xref: /openbmc/linux/kernel/time/timekeeping.c (revision 22246614)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sysdev.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 
22 
23 /*
24  * This read-write spinlock protects us from races in SMP while
25  * playing with xtime and avenrun.
26  */
27 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
28 
29 
30 /*
31  * The current time
32  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
33  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
34  * at zero at system boot time, so wall_to_monotonic will be negative,
35  * however, we will ALWAYS keep the tv_nsec part positive so we can use
36  * the usual normalization.
37  *
38  * wall_to_monotonic is moved after resume from suspend for the monotonic
39  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
40  * to get the real boot based time offset.
41  *
42  * - wall_to_monotonic is no longer the boot time, getboottime must be
43  * used instead.
44  */
45 struct timespec xtime __attribute__ ((aligned (16)));
46 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
47 static unsigned long total_sleep_time;		/* seconds */
48 
49 static struct timespec xtime_cache __attribute__ ((aligned (16)));
50 void update_xtime_cache(u64 nsec)
51 {
52 	xtime_cache = xtime;
53 	timespec_add_ns(&xtime_cache, nsec);
54 }
55 
56 struct clocksource *clock;
57 
58 
59 #ifdef CONFIG_GENERIC_TIME
60 /**
61  * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
62  *
63  * private function, must hold xtime_lock lock when being
64  * called. Returns the number of nanoseconds since the
65  * last call to update_wall_time() (adjusted by NTP scaling)
66  */
67 static inline s64 __get_nsec_offset(void)
68 {
69 	cycle_t cycle_now, cycle_delta;
70 	s64 ns_offset;
71 
72 	/* read clocksource: */
73 	cycle_now = clocksource_read(clock);
74 
75 	/* calculate the delta since the last update_wall_time: */
76 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
77 
78 	/* convert to nanoseconds: */
79 	ns_offset = cyc2ns(clock, cycle_delta);
80 
81 	return ns_offset;
82 }
83 
84 /**
85  * getnstimeofday - Returns the time of day in a timespec
86  * @ts:		pointer to the timespec to be set
87  *
88  * Returns the time of day in a timespec.
89  */
90 void getnstimeofday(struct timespec *ts)
91 {
92 	unsigned long seq;
93 	s64 nsecs;
94 
95 	do {
96 		seq = read_seqbegin(&xtime_lock);
97 
98 		*ts = xtime;
99 		nsecs = __get_nsec_offset();
100 
101 	} while (read_seqretry(&xtime_lock, seq));
102 
103 	timespec_add_ns(ts, nsecs);
104 }
105 
106 EXPORT_SYMBOL(getnstimeofday);
107 
108 /**
109  * do_gettimeofday - Returns the time of day in a timeval
110  * @tv:		pointer to the timeval to be set
111  *
112  * NOTE: Users should be converted to using getnstimeofday()
113  */
114 void do_gettimeofday(struct timeval *tv)
115 {
116 	struct timespec now;
117 
118 	getnstimeofday(&now);
119 	tv->tv_sec = now.tv_sec;
120 	tv->tv_usec = now.tv_nsec/1000;
121 }
122 
123 EXPORT_SYMBOL(do_gettimeofday);
124 /**
125  * do_settimeofday - Sets the time of day
126  * @tv:		pointer to the timespec variable containing the new time
127  *
128  * Sets the time of day to the new time and update NTP and notify hrtimers
129  */
130 int do_settimeofday(struct timespec *tv)
131 {
132 	unsigned long flags;
133 	time_t wtm_sec, sec = tv->tv_sec;
134 	long wtm_nsec, nsec = tv->tv_nsec;
135 
136 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
137 		return -EINVAL;
138 
139 	write_seqlock_irqsave(&xtime_lock, flags);
140 
141 	nsec -= __get_nsec_offset();
142 
143 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
144 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
145 
146 	set_normalized_timespec(&xtime, sec, nsec);
147 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
148 	update_xtime_cache(0);
149 
150 	clock->error = 0;
151 	ntp_clear();
152 
153 	update_vsyscall(&xtime, clock);
154 
155 	write_sequnlock_irqrestore(&xtime_lock, flags);
156 
157 	/* signal hrtimers about time change */
158 	clock_was_set();
159 
160 	return 0;
161 }
162 
163 EXPORT_SYMBOL(do_settimeofday);
164 
165 /**
166  * change_clocksource - Swaps clocksources if a new one is available
167  *
168  * Accumulates current time interval and initializes new clocksource
169  */
170 static void change_clocksource(void)
171 {
172 	struct clocksource *new;
173 	cycle_t now;
174 	u64 nsec;
175 
176 	new = clocksource_get_next();
177 
178 	if (clock == new)
179 		return;
180 
181 	new->cycle_last = 0;
182 	now = clocksource_read(new);
183 	nsec =  __get_nsec_offset();
184 	timespec_add_ns(&xtime, nsec);
185 
186 	clock = new;
187 	clock->cycle_last = now;
188 
189 	clock->error = 0;
190 	clock->xtime_nsec = 0;
191 	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
192 
193 	tick_clock_notify();
194 
195 	/*
196 	 * We're holding xtime lock and waking up klogd would deadlock
197 	 * us on enqueue.  So no printing!
198 	printk(KERN_INFO "Time: %s clocksource has been installed.\n",
199 	       clock->name);
200 	 */
201 }
202 #else
203 static inline void change_clocksource(void) { }
204 static inline s64 __get_nsec_offset(void) { return 0; }
205 #endif
206 
207 /**
208  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
209  */
210 int timekeeping_valid_for_hres(void)
211 {
212 	unsigned long seq;
213 	int ret;
214 
215 	do {
216 		seq = read_seqbegin(&xtime_lock);
217 
218 		ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
219 
220 	} while (read_seqretry(&xtime_lock, seq));
221 
222 	return ret;
223 }
224 
225 /**
226  * read_persistent_clock -  Return time in seconds from the persistent clock.
227  *
228  * Weak dummy function for arches that do not yet support it.
229  * Returns seconds from epoch using the battery backed persistent clock.
230  * Returns zero if unsupported.
231  *
232  *  XXX - Do be sure to remove it once all arches implement it.
233  */
234 unsigned long __attribute__((weak)) read_persistent_clock(void)
235 {
236 	return 0;
237 }
238 
239 /*
240  * timekeeping_init - Initializes the clocksource and common timekeeping values
241  */
242 void __init timekeeping_init(void)
243 {
244 	unsigned long flags;
245 	unsigned long sec = read_persistent_clock();
246 
247 	write_seqlock_irqsave(&xtime_lock, flags);
248 
249 	ntp_init();
250 
251 	clock = clocksource_get_next();
252 	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
253 	clock->cycle_last = clocksource_read(clock);
254 
255 	xtime.tv_sec = sec;
256 	xtime.tv_nsec = 0;
257 	set_normalized_timespec(&wall_to_monotonic,
258 		-xtime.tv_sec, -xtime.tv_nsec);
259 	update_xtime_cache(0);
260 	total_sleep_time = 0;
261 	write_sequnlock_irqrestore(&xtime_lock, flags);
262 }
263 
264 /* flag for if timekeeping is suspended */
265 static int timekeeping_suspended;
266 /* time in seconds when suspend began */
267 static unsigned long timekeeping_suspend_time;
268 /* xtime offset when we went into suspend */
269 static s64 timekeeping_suspend_nsecs;
270 
271 /**
272  * timekeeping_resume - Resumes the generic timekeeping subsystem.
273  * @dev:	unused
274  *
275  * This is for the generic clocksource timekeeping.
276  * xtime/wall_to_monotonic/jiffies/etc are
277  * still managed by arch specific suspend/resume code.
278  */
279 static int timekeeping_resume(struct sys_device *dev)
280 {
281 	unsigned long flags;
282 	unsigned long now = read_persistent_clock();
283 
284 	clocksource_resume();
285 
286 	write_seqlock_irqsave(&xtime_lock, flags);
287 
288 	if (now && (now > timekeeping_suspend_time)) {
289 		unsigned long sleep_length = now - timekeeping_suspend_time;
290 
291 		xtime.tv_sec += sleep_length;
292 		wall_to_monotonic.tv_sec -= sleep_length;
293 		total_sleep_time += sleep_length;
294 	}
295 	/* Make sure that we have the correct xtime reference */
296 	timespec_add_ns(&xtime, timekeeping_suspend_nsecs);
297 	update_xtime_cache(0);
298 	/* re-base the last cycle value */
299 	clock->cycle_last = 0;
300 	clock->cycle_last = clocksource_read(clock);
301 	clock->error = 0;
302 	timekeeping_suspended = 0;
303 	write_sequnlock_irqrestore(&xtime_lock, flags);
304 
305 	touch_softlockup_watchdog();
306 
307 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
308 
309 	/* Resume hrtimers */
310 	hres_timers_resume();
311 
312 	return 0;
313 }
314 
315 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
316 {
317 	unsigned long flags;
318 
319 	timekeeping_suspend_time = read_persistent_clock();
320 
321 	write_seqlock_irqsave(&xtime_lock, flags);
322 	/* Get the current xtime offset */
323 	timekeeping_suspend_nsecs = __get_nsec_offset();
324 	timekeeping_suspended = 1;
325 	write_sequnlock_irqrestore(&xtime_lock, flags);
326 
327 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
328 
329 	return 0;
330 }
331 
332 /* sysfs resume/suspend bits for timekeeping */
333 static struct sysdev_class timekeeping_sysclass = {
334 	.name		= "timekeeping",
335 	.resume		= timekeeping_resume,
336 	.suspend	= timekeeping_suspend,
337 };
338 
339 static struct sys_device device_timer = {
340 	.id		= 0,
341 	.cls		= &timekeeping_sysclass,
342 };
343 
344 static int __init timekeeping_init_device(void)
345 {
346 	int error = sysdev_class_register(&timekeeping_sysclass);
347 	if (!error)
348 		error = sysdev_register(&device_timer);
349 	return error;
350 }
351 
352 device_initcall(timekeeping_init_device);
353 
354 /*
355  * If the error is already larger, we look ahead even further
356  * to compensate for late or lost adjustments.
357  */
358 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
359 						 s64 *offset)
360 {
361 	s64 tick_error, i;
362 	u32 look_ahead, adj;
363 	s32 error2, mult;
364 
365 	/*
366 	 * Use the current error value to determine how much to look ahead.
367 	 * The larger the error the slower we adjust for it to avoid problems
368 	 * with losing too many ticks, otherwise we would overadjust and
369 	 * produce an even larger error.  The smaller the adjustment the
370 	 * faster we try to adjust for it, as lost ticks can do less harm
371 	 * here.  This is tuned so that an error of about 1 msec is adjusted
372 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
373 	 */
374 	error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
375 	error2 = abs(error2);
376 	for (look_ahead = 0; error2 > 0; look_ahead++)
377 		error2 >>= 2;
378 
379 	/*
380 	 * Now calculate the error in (1 << look_ahead) ticks, but first
381 	 * remove the single look ahead already included in the error.
382 	 */
383 	tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1);
384 	tick_error -= clock->xtime_interval >> 1;
385 	error = ((error - tick_error) >> look_ahead) + tick_error;
386 
387 	/* Finally calculate the adjustment shift value.  */
388 	i = *interval;
389 	mult = 1;
390 	if (error < 0) {
391 		error = -error;
392 		*interval = -*interval;
393 		*offset = -*offset;
394 		mult = -1;
395 	}
396 	for (adj = 0; error > i; adj++)
397 		error >>= 1;
398 
399 	*interval <<= adj;
400 	*offset <<= adj;
401 	return mult << adj;
402 }
403 
404 /*
405  * Adjust the multiplier to reduce the error value,
406  * this is optimized for the most common adjustments of -1,0,1,
407  * for other values we can do a bit more work.
408  */
409 static void clocksource_adjust(s64 offset)
410 {
411 	s64 error, interval = clock->cycle_interval;
412 	int adj;
413 
414 	error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1);
415 	if (error > interval) {
416 		error >>= 2;
417 		if (likely(error <= interval))
418 			adj = 1;
419 		else
420 			adj = clocksource_bigadjust(error, &interval, &offset);
421 	} else if (error < -interval) {
422 		error >>= 2;
423 		if (likely(error >= -interval)) {
424 			adj = -1;
425 			interval = -interval;
426 			offset = -offset;
427 		} else
428 			adj = clocksource_bigadjust(error, &interval, &offset);
429 	} else
430 		return;
431 
432 	clock->mult += adj;
433 	clock->xtime_interval += interval;
434 	clock->xtime_nsec -= offset;
435 	clock->error -= (interval - offset) <<
436 			(NTP_SCALE_SHIFT - clock->shift);
437 }
438 
439 /**
440  * update_wall_time - Uses the current clocksource to increment the wall time
441  *
442  * Called from the timer interrupt, must hold a write on xtime_lock.
443  */
444 void update_wall_time(void)
445 {
446 	cycle_t offset;
447 
448 	/* Make sure we're fully resumed: */
449 	if (unlikely(timekeeping_suspended))
450 		return;
451 
452 #ifdef CONFIG_GENERIC_TIME
453 	offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
454 #else
455 	offset = clock->cycle_interval;
456 #endif
457 	clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
458 
459 	/* normally this loop will run just once, however in the
460 	 * case of lost or late ticks, it will accumulate correctly.
461 	 */
462 	while (offset >= clock->cycle_interval) {
463 		/* accumulate one interval */
464 		clock->xtime_nsec += clock->xtime_interval;
465 		clock->cycle_last += clock->cycle_interval;
466 		offset -= clock->cycle_interval;
467 
468 		if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
469 			clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
470 			xtime.tv_sec++;
471 			second_overflow();
472 		}
473 
474 		/* accumulate error between NTP and clock interval */
475 		clock->error += tick_length;
476 		clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift);
477 	}
478 
479 	/* correct the clock when NTP error is too big */
480 	clocksource_adjust(offset);
481 
482 	/* store full nanoseconds into xtime */
483 	xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
484 	clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
485 
486 	update_xtime_cache(cyc2ns(clock, offset));
487 
488 	/* check to see if there is a new clocksource to use */
489 	change_clocksource();
490 	update_vsyscall(&xtime, clock);
491 }
492 
493 /**
494  * getboottime - Return the real time of system boot.
495  * @ts:		pointer to the timespec to be set
496  *
497  * Returns the time of day in a timespec.
498  *
499  * This is based on the wall_to_monotonic offset and the total suspend
500  * time. Calls to settimeofday will affect the value returned (which
501  * basically means that however wrong your real time clock is at boot time,
502  * you get the right time here).
503  */
504 void getboottime(struct timespec *ts)
505 {
506 	set_normalized_timespec(ts,
507 		- (wall_to_monotonic.tv_sec + total_sleep_time),
508 		- wall_to_monotonic.tv_nsec);
509 }
510 
511 /**
512  * monotonic_to_bootbased - Convert the monotonic time to boot based.
513  * @ts:		pointer to the timespec to be converted
514  */
515 void monotonic_to_bootbased(struct timespec *ts)
516 {
517 	ts->tv_sec += total_sleep_time;
518 }
519 
520 unsigned long get_seconds(void)
521 {
522 	return xtime_cache.tv_sec;
523 }
524 EXPORT_SYMBOL(get_seconds);
525 
526 
527 struct timespec current_kernel_time(void)
528 {
529 	struct timespec now;
530 	unsigned long seq;
531 
532 	do {
533 		seq = read_seqbegin(&xtime_lock);
534 
535 		now = xtime_cache;
536 	} while (read_seqretry(&xtime_lock, seq));
537 
538 	return now;
539 }
540 EXPORT_SYMBOL(current_kernel_time);
541