1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/nmi.h> 18 #include <linux/sched.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/syscore_ops.h> 21 #include <linux/clocksource.h> 22 #include <linux/jiffies.h> 23 #include <linux/time.h> 24 #include <linux/tick.h> 25 #include <linux/stop_machine.h> 26 #include <linux/pvclock_gtod.h> 27 #include <linux/compiler.h> 28 29 #include "tick-internal.h" 30 #include "ntp_internal.h" 31 #include "timekeeping_internal.h" 32 33 #define TK_CLEAR_NTP (1 << 0) 34 #define TK_MIRROR (1 << 1) 35 #define TK_CLOCK_WAS_SET (1 << 2) 36 37 /* 38 * The most important data for readout fits into a single 64 byte 39 * cache line. 40 */ 41 static struct { 42 seqcount_t seq; 43 struct timekeeper timekeeper; 44 } tk_core ____cacheline_aligned; 45 46 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 47 static struct timekeeper shadow_timekeeper; 48 49 /** 50 * struct tk_fast - NMI safe timekeeper 51 * @seq: Sequence counter for protecting updates. The lowest bit 52 * is the index for the tk_read_base array 53 * @base: tk_read_base array. Access is indexed by the lowest bit of 54 * @seq. 55 * 56 * See @update_fast_timekeeper() below. 57 */ 58 struct tk_fast { 59 seqcount_t seq; 60 struct tk_read_base base[2]; 61 }; 62 63 /* Suspend-time cycles value for halted fast timekeeper. */ 64 static u64 cycles_at_suspend; 65 66 static u64 dummy_clock_read(struct clocksource *cs) 67 { 68 return cycles_at_suspend; 69 } 70 71 static struct clocksource dummy_clock = { 72 .read = dummy_clock_read, 73 }; 74 75 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 76 .base[0] = { .clock = &dummy_clock, }, 77 .base[1] = { .clock = &dummy_clock, }, 78 }; 79 80 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 81 .base[0] = { .clock = &dummy_clock, }, 82 .base[1] = { .clock = &dummy_clock, }, 83 }; 84 85 /* flag for if timekeeping is suspended */ 86 int __read_mostly timekeeping_suspended; 87 88 static inline void tk_normalize_xtime(struct timekeeper *tk) 89 { 90 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 91 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 92 tk->xtime_sec++; 93 } 94 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 95 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 96 tk->raw_sec++; 97 } 98 } 99 100 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 101 { 102 struct timespec64 ts; 103 104 ts.tv_sec = tk->xtime_sec; 105 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 106 return ts; 107 } 108 109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 110 { 111 tk->xtime_sec = ts->tv_sec; 112 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 113 } 114 115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 116 { 117 tk->xtime_sec += ts->tv_sec; 118 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 119 tk_normalize_xtime(tk); 120 } 121 122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 123 { 124 struct timespec64 tmp; 125 126 /* 127 * Verify consistency of: offset_real = -wall_to_monotonic 128 * before modifying anything 129 */ 130 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 131 -tk->wall_to_monotonic.tv_nsec); 132 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 133 tk->wall_to_monotonic = wtm; 134 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 135 tk->offs_real = timespec64_to_ktime(tmp); 136 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 137 } 138 139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 140 { 141 /* Update both bases so mono and raw stay coupled. */ 142 tk->tkr_mono.base += delta; 143 tk->tkr_raw.base += delta; 144 145 /* Accumulate time spent in suspend */ 146 tk->time_suspended += delta; 147 } 148 149 /* 150 * tk_clock_read - atomic clocksource read() helper 151 * 152 * This helper is necessary to use in the read paths because, while the 153 * seqlock ensures we don't return a bad value while structures are updated, 154 * it doesn't protect from potential crashes. There is the possibility that 155 * the tkr's clocksource may change between the read reference, and the 156 * clock reference passed to the read function. This can cause crashes if 157 * the wrong clocksource is passed to the wrong read function. 158 * This isn't necessary to use when holding the timekeeper_lock or doing 159 * a read of the fast-timekeeper tkrs (which is protected by its own locking 160 * and update logic). 161 */ 162 static inline u64 tk_clock_read(struct tk_read_base *tkr) 163 { 164 struct clocksource *clock = READ_ONCE(tkr->clock); 165 166 return clock->read(clock); 167 } 168 169 #ifdef CONFIG_DEBUG_TIMEKEEPING 170 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 171 172 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 173 { 174 175 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 176 const char *name = tk->tkr_mono.clock->name; 177 178 if (offset > max_cycles) { 179 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 180 offset, name, max_cycles); 181 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 182 } else { 183 if (offset > (max_cycles >> 1)) { 184 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 185 offset, name, max_cycles >> 1); 186 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 187 } 188 } 189 190 if (tk->underflow_seen) { 191 if (jiffies - tk->last_warning > WARNING_FREQ) { 192 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 193 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 194 printk_deferred(" Your kernel is probably still fine.\n"); 195 tk->last_warning = jiffies; 196 } 197 tk->underflow_seen = 0; 198 } 199 200 if (tk->overflow_seen) { 201 if (jiffies - tk->last_warning > WARNING_FREQ) { 202 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 203 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 204 printk_deferred(" Your kernel is probably still fine.\n"); 205 tk->last_warning = jiffies; 206 } 207 tk->overflow_seen = 0; 208 } 209 } 210 211 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 212 { 213 struct timekeeper *tk = &tk_core.timekeeper; 214 u64 now, last, mask, max, delta; 215 unsigned int seq; 216 217 /* 218 * Since we're called holding a seqlock, the data may shift 219 * under us while we're doing the calculation. This can cause 220 * false positives, since we'd note a problem but throw the 221 * results away. So nest another seqlock here to atomically 222 * grab the points we are checking with. 223 */ 224 do { 225 seq = read_seqcount_begin(&tk_core.seq); 226 now = tk_clock_read(tkr); 227 last = tkr->cycle_last; 228 mask = tkr->mask; 229 max = tkr->clock->max_cycles; 230 } while (read_seqcount_retry(&tk_core.seq, seq)); 231 232 delta = clocksource_delta(now, last, mask); 233 234 /* 235 * Try to catch underflows by checking if we are seeing small 236 * mask-relative negative values. 237 */ 238 if (unlikely((~delta & mask) < (mask >> 3))) { 239 tk->underflow_seen = 1; 240 delta = 0; 241 } 242 243 /* Cap delta value to the max_cycles values to avoid mult overflows */ 244 if (unlikely(delta > max)) { 245 tk->overflow_seen = 1; 246 delta = tkr->clock->max_cycles; 247 } 248 249 return delta; 250 } 251 #else 252 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 253 { 254 } 255 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 256 { 257 u64 cycle_now, delta; 258 259 /* read clocksource */ 260 cycle_now = tk_clock_read(tkr); 261 262 /* calculate the delta since the last update_wall_time */ 263 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 264 265 return delta; 266 } 267 #endif 268 269 /** 270 * tk_setup_internals - Set up internals to use clocksource clock. 271 * 272 * @tk: The target timekeeper to setup. 273 * @clock: Pointer to clocksource. 274 * 275 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 276 * pair and interval request. 277 * 278 * Unless you're the timekeeping code, you should not be using this! 279 */ 280 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 281 { 282 u64 interval; 283 u64 tmp, ntpinterval; 284 struct clocksource *old_clock; 285 286 ++tk->cs_was_changed_seq; 287 old_clock = tk->tkr_mono.clock; 288 tk->tkr_mono.clock = clock; 289 tk->tkr_mono.mask = clock->mask; 290 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 291 292 tk->tkr_raw.clock = clock; 293 tk->tkr_raw.mask = clock->mask; 294 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 295 296 /* Do the ns -> cycle conversion first, using original mult */ 297 tmp = NTP_INTERVAL_LENGTH; 298 tmp <<= clock->shift; 299 ntpinterval = tmp; 300 tmp += clock->mult/2; 301 do_div(tmp, clock->mult); 302 if (tmp == 0) 303 tmp = 1; 304 305 interval = (u64) tmp; 306 tk->cycle_interval = interval; 307 308 /* Go back from cycles -> shifted ns */ 309 tk->xtime_interval = interval * clock->mult; 310 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 311 tk->raw_interval = interval * clock->mult; 312 313 /* if changing clocks, convert xtime_nsec shift units */ 314 if (old_clock) { 315 int shift_change = clock->shift - old_clock->shift; 316 if (shift_change < 0) { 317 tk->tkr_mono.xtime_nsec >>= -shift_change; 318 tk->tkr_raw.xtime_nsec >>= -shift_change; 319 } else { 320 tk->tkr_mono.xtime_nsec <<= shift_change; 321 tk->tkr_raw.xtime_nsec <<= shift_change; 322 } 323 } 324 325 tk->tkr_mono.shift = clock->shift; 326 tk->tkr_raw.shift = clock->shift; 327 328 tk->ntp_error = 0; 329 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 330 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 331 332 /* 333 * The timekeeper keeps its own mult values for the currently 334 * active clocksource. These value will be adjusted via NTP 335 * to counteract clock drifting. 336 */ 337 tk->tkr_mono.mult = clock->mult; 338 tk->tkr_raw.mult = clock->mult; 339 tk->ntp_err_mult = 0; 340 tk->skip_second_overflow = 0; 341 } 342 343 /* Timekeeper helper functions. */ 344 345 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 346 static u32 default_arch_gettimeoffset(void) { return 0; } 347 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 348 #else 349 static inline u32 arch_gettimeoffset(void) { return 0; } 350 #endif 351 352 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta) 353 { 354 u64 nsec; 355 356 nsec = delta * tkr->mult + tkr->xtime_nsec; 357 nsec >>= tkr->shift; 358 359 /* If arch requires, add in get_arch_timeoffset() */ 360 return nsec + arch_gettimeoffset(); 361 } 362 363 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) 364 { 365 u64 delta; 366 367 delta = timekeeping_get_delta(tkr); 368 return timekeeping_delta_to_ns(tkr, delta); 369 } 370 371 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles) 372 { 373 u64 delta; 374 375 /* calculate the delta since the last update_wall_time */ 376 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 377 return timekeeping_delta_to_ns(tkr, delta); 378 } 379 380 /** 381 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 382 * @tkr: Timekeeping readout base from which we take the update 383 * 384 * We want to use this from any context including NMI and tracing / 385 * instrumenting the timekeeping code itself. 386 * 387 * Employ the latch technique; see @raw_write_seqcount_latch. 388 * 389 * So if a NMI hits the update of base[0] then it will use base[1] 390 * which is still consistent. In the worst case this can result is a 391 * slightly wrong timestamp (a few nanoseconds). See 392 * @ktime_get_mono_fast_ns. 393 */ 394 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 395 { 396 struct tk_read_base *base = tkf->base; 397 398 /* Force readers off to base[1] */ 399 raw_write_seqcount_latch(&tkf->seq); 400 401 /* Update base[0] */ 402 memcpy(base, tkr, sizeof(*base)); 403 404 /* Force readers back to base[0] */ 405 raw_write_seqcount_latch(&tkf->seq); 406 407 /* Update base[1] */ 408 memcpy(base + 1, base, sizeof(*base)); 409 } 410 411 /** 412 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 413 * 414 * This timestamp is not guaranteed to be monotonic across an update. 415 * The timestamp is calculated by: 416 * 417 * now = base_mono + clock_delta * slope 418 * 419 * So if the update lowers the slope, readers who are forced to the 420 * not yet updated second array are still using the old steeper slope. 421 * 422 * tmono 423 * ^ 424 * | o n 425 * | o n 426 * | u 427 * | o 428 * |o 429 * |12345678---> reader order 430 * 431 * o = old slope 432 * u = update 433 * n = new slope 434 * 435 * So reader 6 will observe time going backwards versus reader 5. 436 * 437 * While other CPUs are likely to be able observe that, the only way 438 * for a CPU local observation is when an NMI hits in the middle of 439 * the update. Timestamps taken from that NMI context might be ahead 440 * of the following timestamps. Callers need to be aware of that and 441 * deal with it. 442 */ 443 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 444 { 445 struct tk_read_base *tkr; 446 unsigned int seq; 447 u64 now; 448 449 do { 450 seq = raw_read_seqcount_latch(&tkf->seq); 451 tkr = tkf->base + (seq & 0x01); 452 now = ktime_to_ns(tkr->base); 453 454 now += timekeeping_delta_to_ns(tkr, 455 clocksource_delta( 456 tk_clock_read(tkr), 457 tkr->cycle_last, 458 tkr->mask)); 459 } while (read_seqcount_retry(&tkf->seq, seq)); 460 461 return now; 462 } 463 464 u64 ktime_get_mono_fast_ns(void) 465 { 466 return __ktime_get_fast_ns(&tk_fast_mono); 467 } 468 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 469 470 u64 ktime_get_raw_fast_ns(void) 471 { 472 return __ktime_get_fast_ns(&tk_fast_raw); 473 } 474 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 475 476 /* 477 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 478 */ 479 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) 480 { 481 struct tk_read_base *tkr; 482 unsigned int seq; 483 u64 now; 484 485 do { 486 seq = raw_read_seqcount_latch(&tkf->seq); 487 tkr = tkf->base + (seq & 0x01); 488 now = ktime_to_ns(tkr->base_real); 489 490 now += timekeeping_delta_to_ns(tkr, 491 clocksource_delta( 492 tk_clock_read(tkr), 493 tkr->cycle_last, 494 tkr->mask)); 495 } while (read_seqcount_retry(&tkf->seq, seq)); 496 497 return now; 498 } 499 500 /** 501 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 502 */ 503 u64 ktime_get_real_fast_ns(void) 504 { 505 return __ktime_get_real_fast_ns(&tk_fast_mono); 506 } 507 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 508 509 /** 510 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 511 * @tk: Timekeeper to snapshot. 512 * 513 * It generally is unsafe to access the clocksource after timekeeping has been 514 * suspended, so take a snapshot of the readout base of @tk and use it as the 515 * fast timekeeper's readout base while suspended. It will return the same 516 * number of cycles every time until timekeeping is resumed at which time the 517 * proper readout base for the fast timekeeper will be restored automatically. 518 */ 519 static void halt_fast_timekeeper(struct timekeeper *tk) 520 { 521 static struct tk_read_base tkr_dummy; 522 struct tk_read_base *tkr = &tk->tkr_mono; 523 524 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 525 cycles_at_suspend = tk_clock_read(tkr); 526 tkr_dummy.clock = &dummy_clock; 527 tkr_dummy.base_real = tkr->base + tk->offs_real; 528 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 529 530 tkr = &tk->tkr_raw; 531 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 532 tkr_dummy.clock = &dummy_clock; 533 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 534 } 535 536 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 537 538 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 539 { 540 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 541 } 542 543 /** 544 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 545 */ 546 int pvclock_gtod_register_notifier(struct notifier_block *nb) 547 { 548 struct timekeeper *tk = &tk_core.timekeeper; 549 unsigned long flags; 550 int ret; 551 552 raw_spin_lock_irqsave(&timekeeper_lock, flags); 553 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 554 update_pvclock_gtod(tk, true); 555 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 556 557 return ret; 558 } 559 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 560 561 /** 562 * pvclock_gtod_unregister_notifier - unregister a pvclock 563 * timedata update listener 564 */ 565 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 566 { 567 unsigned long flags; 568 int ret; 569 570 raw_spin_lock_irqsave(&timekeeper_lock, flags); 571 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 572 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 573 574 return ret; 575 } 576 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 577 578 /* 579 * tk_update_leap_state - helper to update the next_leap_ktime 580 */ 581 static inline void tk_update_leap_state(struct timekeeper *tk) 582 { 583 tk->next_leap_ktime = ntp_get_next_leap(); 584 if (tk->next_leap_ktime != KTIME_MAX) 585 /* Convert to monotonic time */ 586 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 587 } 588 589 /* 590 * Update the ktime_t based scalar nsec members of the timekeeper 591 */ 592 static inline void tk_update_ktime_data(struct timekeeper *tk) 593 { 594 u64 seconds; 595 u32 nsec; 596 597 /* 598 * The xtime based monotonic readout is: 599 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 600 * The ktime based monotonic readout is: 601 * nsec = base_mono + now(); 602 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 603 */ 604 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 605 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 606 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 607 608 /* 609 * The sum of the nanoseconds portions of xtime and 610 * wall_to_monotonic can be greater/equal one second. Take 611 * this into account before updating tk->ktime_sec. 612 */ 613 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 614 if (nsec >= NSEC_PER_SEC) 615 seconds++; 616 tk->ktime_sec = seconds; 617 618 /* Update the monotonic raw base */ 619 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 620 } 621 622 /* must hold timekeeper_lock */ 623 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 624 { 625 if (action & TK_CLEAR_NTP) { 626 tk->ntp_error = 0; 627 ntp_clear(); 628 } 629 630 tk_update_leap_state(tk); 631 tk_update_ktime_data(tk); 632 633 update_vsyscall(tk); 634 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 635 636 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 637 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 638 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 639 640 if (action & TK_CLOCK_WAS_SET) 641 tk->clock_was_set_seq++; 642 /* 643 * The mirroring of the data to the shadow-timekeeper needs 644 * to happen last here to ensure we don't over-write the 645 * timekeeper structure on the next update with stale data 646 */ 647 if (action & TK_MIRROR) 648 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 649 sizeof(tk_core.timekeeper)); 650 } 651 652 /** 653 * timekeeping_forward_now - update clock to the current time 654 * 655 * Forward the current clock to update its state since the last call to 656 * update_wall_time(). This is useful before significant clock changes, 657 * as it avoids having to deal with this time offset explicitly. 658 */ 659 static void timekeeping_forward_now(struct timekeeper *tk) 660 { 661 u64 cycle_now, delta; 662 663 cycle_now = tk_clock_read(&tk->tkr_mono); 664 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 665 tk->tkr_mono.cycle_last = cycle_now; 666 tk->tkr_raw.cycle_last = cycle_now; 667 668 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 669 670 /* If arch requires, add in get_arch_timeoffset() */ 671 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 672 673 674 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 675 676 /* If arch requires, add in get_arch_timeoffset() */ 677 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 678 679 tk_normalize_xtime(tk); 680 } 681 682 /** 683 * __getnstimeofday64 - Returns the time of day in a timespec64. 684 * @ts: pointer to the timespec to be set 685 * 686 * Updates the time of day in the timespec. 687 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 688 */ 689 int __getnstimeofday64(struct timespec64 *ts) 690 { 691 struct timekeeper *tk = &tk_core.timekeeper; 692 unsigned long seq; 693 u64 nsecs; 694 695 do { 696 seq = read_seqcount_begin(&tk_core.seq); 697 698 ts->tv_sec = tk->xtime_sec; 699 nsecs = timekeeping_get_ns(&tk->tkr_mono); 700 701 } while (read_seqcount_retry(&tk_core.seq, seq)); 702 703 ts->tv_nsec = 0; 704 timespec64_add_ns(ts, nsecs); 705 706 /* 707 * Do not bail out early, in case there were callers still using 708 * the value, even in the face of the WARN_ON. 709 */ 710 if (unlikely(timekeeping_suspended)) 711 return -EAGAIN; 712 return 0; 713 } 714 EXPORT_SYMBOL(__getnstimeofday64); 715 716 /** 717 * getnstimeofday64 - Returns the time of day in a timespec64. 718 * @ts: pointer to the timespec64 to be set 719 * 720 * Returns the time of day in a timespec64 (WARN if suspended). 721 */ 722 void getnstimeofday64(struct timespec64 *ts) 723 { 724 WARN_ON(__getnstimeofday64(ts)); 725 } 726 EXPORT_SYMBOL(getnstimeofday64); 727 728 ktime_t ktime_get(void) 729 { 730 struct timekeeper *tk = &tk_core.timekeeper; 731 unsigned int seq; 732 ktime_t base; 733 u64 nsecs; 734 735 WARN_ON(timekeeping_suspended); 736 737 do { 738 seq = read_seqcount_begin(&tk_core.seq); 739 base = tk->tkr_mono.base; 740 nsecs = timekeeping_get_ns(&tk->tkr_mono); 741 742 } while (read_seqcount_retry(&tk_core.seq, seq)); 743 744 return ktime_add_ns(base, nsecs); 745 } 746 EXPORT_SYMBOL_GPL(ktime_get); 747 748 u32 ktime_get_resolution_ns(void) 749 { 750 struct timekeeper *tk = &tk_core.timekeeper; 751 unsigned int seq; 752 u32 nsecs; 753 754 WARN_ON(timekeeping_suspended); 755 756 do { 757 seq = read_seqcount_begin(&tk_core.seq); 758 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 759 } while (read_seqcount_retry(&tk_core.seq, seq)); 760 761 return nsecs; 762 } 763 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 764 765 static ktime_t *offsets[TK_OFFS_MAX] = { 766 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 767 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 768 }; 769 770 ktime_t ktime_get_with_offset(enum tk_offsets offs) 771 { 772 struct timekeeper *tk = &tk_core.timekeeper; 773 unsigned int seq; 774 ktime_t base, *offset = offsets[offs]; 775 u64 nsecs; 776 777 WARN_ON(timekeeping_suspended); 778 779 do { 780 seq = read_seqcount_begin(&tk_core.seq); 781 base = ktime_add(tk->tkr_mono.base, *offset); 782 nsecs = timekeeping_get_ns(&tk->tkr_mono); 783 784 } while (read_seqcount_retry(&tk_core.seq, seq)); 785 786 return ktime_add_ns(base, nsecs); 787 788 } 789 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 790 791 /** 792 * ktime_mono_to_any() - convert mononotic time to any other time 793 * @tmono: time to convert. 794 * @offs: which offset to use 795 */ 796 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 797 { 798 ktime_t *offset = offsets[offs]; 799 unsigned long seq; 800 ktime_t tconv; 801 802 do { 803 seq = read_seqcount_begin(&tk_core.seq); 804 tconv = ktime_add(tmono, *offset); 805 } while (read_seqcount_retry(&tk_core.seq, seq)); 806 807 return tconv; 808 } 809 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 810 811 /** 812 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 813 */ 814 ktime_t ktime_get_raw(void) 815 { 816 struct timekeeper *tk = &tk_core.timekeeper; 817 unsigned int seq; 818 ktime_t base; 819 u64 nsecs; 820 821 do { 822 seq = read_seqcount_begin(&tk_core.seq); 823 base = tk->tkr_raw.base; 824 nsecs = timekeeping_get_ns(&tk->tkr_raw); 825 826 } while (read_seqcount_retry(&tk_core.seq, seq)); 827 828 return ktime_add_ns(base, nsecs); 829 } 830 EXPORT_SYMBOL_GPL(ktime_get_raw); 831 832 /** 833 * ktime_get_ts64 - get the monotonic clock in timespec64 format 834 * @ts: pointer to timespec variable 835 * 836 * The function calculates the monotonic clock from the realtime 837 * clock and the wall_to_monotonic offset and stores the result 838 * in normalized timespec64 format in the variable pointed to by @ts. 839 */ 840 void ktime_get_ts64(struct timespec64 *ts) 841 { 842 struct timekeeper *tk = &tk_core.timekeeper; 843 struct timespec64 tomono; 844 unsigned int seq; 845 u64 nsec; 846 847 WARN_ON(timekeeping_suspended); 848 849 do { 850 seq = read_seqcount_begin(&tk_core.seq); 851 ts->tv_sec = tk->xtime_sec; 852 nsec = timekeeping_get_ns(&tk->tkr_mono); 853 tomono = tk->wall_to_monotonic; 854 855 } while (read_seqcount_retry(&tk_core.seq, seq)); 856 857 ts->tv_sec += tomono.tv_sec; 858 ts->tv_nsec = 0; 859 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 860 } 861 EXPORT_SYMBOL_GPL(ktime_get_ts64); 862 863 /** 864 * ktime_get_active_ts64 - Get the active non-suspended monotonic clock 865 * @ts: pointer to timespec variable 866 * 867 * The function calculates the monotonic clock from the realtime clock and 868 * the wall_to_monotonic offset, subtracts the accumulated suspend time and 869 * stores the result in normalized timespec64 format in the variable 870 * pointed to by @ts. 871 */ 872 void ktime_get_active_ts64(struct timespec64 *ts) 873 { 874 struct timekeeper *tk = &tk_core.timekeeper; 875 struct timespec64 tomono, tsusp; 876 u64 nsec, nssusp; 877 unsigned int seq; 878 879 WARN_ON(timekeeping_suspended); 880 881 do { 882 seq = read_seqcount_begin(&tk_core.seq); 883 ts->tv_sec = tk->xtime_sec; 884 nsec = timekeeping_get_ns(&tk->tkr_mono); 885 tomono = tk->wall_to_monotonic; 886 nssusp = tk->time_suspended; 887 } while (read_seqcount_retry(&tk_core.seq, seq)); 888 889 ts->tv_sec += tomono.tv_sec; 890 ts->tv_nsec = 0; 891 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 892 tsusp = ns_to_timespec64(nssusp); 893 *ts = timespec64_sub(*ts, tsusp); 894 } 895 896 /** 897 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 898 * 899 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 900 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 901 * works on both 32 and 64 bit systems. On 32 bit systems the readout 902 * covers ~136 years of uptime which should be enough to prevent 903 * premature wrap arounds. 904 */ 905 time64_t ktime_get_seconds(void) 906 { 907 struct timekeeper *tk = &tk_core.timekeeper; 908 909 WARN_ON(timekeeping_suspended); 910 return tk->ktime_sec; 911 } 912 EXPORT_SYMBOL_GPL(ktime_get_seconds); 913 914 /** 915 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 916 * 917 * Returns the wall clock seconds since 1970. This replaces the 918 * get_seconds() interface which is not y2038 safe on 32bit systems. 919 * 920 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 921 * 32bit systems the access must be protected with the sequence 922 * counter to provide "atomic" access to the 64bit tk->xtime_sec 923 * value. 924 */ 925 time64_t ktime_get_real_seconds(void) 926 { 927 struct timekeeper *tk = &tk_core.timekeeper; 928 time64_t seconds; 929 unsigned int seq; 930 931 if (IS_ENABLED(CONFIG_64BIT)) 932 return tk->xtime_sec; 933 934 do { 935 seq = read_seqcount_begin(&tk_core.seq); 936 seconds = tk->xtime_sec; 937 938 } while (read_seqcount_retry(&tk_core.seq, seq)); 939 940 return seconds; 941 } 942 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 943 944 /** 945 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 946 * but without the sequence counter protect. This internal function 947 * is called just when timekeeping lock is already held. 948 */ 949 time64_t __ktime_get_real_seconds(void) 950 { 951 struct timekeeper *tk = &tk_core.timekeeper; 952 953 return tk->xtime_sec; 954 } 955 956 /** 957 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 958 * @systime_snapshot: pointer to struct receiving the system time snapshot 959 */ 960 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 961 { 962 struct timekeeper *tk = &tk_core.timekeeper; 963 unsigned long seq; 964 ktime_t base_raw; 965 ktime_t base_real; 966 u64 nsec_raw; 967 u64 nsec_real; 968 u64 now; 969 970 WARN_ON_ONCE(timekeeping_suspended); 971 972 do { 973 seq = read_seqcount_begin(&tk_core.seq); 974 now = tk_clock_read(&tk->tkr_mono); 975 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 976 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 977 base_real = ktime_add(tk->tkr_mono.base, 978 tk_core.timekeeper.offs_real); 979 base_raw = tk->tkr_raw.base; 980 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 981 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 982 } while (read_seqcount_retry(&tk_core.seq, seq)); 983 984 systime_snapshot->cycles = now; 985 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 986 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 987 } 988 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 989 990 /* Scale base by mult/div checking for overflow */ 991 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 992 { 993 u64 tmp, rem; 994 995 tmp = div64_u64_rem(*base, div, &rem); 996 997 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 998 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 999 return -EOVERFLOW; 1000 tmp *= mult; 1001 rem *= mult; 1002 1003 do_div(rem, div); 1004 *base = tmp + rem; 1005 return 0; 1006 } 1007 1008 /** 1009 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1010 * @history: Snapshot representing start of history 1011 * @partial_history_cycles: Cycle offset into history (fractional part) 1012 * @total_history_cycles: Total history length in cycles 1013 * @discontinuity: True indicates clock was set on history period 1014 * @ts: Cross timestamp that should be adjusted using 1015 * partial/total ratio 1016 * 1017 * Helper function used by get_device_system_crosststamp() to correct the 1018 * crosstimestamp corresponding to the start of the current interval to the 1019 * system counter value (timestamp point) provided by the driver. The 1020 * total_history_* quantities are the total history starting at the provided 1021 * reference point and ending at the start of the current interval. The cycle 1022 * count between the driver timestamp point and the start of the current 1023 * interval is partial_history_cycles. 1024 */ 1025 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1026 u64 partial_history_cycles, 1027 u64 total_history_cycles, 1028 bool discontinuity, 1029 struct system_device_crosststamp *ts) 1030 { 1031 struct timekeeper *tk = &tk_core.timekeeper; 1032 u64 corr_raw, corr_real; 1033 bool interp_forward; 1034 int ret; 1035 1036 if (total_history_cycles == 0 || partial_history_cycles == 0) 1037 return 0; 1038 1039 /* Interpolate shortest distance from beginning or end of history */ 1040 interp_forward = partial_history_cycles > total_history_cycles / 2; 1041 partial_history_cycles = interp_forward ? 1042 total_history_cycles - partial_history_cycles : 1043 partial_history_cycles; 1044 1045 /* 1046 * Scale the monotonic raw time delta by: 1047 * partial_history_cycles / total_history_cycles 1048 */ 1049 corr_raw = (u64)ktime_to_ns( 1050 ktime_sub(ts->sys_monoraw, history->raw)); 1051 ret = scale64_check_overflow(partial_history_cycles, 1052 total_history_cycles, &corr_raw); 1053 if (ret) 1054 return ret; 1055 1056 /* 1057 * If there is a discontinuity in the history, scale monotonic raw 1058 * correction by: 1059 * mult(real)/mult(raw) yielding the realtime correction 1060 * Otherwise, calculate the realtime correction similar to monotonic 1061 * raw calculation 1062 */ 1063 if (discontinuity) { 1064 corr_real = mul_u64_u32_div 1065 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1066 } else { 1067 corr_real = (u64)ktime_to_ns( 1068 ktime_sub(ts->sys_realtime, history->real)); 1069 ret = scale64_check_overflow(partial_history_cycles, 1070 total_history_cycles, &corr_real); 1071 if (ret) 1072 return ret; 1073 } 1074 1075 /* Fixup monotonic raw and real time time values */ 1076 if (interp_forward) { 1077 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1078 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1079 } else { 1080 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1081 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1082 } 1083 1084 return 0; 1085 } 1086 1087 /* 1088 * cycle_between - true if test occurs chronologically between before and after 1089 */ 1090 static bool cycle_between(u64 before, u64 test, u64 after) 1091 { 1092 if (test > before && test < after) 1093 return true; 1094 if (test < before && before > after) 1095 return true; 1096 return false; 1097 } 1098 1099 /** 1100 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1101 * @get_time_fn: Callback to get simultaneous device time and 1102 * system counter from the device driver 1103 * @ctx: Context passed to get_time_fn() 1104 * @history_begin: Historical reference point used to interpolate system 1105 * time when counter provided by the driver is before the current interval 1106 * @xtstamp: Receives simultaneously captured system and device time 1107 * 1108 * Reads a timestamp from a device and correlates it to system time 1109 */ 1110 int get_device_system_crosststamp(int (*get_time_fn) 1111 (ktime_t *device_time, 1112 struct system_counterval_t *sys_counterval, 1113 void *ctx), 1114 void *ctx, 1115 struct system_time_snapshot *history_begin, 1116 struct system_device_crosststamp *xtstamp) 1117 { 1118 struct system_counterval_t system_counterval; 1119 struct timekeeper *tk = &tk_core.timekeeper; 1120 u64 cycles, now, interval_start; 1121 unsigned int clock_was_set_seq = 0; 1122 ktime_t base_real, base_raw; 1123 u64 nsec_real, nsec_raw; 1124 u8 cs_was_changed_seq; 1125 unsigned long seq; 1126 bool do_interp; 1127 int ret; 1128 1129 do { 1130 seq = read_seqcount_begin(&tk_core.seq); 1131 /* 1132 * Try to synchronously capture device time and a system 1133 * counter value calling back into the device driver 1134 */ 1135 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1136 if (ret) 1137 return ret; 1138 1139 /* 1140 * Verify that the clocksource associated with the captured 1141 * system counter value is the same as the currently installed 1142 * timekeeper clocksource 1143 */ 1144 if (tk->tkr_mono.clock != system_counterval.cs) 1145 return -ENODEV; 1146 cycles = system_counterval.cycles; 1147 1148 /* 1149 * Check whether the system counter value provided by the 1150 * device driver is on the current timekeeping interval. 1151 */ 1152 now = tk_clock_read(&tk->tkr_mono); 1153 interval_start = tk->tkr_mono.cycle_last; 1154 if (!cycle_between(interval_start, cycles, now)) { 1155 clock_was_set_seq = tk->clock_was_set_seq; 1156 cs_was_changed_seq = tk->cs_was_changed_seq; 1157 cycles = interval_start; 1158 do_interp = true; 1159 } else { 1160 do_interp = false; 1161 } 1162 1163 base_real = ktime_add(tk->tkr_mono.base, 1164 tk_core.timekeeper.offs_real); 1165 base_raw = tk->tkr_raw.base; 1166 1167 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1168 system_counterval.cycles); 1169 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1170 system_counterval.cycles); 1171 } while (read_seqcount_retry(&tk_core.seq, seq)); 1172 1173 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1174 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1175 1176 /* 1177 * Interpolate if necessary, adjusting back from the start of the 1178 * current interval 1179 */ 1180 if (do_interp) { 1181 u64 partial_history_cycles, total_history_cycles; 1182 bool discontinuity; 1183 1184 /* 1185 * Check that the counter value occurs after the provided 1186 * history reference and that the history doesn't cross a 1187 * clocksource change 1188 */ 1189 if (!history_begin || 1190 !cycle_between(history_begin->cycles, 1191 system_counterval.cycles, cycles) || 1192 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1193 return -EINVAL; 1194 partial_history_cycles = cycles - system_counterval.cycles; 1195 total_history_cycles = cycles - history_begin->cycles; 1196 discontinuity = 1197 history_begin->clock_was_set_seq != clock_was_set_seq; 1198 1199 ret = adjust_historical_crosststamp(history_begin, 1200 partial_history_cycles, 1201 total_history_cycles, 1202 discontinuity, xtstamp); 1203 if (ret) 1204 return ret; 1205 } 1206 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1210 1211 /** 1212 * do_gettimeofday - Returns the time of day in a timeval 1213 * @tv: pointer to the timeval to be set 1214 * 1215 * NOTE: Users should be converted to using getnstimeofday() 1216 */ 1217 void do_gettimeofday(struct timeval *tv) 1218 { 1219 struct timespec64 now; 1220 1221 getnstimeofday64(&now); 1222 tv->tv_sec = now.tv_sec; 1223 tv->tv_usec = now.tv_nsec/1000; 1224 } 1225 EXPORT_SYMBOL(do_gettimeofday); 1226 1227 /** 1228 * do_settimeofday64 - Sets the time of day. 1229 * @ts: pointer to the timespec64 variable containing the new time 1230 * 1231 * Sets the time of day to the new time and update NTP and notify hrtimers 1232 */ 1233 int do_settimeofday64(const struct timespec64 *ts) 1234 { 1235 struct timekeeper *tk = &tk_core.timekeeper; 1236 struct timespec64 ts_delta, xt; 1237 unsigned long flags; 1238 int ret = 0; 1239 1240 if (!timespec64_valid_strict(ts)) 1241 return -EINVAL; 1242 1243 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1244 write_seqcount_begin(&tk_core.seq); 1245 1246 timekeeping_forward_now(tk); 1247 1248 xt = tk_xtime(tk); 1249 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1250 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1251 1252 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1253 ret = -EINVAL; 1254 goto out; 1255 } 1256 1257 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1258 1259 tk_set_xtime(tk, ts); 1260 out: 1261 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1262 1263 write_seqcount_end(&tk_core.seq); 1264 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1265 1266 /* signal hrtimers about time change */ 1267 clock_was_set(); 1268 1269 return ret; 1270 } 1271 EXPORT_SYMBOL(do_settimeofday64); 1272 1273 /** 1274 * timekeeping_inject_offset - Adds or subtracts from the current time. 1275 * @tv: pointer to the timespec variable containing the offset 1276 * 1277 * Adds or subtracts an offset value from the current time. 1278 */ 1279 static int timekeeping_inject_offset(struct timespec64 *ts) 1280 { 1281 struct timekeeper *tk = &tk_core.timekeeper; 1282 unsigned long flags; 1283 struct timespec64 tmp; 1284 int ret = 0; 1285 1286 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1287 return -EINVAL; 1288 1289 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1290 write_seqcount_begin(&tk_core.seq); 1291 1292 timekeeping_forward_now(tk); 1293 1294 /* Make sure the proposed value is valid */ 1295 tmp = timespec64_add(tk_xtime(tk), *ts); 1296 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1297 !timespec64_valid_strict(&tmp)) { 1298 ret = -EINVAL; 1299 goto error; 1300 } 1301 1302 tk_xtime_add(tk, ts); 1303 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1304 1305 error: /* even if we error out, we forwarded the time, so call update */ 1306 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1307 1308 write_seqcount_end(&tk_core.seq); 1309 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1310 1311 /* signal hrtimers about time change */ 1312 clock_was_set(); 1313 1314 return ret; 1315 } 1316 1317 /* 1318 * Indicates if there is an offset between the system clock and the hardware 1319 * clock/persistent clock/rtc. 1320 */ 1321 int persistent_clock_is_local; 1322 1323 /* 1324 * Adjust the time obtained from the CMOS to be UTC time instead of 1325 * local time. 1326 * 1327 * This is ugly, but preferable to the alternatives. Otherwise we 1328 * would either need to write a program to do it in /etc/rc (and risk 1329 * confusion if the program gets run more than once; it would also be 1330 * hard to make the program warp the clock precisely n hours) or 1331 * compile in the timezone information into the kernel. Bad, bad.... 1332 * 1333 * - TYT, 1992-01-01 1334 * 1335 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1336 * as real UNIX machines always do it. This avoids all headaches about 1337 * daylight saving times and warping kernel clocks. 1338 */ 1339 void timekeeping_warp_clock(void) 1340 { 1341 if (sys_tz.tz_minuteswest != 0) { 1342 struct timespec64 adjust; 1343 1344 persistent_clock_is_local = 1; 1345 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1346 adjust.tv_nsec = 0; 1347 timekeeping_inject_offset(&adjust); 1348 } 1349 } 1350 1351 /** 1352 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1353 * 1354 */ 1355 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1356 { 1357 tk->tai_offset = tai_offset; 1358 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1359 } 1360 1361 /** 1362 * change_clocksource - Swaps clocksources if a new one is available 1363 * 1364 * Accumulates current time interval and initializes new clocksource 1365 */ 1366 static int change_clocksource(void *data) 1367 { 1368 struct timekeeper *tk = &tk_core.timekeeper; 1369 struct clocksource *new, *old; 1370 unsigned long flags; 1371 1372 new = (struct clocksource *) data; 1373 1374 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1375 write_seqcount_begin(&tk_core.seq); 1376 1377 timekeeping_forward_now(tk); 1378 /* 1379 * If the cs is in module, get a module reference. Succeeds 1380 * for built-in code (owner == NULL) as well. 1381 */ 1382 if (try_module_get(new->owner)) { 1383 if (!new->enable || new->enable(new) == 0) { 1384 old = tk->tkr_mono.clock; 1385 tk_setup_internals(tk, new); 1386 if (old->disable) 1387 old->disable(old); 1388 module_put(old->owner); 1389 } else { 1390 module_put(new->owner); 1391 } 1392 } 1393 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1394 1395 write_seqcount_end(&tk_core.seq); 1396 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1397 1398 return 0; 1399 } 1400 1401 /** 1402 * timekeeping_notify - Install a new clock source 1403 * @clock: pointer to the clock source 1404 * 1405 * This function is called from clocksource.c after a new, better clock 1406 * source has been registered. The caller holds the clocksource_mutex. 1407 */ 1408 int timekeeping_notify(struct clocksource *clock) 1409 { 1410 struct timekeeper *tk = &tk_core.timekeeper; 1411 1412 if (tk->tkr_mono.clock == clock) 1413 return 0; 1414 stop_machine(change_clocksource, clock, NULL); 1415 tick_clock_notify(); 1416 return tk->tkr_mono.clock == clock ? 0 : -1; 1417 } 1418 1419 /** 1420 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1421 * @ts: pointer to the timespec64 to be set 1422 * 1423 * Returns the raw monotonic time (completely un-modified by ntp) 1424 */ 1425 void getrawmonotonic64(struct timespec64 *ts) 1426 { 1427 struct timekeeper *tk = &tk_core.timekeeper; 1428 unsigned long seq; 1429 u64 nsecs; 1430 1431 do { 1432 seq = read_seqcount_begin(&tk_core.seq); 1433 ts->tv_sec = tk->raw_sec; 1434 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1435 1436 } while (read_seqcount_retry(&tk_core.seq, seq)); 1437 1438 ts->tv_nsec = 0; 1439 timespec64_add_ns(ts, nsecs); 1440 } 1441 EXPORT_SYMBOL(getrawmonotonic64); 1442 1443 1444 /** 1445 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1446 */ 1447 int timekeeping_valid_for_hres(void) 1448 { 1449 struct timekeeper *tk = &tk_core.timekeeper; 1450 unsigned long seq; 1451 int ret; 1452 1453 do { 1454 seq = read_seqcount_begin(&tk_core.seq); 1455 1456 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1457 1458 } while (read_seqcount_retry(&tk_core.seq, seq)); 1459 1460 return ret; 1461 } 1462 1463 /** 1464 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1465 */ 1466 u64 timekeeping_max_deferment(void) 1467 { 1468 struct timekeeper *tk = &tk_core.timekeeper; 1469 unsigned long seq; 1470 u64 ret; 1471 1472 do { 1473 seq = read_seqcount_begin(&tk_core.seq); 1474 1475 ret = tk->tkr_mono.clock->max_idle_ns; 1476 1477 } while (read_seqcount_retry(&tk_core.seq, seq)); 1478 1479 return ret; 1480 } 1481 1482 /** 1483 * read_persistent_clock - Return time from the persistent clock. 1484 * 1485 * Weak dummy function for arches that do not yet support it. 1486 * Reads the time from the battery backed persistent clock. 1487 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1488 * 1489 * XXX - Do be sure to remove it once all arches implement it. 1490 */ 1491 void __weak read_persistent_clock(struct timespec *ts) 1492 { 1493 ts->tv_sec = 0; 1494 ts->tv_nsec = 0; 1495 } 1496 1497 void __weak read_persistent_clock64(struct timespec64 *ts64) 1498 { 1499 struct timespec ts; 1500 1501 read_persistent_clock(&ts); 1502 *ts64 = timespec_to_timespec64(ts); 1503 } 1504 1505 /** 1506 * read_boot_clock64 - Return time of the system start. 1507 * 1508 * Weak dummy function for arches that do not yet support it. 1509 * Function to read the exact time the system has been started. 1510 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1511 * 1512 * XXX - Do be sure to remove it once all arches implement it. 1513 */ 1514 void __weak read_boot_clock64(struct timespec64 *ts) 1515 { 1516 ts->tv_sec = 0; 1517 ts->tv_nsec = 0; 1518 } 1519 1520 /* Flag for if timekeeping_resume() has injected sleeptime */ 1521 static bool sleeptime_injected; 1522 1523 /* Flag for if there is a persistent clock on this platform */ 1524 static bool persistent_clock_exists; 1525 1526 /* 1527 * timekeeping_init - Initializes the clocksource and common timekeeping values 1528 */ 1529 void __init timekeeping_init(void) 1530 { 1531 struct timekeeper *tk = &tk_core.timekeeper; 1532 struct clocksource *clock; 1533 unsigned long flags; 1534 struct timespec64 now, boot, tmp; 1535 1536 read_persistent_clock64(&now); 1537 if (!timespec64_valid_strict(&now)) { 1538 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1539 " Check your CMOS/BIOS settings.\n"); 1540 now.tv_sec = 0; 1541 now.tv_nsec = 0; 1542 } else if (now.tv_sec || now.tv_nsec) 1543 persistent_clock_exists = true; 1544 1545 read_boot_clock64(&boot); 1546 if (!timespec64_valid_strict(&boot)) { 1547 pr_warn("WARNING: Boot clock returned invalid value!\n" 1548 " Check your CMOS/BIOS settings.\n"); 1549 boot.tv_sec = 0; 1550 boot.tv_nsec = 0; 1551 } 1552 1553 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1554 write_seqcount_begin(&tk_core.seq); 1555 ntp_init(); 1556 1557 clock = clocksource_default_clock(); 1558 if (clock->enable) 1559 clock->enable(clock); 1560 tk_setup_internals(tk, clock); 1561 1562 tk_set_xtime(tk, &now); 1563 tk->raw_sec = 0; 1564 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1565 boot = tk_xtime(tk); 1566 1567 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1568 tk_set_wall_to_mono(tk, tmp); 1569 1570 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1571 1572 write_seqcount_end(&tk_core.seq); 1573 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1574 } 1575 1576 /* time in seconds when suspend began for persistent clock */ 1577 static struct timespec64 timekeeping_suspend_time; 1578 1579 /** 1580 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1581 * @delta: pointer to a timespec delta value 1582 * 1583 * Takes a timespec offset measuring a suspend interval and properly 1584 * adds the sleep offset to the timekeeping variables. 1585 */ 1586 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1587 struct timespec64 *delta) 1588 { 1589 if (!timespec64_valid_strict(delta)) { 1590 printk_deferred(KERN_WARNING 1591 "__timekeeping_inject_sleeptime: Invalid " 1592 "sleep delta value!\n"); 1593 return; 1594 } 1595 tk_xtime_add(tk, delta); 1596 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1597 tk_debug_account_sleep_time(delta); 1598 } 1599 1600 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1601 /** 1602 * We have three kinds of time sources to use for sleep time 1603 * injection, the preference order is: 1604 * 1) non-stop clocksource 1605 * 2) persistent clock (ie: RTC accessible when irqs are off) 1606 * 3) RTC 1607 * 1608 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1609 * If system has neither 1) nor 2), 3) will be used finally. 1610 * 1611 * 1612 * If timekeeping has injected sleeptime via either 1) or 2), 1613 * 3) becomes needless, so in this case we don't need to call 1614 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1615 * means. 1616 */ 1617 bool timekeeping_rtc_skipresume(void) 1618 { 1619 return sleeptime_injected; 1620 } 1621 1622 /** 1623 * 1) can be determined whether to use or not only when doing 1624 * timekeeping_resume() which is invoked after rtc_suspend(), 1625 * so we can't skip rtc_suspend() surely if system has 1). 1626 * 1627 * But if system has 2), 2) will definitely be used, so in this 1628 * case we don't need to call rtc_suspend(), and this is what 1629 * timekeeping_rtc_skipsuspend() means. 1630 */ 1631 bool timekeeping_rtc_skipsuspend(void) 1632 { 1633 return persistent_clock_exists; 1634 } 1635 1636 /** 1637 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1638 * @delta: pointer to a timespec64 delta value 1639 * 1640 * This hook is for architectures that cannot support read_persistent_clock64 1641 * because their RTC/persistent clock is only accessible when irqs are enabled. 1642 * and also don't have an effective nonstop clocksource. 1643 * 1644 * This function should only be called by rtc_resume(), and allows 1645 * a suspend offset to be injected into the timekeeping values. 1646 */ 1647 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1648 { 1649 struct timekeeper *tk = &tk_core.timekeeper; 1650 unsigned long flags; 1651 1652 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1653 write_seqcount_begin(&tk_core.seq); 1654 1655 timekeeping_forward_now(tk); 1656 1657 __timekeeping_inject_sleeptime(tk, delta); 1658 1659 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1660 1661 write_seqcount_end(&tk_core.seq); 1662 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1663 1664 /* signal hrtimers about time change */ 1665 clock_was_set(); 1666 } 1667 #endif 1668 1669 /** 1670 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1671 */ 1672 void timekeeping_resume(void) 1673 { 1674 struct timekeeper *tk = &tk_core.timekeeper; 1675 struct clocksource *clock = tk->tkr_mono.clock; 1676 unsigned long flags; 1677 struct timespec64 ts_new, ts_delta; 1678 u64 cycle_now; 1679 1680 sleeptime_injected = false; 1681 read_persistent_clock64(&ts_new); 1682 1683 clockevents_resume(); 1684 clocksource_resume(); 1685 1686 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1687 write_seqcount_begin(&tk_core.seq); 1688 1689 /* 1690 * After system resumes, we need to calculate the suspended time and 1691 * compensate it for the OS time. There are 3 sources that could be 1692 * used: Nonstop clocksource during suspend, persistent clock and rtc 1693 * device. 1694 * 1695 * One specific platform may have 1 or 2 or all of them, and the 1696 * preference will be: 1697 * suspend-nonstop clocksource -> persistent clock -> rtc 1698 * The less preferred source will only be tried if there is no better 1699 * usable source. The rtc part is handled separately in rtc core code. 1700 */ 1701 cycle_now = tk_clock_read(&tk->tkr_mono); 1702 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1703 cycle_now > tk->tkr_mono.cycle_last) { 1704 u64 nsec, cyc_delta; 1705 1706 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1707 tk->tkr_mono.mask); 1708 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); 1709 ts_delta = ns_to_timespec64(nsec); 1710 sleeptime_injected = true; 1711 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1712 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1713 sleeptime_injected = true; 1714 } 1715 1716 if (sleeptime_injected) 1717 __timekeeping_inject_sleeptime(tk, &ts_delta); 1718 1719 /* Re-base the last cycle value */ 1720 tk->tkr_mono.cycle_last = cycle_now; 1721 tk->tkr_raw.cycle_last = cycle_now; 1722 1723 tk->ntp_error = 0; 1724 timekeeping_suspended = 0; 1725 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1726 write_seqcount_end(&tk_core.seq); 1727 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1728 1729 touch_softlockup_watchdog(); 1730 1731 tick_resume(); 1732 hrtimers_resume(); 1733 } 1734 1735 int timekeeping_suspend(void) 1736 { 1737 struct timekeeper *tk = &tk_core.timekeeper; 1738 unsigned long flags; 1739 struct timespec64 delta, delta_delta; 1740 static struct timespec64 old_delta; 1741 1742 read_persistent_clock64(&timekeeping_suspend_time); 1743 1744 /* 1745 * On some systems the persistent_clock can not be detected at 1746 * timekeeping_init by its return value, so if we see a valid 1747 * value returned, update the persistent_clock_exists flag. 1748 */ 1749 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1750 persistent_clock_exists = true; 1751 1752 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1753 write_seqcount_begin(&tk_core.seq); 1754 timekeeping_forward_now(tk); 1755 timekeeping_suspended = 1; 1756 1757 if (persistent_clock_exists) { 1758 /* 1759 * To avoid drift caused by repeated suspend/resumes, 1760 * which each can add ~1 second drift error, 1761 * try to compensate so the difference in system time 1762 * and persistent_clock time stays close to constant. 1763 */ 1764 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1765 delta_delta = timespec64_sub(delta, old_delta); 1766 if (abs(delta_delta.tv_sec) >= 2) { 1767 /* 1768 * if delta_delta is too large, assume time correction 1769 * has occurred and set old_delta to the current delta. 1770 */ 1771 old_delta = delta; 1772 } else { 1773 /* Otherwise try to adjust old_system to compensate */ 1774 timekeeping_suspend_time = 1775 timespec64_add(timekeeping_suspend_time, delta_delta); 1776 } 1777 } 1778 1779 timekeeping_update(tk, TK_MIRROR); 1780 halt_fast_timekeeper(tk); 1781 write_seqcount_end(&tk_core.seq); 1782 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1783 1784 tick_suspend(); 1785 clocksource_suspend(); 1786 clockevents_suspend(); 1787 1788 return 0; 1789 } 1790 1791 /* sysfs resume/suspend bits for timekeeping */ 1792 static struct syscore_ops timekeeping_syscore_ops = { 1793 .resume = timekeeping_resume, 1794 .suspend = timekeeping_suspend, 1795 }; 1796 1797 static int __init timekeeping_init_ops(void) 1798 { 1799 register_syscore_ops(&timekeeping_syscore_ops); 1800 return 0; 1801 } 1802 device_initcall(timekeeping_init_ops); 1803 1804 /* 1805 * Apply a multiplier adjustment to the timekeeper 1806 */ 1807 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1808 s64 offset, 1809 s32 mult_adj) 1810 { 1811 s64 interval = tk->cycle_interval; 1812 1813 if (mult_adj == 0) { 1814 return; 1815 } else if (mult_adj == -1) { 1816 interval = -interval; 1817 offset = -offset; 1818 } else if (mult_adj != 1) { 1819 interval *= mult_adj; 1820 offset *= mult_adj; 1821 } 1822 1823 /* 1824 * So the following can be confusing. 1825 * 1826 * To keep things simple, lets assume mult_adj == 1 for now. 1827 * 1828 * When mult_adj != 1, remember that the interval and offset values 1829 * have been appropriately scaled so the math is the same. 1830 * 1831 * The basic idea here is that we're increasing the multiplier 1832 * by one, this causes the xtime_interval to be incremented by 1833 * one cycle_interval. This is because: 1834 * xtime_interval = cycle_interval * mult 1835 * So if mult is being incremented by one: 1836 * xtime_interval = cycle_interval * (mult + 1) 1837 * Its the same as: 1838 * xtime_interval = (cycle_interval * mult) + cycle_interval 1839 * Which can be shortened to: 1840 * xtime_interval += cycle_interval 1841 * 1842 * So offset stores the non-accumulated cycles. Thus the current 1843 * time (in shifted nanoseconds) is: 1844 * now = (offset * adj) + xtime_nsec 1845 * Now, even though we're adjusting the clock frequency, we have 1846 * to keep time consistent. In other words, we can't jump back 1847 * in time, and we also want to avoid jumping forward in time. 1848 * 1849 * So given the same offset value, we need the time to be the same 1850 * both before and after the freq adjustment. 1851 * now = (offset * adj_1) + xtime_nsec_1 1852 * now = (offset * adj_2) + xtime_nsec_2 1853 * So: 1854 * (offset * adj_1) + xtime_nsec_1 = 1855 * (offset * adj_2) + xtime_nsec_2 1856 * And we know: 1857 * adj_2 = adj_1 + 1 1858 * So: 1859 * (offset * adj_1) + xtime_nsec_1 = 1860 * (offset * (adj_1+1)) + xtime_nsec_2 1861 * (offset * adj_1) + xtime_nsec_1 = 1862 * (offset * adj_1) + offset + xtime_nsec_2 1863 * Canceling the sides: 1864 * xtime_nsec_1 = offset + xtime_nsec_2 1865 * Which gives us: 1866 * xtime_nsec_2 = xtime_nsec_1 - offset 1867 * Which simplfies to: 1868 * xtime_nsec -= offset 1869 */ 1870 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1871 /* NTP adjustment caused clocksource mult overflow */ 1872 WARN_ON_ONCE(1); 1873 return; 1874 } 1875 1876 tk->tkr_mono.mult += mult_adj; 1877 tk->xtime_interval += interval; 1878 tk->tkr_mono.xtime_nsec -= offset; 1879 } 1880 1881 /* 1882 * Adjust the timekeeper's multiplier to the correct frequency 1883 * and also to reduce the accumulated error value. 1884 */ 1885 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1886 { 1887 u32 mult; 1888 1889 /* 1890 * Determine the multiplier from the current NTP tick length. 1891 * Avoid expensive division when the tick length doesn't change. 1892 */ 1893 if (likely(tk->ntp_tick == ntp_tick_length())) { 1894 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1895 } else { 1896 tk->ntp_tick = ntp_tick_length(); 1897 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1898 tk->xtime_remainder, tk->cycle_interval); 1899 } 1900 1901 /* 1902 * If the clock is behind the NTP time, increase the multiplier by 1 1903 * to catch up with it. If it's ahead and there was a remainder in the 1904 * tick division, the clock will slow down. Otherwise it will stay 1905 * ahead until the tick length changes to a non-divisible value. 1906 */ 1907 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 1908 mult += tk->ntp_err_mult; 1909 1910 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 1911 1912 if (unlikely(tk->tkr_mono.clock->maxadj && 1913 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1914 > tk->tkr_mono.clock->maxadj))) { 1915 printk_once(KERN_WARNING 1916 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1917 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1918 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1919 } 1920 1921 /* 1922 * It may be possible that when we entered this function, xtime_nsec 1923 * was very small. Further, if we're slightly speeding the clocksource 1924 * in the code above, its possible the required corrective factor to 1925 * xtime_nsec could cause it to underflow. 1926 * 1927 * Now, since we have already accumulated the second and the NTP 1928 * subsystem has been notified via second_overflow(), we need to skip 1929 * the next update. 1930 */ 1931 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1932 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 1933 tk->tkr_mono.shift; 1934 tk->xtime_sec--; 1935 tk->skip_second_overflow = 1; 1936 } 1937 } 1938 1939 /** 1940 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1941 * 1942 * Helper function that accumulates the nsecs greater than a second 1943 * from the xtime_nsec field to the xtime_secs field. 1944 * It also calls into the NTP code to handle leapsecond processing. 1945 * 1946 */ 1947 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1948 { 1949 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1950 unsigned int clock_set = 0; 1951 1952 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1953 int leap; 1954 1955 tk->tkr_mono.xtime_nsec -= nsecps; 1956 tk->xtime_sec++; 1957 1958 /* 1959 * Skip NTP update if this second was accumulated before, 1960 * i.e. xtime_nsec underflowed in timekeeping_adjust() 1961 */ 1962 if (unlikely(tk->skip_second_overflow)) { 1963 tk->skip_second_overflow = 0; 1964 continue; 1965 } 1966 1967 /* Figure out if its a leap sec and apply if needed */ 1968 leap = second_overflow(tk->xtime_sec); 1969 if (unlikely(leap)) { 1970 struct timespec64 ts; 1971 1972 tk->xtime_sec += leap; 1973 1974 ts.tv_sec = leap; 1975 ts.tv_nsec = 0; 1976 tk_set_wall_to_mono(tk, 1977 timespec64_sub(tk->wall_to_monotonic, ts)); 1978 1979 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1980 1981 clock_set = TK_CLOCK_WAS_SET; 1982 } 1983 } 1984 return clock_set; 1985 } 1986 1987 /** 1988 * logarithmic_accumulation - shifted accumulation of cycles 1989 * 1990 * This functions accumulates a shifted interval of cycles into 1991 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1992 * loop. 1993 * 1994 * Returns the unconsumed cycles. 1995 */ 1996 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 1997 u32 shift, unsigned int *clock_set) 1998 { 1999 u64 interval = tk->cycle_interval << shift; 2000 u64 snsec_per_sec; 2001 2002 /* If the offset is smaller than a shifted interval, do nothing */ 2003 if (offset < interval) 2004 return offset; 2005 2006 /* Accumulate one shifted interval */ 2007 offset -= interval; 2008 tk->tkr_mono.cycle_last += interval; 2009 tk->tkr_raw.cycle_last += interval; 2010 2011 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2012 *clock_set |= accumulate_nsecs_to_secs(tk); 2013 2014 /* Accumulate raw time */ 2015 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2016 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2017 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2018 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2019 tk->raw_sec++; 2020 } 2021 2022 /* Accumulate error between NTP and clock interval */ 2023 tk->ntp_error += tk->ntp_tick << shift; 2024 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2025 (tk->ntp_error_shift + shift); 2026 2027 return offset; 2028 } 2029 2030 /** 2031 * update_wall_time - Uses the current clocksource to increment the wall time 2032 * 2033 */ 2034 void update_wall_time(void) 2035 { 2036 struct timekeeper *real_tk = &tk_core.timekeeper; 2037 struct timekeeper *tk = &shadow_timekeeper; 2038 u64 offset; 2039 int shift = 0, maxshift; 2040 unsigned int clock_set = 0; 2041 unsigned long flags; 2042 2043 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2044 2045 /* Make sure we're fully resumed: */ 2046 if (unlikely(timekeeping_suspended)) 2047 goto out; 2048 2049 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2050 offset = real_tk->cycle_interval; 2051 #else 2052 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2053 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2054 #endif 2055 2056 /* Check if there's really nothing to do */ 2057 if (offset < real_tk->cycle_interval) 2058 goto out; 2059 2060 /* Do some additional sanity checking */ 2061 timekeeping_check_update(tk, offset); 2062 2063 /* 2064 * With NO_HZ we may have to accumulate many cycle_intervals 2065 * (think "ticks") worth of time at once. To do this efficiently, 2066 * we calculate the largest doubling multiple of cycle_intervals 2067 * that is smaller than the offset. We then accumulate that 2068 * chunk in one go, and then try to consume the next smaller 2069 * doubled multiple. 2070 */ 2071 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2072 shift = max(0, shift); 2073 /* Bound shift to one less than what overflows tick_length */ 2074 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2075 shift = min(shift, maxshift); 2076 while (offset >= tk->cycle_interval) { 2077 offset = logarithmic_accumulation(tk, offset, shift, 2078 &clock_set); 2079 if (offset < tk->cycle_interval<<shift) 2080 shift--; 2081 } 2082 2083 /* Adjust the multiplier to correct NTP error */ 2084 timekeeping_adjust(tk, offset); 2085 2086 /* 2087 * Finally, make sure that after the rounding 2088 * xtime_nsec isn't larger than NSEC_PER_SEC 2089 */ 2090 clock_set |= accumulate_nsecs_to_secs(tk); 2091 2092 write_seqcount_begin(&tk_core.seq); 2093 /* 2094 * Update the real timekeeper. 2095 * 2096 * We could avoid this memcpy by switching pointers, but that 2097 * requires changes to all other timekeeper usage sites as 2098 * well, i.e. move the timekeeper pointer getter into the 2099 * spinlocked/seqcount protected sections. And we trade this 2100 * memcpy under the tk_core.seq against one before we start 2101 * updating. 2102 */ 2103 timekeeping_update(tk, clock_set); 2104 memcpy(real_tk, tk, sizeof(*tk)); 2105 /* The memcpy must come last. Do not put anything here! */ 2106 write_seqcount_end(&tk_core.seq); 2107 out: 2108 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2109 if (clock_set) 2110 /* Have to call _delayed version, since in irq context*/ 2111 clock_was_set_delayed(); 2112 } 2113 2114 /** 2115 * getboottime64 - Return the real time of system boot. 2116 * @ts: pointer to the timespec64 to be set 2117 * 2118 * Returns the wall-time of boot in a timespec64. 2119 * 2120 * This is based on the wall_to_monotonic offset and the total suspend 2121 * time. Calls to settimeofday will affect the value returned (which 2122 * basically means that however wrong your real time clock is at boot time, 2123 * you get the right time here). 2124 */ 2125 void getboottime64(struct timespec64 *ts) 2126 { 2127 struct timekeeper *tk = &tk_core.timekeeper; 2128 ktime_t t = ktime_sub(tk->offs_real, tk->time_suspended); 2129 2130 *ts = ktime_to_timespec64(t); 2131 } 2132 EXPORT_SYMBOL_GPL(getboottime64); 2133 2134 unsigned long get_seconds(void) 2135 { 2136 struct timekeeper *tk = &tk_core.timekeeper; 2137 2138 return tk->xtime_sec; 2139 } 2140 EXPORT_SYMBOL(get_seconds); 2141 2142 struct timespec __current_kernel_time(void) 2143 { 2144 struct timekeeper *tk = &tk_core.timekeeper; 2145 2146 return timespec64_to_timespec(tk_xtime(tk)); 2147 } 2148 2149 struct timespec64 current_kernel_time64(void) 2150 { 2151 struct timekeeper *tk = &tk_core.timekeeper; 2152 struct timespec64 now; 2153 unsigned long seq; 2154 2155 do { 2156 seq = read_seqcount_begin(&tk_core.seq); 2157 2158 now = tk_xtime(tk); 2159 } while (read_seqcount_retry(&tk_core.seq, seq)); 2160 2161 return now; 2162 } 2163 EXPORT_SYMBOL(current_kernel_time64); 2164 2165 struct timespec64 get_monotonic_coarse64(void) 2166 { 2167 struct timekeeper *tk = &tk_core.timekeeper; 2168 struct timespec64 now, mono; 2169 unsigned long seq; 2170 2171 do { 2172 seq = read_seqcount_begin(&tk_core.seq); 2173 2174 now = tk_xtime(tk); 2175 mono = tk->wall_to_monotonic; 2176 } while (read_seqcount_retry(&tk_core.seq, seq)); 2177 2178 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2179 now.tv_nsec + mono.tv_nsec); 2180 2181 return now; 2182 } 2183 EXPORT_SYMBOL(get_monotonic_coarse64); 2184 2185 /* 2186 * Must hold jiffies_lock 2187 */ 2188 void do_timer(unsigned long ticks) 2189 { 2190 jiffies_64 += ticks; 2191 calc_global_load(ticks); 2192 } 2193 2194 /** 2195 * ktime_get_update_offsets_now - hrtimer helper 2196 * @cwsseq: pointer to check and store the clock was set sequence number 2197 * @offs_real: pointer to storage for monotonic -> realtime offset 2198 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2199 * 2200 * Returns current monotonic time and updates the offsets if the 2201 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2202 * different. 2203 * 2204 * Called from hrtimer_interrupt() or retrigger_next_event() 2205 */ 2206 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2207 ktime_t *offs_tai) 2208 { 2209 struct timekeeper *tk = &tk_core.timekeeper; 2210 unsigned int seq; 2211 ktime_t base; 2212 u64 nsecs; 2213 2214 do { 2215 seq = read_seqcount_begin(&tk_core.seq); 2216 2217 base = tk->tkr_mono.base; 2218 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2219 base = ktime_add_ns(base, nsecs); 2220 2221 if (*cwsseq != tk->clock_was_set_seq) { 2222 *cwsseq = tk->clock_was_set_seq; 2223 *offs_real = tk->offs_real; 2224 *offs_tai = tk->offs_tai; 2225 } 2226 2227 /* Handle leapsecond insertion adjustments */ 2228 if (unlikely(base >= tk->next_leap_ktime)) 2229 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2230 2231 } while (read_seqcount_retry(&tk_core.seq, seq)); 2232 2233 return base; 2234 } 2235 2236 /** 2237 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2238 */ 2239 static int timekeeping_validate_timex(struct timex *txc) 2240 { 2241 if (txc->modes & ADJ_ADJTIME) { 2242 /* singleshot must not be used with any other mode bits */ 2243 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2244 return -EINVAL; 2245 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2246 !capable(CAP_SYS_TIME)) 2247 return -EPERM; 2248 } else { 2249 /* In order to modify anything, you gotta be super-user! */ 2250 if (txc->modes && !capable(CAP_SYS_TIME)) 2251 return -EPERM; 2252 /* 2253 * if the quartz is off by more than 10% then 2254 * something is VERY wrong! 2255 */ 2256 if (txc->modes & ADJ_TICK && 2257 (txc->tick < 900000/USER_HZ || 2258 txc->tick > 1100000/USER_HZ)) 2259 return -EINVAL; 2260 } 2261 2262 if (txc->modes & ADJ_SETOFFSET) { 2263 /* In order to inject time, you gotta be super-user! */ 2264 if (!capable(CAP_SYS_TIME)) 2265 return -EPERM; 2266 2267 /* 2268 * Validate if a timespec/timeval used to inject a time 2269 * offset is valid. Offsets can be postive or negative, so 2270 * we don't check tv_sec. The value of the timeval/timespec 2271 * is the sum of its fields,but *NOTE*: 2272 * The field tv_usec/tv_nsec must always be non-negative and 2273 * we can't have more nanoseconds/microseconds than a second. 2274 */ 2275 if (txc->time.tv_usec < 0) 2276 return -EINVAL; 2277 2278 if (txc->modes & ADJ_NANO) { 2279 if (txc->time.tv_usec >= NSEC_PER_SEC) 2280 return -EINVAL; 2281 } else { 2282 if (txc->time.tv_usec >= USEC_PER_SEC) 2283 return -EINVAL; 2284 } 2285 } 2286 2287 /* 2288 * Check for potential multiplication overflows that can 2289 * only happen on 64-bit systems: 2290 */ 2291 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2292 if (LLONG_MIN / PPM_SCALE > txc->freq) 2293 return -EINVAL; 2294 if (LLONG_MAX / PPM_SCALE < txc->freq) 2295 return -EINVAL; 2296 } 2297 2298 return 0; 2299 } 2300 2301 2302 /** 2303 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2304 */ 2305 int do_adjtimex(struct timex *txc) 2306 { 2307 struct timekeeper *tk = &tk_core.timekeeper; 2308 unsigned long flags; 2309 struct timespec64 ts; 2310 s32 orig_tai, tai; 2311 int ret; 2312 2313 /* Validate the data before disabling interrupts */ 2314 ret = timekeeping_validate_timex(txc); 2315 if (ret) 2316 return ret; 2317 2318 if (txc->modes & ADJ_SETOFFSET) { 2319 struct timespec64 delta; 2320 delta.tv_sec = txc->time.tv_sec; 2321 delta.tv_nsec = txc->time.tv_usec; 2322 if (!(txc->modes & ADJ_NANO)) 2323 delta.tv_nsec *= 1000; 2324 ret = timekeeping_inject_offset(&delta); 2325 if (ret) 2326 return ret; 2327 } 2328 2329 getnstimeofday64(&ts); 2330 2331 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2332 write_seqcount_begin(&tk_core.seq); 2333 2334 orig_tai = tai = tk->tai_offset; 2335 ret = __do_adjtimex(txc, &ts, &tai); 2336 2337 if (tai != orig_tai) { 2338 __timekeeping_set_tai_offset(tk, tai); 2339 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2340 } 2341 tk_update_leap_state(tk); 2342 2343 write_seqcount_end(&tk_core.seq); 2344 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2345 2346 if (tai != orig_tai) 2347 clock_was_set(); 2348 2349 ntp_notify_cmos_timer(); 2350 2351 return ret; 2352 } 2353 2354 #ifdef CONFIG_NTP_PPS 2355 /** 2356 * hardpps() - Accessor function to NTP __hardpps function 2357 */ 2358 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2359 { 2360 unsigned long flags; 2361 2362 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2363 write_seqcount_begin(&tk_core.seq); 2364 2365 __hardpps(phase_ts, raw_ts); 2366 2367 write_seqcount_end(&tk_core.seq); 2368 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2369 } 2370 EXPORT_SYMBOL(hardpps); 2371 #endif /* CONFIG_NTP_PPS */ 2372 2373 /** 2374 * xtime_update() - advances the timekeeping infrastructure 2375 * @ticks: number of ticks, that have elapsed since the last call. 2376 * 2377 * Must be called with interrupts disabled. 2378 */ 2379 void xtime_update(unsigned long ticks) 2380 { 2381 write_seqlock(&jiffies_lock); 2382 do_timer(ticks); 2383 write_sequnlock(&jiffies_lock); 2384 update_wall_time(); 2385 } 2386