 	do {
936 		seq = read_seqcount_begin(&tk_core.seq);
937 		base = tk->tkr_raw.base;
938 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
939 
940 	} while (read_seqcount_retry(&tk_core.seq, seq));
941 
942 	return ktime_add_ns(base, nsecs);
943 }
944 EXPORT_SYMBOL_GPL(ktime_get_raw);
945 
946 /**
947  * ktime_get_ts64 - get the monotonic clock in timespec64 format
948  * @ts:		pointer to timespec variable
949  *
950  * The function calculates the monotonic clock from the realtime
951  * clock and the wall_to_monotonic offset and stores the result
952  * in normalized timespec64 format in the variable pointed to by @ts.
953  */
954 void ktime_get_ts64(struct timespec64 *ts)
955 {
956 	struct timekeeper *tk = &tk_core.timekeeper;
957 	struct timespec64 tomono;
958 	unsigned int seq;
959 	u64 nsec;
960 
961 	WARN_ON(timekeeping_suspended);
962 
963 	do {
964 		seq = read_seqcount_begin(&tk_core.seq);
965 		ts->tv_sec = tk->xtime_sec;
966 		nsec = timekeeping_get_ns(&tk->tkr_mono);
967 		tomono = tk->wall_to_monotonic;
968 
969 	} while (read_seqcount_retry(&tk_core.seq, seq));
970 
971 	ts->tv_sec += tomono.tv_sec;
972 	ts->tv_nsec = 0;
973 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
974 }
975 EXPORT_SYMBOL_GPL(ktime_get_ts64);
976 
977 /**
978  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
979  *
980  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
981  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
982  * works on both 32 and 64 bit systems. On 32 bit systems the readout
983  * covers ~136 years of uptime which should be enough to prevent
984  * premature wrap arounds.
985  */
986 time64_t ktime_get_seconds(void)
987 {
988 	struct timekeeper *tk = &tk_core.timekeeper;
989 
990 	WARN_ON(timekeeping_suspended);
991 	return tk->ktime_sec;
992 }
993 EXPORT_SYMBOL_GPL(ktime_get_seconds);
994 
995 /**
996  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
997  *
998  * Returns the wall clock seconds since 1970. This replaces the
999  * get_seconds() interface which is not y2038 safe on 32bit systems.
1000  *
1001  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1002  * 32bit systems the access must be protected with the sequence
1003  * counter to provide "atomic" access to the 64bit tk->xtime_sec
1004  * value.
1005  */
1006 time64_t ktime_get_real_seconds(void)
1007 {
1008 	struct timekeeper *tk = &tk_core.timekeeper;
1009 	time64_t seconds;
1010 	unsigned int seq;
1011 
1012 	if (IS_ENABLED(CONFIG_64BIT))
1013 		return tk->xtime_sec;
1014 
1015 	do {
1016 		seq = read_seqcount_begin(&tk_core.seq);
1017 		seconds = tk->xtime_sec;
1018 
1019 	} while (read_seqcount_retry(&tk_core.seq, seq));
1020 
1021 	return seconds;
1022 }
1023 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1024 
1025 /**
1026  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1027  * but without the sequence counter protect. This internal function
1028  * is called just when timekeeping lock is already held.
1029  */
1030 noinstr time64_t __ktime_get_real_seconds(void)
1031 {
1032 	struct timekeeper *tk = &tk_core.timekeeper;
1033 
1034 	return tk->xtime_sec;
1035 }
1036 
1037 /**
1038  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1039  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1040  */
1041 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1042 {
1043 	struct timekeeper *tk = &tk_core.timekeeper;
1044 	unsigned int seq;
1045 	ktime_t base_raw;
1046 	ktime_t base_real;
1047 	u64 nsec_raw;
1048 	u64 nsec_real;
1049 	u64 now;
1050 
1051 	WARN_ON_ONCE(timekeeping_suspended);
1052 
1053 	do {
1054 		seq = read_seqcount_begin(&tk_core.seq);
1055 		now = tk_clock_read(&tk->tkr_mono);
1056 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1057 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1058 		base_real = ktime_add(tk->tkr_mono.base,
1059 				      tk_core.timekeeper.offs_real);
1060 		base_raw = tk->tkr_raw.base;
1061 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1062 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1063 	} while (read_seqcount_retry(&tk_core.seq, seq));
1064 
1065 	systime_snapshot->cycles = now;
1066 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1067 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1068 }
1069 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1070 
1071 /* Scale base by mult/div checking for overflow */
1072 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1073 {
1074 	u64 tmp, rem;
1075 
1076 	tmp = div64_u64_rem(*base, div, &rem);
1077 
1078 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1079 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1080 		return -EOVERFLOW;
1081 	tmp *= mult;
1082 
1083 	rem = div64_u64(rem * mult, div);
1084 	*base = tmp + rem;
1085 	return 0;
1086 }
1087 
1088 /**
1089  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1090  * @history:			Snapshot representing start of history
1091  * @partial_history_cycles:	Cycle offset into history (fractional part)
1092  * @total_history_cycles:	Total history length in cycles
1093  * @discontinuity:		True indicates clock was set on history period
1094  * @ts:				Cross timestamp that should be adjusted using
1095  *	partial/total ratio
1096  *
1097  * Helper function used by get_device_system_crosststamp() to correct the
1098  * crosstimestamp corresponding to the start of the current interval to the
1099  * system counter value (timestamp point) provided by the driver. The
1100  * total_history_* quantities are the total history starting at the provided
1101  * reference point and ending at the start of the current interval. The cycle
1102  * count between the driver timestamp point and the start of the current
1103  * interval is partial_history_cycles.
1104  */
1105 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1106 					 u64 partial_history_cycles,
1107 					 u64 total_history_cycles,
1108 					 bool discontinuity,
1109 					 struct system_device_crosststamp *ts)
1110 {
1111 	struct timekeeper *tk = &tk_core.timekeeper;
1112 	u64 corr_raw, corr_real;
1113 	bool interp_forward;
1114 	int ret;
1115 
1116 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1117 		return 0;
1118 
1119 	/* Interpolate shortest distance from beginning or end of history */
1120 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1121 	partial_history_cycles = interp_forward ?
1122 		total_history_cycles - partial_history_cycles :
1123 		partial_history_cycles;
1124 
1125 	/*
1126 	 * Scale the monotonic raw time delta by:
1127 	 *	partial_history_cycles / total_history_cycles
1128 	 */
1129 	corr_raw = (u64)ktime_to_ns(
1130 		ktime_sub(ts->sys_monoraw, history->raw));
1131 	ret = scale64_check_overflow(partial_history_cycles,
1132 				     total_history_cycles, &corr_raw);
1133 	if (ret)
1134 		return ret;
1135 
1136 	/*
1137 	 * If there is a discontinuity in the history, scale monotonic raw
1138 	 *	correction by:
1139 	 *	mult(real)/mult(raw) yielding the realtime correction
1140 	 * Otherwise, calculate the realtime correction similar to monotonic
1141 	 *	raw calculation
1142 	 */
1143 	if (discontinuity) {
1144 		corr_real = mul_u64_u32_div
1145 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1146 	} else {
1147 		corr_real = (u64)ktime_to_ns(
1148 			ktime_sub(ts->sys_realtime, history->real));
1149 		ret = scale64_check_overflow(partial_history_cycles,
1150 					     total_history_cycles, &corr_real);
1151 		if (ret)
1152 			return ret;
1153 	}
1154 
1155 	/* Fixup monotonic raw and real time time values */
1156 	if (interp_forward) {
1157 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1158 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1159 	} else {
1160 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1161 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /*
1168  * cycle_between - true if test occurs chronologically between before and after
1169  */
1170 static bool cycle_between(u64 before, u64 test, u64 after)
1171 {
1172 	if (test > before && test < after)
1173 		return true;
1174 	if (test < before && before > after)
1175 		return true;
1176 	return false;
1177 }
1178 
1179 /**
1180  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1181  * @get_time_fn:	Callback to get simultaneous device time and
1182  *	system counter from the device driver
1183  * @ctx:		Context passed to get_time_fn()
1184  * @history_begin:	Historical reference point used to interpolate system
1185  *	time when counter provided by the driver is before the current interval
1186  * @xtstamp:		Receives simultaneously captured system and device time
1187  *
1188  * Reads a timestamp from a device and correlates it to system time
1189  */
1190 int get_device_system_crosststamp(int (*get_time_fn)
1191 				  (ktime_t *device_time,
1192 				   struct system_counterval_t *sys_counterval,
1193 				   void *ctx),
1194 				  void *ctx,
1195 				  struct system_time_snapshot *history_begin,
1196 				  struct system_device_crosststamp *xtstamp)
1197 {
1198 	struct system_counterval_t system_counterval;
1199 	struct timekeeper *tk = &tk_core.timekeeper;
1200 	u64 cycles, now, interval_start;
1201 	unsigned int clock_was_set_seq = 0;
1202 	ktime_t base_real, base_raw;
1203 	u64 nsec_real, nsec_raw;
1204 	u8 cs_was_changed_seq;
1205 	unsigned int seq;
1206 	bool do_interp;
1207 	int ret;
1208 
1209 	do {
1210 		seq = read_seqcount_begin(&tk_core.seq);
1211 		/*
1212 		 * Try to synchronously capture device time and a system
1213 		 * counter value calling back into the device driver
1214 		 */
1215 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1216 		if (ret)
1217 			return ret;
1218 
1219 		/*
1220 		 * Verify that the clocksource associated with the captured
1221 		 * system counter value is the same as the currently installed
1222 		 * timekeeper clocksource
1223 		 */
1224 		if (tk->tkr_mono.clock != system_counterval.cs)
1225 			return -ENODEV;
1226 		cycles = system_counterval.cycles;
1227 
1228 		/*
1229 		 * Check whether the system counter value provided by the
1230 		 * device driver is on the current timekeeping interval.
1231 		 */
1232 		now = tk_clock_read(&tk->tkr_mono);
1233 		interval_start = tk->tkr_mono.cycle_last;
1234 		if (!cycle_between(interval_start, cycles, now)) {
1235 			clock_was_set_seq = tk->clock_was_set_seq;
1236 			cs_was_changed_seq = tk->cs_was_changed_seq;
1237 			cycles = interval_start;
1238 			do_interp = true;
1239 		} else {
1240 			do_interp = false;
1241 		}
1242 
1243 		base_real = ktime_add(tk->tkr_mono.base,
1244 				      tk_core.timekeeper.offs_real);
1245 		base_raw = tk->tkr_raw.base;
1246 
1247 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1248 						     system_counterval.cycles);
1249 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1250 						    system_counterval.cycles);
1251 	} while (read_seqcount_retry(&tk_core.seq, seq));
1252 
1253 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1254 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1255 
1256 	/*
1257 	 * Interpolate if necessary, adjusting back from the start of the
1258 	 * current interval
1259 	 */
1260 	if (do_interp) {
1261 		u64 partial_history_cycles, total_history_cycles;
1262 		bool discontinuity;
1263 
1264 		/*
1265 		 * Check that the counter value occurs after the provided
1266 		 * history reference and that the history doesn't cross a
1267 		 * clocksource change
1268 		 */
1269 		if (!history_begin ||
1270 		    !cycle_between(history_begin->cycles,
1271 				   system_counterval.cycles, cycles) ||
1272 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1273 			return -EINVAL;
1274 		partial_history_cycles = cycles - system_counterval.cycles;
1275 		total_history_cycles = cycles - history_begin->cycles;
1276 		discontinuity =
1277 			history_begin->clock_was_set_seq != clock_was_set_seq;
1278 
1279 		ret = adjust_historical_crosststamp(history_begin,
1280 						    partial_history_cycles,
1281 						    total_history_cycles,
1282 						    discontinuity, xtstamp);
1283 		if (ret)
1284 			return ret;
1285 	}
1286 
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1290 
1291 /**
1292  * do_settimeofday64 - Sets the time of day.
1293  * @ts:     pointer to the timespec64 variable containing the new time
1294  *
1295  * Sets the time of day to the new time and update NTP and notify hrtimers
1296  */
1297 int do_settimeofday64(const struct timespec64 *ts)
1298 {
1299 	struct timekeeper *tk = &tk_core.timekeeper;
1300 	struct timespec64 ts_delta, xt;
1301 	unsigned long flags;
1302 	int ret = 0;
1303 
1304 	if (!timespec64_valid_settod(ts))
1305 		return -EINVAL;
1306 
1307 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1308 	write_seqcount_begin(&tk_core.seq);
1309 
1310 	timekeeping_forward_now(tk);
1311 
1312 	xt = tk_xtime(tk);
1313 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1314 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1315 
1316 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1317 		ret = -EINVAL;
1318 		goto out;
1319 	}
1320 
1321 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1322 
1323 	tk_set_xtime(tk, ts);
1324 out:
1325 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1326 
1327 	write_seqcount_end(&tk_core.seq);
1328 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1329 
1330 	/* signal hrtimers about time change */
1331 	clock_was_set();
1332 
1333 	if (!ret)
1334 		audit_tk_injoffset(ts_delta);
1335 
1336 	return ret;
1337 }
1338 EXPORT_SYMBOL(do_settimeofday64);
1339 
1340 /**
1341  * timekeeping_inject_offset - Adds or subtracts from the current time.
1342  * @tv:		pointer to the timespec variable containing the offset
1343  *
1344  * Adds or subtracts an offset value from the current time.
1345  */
1346 static int timekeeping_inject_offset(const struct timespec64 *ts)
1347 {
1348 	struct timekeeper *tk = &tk_core.timekeeper;
1349 	unsigned long flags;
1350 	struct timespec64 tmp;
1351 	int ret = 0;
1352 
1353 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1354 		return -EINVAL;
1355 
1356 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1357 	write_seqcount_begin(&tk_core.seq);
1358 
1359 	timekeeping_forward_now(tk);
1360 
1361 	/* Make sure the proposed value is valid */
1362 	tmp = timespec64_add(tk_xtime(tk), *ts);
1363 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1364 	    !timespec64_valid_settod(&tmp)) {
1365 		ret = -EINVAL;
1366 		goto error;
1367 	}
1368 
1369 	tk_xtime_add(tk, ts);
1370 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1371 
1372 error: /* even if we error out, we forwarded the time, so call update */
1373 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1374 
1375 	write_seqcount_end(&tk_core.seq);
1376 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1377 
1378 	/* signal hrtimers about time change */
1379 	clock_was_set();
1380 
1381 	return ret;
1382 }
1383 
1384 /*
1385  * Indicates if there is an offset between the system clock and the hardware
1386  * clock/persistent clock/rtc.
1387  */
1388 int persistent_clock_is_local;
1389 
1390 /*
1391  * Adjust the time obtained from the CMOS to be UTC time instead of
1392  * local time.
1393  *
1394  * This is ugly, but preferable to the alternatives.  Otherwise we
1395  * would either need to write a program to do it in /etc/rc (and risk
1396  * confusion if the program gets run more than once; it would also be
1397  * hard to make the program warp the clock precisely n hours)  or
1398  * compile in the timezone information into the kernel.  Bad, bad....
1399  *
1400  *						- TYT, 1992-01-01
1401  *
1402  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1403  * as real UNIX machines always do it. This avoids all headaches about
1404  * daylight saving times and warping kernel clocks.
1405  */
1406 void timekeeping_warp_clock(void)
1407 {
1408 	if (sys_tz.tz_minuteswest != 0) {
1409 		struct timespec64 adjust;
1410 
1411 		persistent_clock_is_local = 1;
1412 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1413 		adjust.tv_nsec = 0;
1414 		timekeeping_inject_offset(&adjust);
1415 	}
1416 }
1417 
1418 /**
1419  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1420  *
1421  */
1422 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1423 {
1424 	tk->tai_offset = tai_offset;
1425 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1426 }
1427 
1428 /**
1429  * change_clocksource - Swaps clocksources if a new one is available
1430  *
1431  * Accumulates current time interval and initializes new clocksource
1432  */
1433 static int change_clocksource(void *data)
1434 {
1435 	struct timekeeper *tk = &tk_core.timekeeper;
1436 	struct clocksource *new, *old;
1437 	unsigned long flags;
1438 
1439 	new = (struct clocksource *) data;
1440 
1441 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1442 	write_seqcount_begin(&tk_core.seq);
1443 
1444 	timekeeping_forward_now(tk);
1445 	/*
1446 	 * If the cs is in module, get a module reference. Succeeds
1447 	 * for built-in code (owner == NULL) as well.
1448 	 */
1449 	if (try_module_get(new->owner)) {
1450 		if (!new->enable || new->enable(new) == 0) {
1451 			old = tk->tkr_mono.clock;
1452 			tk_setup_internals(tk, new);
1453 			if (old->disable)
1454 				old->disable(old);
1455 			module_put(old->owner);
1456 		} else {
1457 			module_put(new->owner);
1458 		}
1459 	}
1460 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1461 
1462 	write_seqcount_end(&tk_core.seq);
1463 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1464 
1465 	return 0;
1466 }
1467 
1468 /**
1469  * timekeeping_notify - Install a new clock source
1470  * @clock:		pointer to the clock source
1471  *
1472  * This function is called from clocksource.c after a new, better clock
1473  * source has been registered. The caller holds the clocksource_mutex.
1474  */
1475 int timekeeping_notify(struct clocksource *clock)
1476 {
1477 	struct timekeeper *tk = &tk_core.timekeeper;
1478 
1479 	if (tk->tkr_mono.clock == clock)
1480 		return 0;
1481 	stop_machine(change_clocksource, clock, NULL);
1482 	tick_clock_notify();
1483 	return tk->tkr_mono.clock == clock ? 0 : -1;
1484 }
1485 
1486 /**
1487  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1488  * @ts:		pointer to the timespec64 to be set
1489  *
1490  * Returns the raw monotonic time (completely un-modified by ntp)
1491  */
1492 void ktime_get_raw_ts64(struct timespec64 *ts)
1493 {
1494 	struct timekeeper *tk = &tk_core.timekeeper;
1495 	unsigned int seq;
1496 	u64 nsecs;
1497 
1498 	do {
1499 		seq = read_seqcount_begin(&tk_core.seq);
1500 		ts->tv_sec = tk->raw_sec;
1501 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1502 
1503 	} while (read_seqcount_retry(&tk_core.seq, seq));
1504 
1505 	ts->tv_nsec = 0;
1506 	timespec64_add_ns(ts, nsecs);
1507 }
1508 EXPORT_SYMBOL(ktime_get_raw_ts64);
1509 
1510 
1511 /**
1512  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1513  */
1514 int timekeeping_valid_for_hres(void)
1515 {
1516 	struct timekeeper *tk = &tk_core.timekeeper;
1517 	unsigned int seq;
1518 	int ret;
1519 
1520 	do {
1521 		seq = read_seqcount_begin(&tk_core.seq);
1522 
1523 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1524 
1525 	} while (read_seqcount_retry(&tk_core.seq, seq));
1526 
1527 	return ret;
1528 }
1529 
1530 /**
1531  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1532  */
1533 u64 timekeeping_max_deferment(void)
1534 {
1535 	struct timekeeper *tk = &tk_core.timekeeper;
1536 	unsigned int seq;
1537 	u64 ret;
1538 
1539 	do {
1540 		seq = read_seqcount_begin(&tk_core.seq);
1541 
1542 		ret = tk->tkr_mono.clock->max_idle_ns;
1543 
1544 	} while (read_seqcount_retry(&tk_core.seq, seq));
1545 
1546 	return ret;
1547 }
1548 
1549 /**
1550  * read_persistent_clock64 -  Return time from the persistent clock.
1551  *
1552  * Weak dummy function for arches that do not yet support it.
1553  * Reads the time from the battery backed persistent clock.
1554  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1555  *
1556  *  XXX - Do be sure to remove it once all arches implement it.
1557  */
1558 void __weak read_persistent_clock64(struct timespec64 *ts)
1559 {
1560 	ts->tv_sec = 0;
1561 	ts->tv_nsec = 0;
1562 }
1563 
1564 /**
1565  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1566  *                                        from the boot.
1567  *
1568  * Weak dummy function for arches that do not yet support it.
1569  * wall_time	- current time as returned by persistent clock
1570  * boot_offset	- offset that is defined as wall_time - boot_time
1571  * The default function calculates offset based on the current value of
1572  * local_clock(). This way architectures that support sched_clock() but don't
1573  * support dedicated boot time clock will provide the best estimate of the
1574  * boot time.
1575  */
1576 void __weak __init
1577 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1578 				     struct timespec64 *boot_offset)
1579 {
1580 	read_persistent_clock64(wall_time);
1581 	*boot_offset = ns_to_timespec64(local_clock());
1582 }
1583 
1584 /*
1585  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1586  *
1587  * The flag starts of false and is only set when a suspend reaches
1588  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1589  * timekeeper clocksource is not stopping across suspend and has been
1590  * used to update sleep time. If the timekeeper clocksource has stopped
1591  * then the flag stays true and is used by the RTC resume code to decide
1592  * whether sleeptime must be injected and if so the flag gets false then.
1593  *
1594  * If a suspend fails before reaching timekeeping_resume() then the flag
1595  * stays false and prevents erroneous sleeptime injection.
1596  */
1597 static bool suspend_timing_needed;
1598 
1599 /* Flag for if there is a persistent clock on this platform */
1600 static bool persistent_clock_exists;
1601 
1602 /*
1603  * timekeeping_init - Initializes the clocksource and common timekeeping values
1604  */
1605 void __init timekeeping_init(void)
1606 {
1607 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1608 	struct timekeeper *tk = &tk_core.timekeeper;
1609 	struct clocksource *clock;
1610 	unsigned long flags;
1611 
1612 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1613 	if (timespec64_valid_settod(&wall_time) &&
1614 	    timespec64_to_ns(&wall_time) > 0) {
1615 		persistent_clock_exists = true;
1616 	} else if (timespec64_to_ns(&wall_time) != 0) {
1617 		pr_warn("Persistent clock returned invalid value");
1618 		wall_time = (struct timespec64){0};
1619 	}
1620 
1621 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1622 		boot_offset = (struct timespec64){0};
1623 
1624 	/*
1625 	 * We want set wall_to_mono, so the following is true:
1626 	 * wall time + wall_to_mono = boot time
1627 	 */
1628 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1629 
1630 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1631 	write_seqcount_begin(&tk_core.seq);
1632 	ntp_init();
1633 
1634 	clock = clocksource_default_clock();
1635 	if (clock->enable)
1636 		clock->enable(clock);
1637 	tk_setup_internals(tk, clock);
1638 
1639 	tk_set_xtime(tk, &wall_time);
1640 	tk->raw_sec = 0;
1641 
1642 	tk_set_wall_to_mono(tk, wall_to_mono);
1643 
1644 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1645 
1646 	write_seqcount_end(&tk_core.seq);
1647 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1648 }
1649 
1650 /* time in seconds when suspend began for persistent clock */
1651 static struct timespec64 timekeeping_suspend_time;
1652 
1653 /**
1654  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1655  * @delta: pointer to a timespec delta value
1656  *
1657  * Takes a timespec offset measuring a suspend interval and properly
1658  * adds the sleep offset to the timekeeping variables.
1659  */
1660 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1661 					   const struct timespec64 *delta)
1662 {
1663 	if (!timespec64_valid_strict(delta)) {
1664 		printk_deferred(KERN_WARNING
1665 				"__timekeeping_inject_sleeptime: Invalid "
1666 				"sleep delta value!\n");
1667 		return;
1668 	}
1669 	tk_xtime_add(tk, delta);
1670 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1671 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1672 	tk_debug_account_sleep_time(delta);
1673 }
1674 
1675 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1676 /**
1677  * We have three kinds of time sources to use for sleep time
1678  * injection, the preference order is:
1679  * 1) non-stop clocksource
1680  * 2) persistent clock (ie: RTC accessible when irqs are off)
1681  * 3) RTC
1682  *
1683  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1684  * If system has neither 1) nor 2), 3) will be used finally.
1685  *
1686  *
1687  * If timekeeping has injected sleeptime via either 1) or 2),
1688  * 3) becomes needless, so in this case we don't need to call
1689  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1690  * means.
1691  */
1692 bool timekeeping_rtc_skipresume(void)
1693 {
1694 	return !suspend_timing_needed;
1695 }
1696 
1697 /**
1698  * 1) can be determined whether to use or not only when doing
1699  * timekeeping_resume() which is invoked after rtc_suspend(),
1700  * so we can't skip rtc_suspend() surely if system has 1).
1701  *
1702  * But if system has 2), 2) will definitely be used, so in this
1703  * case we don't need to call rtc_suspend(), and this is what
1704  * timekeeping_rtc_skipsuspend() means.
1705  */
1706 bool timekeeping_rtc_skipsuspend(void)
1707 {
1708 	return persistent_clock_exists;
1709 }
1710 
1711 /**
1712  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1713  * @delta: pointer to a timespec64 delta value
1714  *
1715  * This hook is for architectures that cannot support read_persistent_clock64
1716  * because their RTC/persistent clock is only accessible when irqs are enabled.
1717  * and also don't have an effective nonstop clocksource.
1718  *
1719  * This function should only be called by rtc_resume(), and allows
1720  * a suspend offset to be injected into the timekeeping values.
1721  */
1722 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1723 {
1724 	struct timekeeper *tk = &tk_core.timekeeper;
1725 	unsigned long flags;
1726 
1727 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1728 	write_seqcount_begin(&tk_core.seq);
1729 
1730 	suspend_timing_needed = false;
1731 
1732 	timekeeping_forward_now(tk);
1733 
1734 	__timekeeping_inject_sleeptime(tk, delta);
1735 
1736 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1737 
1738 	write_seqcount_end(&tk_core.seq);
1739 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1740 
1741 	/* signal hrtimers about time change */
1742 	clock_was_set();
1743 }
1744 #endif
1745 
1746 /**
1747  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1748  */
1749 void timekeeping_resume(void)
1750 {
1751 	struct timekeeper *tk = &tk_core.timekeeper;
1752 	struct clocksource *clock = tk->tkr_mono.clock;
1753 	unsigned long flags;
1754 	struct timespec64 ts_new, ts_delta;
1755 	u64 cycle_now, nsec;
1756 	bool inject_sleeptime = false;
1757 
1758 	read_persistent_clock64(&ts_new);
1759 
1760 	clockevents_resume();
1761 	clocksource_resume();
1762 
1763 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1764 	write_seqcount_begin(&tk_core.seq);
1765 
1766 	/*
1767 	 * After system resumes, we need to calculate the suspended time and
1768 	 * compensate it for the OS time. There are 3 sources that could be
1769 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1770 	 * device.
1771 	 *
1772 	 * One specific platform may have 1 or 2 or all of them, and the
1773 	 * preference will be:
1774 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1775 	 * The less preferred source will only be tried if there is no better
1776 	 * usable source. The rtc part is handled separately in rtc core code.
1777 	 */
1778 	cycle_now = tk_clock_read(&tk->tkr_mono);
1779 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1780 	if (nsec > 0) {
1781 		ts_delta = ns_to_timespec64(nsec);
1782 		inject_sleeptime = true;
1783 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1784 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1785 		inject_sleeptime = true;
1786 	}
1787 
1788 	if (inject_sleeptime) {
1789 		suspend_timing_needed = false;
1790 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1791 	}
1792 
1793 	/* Re-base the last cycle value */
1794 	tk->tkr_mono.cycle_last = cycle_now;
1795 	tk->tkr_raw.cycle_last  = cycle_now;
1796 
1797 	tk->ntp_error = 0;
1798 	timekeeping_suspended = 0;
1799 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1800 	write_seqcount_end(&tk_core.seq);
1801 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1802 
1803 	touch_softlockup_watchdog();
1804 
1805 	tick_resume();
1806 	hrtimers_resume();
1807 }
1808 
1809 int timekeeping_suspend(void)
1810 {
1811 	struct timekeeper *tk = &tk_core.timekeeper;
1812 	unsigned long flags;
1813 	struct timespec64		delta, delta_delta;
1814 	static struct timespec64	old_delta;
1815 	struct clocksource *curr_clock;
1816 	u64 cycle_now;
1817 
1818 	read_persistent_clock64(&timekeeping_suspend_time);
1819 
1820 	/*
1821 	 * On some systems the persistent_clock can not be detected at
1822 	 * timekeeping_init by its return value, so if we see a valid
1823 	 * value returned, update the persistent_clock_exists flag.
1824 	 */
1825 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1826 		persistent_clock_exists = true;
1827 
1828 	suspend_timing_needed = true;
1829 
1830 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1831 	write_seqcount_begin(&tk_core.seq);
1832 	timekeeping_forward_now(tk);
1833 	timekeeping_suspended = 1;
1834 
1835 	/*
1836 	 * Since we've called forward_now, cycle_last stores the value
1837 	 * just read from the current clocksource. Save this to potentially
1838 	 * use in suspend timing.
1839 	 */
1840 	curr_clock = tk->tkr_mono.clock;
1841 	cycle_now = tk->tkr_mono.cycle_last;
1842 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1843 
1844 	if (persistent_clock_exists) {
1845 		/*
1846 		 * To avoid drift caused by repeated suspend/resumes,
1847 		 * which each can add ~1 second drift error,
1848 		 * try to compensate so the difference in system time
1849 		 * and persistent_clock time stays close to constant.
1850 		 */
1851 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1852 		delta_delta = timespec64_sub(delta, old_delta);
1853 		if (abs(delta_delta.tv_sec) >= 2) {
1854 			/*
1855 			 * if delta_delta is too large, assume time correction
1856 			 * has occurred and set old_delta to the current delta.
1857 			 */
1858 			old_delta = delta;
1859 		} else {
1860 			/* Otherwise try to adjust old_system to compensate */
1861 			timekeeping_suspend_time =
1862 				timespec64_add(timekeeping_suspend_time, delta_delta);
1863 		}
1864 	}
1865 
1866 	timekeeping_update(tk, TK_MIRROR);
1867 	halt_fast_timekeeper(tk);
1868 	write_seqcount_end(&tk_core.seq);
1869 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1870 
1871 	tick_suspend();
1872 	clocksource_suspend();
1873 	clockevents_suspend();
1874 
1875 	return 0;
1876 }
1877 
1878 /* sysfs resume/suspend bits for timekeeping */
1879 static struct syscore_ops timekeeping_syscore_ops = {
1880 	.resume		= timekeeping_resume,
1881 	.suspend	= timekeeping_suspend,
1882 };
1883 
1884 static int __init timekeeping_init_ops(void)
1885 {
1886 	register_syscore_ops(&timekeeping_syscore_ops);
1887 	return 0;
1888 }
1889 device_initcall(timekeeping_init_ops);
1890 
1891 /*
1892  * Apply a multiplier adjustment to the timekeeper
1893  */
1894 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1895 							 s64 offset,
1896 							 s32 mult_adj)
1897 {
1898 	s64 interval = tk->cycle_interval;
1899 
1900 	if (mult_adj == 0) {
1901 		return;
1902 	} else if (mult_adj == -1) {
1903 		interval = -interval;
1904 		offset = -offset;
1905 	} else if (mult_adj != 1) {
1906 		interval *= mult_adj;
1907 		offset *= mult_adj;
1908 	}
1909 
1910 	/*
1911 	 * So the following can be confusing.
1912 	 *
1913 	 * To keep things simple, lets assume mult_adj == 1 for now.
1914 	 *
1915 	 * When mult_adj != 1, remember that the interval and offset values
1916 	 * have been appropriately scaled so the math is the same.
1917 	 *
1918 	 * The basic idea here is that we're increasing the multiplier
1919 	 * by one, this causes the xtime_interval to be incremented by
1920 	 * one cycle_interval. This is because:
1921 	 *	xtime_interval = cycle_interval * mult
1922 	 * So if mult is being incremented by one:
1923 	 *	xtime_interval = cycle_interval * (mult + 1)
1924 	 * Its the same as:
1925 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1926 	 * Which can be shortened to:
1927 	 *	xtime_interval += cycle_interval
1928 	 *
1929 	 * So offset stores the non-accumulated cycles. Thus the current
1930 	 * time (in shifted nanoseconds) is:
1931 	 *	now = (offset * adj) + xtime_nsec
1932 	 * Now, even though we're adjusting the clock frequency, we have
1933 	 * to keep time consistent. In other words, we can't jump back
1934 	 * in time, and we also want to avoid jumping forward in time.
1935 	 *
1936 	 * So given the same offset value, we need the time to be the same
1937 	 * both before and after the freq adjustment.
1938 	 *	now = (offset * adj_1) + xtime_nsec_1
1939 	 *	now = (offset * adj_2) + xtime_nsec_2
1940 	 * So:
1941 	 *	(offset * adj_1) + xtime_nsec_1 =
1942 	 *		(offset * adj_2) + xtime_nsec_2
1943 	 * And we know:
1944 	 *	adj_2 = adj_1 + 1
1945 	 * So:
1946 	 *	(offset * adj_1) + xtime_nsec_1 =
1947 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1948 	 *	(offset * adj_1) + xtime_nsec_1 =
1949 	 *		(offset * adj_1) + offset + xtime_nsec_2
1950 	 * Canceling the sides:
1951 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1952 	 * Which gives us:
1953 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1954 	 * Which simplfies to:
1955 	 *	xtime_nsec -= offset
1956 	 */
1957 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1958 		/* NTP adjustment caused clocksource mult overflow */
1959 		WARN_ON_ONCE(1);
1960 		return;
1961 	}
1962 
1963 	tk->tkr_mono.mult += mult_adj;
1964 	tk->xtime_interval += interval;
1965 	tk->tkr_mono.xtime_nsec -= offset;
1966 }
1967 
1968 /*
1969  * Adjust the timekeeper's multiplier to the correct frequency
1970  * and also to reduce the accumulated error value.
1971  */
1972 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1973 {
1974 	u32 mult;
1975 
1976 	/*
1977 	 * Determine the multiplier from the current NTP tick length.
1978 	 * Avoid expensive division when the tick length doesn't change.
1979 	 */
1980 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1981 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1982 	} else {
1983 		tk->ntp_tick = ntp_tick_length();
1984 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1985 				 tk->xtime_remainder, tk->cycle_interval);
1986 	}
1987 
1988 	/*
1989 	 * If the clock is behind the NTP time, increase the multiplier by 1
1990 	 * to catch up with it. If it's ahead and there was a remainder in the
1991 	 * tick division, the clock will slow down. Otherwise it will stay
1992 	 * ahead until the tick length changes to a non-divisible value.
1993 	 */
1994 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1995 	mult += tk->ntp_err_mult;
1996 
1997 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1998 
1999 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2000 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2001 			> tk->tkr_mono.clock->maxadj))) {
2002 		printk_once(KERN_WARNING
2003 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2004 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2005 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2006 	}
2007 
2008 	/*
2009 	 * It may be possible that when we entered this function, xtime_nsec
2010 	 * was very small.  Further, if we're slightly speeding the clocksource
2011 	 * in the code above, its possible the required corrective factor to
2012 	 * xtime_nsec could cause it to underflow.
2013 	 *
2014 	 * Now, since we have already accumulated the second and the NTP
2015 	 * subsystem has been notified via second_overflow(), we need to skip
2016 	 * the next update.
2017 	 */
2018 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2019 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2020 							tk->tkr_mono.shift;
2021 		tk->xtime_sec--;
2022 		tk->skip_second_overflow = 1;
2023 	}
2024 }
2025 
2026 /**
2027  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2028  *
2029  * Helper function that accumulates the nsecs greater than a second
2030  * from the xtime_nsec field to the xtime_secs field.
2031  * It also calls into the NTP code to handle leapsecond processing.
2032  *
2033  */
2034 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2035 {
2036 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2037 	unsigned int clock_set = 0;
2038 
2039 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2040 		int leap;
2041 
2042 		tk->tkr_mono.xtime_nsec -= nsecps;
2043 		tk->xtime_sec++;
2044 
2045 		/*
2046 		 * Skip NTP update if this second was accumulated before,
2047 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2048 		 */
2049 		if (unlikely(tk->skip_second_overflow)) {
2050 			tk->skip_second_overflow = 0;
2051 			continue;
2052 		}
2053 
2054 		/* Figure out if its a leap sec and apply if needed */
2055 		leap = second_overflow(tk->xtime_sec);
2056 		if (unlikely(leap)) {
2057 			struct timespec64 ts;
2058 
2059 			tk->xtime_sec += leap;
2060 
2061 			ts.tv_sec = leap;
2062 			ts.tv_nsec = 0;
2063 			tk_set_wall_to_mono(tk,
2064 				timespec64_sub(tk->wall_to_monotonic, ts));
2065 
2066 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2067 
2068 			clock_set = TK_CLOCK_WAS_SET;
2069 		}
2070 	}
2071 	return clock_set;
2072 }
2073 
2074 /**
2075  * logarithmic_accumulation - shifted accumulation of cycles
2076  *
2077  * This functions accumulates a shifted interval of cycles into
2078  * a shifted interval nanoseconds. Allows for O(log) accumulation
2079  * loop.
2080  *
2081  * Returns the unconsumed cycles.
2082  */
2083 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2084 				    u32 shift, unsigned int *clock_set)
2085 {
2086 	u64 interval = tk->cycle_interval << shift;
2087 	u64 snsec_per_sec;
2088 
2089 	/* If the offset is smaller than a shifted interval, do nothing */
2090 	if (offset < interval)
2091 		return offset;
2092 
2093 	/* Accumulate one shifted interval */
2094 	offset -= interval;
2095 	tk->tkr_mono.cycle_last += interval;
2096 	tk->tkr_raw.cycle_last  += interval;
2097 
2098 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2099 	*clock_set |= accumulate_nsecs_to_secs(tk);
2100 
2101 	/* Accumulate raw time */
2102 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2103 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2104 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2105 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2106 		tk->raw_sec++;
2107 	}
2108 
2109 	/* Accumulate error between NTP and clock interval */
2110 	tk->ntp_error += tk->ntp_tick << shift;
2111 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2112 						(tk->ntp_error_shift + shift);
2113 
2114 	return offset;
2115 }
2116 
2117 /*
2118  * timekeeping_advance - Updates the timekeeper to the current time and
2119  * current NTP tick length
2120  */
2121 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2122 {
2123 	struct timekeeper *real_tk = &tk_core.timekeeper;
2124 	struct timekeeper *tk = &shadow_timekeeper;
2125 	u64 offset;
2126 	int shift = 0, maxshift;
2127 	unsigned int clock_set = 0;
2128 	unsigned long flags;
2129 
2130 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2131 
2132 	/* Make sure we're fully resumed: */
2133 	if (unlikely(timekeeping_suspended))
2134 		goto out;
2135 
2136 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2137 	offset = real_tk->cycle_interval;
2138 
2139 	if (mode != TK_ADV_TICK)
2140 		goto out;
2141 #else
2142 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2143 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2144 
2145 	/* Check if there's really nothing to do */
2146 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2147 		goto out;
2148 #endif
2149 
2150 	/* Do some additional sanity checking */
2151 	timekeeping_check_update(tk, offset);
2152 
2153 	/*
2154 	 * With NO_HZ we may have to accumulate many cycle_intervals
2155 	 * (think "ticks") worth of time at once. To do this efficiently,
2156 	 * we calculate the largest doubling multiple of cycle_intervals
2157 	 * that is smaller than the offset.  We then accumulate that
2158 	 * chunk in one go, and then try to consume the next smaller
2159 	 * doubled multiple.
2160 	 */
2161 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2162 	shift = max(0, shift);
2163 	/* Bound shift to one less than what overflows tick_length */
2164 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2165 	shift = min(shift, maxshift);
2166 	while (offset >= tk->cycle_interval) {
2167 		offset = logarithmic_accumulation(tk, offset, shift,
2168 							&clock_set);
2169 		if (offset < tk->cycle_interval<<shift)
2170 			shift--;
2171 	}
2172 
2173 	/* Adjust the multiplier to correct NTP error */
2174 	timekeeping_adjust(tk, offset);
2175 
2176 	/*
2177 	 * Finally, make sure that after the rounding
2178 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2179 	 */
2180 	clock_set |= accumulate_nsecs_to_secs(tk);
2181 
2182 	write_seqcount_begin(&tk_core.seq);
2183 	/*
2184 	 * Update the real timekeeper.
2185 	 *
2186 	 * We could avoid this memcpy by switching pointers, but that
2187 	 * requires changes to all other timekeeper usage sites as
2188 	 * well, i.e. move the timekeeper pointer getter into the
2189 	 * spinlocked/seqcount protected sections. And we trade this
2190 	 * memcpy under the tk_core.seq against one before we start
2191 	 * updating.
2192 	 */
2193 	timekeeping_update(tk, clock_set);
2194 	memcpy(real_tk, tk, sizeof(*tk));
2195 	/* The memcpy must come last. Do not put anything here! */
2196 	write_seqcount_end(&tk_core.seq);
2197 out:
2198 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2199 	if (clock_set)
2200 		/* Have to call _delayed version, since in irq context*/
2201 		clock_was_set_delayed();
2202 }
2203 
2204 /**
2205  * update_wall_time - Uses the current clocksource to increment the wall time
2206  *
2207  */
2208 void update_wall_time(void)
2209 {
2210 	timekeeping_advance(TK_ADV_TICK);
2211 }
2212 
2213 /**
2214  * getboottime64 - Return the real time of system boot.
2215  * @ts:		pointer to the timespec64 to be set
2216  *
2217  * Returns the wall-time of boot in a timespec64.
2218  *
2219  * This is based on the wall_to_monotonic offset and the total suspend
2220  * time. Calls to settimeofday will affect the value returned (which
2221  * basically means that however wrong your real time clock is at boot time,
2222  * you get the right time here).
2223  */
2224 void getboottime64(struct timespec64 *ts)
2225 {
2226 	struct timekeeper *tk = &tk_core.timekeeper;
2227 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2228 
2229 	*ts = ktime_to_timespec64(t);
2230 }
2231 EXPORT_SYMBOL_GPL(getboottime64);
2232 
2233 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2234 {
2235 	struct timekeeper *tk = &tk_core.timekeeper;
2236 	unsigned int seq;
2237 
2238 	do {
2239 		seq = read_seqcount_begin(&tk_core.seq);
2240 
2241 		*ts = tk_xtime(tk);
2242 	} while (read_seqcount_retry(&tk_core.seq, seq));
2243 }
2244 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2245 
2246 void ktime_get_coarse_ts64(struct timespec64 *ts)
2247 {
2248 	struct timekeeper *tk = &tk_core.timekeeper;
2249 	struct timespec64 now, mono;
2250 	unsigned int seq;
2251 
2252 	do {
2253 		seq = read_seqcount_begin(&tk_core.seq);
2254 
2255 		now = tk_xtime(tk);
2256 		mono = tk->wall_to_monotonic;
2257 	} while (read_seqcount_retry(&tk_core.seq, seq));
2258 
2259 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2260 				now.tv_nsec + mono.tv_nsec);
2261 }
2262 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2263 
2264 /*
2265  * Must hold jiffies_lock
2266  */
2267 void do_timer(unsigned long ticks)
2268 {
2269 	jiffies_64 += ticks;
2270 	calc_global_load();
2271 }
2272 
2273 /**
2274  * ktime_get_update_offsets_now - hrtimer helper
2275  * @cwsseq:	pointer to check and store the clock was set sequence number
2276  * @offs_real:	pointer to storage for monotonic -> realtime offset
2277  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2278  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2279  *
2280  * Returns current monotonic time and updates the offsets if the
2281  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2282  * different.
2283  *
2284  * Called from hrtimer_interrupt() or retrigger_next_event()
2285  */
2286 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2287 				     ktime_t *offs_boot, ktime_t *offs_tai)
2288 {
2289 	struct timekeeper *tk = &tk_core.timekeeper;
2290 	unsigned int seq;
2291 	ktime_t base;
2292 	u64 nsecs;
2293 
2294 	do {
2295 		seq = read_seqcount_begin(&tk_core.seq);
2296 
2297 		base = tk->tkr_mono.base;
2298 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2299 		base = ktime_add_ns(base, nsecs);
2300 
2301 		if (*cwsseq != tk->clock_was_set_seq) {
2302 			*cwsseq = tk->clock_was_set_seq;
2303 			*offs_real = tk->offs_real;
2304 			*offs_boot = tk->offs_boot;
2305 			*offs_tai = tk->offs_tai;
2306 		}
2307 
2308 		/* Handle leapsecond insertion adjustments */
2309 		if (unlikely(base >= tk->next_leap_ktime))
2310 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2311 
2312 	} while (read_seqcount_retry(&tk_core.seq, seq));
2313 
2314 	return base;
2315 }
2316 
2317 /**
2318  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2319  */
2320 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2321 {
2322 	if (txc->modes & ADJ_ADJTIME) {
2323 		/* singleshot must not be used with any other mode bits */
2324 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2325 			return -EINVAL;
2326 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2327 		    !capable(CAP_SYS_TIME))
2328 			return -EPERM;
2329 	} else {
2330 		/* In order to modify anything, you gotta be super-user! */
2331 		if (txc->modes && !capable(CAP_SYS_TIME))
2332 			return -EPERM;
2333 		/*
2334 		 * if the quartz is off by more than 10% then
2335 		 * something is VERY wrong!
2336 		 */
2337 		if (txc->modes & ADJ_TICK &&
2338 		    (txc->tick <  900000/USER_HZ ||
2339 		     txc->tick > 1100000/USER_HZ))
2340 			return -EINVAL;
2341 	}
2342 
2343 	if (txc->modes & ADJ_SETOFFSET) {
2344 		/* In order to inject time, you gotta be super-user! */
2345 		if (!capable(CAP_SYS_TIME))
2346 			return -EPERM;
2347 
2348 		/*
2349 		 * Validate if a timespec/timeval used to inject a time
2350 		 * offset is valid.  Offsets can be postive or negative, so
2351 		 * we don't check tv_sec. The value of the timeval/timespec
2352 		 * is the sum of its fields,but *NOTE*:
2353 		 * The field tv_usec/tv_nsec must always be non-negative and
2354 		 * we can't have more nanoseconds/microseconds than a second.
2355 		 */
2356 		if (txc->time.tv_usec < 0)
2357 			return -EINVAL;
2358 
2359 		if (txc->modes & ADJ_NANO) {
2360 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2361 				return -EINVAL;
2362 		} else {
2363 			if (txc->time.tv_usec >= USEC_PER_SEC)
2364 				return -EINVAL;
2365 		}
2366 	}
2367 
2368 	/*
2369 	 * Check for potential multiplication overflows that can
2370 	 * only happen on 64-bit systems:
2371 	 */
2372 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2373 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2374 			return -EINVAL;
2375 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2376 			return -EINVAL;
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 
2383 /**
2384  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2385  */
2386 int do_adjtimex(struct __kernel_timex *txc)
2387 {
2388 	struct timekeeper *tk = &tk_core.timekeeper;
2389 	struct audit_ntp_data ad;
2390 	unsigned long flags;
2391 	struct timespec64 ts;
2392 	s32 orig_tai, tai;
2393 	int ret;
2394 
2395 	/* Validate the data before disabling interrupts */
2396 	ret = timekeeping_validate_timex(txc);
2397 	if (ret)
2398 		return ret;
2399 
2400 	if (txc->modes & ADJ_SETOFFSET) {
2401 		struct timespec64 delta;
2402 		delta.tv_sec  = txc->time.tv_sec;
2403 		delta.tv_nsec = txc->time.tv_usec;
2404 		if (!(txc->modes & ADJ_NANO))
2405 			delta.tv_nsec *= 1000;
2406 		ret = timekeeping_inject_offset(&delta);
2407 		if (ret)
2408 			return ret;
2409 
2410 		audit_tk_injoffset(delta);
2411 	}
2412 
2413 	audit_ntp_init(&ad);
2414 
2415 	ktime_get_real_ts64(&ts);
2416 
2417 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2418 	write_seqcount_begin(&tk_core.seq);
2419 
2420 	orig_tai = tai = tk->tai_offset;
2421 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2422 
2423 	if (tai != orig_tai) {
2424 		__timekeeping_set_tai_offset(tk, tai);
2425 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2426 	}
2427 	tk_update_leap_state(tk);
2428 
2429 	write_seqcount_end(&tk_core.seq);
2430 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2431 
2432 	audit_ntp_log(&ad);
2433 
2434 	/* Update the multiplier immediately if frequency was set directly */
2435 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2436 		timekeeping_advance(TK_ADV_FREQ);
2437 
2438 	if (tai != orig_tai)
2439 		clock_was_set();
2440 
2441 	ntp_notify_cmos_timer();
2442 
2443 	return ret;
2444 }
2445 
2446 #ifdef CONFIG_NTP_PPS
2447 /**
2448  * hardpps() - Accessor function to NTP __hardpps function
2449  */
2450 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2451 {
2452 	unsigned long flags;
2453 
2454 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2455 	write_seqcount_begin(&tk_core.seq);
2456 
2457 	__hardpps(phase_ts, raw_ts);
2458 
2459 	write_seqcount_end(&tk_core.seq);
2460 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2461 }
2462 EXPORT_SYMBOL(hardpps);
2463 #endif /* CONFIG_NTP_PPS */
2464 
2465 /**
2466  * xtime_update() - advances the timekeeping infrastructure
2467  * @ticks:	number of ticks, that have elapsed since the last call.
2468  *
2469  * Must be called with interrupts disabled.
2470  */
2471 void xtime_update(unsigned long ticks)
2472 {
2473 	raw_spin_lock(&jiffies_lock);
2474 	write_seqcount_begin(&jiffies_seq);
2475 	do_timer(ticks);
2476 	write_seqcount_end(&jiffies_seq);
2477 	raw_spin_unlock(&jiffies_lock);
2478 	update_wall_time();
2479 }
2480