xref: /openbmc/linux/kernel/time/timekeeping.c (revision 22fd411a)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* The shift value of the current clocksource. */
29 	int	shift;
30 
31 	/* Number of clock cycles in one NTP interval. */
32 	cycle_t cycle_interval;
33 	/* Number of clock shifted nano seconds in one NTP interval. */
34 	u64	xtime_interval;
35 	/* shifted nano seconds left over when rounding cycle_interval */
36 	s64	xtime_remainder;
37 	/* Raw nano seconds accumulated per NTP interval. */
38 	u32	raw_interval;
39 
40 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 	u64	xtime_nsec;
42 	/* Difference between accumulated time and NTP time in ntp
43 	 * shifted nano seconds. */
44 	s64	ntp_error;
45 	/* Shift conversion between clock shifted nano seconds and
46 	 * ntp shifted nano seconds. */
47 	int	ntp_error_shift;
48 	/* NTP adjusted clock multiplier */
49 	u32	mult;
50 };
51 
52 static struct timekeeper timekeeper;
53 
54 /**
55  * timekeeper_setup_internals - Set up internals to use clocksource clock.
56  *
57  * @clock:		Pointer to clocksource.
58  *
59  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60  * pair and interval request.
61  *
62  * Unless you're the timekeeping code, you should not be using this!
63  */
64 static void timekeeper_setup_internals(struct clocksource *clock)
65 {
66 	cycle_t interval;
67 	u64 tmp, ntpinterval;
68 
69 	timekeeper.clock = clock;
70 	clock->cycle_last = clock->read(clock);
71 
72 	/* Do the ns -> cycle conversion first, using original mult */
73 	tmp = NTP_INTERVAL_LENGTH;
74 	tmp <<= clock->shift;
75 	ntpinterval = tmp;
76 	tmp += clock->mult/2;
77 	do_div(tmp, clock->mult);
78 	if (tmp == 0)
79 		tmp = 1;
80 
81 	interval = (cycle_t) tmp;
82 	timekeeper.cycle_interval = interval;
83 
84 	/* Go back from cycles -> shifted ns */
85 	timekeeper.xtime_interval = (u64) interval * clock->mult;
86 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 	timekeeper.raw_interval =
88 		((u64) interval * clock->mult) >> clock->shift;
89 
90 	timekeeper.xtime_nsec = 0;
91 	timekeeper.shift = clock->shift;
92 
93 	timekeeper.ntp_error = 0;
94 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 
96 	/*
97 	 * The timekeeper keeps its own mult values for the currently
98 	 * active clocksource. These value will be adjusted via NTP
99 	 * to counteract clock drifting.
100 	 */
101 	timekeeper.mult = clock->mult;
102 }
103 
104 /* Timekeeper helper functions. */
105 static inline s64 timekeeping_get_ns(void)
106 {
107 	cycle_t cycle_now, cycle_delta;
108 	struct clocksource *clock;
109 
110 	/* read clocksource: */
111 	clock = timekeeper.clock;
112 	cycle_now = clock->read(clock);
113 
114 	/* calculate the delta since the last update_wall_time: */
115 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
116 
117 	/* return delta convert to nanoseconds using ntp adjusted mult. */
118 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 				  timekeeper.shift);
120 }
121 
122 static inline s64 timekeeping_get_ns_raw(void)
123 {
124 	cycle_t cycle_now, cycle_delta;
125 	struct clocksource *clock;
126 
127 	/* read clocksource: */
128 	clock = timekeeper.clock;
129 	cycle_now = clock->read(clock);
130 
131 	/* calculate the delta since the last update_wall_time: */
132 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
133 
134 	/* return delta convert to nanoseconds using ntp adjusted mult. */
135 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
136 }
137 
138 /*
139  * This read-write spinlock protects us from races in SMP while
140  * playing with xtime.
141  */
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 
144 
145 /*
146  * The current time
147  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
149  * at zero at system boot time, so wall_to_monotonic will be negative,
150  * however, we will ALWAYS keep the tv_nsec part positive so we can use
151  * the usual normalization.
152  *
153  * wall_to_monotonic is moved after resume from suspend for the monotonic
154  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155  * to get the real boot based time offset.
156  *
157  * - wall_to_monotonic is no longer the boot time, getboottime must be
158  * used instead.
159  */
160 static struct timespec xtime __attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
163 
164 /*
165  * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
166  */
167 static struct timespec raw_time;
168 
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
171 
172 /* must hold xtime_lock */
173 void timekeeping_leap_insert(int leapsecond)
174 {
175 	xtime.tv_sec += leapsecond;
176 	wall_to_monotonic.tv_sec -= leapsecond;
177 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 			timekeeper.mult);
179 }
180 
181 /**
182  * timekeeping_forward_now - update clock to the current time
183  *
184  * Forward the current clock to update its state since the last call to
185  * update_wall_time(). This is useful before significant clock changes,
186  * as it avoids having to deal with this time offset explicitly.
187  */
188 static void timekeeping_forward_now(void)
189 {
190 	cycle_t cycle_now, cycle_delta;
191 	struct clocksource *clock;
192 	s64 nsec;
193 
194 	clock = timekeeper.clock;
195 	cycle_now = clock->read(clock);
196 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197 	clock->cycle_last = cycle_now;
198 
199 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 				  timekeeper.shift);
201 
202 	/* If arch requires, add in gettimeoffset() */
203 	nsec += arch_gettimeoffset();
204 
205 	timespec_add_ns(&xtime, nsec);
206 
207 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208 	timespec_add_ns(&raw_time, nsec);
209 }
210 
211 /**
212  * getnstimeofday - Returns the time of day in a timespec
213  * @ts:		pointer to the timespec to be set
214  *
215  * Returns the time of day in a timespec.
216  */
217 void getnstimeofday(struct timespec *ts)
218 {
219 	unsigned long seq;
220 	s64 nsecs;
221 
222 	WARN_ON(timekeeping_suspended);
223 
224 	do {
225 		seq = read_seqbegin(&xtime_lock);
226 
227 		*ts = xtime;
228 		nsecs = timekeeping_get_ns();
229 
230 		/* If arch requires, add in gettimeoffset() */
231 		nsecs += arch_gettimeoffset();
232 
233 	} while (read_seqretry(&xtime_lock, seq));
234 
235 	timespec_add_ns(ts, nsecs);
236 }
237 
238 EXPORT_SYMBOL(getnstimeofday);
239 
240 ktime_t ktime_get(void)
241 {
242 	unsigned int seq;
243 	s64 secs, nsecs;
244 
245 	WARN_ON(timekeeping_suspended);
246 
247 	do {
248 		seq = read_seqbegin(&xtime_lock);
249 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 		nsecs += timekeeping_get_ns();
252 
253 	} while (read_seqretry(&xtime_lock, seq));
254 	/*
255 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
256 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
257 	 */
258 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
259 }
260 EXPORT_SYMBOL_GPL(ktime_get);
261 
262 /**
263  * ktime_get_ts - get the monotonic clock in timespec format
264  * @ts:		pointer to timespec variable
265  *
266  * The function calculates the monotonic clock from the realtime
267  * clock and the wall_to_monotonic offset and stores the result
268  * in normalized timespec format in the variable pointed to by @ts.
269  */
270 void ktime_get_ts(struct timespec *ts)
271 {
272 	struct timespec tomono;
273 	unsigned int seq;
274 	s64 nsecs;
275 
276 	WARN_ON(timekeeping_suspended);
277 
278 	do {
279 		seq = read_seqbegin(&xtime_lock);
280 		*ts = xtime;
281 		tomono = wall_to_monotonic;
282 		nsecs = timekeeping_get_ns();
283 
284 	} while (read_seqretry(&xtime_lock, seq));
285 
286 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
287 				ts->tv_nsec + tomono.tv_nsec + nsecs);
288 }
289 EXPORT_SYMBOL_GPL(ktime_get_ts);
290 
291 #ifdef CONFIG_NTP_PPS
292 
293 /**
294  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
295  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
296  * @ts_real:	pointer to the timespec to be set to the time of day
297  *
298  * This function reads both the time of day and raw monotonic time at the
299  * same time atomically and stores the resulting timestamps in timespec
300  * format.
301  */
302 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
303 {
304 	unsigned long seq;
305 	s64 nsecs_raw, nsecs_real;
306 
307 	WARN_ON_ONCE(timekeeping_suspended);
308 
309 	do {
310 		u32 arch_offset;
311 
312 		seq = read_seqbegin(&xtime_lock);
313 
314 		*ts_raw = raw_time;
315 		*ts_real = xtime;
316 
317 		nsecs_raw = timekeeping_get_ns_raw();
318 		nsecs_real = timekeeping_get_ns();
319 
320 		/* If arch requires, add in gettimeoffset() */
321 		arch_offset = arch_gettimeoffset();
322 		nsecs_raw += arch_offset;
323 		nsecs_real += arch_offset;
324 
325 	} while (read_seqretry(&xtime_lock, seq));
326 
327 	timespec_add_ns(ts_raw, nsecs_raw);
328 	timespec_add_ns(ts_real, nsecs_real);
329 }
330 EXPORT_SYMBOL(getnstime_raw_and_real);
331 
332 #endif /* CONFIG_NTP_PPS */
333 
334 /**
335  * do_gettimeofday - Returns the time of day in a timeval
336  * @tv:		pointer to the timeval to be set
337  *
338  * NOTE: Users should be converted to using getnstimeofday()
339  */
340 void do_gettimeofday(struct timeval *tv)
341 {
342 	struct timespec now;
343 
344 	getnstimeofday(&now);
345 	tv->tv_sec = now.tv_sec;
346 	tv->tv_usec = now.tv_nsec/1000;
347 }
348 
349 EXPORT_SYMBOL(do_gettimeofday);
350 /**
351  * do_settimeofday - Sets the time of day
352  * @tv:		pointer to the timespec variable containing the new time
353  *
354  * Sets the time of day to the new time and update NTP and notify hrtimers
355  */
356 int do_settimeofday(struct timespec *tv)
357 {
358 	struct timespec ts_delta;
359 	unsigned long flags;
360 
361 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
362 		return -EINVAL;
363 
364 	write_seqlock_irqsave(&xtime_lock, flags);
365 
366 	timekeeping_forward_now();
367 
368 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
369 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
370 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
371 
372 	xtime = *tv;
373 
374 	timekeeper.ntp_error = 0;
375 	ntp_clear();
376 
377 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
378 				timekeeper.mult);
379 
380 	write_sequnlock_irqrestore(&xtime_lock, flags);
381 
382 	/* signal hrtimers about time change */
383 	clock_was_set();
384 
385 	return 0;
386 }
387 
388 EXPORT_SYMBOL(do_settimeofday);
389 
390 /**
391  * change_clocksource - Swaps clocksources if a new one is available
392  *
393  * Accumulates current time interval and initializes new clocksource
394  */
395 static int change_clocksource(void *data)
396 {
397 	struct clocksource *new, *old;
398 
399 	new = (struct clocksource *) data;
400 
401 	timekeeping_forward_now();
402 	if (!new->enable || new->enable(new) == 0) {
403 		old = timekeeper.clock;
404 		timekeeper_setup_internals(new);
405 		if (old->disable)
406 			old->disable(old);
407 	}
408 	return 0;
409 }
410 
411 /**
412  * timekeeping_notify - Install a new clock source
413  * @clock:		pointer to the clock source
414  *
415  * This function is called from clocksource.c after a new, better clock
416  * source has been registered. The caller holds the clocksource_mutex.
417  */
418 void timekeeping_notify(struct clocksource *clock)
419 {
420 	if (timekeeper.clock == clock)
421 		return;
422 	stop_machine(change_clocksource, clock, NULL);
423 	tick_clock_notify();
424 }
425 
426 /**
427  * ktime_get_real - get the real (wall-) time in ktime_t format
428  *
429  * returns the time in ktime_t format
430  */
431 ktime_t ktime_get_real(void)
432 {
433 	struct timespec now;
434 
435 	getnstimeofday(&now);
436 
437 	return timespec_to_ktime(now);
438 }
439 EXPORT_SYMBOL_GPL(ktime_get_real);
440 
441 /**
442  * getrawmonotonic - Returns the raw monotonic time in a timespec
443  * @ts:		pointer to the timespec to be set
444  *
445  * Returns the raw monotonic time (completely un-modified by ntp)
446  */
447 void getrawmonotonic(struct timespec *ts)
448 {
449 	unsigned long seq;
450 	s64 nsecs;
451 
452 	do {
453 		seq = read_seqbegin(&xtime_lock);
454 		nsecs = timekeeping_get_ns_raw();
455 		*ts = raw_time;
456 
457 	} while (read_seqretry(&xtime_lock, seq));
458 
459 	timespec_add_ns(ts, nsecs);
460 }
461 EXPORT_SYMBOL(getrawmonotonic);
462 
463 
464 /**
465  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
466  */
467 int timekeeping_valid_for_hres(void)
468 {
469 	unsigned long seq;
470 	int ret;
471 
472 	do {
473 		seq = read_seqbegin(&xtime_lock);
474 
475 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
476 
477 	} while (read_seqretry(&xtime_lock, seq));
478 
479 	return ret;
480 }
481 
482 /**
483  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
484  *
485  * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
486  * ensure that the clocksource does not change!
487  */
488 u64 timekeeping_max_deferment(void)
489 {
490 	return timekeeper.clock->max_idle_ns;
491 }
492 
493 /**
494  * read_persistent_clock -  Return time from the persistent clock.
495  *
496  * Weak dummy function for arches that do not yet support it.
497  * Reads the time from the battery backed persistent clock.
498  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
499  *
500  *  XXX - Do be sure to remove it once all arches implement it.
501  */
502 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
503 {
504 	ts->tv_sec = 0;
505 	ts->tv_nsec = 0;
506 }
507 
508 /**
509  * read_boot_clock -  Return time of the system start.
510  *
511  * Weak dummy function for arches that do not yet support it.
512  * Function to read the exact time the system has been started.
513  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
514  *
515  *  XXX - Do be sure to remove it once all arches implement it.
516  */
517 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
518 {
519 	ts->tv_sec = 0;
520 	ts->tv_nsec = 0;
521 }
522 
523 /*
524  * timekeeping_init - Initializes the clocksource and common timekeeping values
525  */
526 void __init timekeeping_init(void)
527 {
528 	struct clocksource *clock;
529 	unsigned long flags;
530 	struct timespec now, boot;
531 
532 	read_persistent_clock(&now);
533 	read_boot_clock(&boot);
534 
535 	write_seqlock_irqsave(&xtime_lock, flags);
536 
537 	ntp_init();
538 
539 	clock = clocksource_default_clock();
540 	if (clock->enable)
541 		clock->enable(clock);
542 	timekeeper_setup_internals(clock);
543 
544 	xtime.tv_sec = now.tv_sec;
545 	xtime.tv_nsec = now.tv_nsec;
546 	raw_time.tv_sec = 0;
547 	raw_time.tv_nsec = 0;
548 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
549 		boot.tv_sec = xtime.tv_sec;
550 		boot.tv_nsec = xtime.tv_nsec;
551 	}
552 	set_normalized_timespec(&wall_to_monotonic,
553 				-boot.tv_sec, -boot.tv_nsec);
554 	total_sleep_time.tv_sec = 0;
555 	total_sleep_time.tv_nsec = 0;
556 	write_sequnlock_irqrestore(&xtime_lock, flags);
557 }
558 
559 /* time in seconds when suspend began */
560 static struct timespec timekeeping_suspend_time;
561 
562 /**
563  * timekeeping_resume - Resumes the generic timekeeping subsystem.
564  * @dev:	unused
565  *
566  * This is for the generic clocksource timekeeping.
567  * xtime/wall_to_monotonic/jiffies/etc are
568  * still managed by arch specific suspend/resume code.
569  */
570 static int timekeeping_resume(struct sys_device *dev)
571 {
572 	unsigned long flags;
573 	struct timespec ts;
574 
575 	read_persistent_clock(&ts);
576 
577 	clocksource_resume();
578 
579 	write_seqlock_irqsave(&xtime_lock, flags);
580 
581 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
582 		ts = timespec_sub(ts, timekeeping_suspend_time);
583 		xtime = timespec_add(xtime, ts);
584 		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
585 		total_sleep_time = timespec_add(total_sleep_time, ts);
586 	}
587 	/* re-base the last cycle value */
588 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
589 	timekeeper.ntp_error = 0;
590 	timekeeping_suspended = 0;
591 	write_sequnlock_irqrestore(&xtime_lock, flags);
592 
593 	touch_softlockup_watchdog();
594 
595 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
596 
597 	/* Resume hrtimers */
598 	hres_timers_resume();
599 
600 	return 0;
601 }
602 
603 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
604 {
605 	unsigned long flags;
606 
607 	read_persistent_clock(&timekeeping_suspend_time);
608 
609 	write_seqlock_irqsave(&xtime_lock, flags);
610 	timekeeping_forward_now();
611 	timekeeping_suspended = 1;
612 	write_sequnlock_irqrestore(&xtime_lock, flags);
613 
614 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
615 	clocksource_suspend();
616 
617 	return 0;
618 }
619 
620 /* sysfs resume/suspend bits for timekeeping */
621 static struct sysdev_class timekeeping_sysclass = {
622 	.name		= "timekeeping",
623 	.resume		= timekeeping_resume,
624 	.suspend	= timekeeping_suspend,
625 };
626 
627 static struct sys_device device_timer = {
628 	.id		= 0,
629 	.cls		= &timekeeping_sysclass,
630 };
631 
632 static int __init timekeeping_init_device(void)
633 {
634 	int error = sysdev_class_register(&timekeeping_sysclass);
635 	if (!error)
636 		error = sysdev_register(&device_timer);
637 	return error;
638 }
639 
640 device_initcall(timekeeping_init_device);
641 
642 /*
643  * If the error is already larger, we look ahead even further
644  * to compensate for late or lost adjustments.
645  */
646 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
647 						 s64 *offset)
648 {
649 	s64 tick_error, i;
650 	u32 look_ahead, adj;
651 	s32 error2, mult;
652 
653 	/*
654 	 * Use the current error value to determine how much to look ahead.
655 	 * The larger the error the slower we adjust for it to avoid problems
656 	 * with losing too many ticks, otherwise we would overadjust and
657 	 * produce an even larger error.  The smaller the adjustment the
658 	 * faster we try to adjust for it, as lost ticks can do less harm
659 	 * here.  This is tuned so that an error of about 1 msec is adjusted
660 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
661 	 */
662 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
663 	error2 = abs(error2);
664 	for (look_ahead = 0; error2 > 0; look_ahead++)
665 		error2 >>= 2;
666 
667 	/*
668 	 * Now calculate the error in (1 << look_ahead) ticks, but first
669 	 * remove the single look ahead already included in the error.
670 	 */
671 	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
672 	tick_error -= timekeeper.xtime_interval >> 1;
673 	error = ((error - tick_error) >> look_ahead) + tick_error;
674 
675 	/* Finally calculate the adjustment shift value.  */
676 	i = *interval;
677 	mult = 1;
678 	if (error < 0) {
679 		error = -error;
680 		*interval = -*interval;
681 		*offset = -*offset;
682 		mult = -1;
683 	}
684 	for (adj = 0; error > i; adj++)
685 		error >>= 1;
686 
687 	*interval <<= adj;
688 	*offset <<= adj;
689 	return mult << adj;
690 }
691 
692 /*
693  * Adjust the multiplier to reduce the error value,
694  * this is optimized for the most common adjustments of -1,0,1,
695  * for other values we can do a bit more work.
696  */
697 static void timekeeping_adjust(s64 offset)
698 {
699 	s64 error, interval = timekeeper.cycle_interval;
700 	int adj;
701 
702 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
703 	if (error > interval) {
704 		error >>= 2;
705 		if (likely(error <= interval))
706 			adj = 1;
707 		else
708 			adj = timekeeping_bigadjust(error, &interval, &offset);
709 	} else if (error < -interval) {
710 		error >>= 2;
711 		if (likely(error >= -interval)) {
712 			adj = -1;
713 			interval = -interval;
714 			offset = -offset;
715 		} else
716 			adj = timekeeping_bigadjust(error, &interval, &offset);
717 	} else
718 		return;
719 
720 	timekeeper.mult += adj;
721 	timekeeper.xtime_interval += interval;
722 	timekeeper.xtime_nsec -= offset;
723 	timekeeper.ntp_error -= (interval - offset) <<
724 				timekeeper.ntp_error_shift;
725 }
726 
727 
728 /**
729  * logarithmic_accumulation - shifted accumulation of cycles
730  *
731  * This functions accumulates a shifted interval of cycles into
732  * into a shifted interval nanoseconds. Allows for O(log) accumulation
733  * loop.
734  *
735  * Returns the unconsumed cycles.
736  */
737 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
738 {
739 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
740 	u64 raw_nsecs;
741 
742 	/* If the offset is smaller then a shifted interval, do nothing */
743 	if (offset < timekeeper.cycle_interval<<shift)
744 		return offset;
745 
746 	/* Accumulate one shifted interval */
747 	offset -= timekeeper.cycle_interval << shift;
748 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
749 
750 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
751 	while (timekeeper.xtime_nsec >= nsecps) {
752 		timekeeper.xtime_nsec -= nsecps;
753 		xtime.tv_sec++;
754 		second_overflow();
755 	}
756 
757 	/* Accumulate raw time */
758 	raw_nsecs = timekeeper.raw_interval << shift;
759 	raw_nsecs += raw_time.tv_nsec;
760 	if (raw_nsecs >= NSEC_PER_SEC) {
761 		u64 raw_secs = raw_nsecs;
762 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
763 		raw_time.tv_sec += raw_secs;
764 	}
765 	raw_time.tv_nsec = raw_nsecs;
766 
767 	/* Accumulate error between NTP and clock interval */
768 	timekeeper.ntp_error += tick_length << shift;
769 	timekeeper.ntp_error -=
770 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
771 				(timekeeper.ntp_error_shift + shift);
772 
773 	return offset;
774 }
775 
776 
777 /**
778  * update_wall_time - Uses the current clocksource to increment the wall time
779  *
780  * Called from the timer interrupt, must hold a write on xtime_lock.
781  */
782 void update_wall_time(void)
783 {
784 	struct clocksource *clock;
785 	cycle_t offset;
786 	int shift = 0, maxshift;
787 
788 	/* Make sure we're fully resumed: */
789 	if (unlikely(timekeeping_suspended))
790 		return;
791 
792 	clock = timekeeper.clock;
793 
794 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
795 	offset = timekeeper.cycle_interval;
796 #else
797 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
798 #endif
799 	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
800 
801 	/*
802 	 * With NO_HZ we may have to accumulate many cycle_intervals
803 	 * (think "ticks") worth of time at once. To do this efficiently,
804 	 * we calculate the largest doubling multiple of cycle_intervals
805 	 * that is smaller then the offset. We then accumulate that
806 	 * chunk in one go, and then try to consume the next smaller
807 	 * doubled multiple.
808 	 */
809 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
810 	shift = max(0, shift);
811 	/* Bound shift to one less then what overflows tick_length */
812 	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
813 	shift = min(shift, maxshift);
814 	while (offset >= timekeeper.cycle_interval) {
815 		offset = logarithmic_accumulation(offset, shift);
816 		if(offset < timekeeper.cycle_interval<<shift)
817 			shift--;
818 	}
819 
820 	/* correct the clock when NTP error is too big */
821 	timekeeping_adjust(offset);
822 
823 	/*
824 	 * Since in the loop above, we accumulate any amount of time
825 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
826 	 * xtime_nsec to be fairly small after the loop. Further, if we're
827 	 * slightly speeding the clocksource up in timekeeping_adjust(),
828 	 * its possible the required corrective factor to xtime_nsec could
829 	 * cause it to underflow.
830 	 *
831 	 * Now, we cannot simply roll the accumulated second back, since
832 	 * the NTP subsystem has been notified via second_overflow. So
833 	 * instead we push xtime_nsec forward by the amount we underflowed,
834 	 * and add that amount into the error.
835 	 *
836 	 * We'll correct this error next time through this function, when
837 	 * xtime_nsec is not as small.
838 	 */
839 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
840 		s64 neg = -(s64)timekeeper.xtime_nsec;
841 		timekeeper.xtime_nsec = 0;
842 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
843 	}
844 
845 
846 	/*
847 	 * Store full nanoseconds into xtime after rounding it up and
848 	 * add the remainder to the error difference.
849 	 */
850 	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
851 	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
852 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
853 				timekeeper.ntp_error_shift;
854 
855 	/*
856 	 * Finally, make sure that after the rounding
857 	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
858 	 */
859 	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
860 		xtime.tv_nsec -= NSEC_PER_SEC;
861 		xtime.tv_sec++;
862 		second_overflow();
863 	}
864 
865 	/* check to see if there is a new clocksource to use */
866 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
867 				timekeeper.mult);
868 }
869 
870 /**
871  * getboottime - Return the real time of system boot.
872  * @ts:		pointer to the timespec to be set
873  *
874  * Returns the time of day in a timespec.
875  *
876  * This is based on the wall_to_monotonic offset and the total suspend
877  * time. Calls to settimeofday will affect the value returned (which
878  * basically means that however wrong your real time clock is at boot time,
879  * you get the right time here).
880  */
881 void getboottime(struct timespec *ts)
882 {
883 	struct timespec boottime = {
884 		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
885 		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
886 	};
887 
888 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
889 }
890 EXPORT_SYMBOL_GPL(getboottime);
891 
892 /**
893  * monotonic_to_bootbased - Convert the monotonic time to boot based.
894  * @ts:		pointer to the timespec to be converted
895  */
896 void monotonic_to_bootbased(struct timespec *ts)
897 {
898 	*ts = timespec_add(*ts, total_sleep_time);
899 }
900 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
901 
902 unsigned long get_seconds(void)
903 {
904 	return xtime.tv_sec;
905 }
906 EXPORT_SYMBOL(get_seconds);
907 
908 struct timespec __current_kernel_time(void)
909 {
910 	return xtime;
911 }
912 
913 struct timespec __get_wall_to_monotonic(void)
914 {
915 	return wall_to_monotonic;
916 }
917 
918 struct timespec current_kernel_time(void)
919 {
920 	struct timespec now;
921 	unsigned long seq;
922 
923 	do {
924 		seq = read_seqbegin(&xtime_lock);
925 
926 		now = xtime;
927 	} while (read_seqretry(&xtime_lock, seq));
928 
929 	return now;
930 }
931 EXPORT_SYMBOL(current_kernel_time);
932 
933 struct timespec get_monotonic_coarse(void)
934 {
935 	struct timespec now, mono;
936 	unsigned long seq;
937 
938 	do {
939 		seq = read_seqbegin(&xtime_lock);
940 
941 		now = xtime;
942 		mono = wall_to_monotonic;
943 	} while (read_seqretry(&xtime_lock, seq));
944 
945 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
946 				now.tv_nsec + mono.tv_nsec);
947 	return now;
948 }
949