xref: /openbmc/linux/kernel/time/timekeeping.c (revision 2359ccdd)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28 
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32 
33 #define TK_CLEAR_NTP		(1 << 0)
34 #define TK_MIRROR		(1 << 1)
35 #define TK_CLOCK_WAS_SET	(1 << 2)
36 
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42 	seqcount_t		seq;
43 	struct timekeeper	timekeeper;
44 } tk_core ____cacheline_aligned;
45 
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48 
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:	Sequence counter for protecting updates. The lowest bit
52  *		is the index for the tk_read_base array
53  * @base:	tk_read_base array. Access is indexed by the lowest bit of
54  *		@seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59 	seqcount_t		seq;
60 	struct tk_read_base	base[2];
61 };
62 
63 /* Suspend-time cycles value for halted fast timekeeper. */
64 static u64 cycles_at_suspend;
65 
66 static u64 dummy_clock_read(struct clocksource *cs)
67 {
68 	return cycles_at_suspend;
69 }
70 
71 static struct clocksource dummy_clock = {
72 	.read = dummy_clock_read,
73 };
74 
75 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
76 	.base[0] = { .clock = &dummy_clock, },
77 	.base[1] = { .clock = &dummy_clock, },
78 };
79 
80 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
81 	.base[0] = { .clock = &dummy_clock, },
82 	.base[1] = { .clock = &dummy_clock, },
83 };
84 
85 /* flag for if timekeeping is suspended */
86 int __read_mostly timekeeping_suspended;
87 
88 static inline void tk_normalize_xtime(struct timekeeper *tk)
89 {
90 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
91 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 		tk->xtime_sec++;
93 	}
94 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
95 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
96 		tk->raw_sec++;
97 	}
98 }
99 
100 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
101 {
102 	struct timespec64 ts;
103 
104 	ts.tv_sec = tk->xtime_sec;
105 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 	return ts;
107 }
108 
109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 {
111 	tk->xtime_sec = ts->tv_sec;
112 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 }
114 
115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 {
117 	tk->xtime_sec += ts->tv_sec;
118 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119 	tk_normalize_xtime(tk);
120 }
121 
122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123 {
124 	struct timespec64 tmp;
125 
126 	/*
127 	 * Verify consistency of: offset_real = -wall_to_monotonic
128 	 * before modifying anything
129 	 */
130 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131 					-tk->wall_to_monotonic.tv_nsec);
132 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133 	tk->wall_to_monotonic = wtm;
134 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
135 	tk->offs_real = timespec64_to_ktime(tmp);
136 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 }
138 
139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140 {
141 	/* Update both bases so mono and raw stay coupled. */
142 	tk->tkr_mono.base += delta;
143 	tk->tkr_raw.base += delta;
144 
145 	/* Accumulate time spent in suspend */
146 	tk->time_suspended += delta;
147 }
148 
149 /*
150  * tk_clock_read - atomic clocksource read() helper
151  *
152  * This helper is necessary to use in the read paths because, while the
153  * seqlock ensures we don't return a bad value while structures are updated,
154  * it doesn't protect from potential crashes. There is the possibility that
155  * the tkr's clocksource may change between the read reference, and the
156  * clock reference passed to the read function.  This can cause crashes if
157  * the wrong clocksource is passed to the wrong read function.
158  * This isn't necessary to use when holding the timekeeper_lock or doing
159  * a read of the fast-timekeeper tkrs (which is protected by its own locking
160  * and update logic).
161  */
162 static inline u64 tk_clock_read(struct tk_read_base *tkr)
163 {
164 	struct clocksource *clock = READ_ONCE(tkr->clock);
165 
166 	return clock->read(clock);
167 }
168 
169 #ifdef CONFIG_DEBUG_TIMEKEEPING
170 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
171 
172 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
173 {
174 
175 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
176 	const char *name = tk->tkr_mono.clock->name;
177 
178 	if (offset > max_cycles) {
179 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
180 				offset, name, max_cycles);
181 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
182 	} else {
183 		if (offset > (max_cycles >> 1)) {
184 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
185 					offset, name, max_cycles >> 1);
186 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
187 		}
188 	}
189 
190 	if (tk->underflow_seen) {
191 		if (jiffies - tk->last_warning > WARNING_FREQ) {
192 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
193 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
194 			printk_deferred("         Your kernel is probably still fine.\n");
195 			tk->last_warning = jiffies;
196 		}
197 		tk->underflow_seen = 0;
198 	}
199 
200 	if (tk->overflow_seen) {
201 		if (jiffies - tk->last_warning > WARNING_FREQ) {
202 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
203 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
204 			printk_deferred("         Your kernel is probably still fine.\n");
205 			tk->last_warning = jiffies;
206 		}
207 		tk->overflow_seen = 0;
208 	}
209 }
210 
211 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
212 {
213 	struct timekeeper *tk = &tk_core.timekeeper;
214 	u64 now, last, mask, max, delta;
215 	unsigned int seq;
216 
217 	/*
218 	 * Since we're called holding a seqlock, the data may shift
219 	 * under us while we're doing the calculation. This can cause
220 	 * false positives, since we'd note a problem but throw the
221 	 * results away. So nest another seqlock here to atomically
222 	 * grab the points we are checking with.
223 	 */
224 	do {
225 		seq = read_seqcount_begin(&tk_core.seq);
226 		now = tk_clock_read(tkr);
227 		last = tkr->cycle_last;
228 		mask = tkr->mask;
229 		max = tkr->clock->max_cycles;
230 	} while (read_seqcount_retry(&tk_core.seq, seq));
231 
232 	delta = clocksource_delta(now, last, mask);
233 
234 	/*
235 	 * Try to catch underflows by checking if we are seeing small
236 	 * mask-relative negative values.
237 	 */
238 	if (unlikely((~delta & mask) < (mask >> 3))) {
239 		tk->underflow_seen = 1;
240 		delta = 0;
241 	}
242 
243 	/* Cap delta value to the max_cycles values to avoid mult overflows */
244 	if (unlikely(delta > max)) {
245 		tk->overflow_seen = 1;
246 		delta = tkr->clock->max_cycles;
247 	}
248 
249 	return delta;
250 }
251 #else
252 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
253 {
254 }
255 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
256 {
257 	u64 cycle_now, delta;
258 
259 	/* read clocksource */
260 	cycle_now = tk_clock_read(tkr);
261 
262 	/* calculate the delta since the last update_wall_time */
263 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
264 
265 	return delta;
266 }
267 #endif
268 
269 /**
270  * tk_setup_internals - Set up internals to use clocksource clock.
271  *
272  * @tk:		The target timekeeper to setup.
273  * @clock:		Pointer to clocksource.
274  *
275  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
276  * pair and interval request.
277  *
278  * Unless you're the timekeeping code, you should not be using this!
279  */
280 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
281 {
282 	u64 interval;
283 	u64 tmp, ntpinterval;
284 	struct clocksource *old_clock;
285 
286 	++tk->cs_was_changed_seq;
287 	old_clock = tk->tkr_mono.clock;
288 	tk->tkr_mono.clock = clock;
289 	tk->tkr_mono.mask = clock->mask;
290 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
291 
292 	tk->tkr_raw.clock = clock;
293 	tk->tkr_raw.mask = clock->mask;
294 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
295 
296 	/* Do the ns -> cycle conversion first, using original mult */
297 	tmp = NTP_INTERVAL_LENGTH;
298 	tmp <<= clock->shift;
299 	ntpinterval = tmp;
300 	tmp += clock->mult/2;
301 	do_div(tmp, clock->mult);
302 	if (tmp == 0)
303 		tmp = 1;
304 
305 	interval = (u64) tmp;
306 	tk->cycle_interval = interval;
307 
308 	/* Go back from cycles -> shifted ns */
309 	tk->xtime_interval = interval * clock->mult;
310 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
311 	tk->raw_interval = interval * clock->mult;
312 
313 	 /* if changing clocks, convert xtime_nsec shift units */
314 	if (old_clock) {
315 		int shift_change = clock->shift - old_clock->shift;
316 		if (shift_change < 0) {
317 			tk->tkr_mono.xtime_nsec >>= -shift_change;
318 			tk->tkr_raw.xtime_nsec >>= -shift_change;
319 		} else {
320 			tk->tkr_mono.xtime_nsec <<= shift_change;
321 			tk->tkr_raw.xtime_nsec <<= shift_change;
322 		}
323 	}
324 
325 	tk->tkr_mono.shift = clock->shift;
326 	tk->tkr_raw.shift = clock->shift;
327 
328 	tk->ntp_error = 0;
329 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
330 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
331 
332 	/*
333 	 * The timekeeper keeps its own mult values for the currently
334 	 * active clocksource. These value will be adjusted via NTP
335 	 * to counteract clock drifting.
336 	 */
337 	tk->tkr_mono.mult = clock->mult;
338 	tk->tkr_raw.mult = clock->mult;
339 	tk->ntp_err_mult = 0;
340 	tk->skip_second_overflow = 0;
341 }
342 
343 /* Timekeeper helper functions. */
344 
345 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
346 static u32 default_arch_gettimeoffset(void) { return 0; }
347 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
348 #else
349 static inline u32 arch_gettimeoffset(void) { return 0; }
350 #endif
351 
352 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
353 {
354 	u64 nsec;
355 
356 	nsec = delta * tkr->mult + tkr->xtime_nsec;
357 	nsec >>= tkr->shift;
358 
359 	/* If arch requires, add in get_arch_timeoffset() */
360 	return nsec + arch_gettimeoffset();
361 }
362 
363 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
364 {
365 	u64 delta;
366 
367 	delta = timekeeping_get_delta(tkr);
368 	return timekeeping_delta_to_ns(tkr, delta);
369 }
370 
371 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
372 {
373 	u64 delta;
374 
375 	/* calculate the delta since the last update_wall_time */
376 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
377 	return timekeeping_delta_to_ns(tkr, delta);
378 }
379 
380 /**
381  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
382  * @tkr: Timekeeping readout base from which we take the update
383  *
384  * We want to use this from any context including NMI and tracing /
385  * instrumenting the timekeeping code itself.
386  *
387  * Employ the latch technique; see @raw_write_seqcount_latch.
388  *
389  * So if a NMI hits the update of base[0] then it will use base[1]
390  * which is still consistent. In the worst case this can result is a
391  * slightly wrong timestamp (a few nanoseconds). See
392  * @ktime_get_mono_fast_ns.
393  */
394 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
395 {
396 	struct tk_read_base *base = tkf->base;
397 
398 	/* Force readers off to base[1] */
399 	raw_write_seqcount_latch(&tkf->seq);
400 
401 	/* Update base[0] */
402 	memcpy(base, tkr, sizeof(*base));
403 
404 	/* Force readers back to base[0] */
405 	raw_write_seqcount_latch(&tkf->seq);
406 
407 	/* Update base[1] */
408 	memcpy(base + 1, base, sizeof(*base));
409 }
410 
411 /**
412  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
413  *
414  * This timestamp is not guaranteed to be monotonic across an update.
415  * The timestamp is calculated by:
416  *
417  *	now = base_mono + clock_delta * slope
418  *
419  * So if the update lowers the slope, readers who are forced to the
420  * not yet updated second array are still using the old steeper slope.
421  *
422  * tmono
423  * ^
424  * |    o  n
425  * |   o n
426  * |  u
427  * | o
428  * |o
429  * |12345678---> reader order
430  *
431  * o = old slope
432  * u = update
433  * n = new slope
434  *
435  * So reader 6 will observe time going backwards versus reader 5.
436  *
437  * While other CPUs are likely to be able observe that, the only way
438  * for a CPU local observation is when an NMI hits in the middle of
439  * the update. Timestamps taken from that NMI context might be ahead
440  * of the following timestamps. Callers need to be aware of that and
441  * deal with it.
442  */
443 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
444 {
445 	struct tk_read_base *tkr;
446 	unsigned int seq;
447 	u64 now;
448 
449 	do {
450 		seq = raw_read_seqcount_latch(&tkf->seq);
451 		tkr = tkf->base + (seq & 0x01);
452 		now = ktime_to_ns(tkr->base);
453 
454 		now += timekeeping_delta_to_ns(tkr,
455 				clocksource_delta(
456 					tk_clock_read(tkr),
457 					tkr->cycle_last,
458 					tkr->mask));
459 	} while (read_seqcount_retry(&tkf->seq, seq));
460 
461 	return now;
462 }
463 
464 u64 ktime_get_mono_fast_ns(void)
465 {
466 	return __ktime_get_fast_ns(&tk_fast_mono);
467 }
468 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
469 
470 u64 ktime_get_raw_fast_ns(void)
471 {
472 	return __ktime_get_fast_ns(&tk_fast_raw);
473 }
474 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
475 
476 /*
477  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
478  */
479 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
480 {
481 	struct tk_read_base *tkr;
482 	unsigned int seq;
483 	u64 now;
484 
485 	do {
486 		seq = raw_read_seqcount_latch(&tkf->seq);
487 		tkr = tkf->base + (seq & 0x01);
488 		now = ktime_to_ns(tkr->base_real);
489 
490 		now += timekeeping_delta_to_ns(tkr,
491 				clocksource_delta(
492 					tk_clock_read(tkr),
493 					tkr->cycle_last,
494 					tkr->mask));
495 	} while (read_seqcount_retry(&tkf->seq, seq));
496 
497 	return now;
498 }
499 
500 /**
501  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
502  */
503 u64 ktime_get_real_fast_ns(void)
504 {
505 	return __ktime_get_real_fast_ns(&tk_fast_mono);
506 }
507 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
508 
509 /**
510  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
511  * @tk: Timekeeper to snapshot.
512  *
513  * It generally is unsafe to access the clocksource after timekeeping has been
514  * suspended, so take a snapshot of the readout base of @tk and use it as the
515  * fast timekeeper's readout base while suspended.  It will return the same
516  * number of cycles every time until timekeeping is resumed at which time the
517  * proper readout base for the fast timekeeper will be restored automatically.
518  */
519 static void halt_fast_timekeeper(struct timekeeper *tk)
520 {
521 	static struct tk_read_base tkr_dummy;
522 	struct tk_read_base *tkr = &tk->tkr_mono;
523 
524 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
525 	cycles_at_suspend = tk_clock_read(tkr);
526 	tkr_dummy.clock = &dummy_clock;
527 	tkr_dummy.base_real = tkr->base + tk->offs_real;
528 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
529 
530 	tkr = &tk->tkr_raw;
531 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
532 	tkr_dummy.clock = &dummy_clock;
533 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
534 }
535 
536 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
537 
538 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
539 {
540 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
541 }
542 
543 /**
544  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
545  */
546 int pvclock_gtod_register_notifier(struct notifier_block *nb)
547 {
548 	struct timekeeper *tk = &tk_core.timekeeper;
549 	unsigned long flags;
550 	int ret;
551 
552 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
553 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
554 	update_pvclock_gtod(tk, true);
555 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
556 
557 	return ret;
558 }
559 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
560 
561 /**
562  * pvclock_gtod_unregister_notifier - unregister a pvclock
563  * timedata update listener
564  */
565 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
566 {
567 	unsigned long flags;
568 	int ret;
569 
570 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
571 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
572 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
573 
574 	return ret;
575 }
576 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
577 
578 /*
579  * tk_update_leap_state - helper to update the next_leap_ktime
580  */
581 static inline void tk_update_leap_state(struct timekeeper *tk)
582 {
583 	tk->next_leap_ktime = ntp_get_next_leap();
584 	if (tk->next_leap_ktime != KTIME_MAX)
585 		/* Convert to monotonic time */
586 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
587 }
588 
589 /*
590  * Update the ktime_t based scalar nsec members of the timekeeper
591  */
592 static inline void tk_update_ktime_data(struct timekeeper *tk)
593 {
594 	u64 seconds;
595 	u32 nsec;
596 
597 	/*
598 	 * The xtime based monotonic readout is:
599 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
600 	 * The ktime based monotonic readout is:
601 	 *	nsec = base_mono + now();
602 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
603 	 */
604 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
605 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
606 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
607 
608 	/*
609 	 * The sum of the nanoseconds portions of xtime and
610 	 * wall_to_monotonic can be greater/equal one second. Take
611 	 * this into account before updating tk->ktime_sec.
612 	 */
613 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
614 	if (nsec >= NSEC_PER_SEC)
615 		seconds++;
616 	tk->ktime_sec = seconds;
617 
618 	/* Update the monotonic raw base */
619 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
620 }
621 
622 /* must hold timekeeper_lock */
623 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
624 {
625 	if (action & TK_CLEAR_NTP) {
626 		tk->ntp_error = 0;
627 		ntp_clear();
628 	}
629 
630 	tk_update_leap_state(tk);
631 	tk_update_ktime_data(tk);
632 
633 	update_vsyscall(tk);
634 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
635 
636 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
637 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
638 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
639 
640 	if (action & TK_CLOCK_WAS_SET)
641 		tk->clock_was_set_seq++;
642 	/*
643 	 * The mirroring of the data to the shadow-timekeeper needs
644 	 * to happen last here to ensure we don't over-write the
645 	 * timekeeper structure on the next update with stale data
646 	 */
647 	if (action & TK_MIRROR)
648 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
649 		       sizeof(tk_core.timekeeper));
650 }
651 
652 /**
653  * timekeeping_forward_now - update clock to the current time
654  *
655  * Forward the current clock to update its state since the last call to
656  * update_wall_time(). This is useful before significant clock changes,
657  * as it avoids having to deal with this time offset explicitly.
658  */
659 static void timekeeping_forward_now(struct timekeeper *tk)
660 {
661 	u64 cycle_now, delta;
662 
663 	cycle_now = tk_clock_read(&tk->tkr_mono);
664 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
665 	tk->tkr_mono.cycle_last = cycle_now;
666 	tk->tkr_raw.cycle_last  = cycle_now;
667 
668 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
669 
670 	/* If arch requires, add in get_arch_timeoffset() */
671 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
672 
673 
674 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
675 
676 	/* If arch requires, add in get_arch_timeoffset() */
677 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
678 
679 	tk_normalize_xtime(tk);
680 }
681 
682 /**
683  * __getnstimeofday64 - Returns the time of day in a timespec64.
684  * @ts:		pointer to the timespec to be set
685  *
686  * Updates the time of day in the timespec.
687  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
688  */
689 int __getnstimeofday64(struct timespec64 *ts)
690 {
691 	struct timekeeper *tk = &tk_core.timekeeper;
692 	unsigned long seq;
693 	u64 nsecs;
694 
695 	do {
696 		seq = read_seqcount_begin(&tk_core.seq);
697 
698 		ts->tv_sec = tk->xtime_sec;
699 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
700 
701 	} while (read_seqcount_retry(&tk_core.seq, seq));
702 
703 	ts->tv_nsec = 0;
704 	timespec64_add_ns(ts, nsecs);
705 
706 	/*
707 	 * Do not bail out early, in case there were callers still using
708 	 * the value, even in the face of the WARN_ON.
709 	 */
710 	if (unlikely(timekeeping_suspended))
711 		return -EAGAIN;
712 	return 0;
713 }
714 EXPORT_SYMBOL(__getnstimeofday64);
715 
716 /**
717  * getnstimeofday64 - Returns the time of day in a timespec64.
718  * @ts:		pointer to the timespec64 to be set
719  *
720  * Returns the time of day in a timespec64 (WARN if suspended).
721  */
722 void getnstimeofday64(struct timespec64 *ts)
723 {
724 	WARN_ON(__getnstimeofday64(ts));
725 }
726 EXPORT_SYMBOL(getnstimeofday64);
727 
728 ktime_t ktime_get(void)
729 {
730 	struct timekeeper *tk = &tk_core.timekeeper;
731 	unsigned int seq;
732 	ktime_t base;
733 	u64 nsecs;
734 
735 	WARN_ON(timekeeping_suspended);
736 
737 	do {
738 		seq = read_seqcount_begin(&tk_core.seq);
739 		base = tk->tkr_mono.base;
740 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
741 
742 	} while (read_seqcount_retry(&tk_core.seq, seq));
743 
744 	return ktime_add_ns(base, nsecs);
745 }
746 EXPORT_SYMBOL_GPL(ktime_get);
747 
748 u32 ktime_get_resolution_ns(void)
749 {
750 	struct timekeeper *tk = &tk_core.timekeeper;
751 	unsigned int seq;
752 	u32 nsecs;
753 
754 	WARN_ON(timekeeping_suspended);
755 
756 	do {
757 		seq = read_seqcount_begin(&tk_core.seq);
758 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
759 	} while (read_seqcount_retry(&tk_core.seq, seq));
760 
761 	return nsecs;
762 }
763 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
764 
765 static ktime_t *offsets[TK_OFFS_MAX] = {
766 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
767 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
768 };
769 
770 ktime_t ktime_get_with_offset(enum tk_offsets offs)
771 {
772 	struct timekeeper *tk = &tk_core.timekeeper;
773 	unsigned int seq;
774 	ktime_t base, *offset = offsets[offs];
775 	u64 nsecs;
776 
777 	WARN_ON(timekeeping_suspended);
778 
779 	do {
780 		seq = read_seqcount_begin(&tk_core.seq);
781 		base = ktime_add(tk->tkr_mono.base, *offset);
782 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
783 
784 	} while (read_seqcount_retry(&tk_core.seq, seq));
785 
786 	return ktime_add_ns(base, nsecs);
787 
788 }
789 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
790 
791 /**
792  * ktime_mono_to_any() - convert mononotic time to any other time
793  * @tmono:	time to convert.
794  * @offs:	which offset to use
795  */
796 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
797 {
798 	ktime_t *offset = offsets[offs];
799 	unsigned long seq;
800 	ktime_t tconv;
801 
802 	do {
803 		seq = read_seqcount_begin(&tk_core.seq);
804 		tconv = ktime_add(tmono, *offset);
805 	} while (read_seqcount_retry(&tk_core.seq, seq));
806 
807 	return tconv;
808 }
809 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
810 
811 /**
812  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
813  */
814 ktime_t ktime_get_raw(void)
815 {
816 	struct timekeeper *tk = &tk_core.timekeeper;
817 	unsigned int seq;
818 	ktime_t base;
819 	u64 nsecs;
820 
821 	do {
822 		seq = read_seqcount_begin(&tk_core.seq);
823 		base = tk->tkr_raw.base;
824 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
825 
826 	} while (read_seqcount_retry(&tk_core.seq, seq));
827 
828 	return ktime_add_ns(base, nsecs);
829 }
830 EXPORT_SYMBOL_GPL(ktime_get_raw);
831 
832 /**
833  * ktime_get_ts64 - get the monotonic clock in timespec64 format
834  * @ts:		pointer to timespec variable
835  *
836  * The function calculates the monotonic clock from the realtime
837  * clock and the wall_to_monotonic offset and stores the result
838  * in normalized timespec64 format in the variable pointed to by @ts.
839  */
840 void ktime_get_ts64(struct timespec64 *ts)
841 {
842 	struct timekeeper *tk = &tk_core.timekeeper;
843 	struct timespec64 tomono;
844 	unsigned int seq;
845 	u64 nsec;
846 
847 	WARN_ON(timekeeping_suspended);
848 
849 	do {
850 		seq = read_seqcount_begin(&tk_core.seq);
851 		ts->tv_sec = tk->xtime_sec;
852 		nsec = timekeeping_get_ns(&tk->tkr_mono);
853 		tomono = tk->wall_to_monotonic;
854 
855 	} while (read_seqcount_retry(&tk_core.seq, seq));
856 
857 	ts->tv_sec += tomono.tv_sec;
858 	ts->tv_nsec = 0;
859 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
860 }
861 EXPORT_SYMBOL_GPL(ktime_get_ts64);
862 
863 /**
864  * ktime_get_active_ts64 - Get the active non-suspended monotonic clock
865  * @ts:		pointer to timespec variable
866  *
867  * The function calculates the monotonic clock from the realtime clock and
868  * the wall_to_monotonic offset, subtracts the accumulated suspend time and
869  * stores the result in normalized timespec64 format in the variable
870  * pointed to by @ts.
871  */
872 void ktime_get_active_ts64(struct timespec64 *ts)
873 {
874 	struct timekeeper *tk = &tk_core.timekeeper;
875 	struct timespec64 tomono, tsusp;
876 	u64 nsec, nssusp;
877 	unsigned int seq;
878 
879 	WARN_ON(timekeeping_suspended);
880 
881 	do {
882 		seq = read_seqcount_begin(&tk_core.seq);
883 		ts->tv_sec = tk->xtime_sec;
884 		nsec = timekeeping_get_ns(&tk->tkr_mono);
885 		tomono = tk->wall_to_monotonic;
886 		nssusp = tk->time_suspended;
887 	} while (read_seqcount_retry(&tk_core.seq, seq));
888 
889 	ts->tv_sec += tomono.tv_sec;
890 	ts->tv_nsec = 0;
891 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
892 	tsusp = ns_to_timespec64(nssusp);
893 	*ts = timespec64_sub(*ts, tsusp);
894 }
895 
896 /**
897  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
898  *
899  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
900  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
901  * works on both 32 and 64 bit systems. On 32 bit systems the readout
902  * covers ~136 years of uptime which should be enough to prevent
903  * premature wrap arounds.
904  */
905 time64_t ktime_get_seconds(void)
906 {
907 	struct timekeeper *tk = &tk_core.timekeeper;
908 
909 	WARN_ON(timekeeping_suspended);
910 	return tk->ktime_sec;
911 }
912 EXPORT_SYMBOL_GPL(ktime_get_seconds);
913 
914 /**
915  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
916  *
917  * Returns the wall clock seconds since 1970. This replaces the
918  * get_seconds() interface which is not y2038 safe on 32bit systems.
919  *
920  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
921  * 32bit systems the access must be protected with the sequence
922  * counter to provide "atomic" access to the 64bit tk->xtime_sec
923  * value.
924  */
925 time64_t ktime_get_real_seconds(void)
926 {
927 	struct timekeeper *tk = &tk_core.timekeeper;
928 	time64_t seconds;
929 	unsigned int seq;
930 
931 	if (IS_ENABLED(CONFIG_64BIT))
932 		return tk->xtime_sec;
933 
934 	do {
935 		seq = read_seqcount_begin(&tk_core.seq);
936 		seconds = tk->xtime_sec;
937 
938 	} while (read_seqcount_retry(&tk_core.seq, seq));
939 
940 	return seconds;
941 }
942 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
943 
944 /**
945  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
946  * but without the sequence counter protect. This internal function
947  * is called just when timekeeping lock is already held.
948  */
949 time64_t __ktime_get_real_seconds(void)
950 {
951 	struct timekeeper *tk = &tk_core.timekeeper;
952 
953 	return tk->xtime_sec;
954 }
955 
956 /**
957  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
958  * @systime_snapshot:	pointer to struct receiving the system time snapshot
959  */
960 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
961 {
962 	struct timekeeper *tk = &tk_core.timekeeper;
963 	unsigned long seq;
964 	ktime_t base_raw;
965 	ktime_t base_real;
966 	u64 nsec_raw;
967 	u64 nsec_real;
968 	u64 now;
969 
970 	WARN_ON_ONCE(timekeeping_suspended);
971 
972 	do {
973 		seq = read_seqcount_begin(&tk_core.seq);
974 		now = tk_clock_read(&tk->tkr_mono);
975 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
976 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
977 		base_real = ktime_add(tk->tkr_mono.base,
978 				      tk_core.timekeeper.offs_real);
979 		base_raw = tk->tkr_raw.base;
980 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
981 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
982 	} while (read_seqcount_retry(&tk_core.seq, seq));
983 
984 	systime_snapshot->cycles = now;
985 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
986 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
987 }
988 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
989 
990 /* Scale base by mult/div checking for overflow */
991 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
992 {
993 	u64 tmp, rem;
994 
995 	tmp = div64_u64_rem(*base, div, &rem);
996 
997 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
998 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
999 		return -EOVERFLOW;
1000 	tmp *= mult;
1001 	rem *= mult;
1002 
1003 	do_div(rem, div);
1004 	*base = tmp + rem;
1005 	return 0;
1006 }
1007 
1008 /**
1009  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1010  * @history:			Snapshot representing start of history
1011  * @partial_history_cycles:	Cycle offset into history (fractional part)
1012  * @total_history_cycles:	Total history length in cycles
1013  * @discontinuity:		True indicates clock was set on history period
1014  * @ts:				Cross timestamp that should be adjusted using
1015  *	partial/total ratio
1016  *
1017  * Helper function used by get_device_system_crosststamp() to correct the
1018  * crosstimestamp corresponding to the start of the current interval to the
1019  * system counter value (timestamp point) provided by the driver. The
1020  * total_history_* quantities are the total history starting at the provided
1021  * reference point and ending at the start of the current interval. The cycle
1022  * count between the driver timestamp point and the start of the current
1023  * interval is partial_history_cycles.
1024  */
1025 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1026 					 u64 partial_history_cycles,
1027 					 u64 total_history_cycles,
1028 					 bool discontinuity,
1029 					 struct system_device_crosststamp *ts)
1030 {
1031 	struct timekeeper *tk = &tk_core.timekeeper;
1032 	u64 corr_raw, corr_real;
1033 	bool interp_forward;
1034 	int ret;
1035 
1036 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1037 		return 0;
1038 
1039 	/* Interpolate shortest distance from beginning or end of history */
1040 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1041 	partial_history_cycles = interp_forward ?
1042 		total_history_cycles - partial_history_cycles :
1043 		partial_history_cycles;
1044 
1045 	/*
1046 	 * Scale the monotonic raw time delta by:
1047 	 *	partial_history_cycles / total_history_cycles
1048 	 */
1049 	corr_raw = (u64)ktime_to_ns(
1050 		ktime_sub(ts->sys_monoraw, history->raw));
1051 	ret = scale64_check_overflow(partial_history_cycles,
1052 				     total_history_cycles, &corr_raw);
1053 	if (ret)
1054 		return ret;
1055 
1056 	/*
1057 	 * If there is a discontinuity in the history, scale monotonic raw
1058 	 *	correction by:
1059 	 *	mult(real)/mult(raw) yielding the realtime correction
1060 	 * Otherwise, calculate the realtime correction similar to monotonic
1061 	 *	raw calculation
1062 	 */
1063 	if (discontinuity) {
1064 		corr_real = mul_u64_u32_div
1065 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1066 	} else {
1067 		corr_real = (u64)ktime_to_ns(
1068 			ktime_sub(ts->sys_realtime, history->real));
1069 		ret = scale64_check_overflow(partial_history_cycles,
1070 					     total_history_cycles, &corr_real);
1071 		if (ret)
1072 			return ret;
1073 	}
1074 
1075 	/* Fixup monotonic raw and real time time values */
1076 	if (interp_forward) {
1077 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1078 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1079 	} else {
1080 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1081 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 /*
1088  * cycle_between - true if test occurs chronologically between before and after
1089  */
1090 static bool cycle_between(u64 before, u64 test, u64 after)
1091 {
1092 	if (test > before && test < after)
1093 		return true;
1094 	if (test < before && before > after)
1095 		return true;
1096 	return false;
1097 }
1098 
1099 /**
1100  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1101  * @get_time_fn:	Callback to get simultaneous device time and
1102  *	system counter from the device driver
1103  * @ctx:		Context passed to get_time_fn()
1104  * @history_begin:	Historical reference point used to interpolate system
1105  *	time when counter provided by the driver is before the current interval
1106  * @xtstamp:		Receives simultaneously captured system and device time
1107  *
1108  * Reads a timestamp from a device and correlates it to system time
1109  */
1110 int get_device_system_crosststamp(int (*get_time_fn)
1111 				  (ktime_t *device_time,
1112 				   struct system_counterval_t *sys_counterval,
1113 				   void *ctx),
1114 				  void *ctx,
1115 				  struct system_time_snapshot *history_begin,
1116 				  struct system_device_crosststamp *xtstamp)
1117 {
1118 	struct system_counterval_t system_counterval;
1119 	struct timekeeper *tk = &tk_core.timekeeper;
1120 	u64 cycles, now, interval_start;
1121 	unsigned int clock_was_set_seq = 0;
1122 	ktime_t base_real, base_raw;
1123 	u64 nsec_real, nsec_raw;
1124 	u8 cs_was_changed_seq;
1125 	unsigned long seq;
1126 	bool do_interp;
1127 	int ret;
1128 
1129 	do {
1130 		seq = read_seqcount_begin(&tk_core.seq);
1131 		/*
1132 		 * Try to synchronously capture device time and a system
1133 		 * counter value calling back into the device driver
1134 		 */
1135 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1136 		if (ret)
1137 			return ret;
1138 
1139 		/*
1140 		 * Verify that the clocksource associated with the captured
1141 		 * system counter value is the same as the currently installed
1142 		 * timekeeper clocksource
1143 		 */
1144 		if (tk->tkr_mono.clock != system_counterval.cs)
1145 			return -ENODEV;
1146 		cycles = system_counterval.cycles;
1147 
1148 		/*
1149 		 * Check whether the system counter value provided by the
1150 		 * device driver is on the current timekeeping interval.
1151 		 */
1152 		now = tk_clock_read(&tk->tkr_mono);
1153 		interval_start = tk->tkr_mono.cycle_last;
1154 		if (!cycle_between(interval_start, cycles, now)) {
1155 			clock_was_set_seq = tk->clock_was_set_seq;
1156 			cs_was_changed_seq = tk->cs_was_changed_seq;
1157 			cycles = interval_start;
1158 			do_interp = true;
1159 		} else {
1160 			do_interp = false;
1161 		}
1162 
1163 		base_real = ktime_add(tk->tkr_mono.base,
1164 				      tk_core.timekeeper.offs_real);
1165 		base_raw = tk->tkr_raw.base;
1166 
1167 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1168 						     system_counterval.cycles);
1169 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1170 						    system_counterval.cycles);
1171 	} while (read_seqcount_retry(&tk_core.seq, seq));
1172 
1173 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1174 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1175 
1176 	/*
1177 	 * Interpolate if necessary, adjusting back from the start of the
1178 	 * current interval
1179 	 */
1180 	if (do_interp) {
1181 		u64 partial_history_cycles, total_history_cycles;
1182 		bool discontinuity;
1183 
1184 		/*
1185 		 * Check that the counter value occurs after the provided
1186 		 * history reference and that the history doesn't cross a
1187 		 * clocksource change
1188 		 */
1189 		if (!history_begin ||
1190 		    !cycle_between(history_begin->cycles,
1191 				   system_counterval.cycles, cycles) ||
1192 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1193 			return -EINVAL;
1194 		partial_history_cycles = cycles - system_counterval.cycles;
1195 		total_history_cycles = cycles - history_begin->cycles;
1196 		discontinuity =
1197 			history_begin->clock_was_set_seq != clock_was_set_seq;
1198 
1199 		ret = adjust_historical_crosststamp(history_begin,
1200 						    partial_history_cycles,
1201 						    total_history_cycles,
1202 						    discontinuity, xtstamp);
1203 		if (ret)
1204 			return ret;
1205 	}
1206 
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1210 
1211 /**
1212  * do_gettimeofday - Returns the time of day in a timeval
1213  * @tv:		pointer to the timeval to be set
1214  *
1215  * NOTE: Users should be converted to using getnstimeofday()
1216  */
1217 void do_gettimeofday(struct timeval *tv)
1218 {
1219 	struct timespec64 now;
1220 
1221 	getnstimeofday64(&now);
1222 	tv->tv_sec = now.tv_sec;
1223 	tv->tv_usec = now.tv_nsec/1000;
1224 }
1225 EXPORT_SYMBOL(do_gettimeofday);
1226 
1227 /**
1228  * do_settimeofday64 - Sets the time of day.
1229  * @ts:     pointer to the timespec64 variable containing the new time
1230  *
1231  * Sets the time of day to the new time and update NTP and notify hrtimers
1232  */
1233 int do_settimeofday64(const struct timespec64 *ts)
1234 {
1235 	struct timekeeper *tk = &tk_core.timekeeper;
1236 	struct timespec64 ts_delta, xt;
1237 	unsigned long flags;
1238 	int ret = 0;
1239 
1240 	if (!timespec64_valid_strict(ts))
1241 		return -EINVAL;
1242 
1243 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1244 	write_seqcount_begin(&tk_core.seq);
1245 
1246 	timekeeping_forward_now(tk);
1247 
1248 	xt = tk_xtime(tk);
1249 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1250 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1251 
1252 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1253 		ret = -EINVAL;
1254 		goto out;
1255 	}
1256 
1257 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1258 
1259 	tk_set_xtime(tk, ts);
1260 out:
1261 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1262 
1263 	write_seqcount_end(&tk_core.seq);
1264 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1265 
1266 	/* signal hrtimers about time change */
1267 	clock_was_set();
1268 
1269 	return ret;
1270 }
1271 EXPORT_SYMBOL(do_settimeofday64);
1272 
1273 /**
1274  * timekeeping_inject_offset - Adds or subtracts from the current time.
1275  * @tv:		pointer to the timespec variable containing the offset
1276  *
1277  * Adds or subtracts an offset value from the current time.
1278  */
1279 static int timekeeping_inject_offset(struct timespec64 *ts)
1280 {
1281 	struct timekeeper *tk = &tk_core.timekeeper;
1282 	unsigned long flags;
1283 	struct timespec64 tmp;
1284 	int ret = 0;
1285 
1286 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1287 		return -EINVAL;
1288 
1289 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1290 	write_seqcount_begin(&tk_core.seq);
1291 
1292 	timekeeping_forward_now(tk);
1293 
1294 	/* Make sure the proposed value is valid */
1295 	tmp = timespec64_add(tk_xtime(tk), *ts);
1296 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1297 	    !timespec64_valid_strict(&tmp)) {
1298 		ret = -EINVAL;
1299 		goto error;
1300 	}
1301 
1302 	tk_xtime_add(tk, ts);
1303 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1304 
1305 error: /* even if we error out, we forwarded the time, so call update */
1306 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1307 
1308 	write_seqcount_end(&tk_core.seq);
1309 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1310 
1311 	/* signal hrtimers about time change */
1312 	clock_was_set();
1313 
1314 	return ret;
1315 }
1316 
1317 /*
1318  * Indicates if there is an offset between the system clock and the hardware
1319  * clock/persistent clock/rtc.
1320  */
1321 int persistent_clock_is_local;
1322 
1323 /*
1324  * Adjust the time obtained from the CMOS to be UTC time instead of
1325  * local time.
1326  *
1327  * This is ugly, but preferable to the alternatives.  Otherwise we
1328  * would either need to write a program to do it in /etc/rc (and risk
1329  * confusion if the program gets run more than once; it would also be
1330  * hard to make the program warp the clock precisely n hours)  or
1331  * compile in the timezone information into the kernel.  Bad, bad....
1332  *
1333  *						- TYT, 1992-01-01
1334  *
1335  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1336  * as real UNIX machines always do it. This avoids all headaches about
1337  * daylight saving times and warping kernel clocks.
1338  */
1339 void timekeeping_warp_clock(void)
1340 {
1341 	if (sys_tz.tz_minuteswest != 0) {
1342 		struct timespec64 adjust;
1343 
1344 		persistent_clock_is_local = 1;
1345 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1346 		adjust.tv_nsec = 0;
1347 		timekeeping_inject_offset(&adjust);
1348 	}
1349 }
1350 
1351 /**
1352  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1353  *
1354  */
1355 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1356 {
1357 	tk->tai_offset = tai_offset;
1358 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1359 }
1360 
1361 /**
1362  * change_clocksource - Swaps clocksources if a new one is available
1363  *
1364  * Accumulates current time interval and initializes new clocksource
1365  */
1366 static int change_clocksource(void *data)
1367 {
1368 	struct timekeeper *tk = &tk_core.timekeeper;
1369 	struct clocksource *new, *old;
1370 	unsigned long flags;
1371 
1372 	new = (struct clocksource *) data;
1373 
1374 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1375 	write_seqcount_begin(&tk_core.seq);
1376 
1377 	timekeeping_forward_now(tk);
1378 	/*
1379 	 * If the cs is in module, get a module reference. Succeeds
1380 	 * for built-in code (owner == NULL) as well.
1381 	 */
1382 	if (try_module_get(new->owner)) {
1383 		if (!new->enable || new->enable(new) == 0) {
1384 			old = tk->tkr_mono.clock;
1385 			tk_setup_internals(tk, new);
1386 			if (old->disable)
1387 				old->disable(old);
1388 			module_put(old->owner);
1389 		} else {
1390 			module_put(new->owner);
1391 		}
1392 	}
1393 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1394 
1395 	write_seqcount_end(&tk_core.seq);
1396 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1397 
1398 	return 0;
1399 }
1400 
1401 /**
1402  * timekeeping_notify - Install a new clock source
1403  * @clock:		pointer to the clock source
1404  *
1405  * This function is called from clocksource.c after a new, better clock
1406  * source has been registered. The caller holds the clocksource_mutex.
1407  */
1408 int timekeeping_notify(struct clocksource *clock)
1409 {
1410 	struct timekeeper *tk = &tk_core.timekeeper;
1411 
1412 	if (tk->tkr_mono.clock == clock)
1413 		return 0;
1414 	stop_machine(change_clocksource, clock, NULL);
1415 	tick_clock_notify();
1416 	return tk->tkr_mono.clock == clock ? 0 : -1;
1417 }
1418 
1419 /**
1420  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1421  * @ts:		pointer to the timespec64 to be set
1422  *
1423  * Returns the raw monotonic time (completely un-modified by ntp)
1424  */
1425 void getrawmonotonic64(struct timespec64 *ts)
1426 {
1427 	struct timekeeper *tk = &tk_core.timekeeper;
1428 	unsigned long seq;
1429 	u64 nsecs;
1430 
1431 	do {
1432 		seq = read_seqcount_begin(&tk_core.seq);
1433 		ts->tv_sec = tk->raw_sec;
1434 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1435 
1436 	} while (read_seqcount_retry(&tk_core.seq, seq));
1437 
1438 	ts->tv_nsec = 0;
1439 	timespec64_add_ns(ts, nsecs);
1440 }
1441 EXPORT_SYMBOL(getrawmonotonic64);
1442 
1443 
1444 /**
1445  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1446  */
1447 int timekeeping_valid_for_hres(void)
1448 {
1449 	struct timekeeper *tk = &tk_core.timekeeper;
1450 	unsigned long seq;
1451 	int ret;
1452 
1453 	do {
1454 		seq = read_seqcount_begin(&tk_core.seq);
1455 
1456 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1457 
1458 	} while (read_seqcount_retry(&tk_core.seq, seq));
1459 
1460 	return ret;
1461 }
1462 
1463 /**
1464  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1465  */
1466 u64 timekeeping_max_deferment(void)
1467 {
1468 	struct timekeeper *tk = &tk_core.timekeeper;
1469 	unsigned long seq;
1470 	u64 ret;
1471 
1472 	do {
1473 		seq = read_seqcount_begin(&tk_core.seq);
1474 
1475 		ret = tk->tkr_mono.clock->max_idle_ns;
1476 
1477 	} while (read_seqcount_retry(&tk_core.seq, seq));
1478 
1479 	return ret;
1480 }
1481 
1482 /**
1483  * read_persistent_clock -  Return time from the persistent clock.
1484  *
1485  * Weak dummy function for arches that do not yet support it.
1486  * Reads the time from the battery backed persistent clock.
1487  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1488  *
1489  *  XXX - Do be sure to remove it once all arches implement it.
1490  */
1491 void __weak read_persistent_clock(struct timespec *ts)
1492 {
1493 	ts->tv_sec = 0;
1494 	ts->tv_nsec = 0;
1495 }
1496 
1497 void __weak read_persistent_clock64(struct timespec64 *ts64)
1498 {
1499 	struct timespec ts;
1500 
1501 	read_persistent_clock(&ts);
1502 	*ts64 = timespec_to_timespec64(ts);
1503 }
1504 
1505 /**
1506  * read_boot_clock64 -  Return time of the system start.
1507  *
1508  * Weak dummy function for arches that do not yet support it.
1509  * Function to read the exact time the system has been started.
1510  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1511  *
1512  *  XXX - Do be sure to remove it once all arches implement it.
1513  */
1514 void __weak read_boot_clock64(struct timespec64 *ts)
1515 {
1516 	ts->tv_sec = 0;
1517 	ts->tv_nsec = 0;
1518 }
1519 
1520 /* Flag for if timekeeping_resume() has injected sleeptime */
1521 static bool sleeptime_injected;
1522 
1523 /* Flag for if there is a persistent clock on this platform */
1524 static bool persistent_clock_exists;
1525 
1526 /*
1527  * timekeeping_init - Initializes the clocksource and common timekeeping values
1528  */
1529 void __init timekeeping_init(void)
1530 {
1531 	struct timekeeper *tk = &tk_core.timekeeper;
1532 	struct clocksource *clock;
1533 	unsigned long flags;
1534 	struct timespec64 now, boot, tmp;
1535 
1536 	read_persistent_clock64(&now);
1537 	if (!timespec64_valid_strict(&now)) {
1538 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1539 			"         Check your CMOS/BIOS settings.\n");
1540 		now.tv_sec = 0;
1541 		now.tv_nsec = 0;
1542 	} else if (now.tv_sec || now.tv_nsec)
1543 		persistent_clock_exists = true;
1544 
1545 	read_boot_clock64(&boot);
1546 	if (!timespec64_valid_strict(&boot)) {
1547 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1548 			"         Check your CMOS/BIOS settings.\n");
1549 		boot.tv_sec = 0;
1550 		boot.tv_nsec = 0;
1551 	}
1552 
1553 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1554 	write_seqcount_begin(&tk_core.seq);
1555 	ntp_init();
1556 
1557 	clock = clocksource_default_clock();
1558 	if (clock->enable)
1559 		clock->enable(clock);
1560 	tk_setup_internals(tk, clock);
1561 
1562 	tk_set_xtime(tk, &now);
1563 	tk->raw_sec = 0;
1564 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1565 		boot = tk_xtime(tk);
1566 
1567 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1568 	tk_set_wall_to_mono(tk, tmp);
1569 
1570 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1571 
1572 	write_seqcount_end(&tk_core.seq);
1573 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1574 }
1575 
1576 /* time in seconds when suspend began for persistent clock */
1577 static struct timespec64 timekeeping_suspend_time;
1578 
1579 /**
1580  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1581  * @delta: pointer to a timespec delta value
1582  *
1583  * Takes a timespec offset measuring a suspend interval and properly
1584  * adds the sleep offset to the timekeeping variables.
1585  */
1586 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1587 					   struct timespec64 *delta)
1588 {
1589 	if (!timespec64_valid_strict(delta)) {
1590 		printk_deferred(KERN_WARNING
1591 				"__timekeeping_inject_sleeptime: Invalid "
1592 				"sleep delta value!\n");
1593 		return;
1594 	}
1595 	tk_xtime_add(tk, delta);
1596 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1597 	tk_debug_account_sleep_time(delta);
1598 }
1599 
1600 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1601 /**
1602  * We have three kinds of time sources to use for sleep time
1603  * injection, the preference order is:
1604  * 1) non-stop clocksource
1605  * 2) persistent clock (ie: RTC accessible when irqs are off)
1606  * 3) RTC
1607  *
1608  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1609  * If system has neither 1) nor 2), 3) will be used finally.
1610  *
1611  *
1612  * If timekeeping has injected sleeptime via either 1) or 2),
1613  * 3) becomes needless, so in this case we don't need to call
1614  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1615  * means.
1616  */
1617 bool timekeeping_rtc_skipresume(void)
1618 {
1619 	return sleeptime_injected;
1620 }
1621 
1622 /**
1623  * 1) can be determined whether to use or not only when doing
1624  * timekeeping_resume() which is invoked after rtc_suspend(),
1625  * so we can't skip rtc_suspend() surely if system has 1).
1626  *
1627  * But if system has 2), 2) will definitely be used, so in this
1628  * case we don't need to call rtc_suspend(), and this is what
1629  * timekeeping_rtc_skipsuspend() means.
1630  */
1631 bool timekeeping_rtc_skipsuspend(void)
1632 {
1633 	return persistent_clock_exists;
1634 }
1635 
1636 /**
1637  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1638  * @delta: pointer to a timespec64 delta value
1639  *
1640  * This hook is for architectures that cannot support read_persistent_clock64
1641  * because their RTC/persistent clock is only accessible when irqs are enabled.
1642  * and also don't have an effective nonstop clocksource.
1643  *
1644  * This function should only be called by rtc_resume(), and allows
1645  * a suspend offset to be injected into the timekeeping values.
1646  */
1647 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1648 {
1649 	struct timekeeper *tk = &tk_core.timekeeper;
1650 	unsigned long flags;
1651 
1652 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1653 	write_seqcount_begin(&tk_core.seq);
1654 
1655 	timekeeping_forward_now(tk);
1656 
1657 	__timekeeping_inject_sleeptime(tk, delta);
1658 
1659 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1660 
1661 	write_seqcount_end(&tk_core.seq);
1662 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1663 
1664 	/* signal hrtimers about time change */
1665 	clock_was_set();
1666 }
1667 #endif
1668 
1669 /**
1670  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1671  */
1672 void timekeeping_resume(void)
1673 {
1674 	struct timekeeper *tk = &tk_core.timekeeper;
1675 	struct clocksource *clock = tk->tkr_mono.clock;
1676 	unsigned long flags;
1677 	struct timespec64 ts_new, ts_delta;
1678 	u64 cycle_now;
1679 
1680 	sleeptime_injected = false;
1681 	read_persistent_clock64(&ts_new);
1682 
1683 	clockevents_resume();
1684 	clocksource_resume();
1685 
1686 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1687 	write_seqcount_begin(&tk_core.seq);
1688 
1689 	/*
1690 	 * After system resumes, we need to calculate the suspended time and
1691 	 * compensate it for the OS time. There are 3 sources that could be
1692 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1693 	 * device.
1694 	 *
1695 	 * One specific platform may have 1 or 2 or all of them, and the
1696 	 * preference will be:
1697 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1698 	 * The less preferred source will only be tried if there is no better
1699 	 * usable source. The rtc part is handled separately in rtc core code.
1700 	 */
1701 	cycle_now = tk_clock_read(&tk->tkr_mono);
1702 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1703 		cycle_now > tk->tkr_mono.cycle_last) {
1704 		u64 nsec, cyc_delta;
1705 
1706 		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1707 					      tk->tkr_mono.mask);
1708 		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1709 		ts_delta = ns_to_timespec64(nsec);
1710 		sleeptime_injected = true;
1711 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1712 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1713 		sleeptime_injected = true;
1714 	}
1715 
1716 	if (sleeptime_injected)
1717 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1718 
1719 	/* Re-base the last cycle value */
1720 	tk->tkr_mono.cycle_last = cycle_now;
1721 	tk->tkr_raw.cycle_last  = cycle_now;
1722 
1723 	tk->ntp_error = 0;
1724 	timekeeping_suspended = 0;
1725 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1726 	write_seqcount_end(&tk_core.seq);
1727 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1728 
1729 	touch_softlockup_watchdog();
1730 
1731 	tick_resume();
1732 	hrtimers_resume();
1733 }
1734 
1735 int timekeeping_suspend(void)
1736 {
1737 	struct timekeeper *tk = &tk_core.timekeeper;
1738 	unsigned long flags;
1739 	struct timespec64		delta, delta_delta;
1740 	static struct timespec64	old_delta;
1741 
1742 	read_persistent_clock64(&timekeeping_suspend_time);
1743 
1744 	/*
1745 	 * On some systems the persistent_clock can not be detected at
1746 	 * timekeeping_init by its return value, so if we see a valid
1747 	 * value returned, update the persistent_clock_exists flag.
1748 	 */
1749 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1750 		persistent_clock_exists = true;
1751 
1752 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1753 	write_seqcount_begin(&tk_core.seq);
1754 	timekeeping_forward_now(tk);
1755 	timekeeping_suspended = 1;
1756 
1757 	if (persistent_clock_exists) {
1758 		/*
1759 		 * To avoid drift caused by repeated suspend/resumes,
1760 		 * which each can add ~1 second drift error,
1761 		 * try to compensate so the difference in system time
1762 		 * and persistent_clock time stays close to constant.
1763 		 */
1764 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1765 		delta_delta = timespec64_sub(delta, old_delta);
1766 		if (abs(delta_delta.tv_sec) >= 2) {
1767 			/*
1768 			 * if delta_delta is too large, assume time correction
1769 			 * has occurred and set old_delta to the current delta.
1770 			 */
1771 			old_delta = delta;
1772 		} else {
1773 			/* Otherwise try to adjust old_system to compensate */
1774 			timekeeping_suspend_time =
1775 				timespec64_add(timekeeping_suspend_time, delta_delta);
1776 		}
1777 	}
1778 
1779 	timekeeping_update(tk, TK_MIRROR);
1780 	halt_fast_timekeeper(tk);
1781 	write_seqcount_end(&tk_core.seq);
1782 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1783 
1784 	tick_suspend();
1785 	clocksource_suspend();
1786 	clockevents_suspend();
1787 
1788 	return 0;
1789 }
1790 
1791 /* sysfs resume/suspend bits for timekeeping */
1792 static struct syscore_ops timekeeping_syscore_ops = {
1793 	.resume		= timekeeping_resume,
1794 	.suspend	= timekeeping_suspend,
1795 };
1796 
1797 static int __init timekeeping_init_ops(void)
1798 {
1799 	register_syscore_ops(&timekeeping_syscore_ops);
1800 	return 0;
1801 }
1802 device_initcall(timekeeping_init_ops);
1803 
1804 /*
1805  * Apply a multiplier adjustment to the timekeeper
1806  */
1807 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1808 							 s64 offset,
1809 							 s32 mult_adj)
1810 {
1811 	s64 interval = tk->cycle_interval;
1812 
1813 	if (mult_adj == 0) {
1814 		return;
1815 	} else if (mult_adj == -1) {
1816 		interval = -interval;
1817 		offset = -offset;
1818 	} else if (mult_adj != 1) {
1819 		interval *= mult_adj;
1820 		offset *= mult_adj;
1821 	}
1822 
1823 	/*
1824 	 * So the following can be confusing.
1825 	 *
1826 	 * To keep things simple, lets assume mult_adj == 1 for now.
1827 	 *
1828 	 * When mult_adj != 1, remember that the interval and offset values
1829 	 * have been appropriately scaled so the math is the same.
1830 	 *
1831 	 * The basic idea here is that we're increasing the multiplier
1832 	 * by one, this causes the xtime_interval to be incremented by
1833 	 * one cycle_interval. This is because:
1834 	 *	xtime_interval = cycle_interval * mult
1835 	 * So if mult is being incremented by one:
1836 	 *	xtime_interval = cycle_interval * (mult + 1)
1837 	 * Its the same as:
1838 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1839 	 * Which can be shortened to:
1840 	 *	xtime_interval += cycle_interval
1841 	 *
1842 	 * So offset stores the non-accumulated cycles. Thus the current
1843 	 * time (in shifted nanoseconds) is:
1844 	 *	now = (offset * adj) + xtime_nsec
1845 	 * Now, even though we're adjusting the clock frequency, we have
1846 	 * to keep time consistent. In other words, we can't jump back
1847 	 * in time, and we also want to avoid jumping forward in time.
1848 	 *
1849 	 * So given the same offset value, we need the time to be the same
1850 	 * both before and after the freq adjustment.
1851 	 *	now = (offset * adj_1) + xtime_nsec_1
1852 	 *	now = (offset * adj_2) + xtime_nsec_2
1853 	 * So:
1854 	 *	(offset * adj_1) + xtime_nsec_1 =
1855 	 *		(offset * adj_2) + xtime_nsec_2
1856 	 * And we know:
1857 	 *	adj_2 = adj_1 + 1
1858 	 * So:
1859 	 *	(offset * adj_1) + xtime_nsec_1 =
1860 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1861 	 *	(offset * adj_1) + xtime_nsec_1 =
1862 	 *		(offset * adj_1) + offset + xtime_nsec_2
1863 	 * Canceling the sides:
1864 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1865 	 * Which gives us:
1866 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1867 	 * Which simplfies to:
1868 	 *	xtime_nsec -= offset
1869 	 */
1870 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1871 		/* NTP adjustment caused clocksource mult overflow */
1872 		WARN_ON_ONCE(1);
1873 		return;
1874 	}
1875 
1876 	tk->tkr_mono.mult += mult_adj;
1877 	tk->xtime_interval += interval;
1878 	tk->tkr_mono.xtime_nsec -= offset;
1879 }
1880 
1881 /*
1882  * Adjust the timekeeper's multiplier to the correct frequency
1883  * and also to reduce the accumulated error value.
1884  */
1885 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1886 {
1887 	u32 mult;
1888 
1889 	/*
1890 	 * Determine the multiplier from the current NTP tick length.
1891 	 * Avoid expensive division when the tick length doesn't change.
1892 	 */
1893 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1894 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1895 	} else {
1896 		tk->ntp_tick = ntp_tick_length();
1897 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1898 				 tk->xtime_remainder, tk->cycle_interval);
1899 	}
1900 
1901 	/*
1902 	 * If the clock is behind the NTP time, increase the multiplier by 1
1903 	 * to catch up with it. If it's ahead and there was a remainder in the
1904 	 * tick division, the clock will slow down. Otherwise it will stay
1905 	 * ahead until the tick length changes to a non-divisible value.
1906 	 */
1907 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1908 	mult += tk->ntp_err_mult;
1909 
1910 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1911 
1912 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1913 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1914 			> tk->tkr_mono.clock->maxadj))) {
1915 		printk_once(KERN_WARNING
1916 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1917 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1918 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1919 	}
1920 
1921 	/*
1922 	 * It may be possible that when we entered this function, xtime_nsec
1923 	 * was very small.  Further, if we're slightly speeding the clocksource
1924 	 * in the code above, its possible the required corrective factor to
1925 	 * xtime_nsec could cause it to underflow.
1926 	 *
1927 	 * Now, since we have already accumulated the second and the NTP
1928 	 * subsystem has been notified via second_overflow(), we need to skip
1929 	 * the next update.
1930 	 */
1931 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1932 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1933 							tk->tkr_mono.shift;
1934 		tk->xtime_sec--;
1935 		tk->skip_second_overflow = 1;
1936 	}
1937 }
1938 
1939 /**
1940  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1941  *
1942  * Helper function that accumulates the nsecs greater than a second
1943  * from the xtime_nsec field to the xtime_secs field.
1944  * It also calls into the NTP code to handle leapsecond processing.
1945  *
1946  */
1947 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1948 {
1949 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1950 	unsigned int clock_set = 0;
1951 
1952 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1953 		int leap;
1954 
1955 		tk->tkr_mono.xtime_nsec -= nsecps;
1956 		tk->xtime_sec++;
1957 
1958 		/*
1959 		 * Skip NTP update if this second was accumulated before,
1960 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1961 		 */
1962 		if (unlikely(tk->skip_second_overflow)) {
1963 			tk->skip_second_overflow = 0;
1964 			continue;
1965 		}
1966 
1967 		/* Figure out if its a leap sec and apply if needed */
1968 		leap = second_overflow(tk->xtime_sec);
1969 		if (unlikely(leap)) {
1970 			struct timespec64 ts;
1971 
1972 			tk->xtime_sec += leap;
1973 
1974 			ts.tv_sec = leap;
1975 			ts.tv_nsec = 0;
1976 			tk_set_wall_to_mono(tk,
1977 				timespec64_sub(tk->wall_to_monotonic, ts));
1978 
1979 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1980 
1981 			clock_set = TK_CLOCK_WAS_SET;
1982 		}
1983 	}
1984 	return clock_set;
1985 }
1986 
1987 /**
1988  * logarithmic_accumulation - shifted accumulation of cycles
1989  *
1990  * This functions accumulates a shifted interval of cycles into
1991  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1992  * loop.
1993  *
1994  * Returns the unconsumed cycles.
1995  */
1996 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1997 				    u32 shift, unsigned int *clock_set)
1998 {
1999 	u64 interval = tk->cycle_interval << shift;
2000 	u64 snsec_per_sec;
2001 
2002 	/* If the offset is smaller than a shifted interval, do nothing */
2003 	if (offset < interval)
2004 		return offset;
2005 
2006 	/* Accumulate one shifted interval */
2007 	offset -= interval;
2008 	tk->tkr_mono.cycle_last += interval;
2009 	tk->tkr_raw.cycle_last  += interval;
2010 
2011 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2012 	*clock_set |= accumulate_nsecs_to_secs(tk);
2013 
2014 	/* Accumulate raw time */
2015 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2016 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2017 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2018 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2019 		tk->raw_sec++;
2020 	}
2021 
2022 	/* Accumulate error between NTP and clock interval */
2023 	tk->ntp_error += tk->ntp_tick << shift;
2024 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2025 						(tk->ntp_error_shift + shift);
2026 
2027 	return offset;
2028 }
2029 
2030 /**
2031  * update_wall_time - Uses the current clocksource to increment the wall time
2032  *
2033  */
2034 void update_wall_time(void)
2035 {
2036 	struct timekeeper *real_tk = &tk_core.timekeeper;
2037 	struct timekeeper *tk = &shadow_timekeeper;
2038 	u64 offset;
2039 	int shift = 0, maxshift;
2040 	unsigned int clock_set = 0;
2041 	unsigned long flags;
2042 
2043 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2044 
2045 	/* Make sure we're fully resumed: */
2046 	if (unlikely(timekeeping_suspended))
2047 		goto out;
2048 
2049 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2050 	offset = real_tk->cycle_interval;
2051 #else
2052 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2053 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2054 #endif
2055 
2056 	/* Check if there's really nothing to do */
2057 	if (offset < real_tk->cycle_interval)
2058 		goto out;
2059 
2060 	/* Do some additional sanity checking */
2061 	timekeeping_check_update(tk, offset);
2062 
2063 	/*
2064 	 * With NO_HZ we may have to accumulate many cycle_intervals
2065 	 * (think "ticks") worth of time at once. To do this efficiently,
2066 	 * we calculate the largest doubling multiple of cycle_intervals
2067 	 * that is smaller than the offset.  We then accumulate that
2068 	 * chunk in one go, and then try to consume the next smaller
2069 	 * doubled multiple.
2070 	 */
2071 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2072 	shift = max(0, shift);
2073 	/* Bound shift to one less than what overflows tick_length */
2074 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2075 	shift = min(shift, maxshift);
2076 	while (offset >= tk->cycle_interval) {
2077 		offset = logarithmic_accumulation(tk, offset, shift,
2078 							&clock_set);
2079 		if (offset < tk->cycle_interval<<shift)
2080 			shift--;
2081 	}
2082 
2083 	/* Adjust the multiplier to correct NTP error */
2084 	timekeeping_adjust(tk, offset);
2085 
2086 	/*
2087 	 * Finally, make sure that after the rounding
2088 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2089 	 */
2090 	clock_set |= accumulate_nsecs_to_secs(tk);
2091 
2092 	write_seqcount_begin(&tk_core.seq);
2093 	/*
2094 	 * Update the real timekeeper.
2095 	 *
2096 	 * We could avoid this memcpy by switching pointers, but that
2097 	 * requires changes to all other timekeeper usage sites as
2098 	 * well, i.e. move the timekeeper pointer getter into the
2099 	 * spinlocked/seqcount protected sections. And we trade this
2100 	 * memcpy under the tk_core.seq against one before we start
2101 	 * updating.
2102 	 */
2103 	timekeeping_update(tk, clock_set);
2104 	memcpy(real_tk, tk, sizeof(*tk));
2105 	/* The memcpy must come last. Do not put anything here! */
2106 	write_seqcount_end(&tk_core.seq);
2107 out:
2108 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2109 	if (clock_set)
2110 		/* Have to call _delayed version, since in irq context*/
2111 		clock_was_set_delayed();
2112 }
2113 
2114 /**
2115  * getboottime64 - Return the real time of system boot.
2116  * @ts:		pointer to the timespec64 to be set
2117  *
2118  * Returns the wall-time of boot in a timespec64.
2119  *
2120  * This is based on the wall_to_monotonic offset and the total suspend
2121  * time. Calls to settimeofday will affect the value returned (which
2122  * basically means that however wrong your real time clock is at boot time,
2123  * you get the right time here).
2124  */
2125 void getboottime64(struct timespec64 *ts)
2126 {
2127 	struct timekeeper *tk = &tk_core.timekeeper;
2128 	ktime_t t = ktime_sub(tk->offs_real, tk->time_suspended);
2129 
2130 	*ts = ktime_to_timespec64(t);
2131 }
2132 EXPORT_SYMBOL_GPL(getboottime64);
2133 
2134 unsigned long get_seconds(void)
2135 {
2136 	struct timekeeper *tk = &tk_core.timekeeper;
2137 
2138 	return tk->xtime_sec;
2139 }
2140 EXPORT_SYMBOL(get_seconds);
2141 
2142 struct timespec __current_kernel_time(void)
2143 {
2144 	struct timekeeper *tk = &tk_core.timekeeper;
2145 
2146 	return timespec64_to_timespec(tk_xtime(tk));
2147 }
2148 
2149 struct timespec64 current_kernel_time64(void)
2150 {
2151 	struct timekeeper *tk = &tk_core.timekeeper;
2152 	struct timespec64 now;
2153 	unsigned long seq;
2154 
2155 	do {
2156 		seq = read_seqcount_begin(&tk_core.seq);
2157 
2158 		now = tk_xtime(tk);
2159 	} while (read_seqcount_retry(&tk_core.seq, seq));
2160 
2161 	return now;
2162 }
2163 EXPORT_SYMBOL(current_kernel_time64);
2164 
2165 struct timespec64 get_monotonic_coarse64(void)
2166 {
2167 	struct timekeeper *tk = &tk_core.timekeeper;
2168 	struct timespec64 now, mono;
2169 	unsigned long seq;
2170 
2171 	do {
2172 		seq = read_seqcount_begin(&tk_core.seq);
2173 
2174 		now = tk_xtime(tk);
2175 		mono = tk->wall_to_monotonic;
2176 	} while (read_seqcount_retry(&tk_core.seq, seq));
2177 
2178 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2179 				now.tv_nsec + mono.tv_nsec);
2180 
2181 	return now;
2182 }
2183 EXPORT_SYMBOL(get_monotonic_coarse64);
2184 
2185 /*
2186  * Must hold jiffies_lock
2187  */
2188 void do_timer(unsigned long ticks)
2189 {
2190 	jiffies_64 += ticks;
2191 	calc_global_load(ticks);
2192 }
2193 
2194 /**
2195  * ktime_get_update_offsets_now - hrtimer helper
2196  * @cwsseq:	pointer to check and store the clock was set sequence number
2197  * @offs_real:	pointer to storage for monotonic -> realtime offset
2198  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2199  *
2200  * Returns current monotonic time and updates the offsets if the
2201  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2202  * different.
2203  *
2204  * Called from hrtimer_interrupt() or retrigger_next_event()
2205  */
2206 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2207 				     ktime_t *offs_tai)
2208 {
2209 	struct timekeeper *tk = &tk_core.timekeeper;
2210 	unsigned int seq;
2211 	ktime_t base;
2212 	u64 nsecs;
2213 
2214 	do {
2215 		seq = read_seqcount_begin(&tk_core.seq);
2216 
2217 		base = tk->tkr_mono.base;
2218 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2219 		base = ktime_add_ns(base, nsecs);
2220 
2221 		if (*cwsseq != tk->clock_was_set_seq) {
2222 			*cwsseq = tk->clock_was_set_seq;
2223 			*offs_real = tk->offs_real;
2224 			*offs_tai = tk->offs_tai;
2225 		}
2226 
2227 		/* Handle leapsecond insertion adjustments */
2228 		if (unlikely(base >= tk->next_leap_ktime))
2229 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2230 
2231 	} while (read_seqcount_retry(&tk_core.seq, seq));
2232 
2233 	return base;
2234 }
2235 
2236 /**
2237  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2238  */
2239 static int timekeeping_validate_timex(struct timex *txc)
2240 {
2241 	if (txc->modes & ADJ_ADJTIME) {
2242 		/* singleshot must not be used with any other mode bits */
2243 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2244 			return -EINVAL;
2245 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2246 		    !capable(CAP_SYS_TIME))
2247 			return -EPERM;
2248 	} else {
2249 		/* In order to modify anything, you gotta be super-user! */
2250 		if (txc->modes && !capable(CAP_SYS_TIME))
2251 			return -EPERM;
2252 		/*
2253 		 * if the quartz is off by more than 10% then
2254 		 * something is VERY wrong!
2255 		 */
2256 		if (txc->modes & ADJ_TICK &&
2257 		    (txc->tick <  900000/USER_HZ ||
2258 		     txc->tick > 1100000/USER_HZ))
2259 			return -EINVAL;
2260 	}
2261 
2262 	if (txc->modes & ADJ_SETOFFSET) {
2263 		/* In order to inject time, you gotta be super-user! */
2264 		if (!capable(CAP_SYS_TIME))
2265 			return -EPERM;
2266 
2267 		/*
2268 		 * Validate if a timespec/timeval used to inject a time
2269 		 * offset is valid.  Offsets can be postive or negative, so
2270 		 * we don't check tv_sec. The value of the timeval/timespec
2271 		 * is the sum of its fields,but *NOTE*:
2272 		 * The field tv_usec/tv_nsec must always be non-negative and
2273 		 * we can't have more nanoseconds/microseconds than a second.
2274 		 */
2275 		if (txc->time.tv_usec < 0)
2276 			return -EINVAL;
2277 
2278 		if (txc->modes & ADJ_NANO) {
2279 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2280 				return -EINVAL;
2281 		} else {
2282 			if (txc->time.tv_usec >= USEC_PER_SEC)
2283 				return -EINVAL;
2284 		}
2285 	}
2286 
2287 	/*
2288 	 * Check for potential multiplication overflows that can
2289 	 * only happen on 64-bit systems:
2290 	 */
2291 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2292 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2293 			return -EINVAL;
2294 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2295 			return -EINVAL;
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 
2302 /**
2303  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2304  */
2305 int do_adjtimex(struct timex *txc)
2306 {
2307 	struct timekeeper *tk = &tk_core.timekeeper;
2308 	unsigned long flags;
2309 	struct timespec64 ts;
2310 	s32 orig_tai, tai;
2311 	int ret;
2312 
2313 	/* Validate the data before disabling interrupts */
2314 	ret = timekeeping_validate_timex(txc);
2315 	if (ret)
2316 		return ret;
2317 
2318 	if (txc->modes & ADJ_SETOFFSET) {
2319 		struct timespec64 delta;
2320 		delta.tv_sec  = txc->time.tv_sec;
2321 		delta.tv_nsec = txc->time.tv_usec;
2322 		if (!(txc->modes & ADJ_NANO))
2323 			delta.tv_nsec *= 1000;
2324 		ret = timekeeping_inject_offset(&delta);
2325 		if (ret)
2326 			return ret;
2327 	}
2328 
2329 	getnstimeofday64(&ts);
2330 
2331 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2332 	write_seqcount_begin(&tk_core.seq);
2333 
2334 	orig_tai = tai = tk->tai_offset;
2335 	ret = __do_adjtimex(txc, &ts, &tai);
2336 
2337 	if (tai != orig_tai) {
2338 		__timekeeping_set_tai_offset(tk, tai);
2339 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2340 	}
2341 	tk_update_leap_state(tk);
2342 
2343 	write_seqcount_end(&tk_core.seq);
2344 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2345 
2346 	if (tai != orig_tai)
2347 		clock_was_set();
2348 
2349 	ntp_notify_cmos_timer();
2350 
2351 	return ret;
2352 }
2353 
2354 #ifdef CONFIG_NTP_PPS
2355 /**
2356  * hardpps() - Accessor function to NTP __hardpps function
2357  */
2358 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2359 {
2360 	unsigned long flags;
2361 
2362 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2363 	write_seqcount_begin(&tk_core.seq);
2364 
2365 	__hardpps(phase_ts, raw_ts);
2366 
2367 	write_seqcount_end(&tk_core.seq);
2368 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2369 }
2370 EXPORT_SYMBOL(hardpps);
2371 #endif /* CONFIG_NTP_PPS */
2372 
2373 /**
2374  * xtime_update() - advances the timekeeping infrastructure
2375  * @ticks:	number of ticks, that have elapsed since the last call.
2376  *
2377  * Must be called with interrupts disabled.
2378  */
2379 void xtime_update(unsigned long ticks)
2380 {
2381 	write_seqlock(&jiffies_lock);
2382 	do_timer(ticks);
2383 	write_sequnlock(&jiffies_lock);
2384 	update_wall_time();
2385 }
2386