1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 123 { 124 125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 cycle_t now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 203 { 204 } 205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 cycle_t cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 cycle_t interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 old_clock = tk->tkr_mono.clock; 237 tk->tkr_mono.clock = clock; 238 tk->tkr_mono.read = clock->read; 239 tk->tkr_mono.mask = clock->mask; 240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 241 242 tk->tkr_raw.clock = clock; 243 tk->tkr_raw.read = clock->read; 244 tk->tkr_raw.mask = clock->mask; 245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 246 247 /* Do the ns -> cycle conversion first, using original mult */ 248 tmp = NTP_INTERVAL_LENGTH; 249 tmp <<= clock->shift; 250 ntpinterval = tmp; 251 tmp += clock->mult/2; 252 do_div(tmp, clock->mult); 253 if (tmp == 0) 254 tmp = 1; 255 256 interval = (cycle_t) tmp; 257 tk->cycle_interval = interval; 258 259 /* Go back from cycles -> shifted ns */ 260 tk->xtime_interval = (u64) interval * clock->mult; 261 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 262 tk->raw_interval = 263 ((u64) interval * clock->mult) >> clock->shift; 264 265 /* if changing clocks, convert xtime_nsec shift units */ 266 if (old_clock) { 267 int shift_change = clock->shift - old_clock->shift; 268 if (shift_change < 0) 269 tk->tkr_mono.xtime_nsec >>= -shift_change; 270 else 271 tk->tkr_mono.xtime_nsec <<= shift_change; 272 } 273 tk->tkr_raw.xtime_nsec = 0; 274 275 tk->tkr_mono.shift = clock->shift; 276 tk->tkr_raw.shift = clock->shift; 277 278 tk->ntp_error = 0; 279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 281 282 /* 283 * The timekeeper keeps its own mult values for the currently 284 * active clocksource. These value will be adjusted via NTP 285 * to counteract clock drifting. 286 */ 287 tk->tkr_mono.mult = clock->mult; 288 tk->tkr_raw.mult = clock->mult; 289 tk->ntp_err_mult = 0; 290 } 291 292 /* Timekeeper helper functions. */ 293 294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 295 static u32 default_arch_gettimeoffset(void) { return 0; } 296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 297 #else 298 static inline u32 arch_gettimeoffset(void) { return 0; } 299 #endif 300 301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 302 { 303 cycle_t delta; 304 s64 nsec; 305 306 delta = timekeeping_get_delta(tkr); 307 308 nsec = delta * tkr->mult + tkr->xtime_nsec; 309 nsec >>= tkr->shift; 310 311 /* If arch requires, add in get_arch_timeoffset() */ 312 return nsec + arch_gettimeoffset(); 313 } 314 315 /** 316 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 317 * @tkr: Timekeeping readout base from which we take the update 318 * 319 * We want to use this from any context including NMI and tracing / 320 * instrumenting the timekeeping code itself. 321 * 322 * Employ the latch technique; see @raw_write_seqcount_latch. 323 * 324 * So if a NMI hits the update of base[0] then it will use base[1] 325 * which is still consistent. In the worst case this can result is a 326 * slightly wrong timestamp (a few nanoseconds). See 327 * @ktime_get_mono_fast_ns. 328 */ 329 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 330 { 331 struct tk_read_base *base = tkf->base; 332 333 /* Force readers off to base[1] */ 334 raw_write_seqcount_latch(&tkf->seq); 335 336 /* Update base[0] */ 337 memcpy(base, tkr, sizeof(*base)); 338 339 /* Force readers back to base[0] */ 340 raw_write_seqcount_latch(&tkf->seq); 341 342 /* Update base[1] */ 343 memcpy(base + 1, base, sizeof(*base)); 344 } 345 346 /** 347 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 348 * 349 * This timestamp is not guaranteed to be monotonic across an update. 350 * The timestamp is calculated by: 351 * 352 * now = base_mono + clock_delta * slope 353 * 354 * So if the update lowers the slope, readers who are forced to the 355 * not yet updated second array are still using the old steeper slope. 356 * 357 * tmono 358 * ^ 359 * | o n 360 * | o n 361 * | u 362 * | o 363 * |o 364 * |12345678---> reader order 365 * 366 * o = old slope 367 * u = update 368 * n = new slope 369 * 370 * So reader 6 will observe time going backwards versus reader 5. 371 * 372 * While other CPUs are likely to be able observe that, the only way 373 * for a CPU local observation is when an NMI hits in the middle of 374 * the update. Timestamps taken from that NMI context might be ahead 375 * of the following timestamps. Callers need to be aware of that and 376 * deal with it. 377 */ 378 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 379 { 380 struct tk_read_base *tkr; 381 unsigned int seq; 382 u64 now; 383 384 do { 385 seq = raw_read_seqcount_latch(&tkf->seq); 386 tkr = tkf->base + (seq & 0x01); 387 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr); 388 } while (read_seqcount_retry(&tkf->seq, seq)); 389 390 return now; 391 } 392 393 u64 ktime_get_mono_fast_ns(void) 394 { 395 return __ktime_get_fast_ns(&tk_fast_mono); 396 } 397 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 398 399 u64 ktime_get_raw_fast_ns(void) 400 { 401 return __ktime_get_fast_ns(&tk_fast_raw); 402 } 403 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 404 405 /* Suspend-time cycles value for halted fast timekeeper. */ 406 static cycle_t cycles_at_suspend; 407 408 static cycle_t dummy_clock_read(struct clocksource *cs) 409 { 410 return cycles_at_suspend; 411 } 412 413 /** 414 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 415 * @tk: Timekeeper to snapshot. 416 * 417 * It generally is unsafe to access the clocksource after timekeeping has been 418 * suspended, so take a snapshot of the readout base of @tk and use it as the 419 * fast timekeeper's readout base while suspended. It will return the same 420 * number of cycles every time until timekeeping is resumed at which time the 421 * proper readout base for the fast timekeeper will be restored automatically. 422 */ 423 static void halt_fast_timekeeper(struct timekeeper *tk) 424 { 425 static struct tk_read_base tkr_dummy; 426 struct tk_read_base *tkr = &tk->tkr_mono; 427 428 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 429 cycles_at_suspend = tkr->read(tkr->clock); 430 tkr_dummy.read = dummy_clock_read; 431 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 432 433 tkr = &tk->tkr_raw; 434 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 435 tkr_dummy.read = dummy_clock_read; 436 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 437 } 438 439 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 440 441 static inline void update_vsyscall(struct timekeeper *tk) 442 { 443 struct timespec xt, wm; 444 445 xt = timespec64_to_timespec(tk_xtime(tk)); 446 wm = timespec64_to_timespec(tk->wall_to_monotonic); 447 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 448 tk->tkr_mono.cycle_last); 449 } 450 451 static inline void old_vsyscall_fixup(struct timekeeper *tk) 452 { 453 s64 remainder; 454 455 /* 456 * Store only full nanoseconds into xtime_nsec after rounding 457 * it up and add the remainder to the error difference. 458 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 459 * by truncating the remainder in vsyscalls. However, it causes 460 * additional work to be done in timekeeping_adjust(). Once 461 * the vsyscall implementations are converted to use xtime_nsec 462 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 463 * users are removed, this can be killed. 464 */ 465 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 466 tk->tkr_mono.xtime_nsec -= remainder; 467 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 468 tk->ntp_error += remainder << tk->ntp_error_shift; 469 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 470 } 471 #else 472 #define old_vsyscall_fixup(tk) 473 #endif 474 475 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 476 477 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 478 { 479 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 480 } 481 482 /** 483 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 484 */ 485 int pvclock_gtod_register_notifier(struct notifier_block *nb) 486 { 487 struct timekeeper *tk = &tk_core.timekeeper; 488 unsigned long flags; 489 int ret; 490 491 raw_spin_lock_irqsave(&timekeeper_lock, flags); 492 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 493 update_pvclock_gtod(tk, true); 494 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 495 496 return ret; 497 } 498 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 499 500 /** 501 * pvclock_gtod_unregister_notifier - unregister a pvclock 502 * timedata update listener 503 */ 504 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 505 { 506 unsigned long flags; 507 int ret; 508 509 raw_spin_lock_irqsave(&timekeeper_lock, flags); 510 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 511 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 512 513 return ret; 514 } 515 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 516 517 /* 518 * tk_update_leap_state - helper to update the next_leap_ktime 519 */ 520 static inline void tk_update_leap_state(struct timekeeper *tk) 521 { 522 tk->next_leap_ktime = ntp_get_next_leap(); 523 if (tk->next_leap_ktime.tv64 != KTIME_MAX) 524 /* Convert to monotonic time */ 525 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 526 } 527 528 /* 529 * Update the ktime_t based scalar nsec members of the timekeeper 530 */ 531 static inline void tk_update_ktime_data(struct timekeeper *tk) 532 { 533 u64 seconds; 534 u32 nsec; 535 536 /* 537 * The xtime based monotonic readout is: 538 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 539 * The ktime based monotonic readout is: 540 * nsec = base_mono + now(); 541 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 542 */ 543 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 544 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 545 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 546 547 /* Update the monotonic raw base */ 548 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 549 550 /* 551 * The sum of the nanoseconds portions of xtime and 552 * wall_to_monotonic can be greater/equal one second. Take 553 * this into account before updating tk->ktime_sec. 554 */ 555 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 556 if (nsec >= NSEC_PER_SEC) 557 seconds++; 558 tk->ktime_sec = seconds; 559 } 560 561 /* must hold timekeeper_lock */ 562 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 563 { 564 if (action & TK_CLEAR_NTP) { 565 tk->ntp_error = 0; 566 ntp_clear(); 567 } 568 569 tk_update_leap_state(tk); 570 tk_update_ktime_data(tk); 571 572 update_vsyscall(tk); 573 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 574 575 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 576 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 577 578 if (action & TK_CLOCK_WAS_SET) 579 tk->clock_was_set_seq++; 580 /* 581 * The mirroring of the data to the shadow-timekeeper needs 582 * to happen last here to ensure we don't over-write the 583 * timekeeper structure on the next update with stale data 584 */ 585 if (action & TK_MIRROR) 586 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 587 sizeof(tk_core.timekeeper)); 588 } 589 590 /** 591 * timekeeping_forward_now - update clock to the current time 592 * 593 * Forward the current clock to update its state since the last call to 594 * update_wall_time(). This is useful before significant clock changes, 595 * as it avoids having to deal with this time offset explicitly. 596 */ 597 static void timekeeping_forward_now(struct timekeeper *tk) 598 { 599 struct clocksource *clock = tk->tkr_mono.clock; 600 cycle_t cycle_now, delta; 601 s64 nsec; 602 603 cycle_now = tk->tkr_mono.read(clock); 604 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 605 tk->tkr_mono.cycle_last = cycle_now; 606 tk->tkr_raw.cycle_last = cycle_now; 607 608 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 609 610 /* If arch requires, add in get_arch_timeoffset() */ 611 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 612 613 tk_normalize_xtime(tk); 614 615 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 616 timespec64_add_ns(&tk->raw_time, nsec); 617 } 618 619 /** 620 * __getnstimeofday64 - Returns the time of day in a timespec64. 621 * @ts: pointer to the timespec to be set 622 * 623 * Updates the time of day in the timespec. 624 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 625 */ 626 int __getnstimeofday64(struct timespec64 *ts) 627 { 628 struct timekeeper *tk = &tk_core.timekeeper; 629 unsigned long seq; 630 s64 nsecs = 0; 631 632 do { 633 seq = read_seqcount_begin(&tk_core.seq); 634 635 ts->tv_sec = tk->xtime_sec; 636 nsecs = timekeeping_get_ns(&tk->tkr_mono); 637 638 } while (read_seqcount_retry(&tk_core.seq, seq)); 639 640 ts->tv_nsec = 0; 641 timespec64_add_ns(ts, nsecs); 642 643 /* 644 * Do not bail out early, in case there were callers still using 645 * the value, even in the face of the WARN_ON. 646 */ 647 if (unlikely(timekeeping_suspended)) 648 return -EAGAIN; 649 return 0; 650 } 651 EXPORT_SYMBOL(__getnstimeofday64); 652 653 /** 654 * getnstimeofday64 - Returns the time of day in a timespec64. 655 * @ts: pointer to the timespec64 to be set 656 * 657 * Returns the time of day in a timespec64 (WARN if suspended). 658 */ 659 void getnstimeofday64(struct timespec64 *ts) 660 { 661 WARN_ON(__getnstimeofday64(ts)); 662 } 663 EXPORT_SYMBOL(getnstimeofday64); 664 665 ktime_t ktime_get(void) 666 { 667 struct timekeeper *tk = &tk_core.timekeeper; 668 unsigned int seq; 669 ktime_t base; 670 s64 nsecs; 671 672 WARN_ON(timekeeping_suspended); 673 674 do { 675 seq = read_seqcount_begin(&tk_core.seq); 676 base = tk->tkr_mono.base; 677 nsecs = timekeeping_get_ns(&tk->tkr_mono); 678 679 } while (read_seqcount_retry(&tk_core.seq, seq)); 680 681 return ktime_add_ns(base, nsecs); 682 } 683 EXPORT_SYMBOL_GPL(ktime_get); 684 685 u32 ktime_get_resolution_ns(void) 686 { 687 struct timekeeper *tk = &tk_core.timekeeper; 688 unsigned int seq; 689 u32 nsecs; 690 691 WARN_ON(timekeeping_suspended); 692 693 do { 694 seq = read_seqcount_begin(&tk_core.seq); 695 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 696 } while (read_seqcount_retry(&tk_core.seq, seq)); 697 698 return nsecs; 699 } 700 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 701 702 static ktime_t *offsets[TK_OFFS_MAX] = { 703 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 704 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 705 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 706 }; 707 708 ktime_t ktime_get_with_offset(enum tk_offsets offs) 709 { 710 struct timekeeper *tk = &tk_core.timekeeper; 711 unsigned int seq; 712 ktime_t base, *offset = offsets[offs]; 713 s64 nsecs; 714 715 WARN_ON(timekeeping_suspended); 716 717 do { 718 seq = read_seqcount_begin(&tk_core.seq); 719 base = ktime_add(tk->tkr_mono.base, *offset); 720 nsecs = timekeeping_get_ns(&tk->tkr_mono); 721 722 } while (read_seqcount_retry(&tk_core.seq, seq)); 723 724 return ktime_add_ns(base, nsecs); 725 726 } 727 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 728 729 /** 730 * ktime_mono_to_any() - convert mononotic time to any other time 731 * @tmono: time to convert. 732 * @offs: which offset to use 733 */ 734 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 735 { 736 ktime_t *offset = offsets[offs]; 737 unsigned long seq; 738 ktime_t tconv; 739 740 do { 741 seq = read_seqcount_begin(&tk_core.seq); 742 tconv = ktime_add(tmono, *offset); 743 } while (read_seqcount_retry(&tk_core.seq, seq)); 744 745 return tconv; 746 } 747 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 748 749 /** 750 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 751 */ 752 ktime_t ktime_get_raw(void) 753 { 754 struct timekeeper *tk = &tk_core.timekeeper; 755 unsigned int seq; 756 ktime_t base; 757 s64 nsecs; 758 759 do { 760 seq = read_seqcount_begin(&tk_core.seq); 761 base = tk->tkr_raw.base; 762 nsecs = timekeeping_get_ns(&tk->tkr_raw); 763 764 } while (read_seqcount_retry(&tk_core.seq, seq)); 765 766 return ktime_add_ns(base, nsecs); 767 } 768 EXPORT_SYMBOL_GPL(ktime_get_raw); 769 770 /** 771 * ktime_get_ts64 - get the monotonic clock in timespec64 format 772 * @ts: pointer to timespec variable 773 * 774 * The function calculates the monotonic clock from the realtime 775 * clock and the wall_to_monotonic offset and stores the result 776 * in normalized timespec64 format in the variable pointed to by @ts. 777 */ 778 void ktime_get_ts64(struct timespec64 *ts) 779 { 780 struct timekeeper *tk = &tk_core.timekeeper; 781 struct timespec64 tomono; 782 s64 nsec; 783 unsigned int seq; 784 785 WARN_ON(timekeeping_suspended); 786 787 do { 788 seq = read_seqcount_begin(&tk_core.seq); 789 ts->tv_sec = tk->xtime_sec; 790 nsec = timekeeping_get_ns(&tk->tkr_mono); 791 tomono = tk->wall_to_monotonic; 792 793 } while (read_seqcount_retry(&tk_core.seq, seq)); 794 795 ts->tv_sec += tomono.tv_sec; 796 ts->tv_nsec = 0; 797 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 798 } 799 EXPORT_SYMBOL_GPL(ktime_get_ts64); 800 801 /** 802 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 803 * 804 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 805 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 806 * works on both 32 and 64 bit systems. On 32 bit systems the readout 807 * covers ~136 years of uptime which should be enough to prevent 808 * premature wrap arounds. 809 */ 810 time64_t ktime_get_seconds(void) 811 { 812 struct timekeeper *tk = &tk_core.timekeeper; 813 814 WARN_ON(timekeeping_suspended); 815 return tk->ktime_sec; 816 } 817 EXPORT_SYMBOL_GPL(ktime_get_seconds); 818 819 /** 820 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 821 * 822 * Returns the wall clock seconds since 1970. This replaces the 823 * get_seconds() interface which is not y2038 safe on 32bit systems. 824 * 825 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 826 * 32bit systems the access must be protected with the sequence 827 * counter to provide "atomic" access to the 64bit tk->xtime_sec 828 * value. 829 */ 830 time64_t ktime_get_real_seconds(void) 831 { 832 struct timekeeper *tk = &tk_core.timekeeper; 833 time64_t seconds; 834 unsigned int seq; 835 836 if (IS_ENABLED(CONFIG_64BIT)) 837 return tk->xtime_sec; 838 839 do { 840 seq = read_seqcount_begin(&tk_core.seq); 841 seconds = tk->xtime_sec; 842 843 } while (read_seqcount_retry(&tk_core.seq, seq)); 844 845 return seconds; 846 } 847 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 848 849 #ifdef CONFIG_NTP_PPS 850 851 /** 852 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 853 * @ts_raw: pointer to the timespec to be set to raw monotonic time 854 * @ts_real: pointer to the timespec to be set to the time of day 855 * 856 * This function reads both the time of day and raw monotonic time at the 857 * same time atomically and stores the resulting timestamps in timespec 858 * format. 859 */ 860 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 861 { 862 struct timekeeper *tk = &tk_core.timekeeper; 863 unsigned long seq; 864 s64 nsecs_raw, nsecs_real; 865 866 WARN_ON_ONCE(timekeeping_suspended); 867 868 do { 869 seq = read_seqcount_begin(&tk_core.seq); 870 871 *ts_raw = timespec64_to_timespec(tk->raw_time); 872 ts_real->tv_sec = tk->xtime_sec; 873 ts_real->tv_nsec = 0; 874 875 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw); 876 nsecs_real = timekeeping_get_ns(&tk->tkr_mono); 877 878 } while (read_seqcount_retry(&tk_core.seq, seq)); 879 880 timespec_add_ns(ts_raw, nsecs_raw); 881 timespec_add_ns(ts_real, nsecs_real); 882 } 883 EXPORT_SYMBOL(getnstime_raw_and_real); 884 885 #endif /* CONFIG_NTP_PPS */ 886 887 /** 888 * do_gettimeofday - Returns the time of day in a timeval 889 * @tv: pointer to the timeval to be set 890 * 891 * NOTE: Users should be converted to using getnstimeofday() 892 */ 893 void do_gettimeofday(struct timeval *tv) 894 { 895 struct timespec64 now; 896 897 getnstimeofday64(&now); 898 tv->tv_sec = now.tv_sec; 899 tv->tv_usec = now.tv_nsec/1000; 900 } 901 EXPORT_SYMBOL(do_gettimeofday); 902 903 /** 904 * do_settimeofday64 - Sets the time of day. 905 * @ts: pointer to the timespec64 variable containing the new time 906 * 907 * Sets the time of day to the new time and update NTP and notify hrtimers 908 */ 909 int do_settimeofday64(const struct timespec64 *ts) 910 { 911 struct timekeeper *tk = &tk_core.timekeeper; 912 struct timespec64 ts_delta, xt; 913 unsigned long flags; 914 int ret = 0; 915 916 if (!timespec64_valid_strict(ts)) 917 return -EINVAL; 918 919 raw_spin_lock_irqsave(&timekeeper_lock, flags); 920 write_seqcount_begin(&tk_core.seq); 921 922 timekeeping_forward_now(tk); 923 924 xt = tk_xtime(tk); 925 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 926 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 927 928 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 929 ret = -EINVAL; 930 goto out; 931 } 932 933 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 934 935 tk_set_xtime(tk, ts); 936 out: 937 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 938 939 write_seqcount_end(&tk_core.seq); 940 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 941 942 /* signal hrtimers about time change */ 943 clock_was_set(); 944 945 return ret; 946 } 947 EXPORT_SYMBOL(do_settimeofday64); 948 949 /** 950 * timekeeping_inject_offset - Adds or subtracts from the current time. 951 * @tv: pointer to the timespec variable containing the offset 952 * 953 * Adds or subtracts an offset value from the current time. 954 */ 955 int timekeeping_inject_offset(struct timespec *ts) 956 { 957 struct timekeeper *tk = &tk_core.timekeeper; 958 unsigned long flags; 959 struct timespec64 ts64, tmp; 960 int ret = 0; 961 962 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 963 return -EINVAL; 964 965 ts64 = timespec_to_timespec64(*ts); 966 967 raw_spin_lock_irqsave(&timekeeper_lock, flags); 968 write_seqcount_begin(&tk_core.seq); 969 970 timekeeping_forward_now(tk); 971 972 /* Make sure the proposed value is valid */ 973 tmp = timespec64_add(tk_xtime(tk), ts64); 974 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 975 !timespec64_valid_strict(&tmp)) { 976 ret = -EINVAL; 977 goto error; 978 } 979 980 tk_xtime_add(tk, &ts64); 981 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 982 983 error: /* even if we error out, we forwarded the time, so call update */ 984 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 985 986 write_seqcount_end(&tk_core.seq); 987 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 988 989 /* signal hrtimers about time change */ 990 clock_was_set(); 991 992 return ret; 993 } 994 EXPORT_SYMBOL(timekeeping_inject_offset); 995 996 997 /** 998 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 999 * 1000 */ 1001 s32 timekeeping_get_tai_offset(void) 1002 { 1003 struct timekeeper *tk = &tk_core.timekeeper; 1004 unsigned int seq; 1005 s32 ret; 1006 1007 do { 1008 seq = read_seqcount_begin(&tk_core.seq); 1009 ret = tk->tai_offset; 1010 } while (read_seqcount_retry(&tk_core.seq, seq)); 1011 1012 return ret; 1013 } 1014 1015 /** 1016 * __timekeeping_set_tai_offset - Lock free worker function 1017 * 1018 */ 1019 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1020 { 1021 tk->tai_offset = tai_offset; 1022 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1023 } 1024 1025 /** 1026 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1027 * 1028 */ 1029 void timekeeping_set_tai_offset(s32 tai_offset) 1030 { 1031 struct timekeeper *tk = &tk_core.timekeeper; 1032 unsigned long flags; 1033 1034 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1035 write_seqcount_begin(&tk_core.seq); 1036 __timekeeping_set_tai_offset(tk, tai_offset); 1037 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1038 write_seqcount_end(&tk_core.seq); 1039 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1040 clock_was_set(); 1041 } 1042 1043 /** 1044 * change_clocksource - Swaps clocksources if a new one is available 1045 * 1046 * Accumulates current time interval and initializes new clocksource 1047 */ 1048 static int change_clocksource(void *data) 1049 { 1050 struct timekeeper *tk = &tk_core.timekeeper; 1051 struct clocksource *new, *old; 1052 unsigned long flags; 1053 1054 new = (struct clocksource *) data; 1055 1056 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1057 write_seqcount_begin(&tk_core.seq); 1058 1059 timekeeping_forward_now(tk); 1060 /* 1061 * If the cs is in module, get a module reference. Succeeds 1062 * for built-in code (owner == NULL) as well. 1063 */ 1064 if (try_module_get(new->owner)) { 1065 if (!new->enable || new->enable(new) == 0) { 1066 old = tk->tkr_mono.clock; 1067 tk_setup_internals(tk, new); 1068 if (old->disable) 1069 old->disable(old); 1070 module_put(old->owner); 1071 } else { 1072 module_put(new->owner); 1073 } 1074 } 1075 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1076 1077 write_seqcount_end(&tk_core.seq); 1078 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1079 1080 return 0; 1081 } 1082 1083 /** 1084 * timekeeping_notify - Install a new clock source 1085 * @clock: pointer to the clock source 1086 * 1087 * This function is called from clocksource.c after a new, better clock 1088 * source has been registered. The caller holds the clocksource_mutex. 1089 */ 1090 int timekeeping_notify(struct clocksource *clock) 1091 { 1092 struct timekeeper *tk = &tk_core.timekeeper; 1093 1094 if (tk->tkr_mono.clock == clock) 1095 return 0; 1096 stop_machine(change_clocksource, clock, NULL); 1097 tick_clock_notify(); 1098 return tk->tkr_mono.clock == clock ? 0 : -1; 1099 } 1100 1101 /** 1102 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1103 * @ts: pointer to the timespec64 to be set 1104 * 1105 * Returns the raw monotonic time (completely un-modified by ntp) 1106 */ 1107 void getrawmonotonic64(struct timespec64 *ts) 1108 { 1109 struct timekeeper *tk = &tk_core.timekeeper; 1110 struct timespec64 ts64; 1111 unsigned long seq; 1112 s64 nsecs; 1113 1114 do { 1115 seq = read_seqcount_begin(&tk_core.seq); 1116 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1117 ts64 = tk->raw_time; 1118 1119 } while (read_seqcount_retry(&tk_core.seq, seq)); 1120 1121 timespec64_add_ns(&ts64, nsecs); 1122 *ts = ts64; 1123 } 1124 EXPORT_SYMBOL(getrawmonotonic64); 1125 1126 1127 /** 1128 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1129 */ 1130 int timekeeping_valid_for_hres(void) 1131 { 1132 struct timekeeper *tk = &tk_core.timekeeper; 1133 unsigned long seq; 1134 int ret; 1135 1136 do { 1137 seq = read_seqcount_begin(&tk_core.seq); 1138 1139 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1140 1141 } while (read_seqcount_retry(&tk_core.seq, seq)); 1142 1143 return ret; 1144 } 1145 1146 /** 1147 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1148 */ 1149 u64 timekeeping_max_deferment(void) 1150 { 1151 struct timekeeper *tk = &tk_core.timekeeper; 1152 unsigned long seq; 1153 u64 ret; 1154 1155 do { 1156 seq = read_seqcount_begin(&tk_core.seq); 1157 1158 ret = tk->tkr_mono.clock->max_idle_ns; 1159 1160 } while (read_seqcount_retry(&tk_core.seq, seq)); 1161 1162 return ret; 1163 } 1164 1165 /** 1166 * read_persistent_clock - Return time from the persistent clock. 1167 * 1168 * Weak dummy function for arches that do not yet support it. 1169 * Reads the time from the battery backed persistent clock. 1170 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1171 * 1172 * XXX - Do be sure to remove it once all arches implement it. 1173 */ 1174 void __weak read_persistent_clock(struct timespec *ts) 1175 { 1176 ts->tv_sec = 0; 1177 ts->tv_nsec = 0; 1178 } 1179 1180 void __weak read_persistent_clock64(struct timespec64 *ts64) 1181 { 1182 struct timespec ts; 1183 1184 read_persistent_clock(&ts); 1185 *ts64 = timespec_to_timespec64(ts); 1186 } 1187 1188 /** 1189 * read_boot_clock64 - Return time of the system start. 1190 * 1191 * Weak dummy function for arches that do not yet support it. 1192 * Function to read the exact time the system has been started. 1193 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1194 * 1195 * XXX - Do be sure to remove it once all arches implement it. 1196 */ 1197 void __weak read_boot_clock64(struct timespec64 *ts) 1198 { 1199 ts->tv_sec = 0; 1200 ts->tv_nsec = 0; 1201 } 1202 1203 /* Flag for if timekeeping_resume() has injected sleeptime */ 1204 static bool sleeptime_injected; 1205 1206 /* Flag for if there is a persistent clock on this platform */ 1207 static bool persistent_clock_exists; 1208 1209 /* 1210 * timekeeping_init - Initializes the clocksource and common timekeeping values 1211 */ 1212 void __init timekeeping_init(void) 1213 { 1214 struct timekeeper *tk = &tk_core.timekeeper; 1215 struct clocksource *clock; 1216 unsigned long flags; 1217 struct timespec64 now, boot, tmp; 1218 1219 read_persistent_clock64(&now); 1220 if (!timespec64_valid_strict(&now)) { 1221 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1222 " Check your CMOS/BIOS settings.\n"); 1223 now.tv_sec = 0; 1224 now.tv_nsec = 0; 1225 } else if (now.tv_sec || now.tv_nsec) 1226 persistent_clock_exists = true; 1227 1228 read_boot_clock64(&boot); 1229 if (!timespec64_valid_strict(&boot)) { 1230 pr_warn("WARNING: Boot clock returned invalid value!\n" 1231 " Check your CMOS/BIOS settings.\n"); 1232 boot.tv_sec = 0; 1233 boot.tv_nsec = 0; 1234 } 1235 1236 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1237 write_seqcount_begin(&tk_core.seq); 1238 ntp_init(); 1239 1240 clock = clocksource_default_clock(); 1241 if (clock->enable) 1242 clock->enable(clock); 1243 tk_setup_internals(tk, clock); 1244 1245 tk_set_xtime(tk, &now); 1246 tk->raw_time.tv_sec = 0; 1247 tk->raw_time.tv_nsec = 0; 1248 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1249 boot = tk_xtime(tk); 1250 1251 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1252 tk_set_wall_to_mono(tk, tmp); 1253 1254 timekeeping_update(tk, TK_MIRROR); 1255 1256 write_seqcount_end(&tk_core.seq); 1257 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1258 } 1259 1260 /* time in seconds when suspend began for persistent clock */ 1261 static struct timespec64 timekeeping_suspend_time; 1262 1263 /** 1264 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1265 * @delta: pointer to a timespec delta value 1266 * 1267 * Takes a timespec offset measuring a suspend interval and properly 1268 * adds the sleep offset to the timekeeping variables. 1269 */ 1270 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1271 struct timespec64 *delta) 1272 { 1273 if (!timespec64_valid_strict(delta)) { 1274 printk_deferred(KERN_WARNING 1275 "__timekeeping_inject_sleeptime: Invalid " 1276 "sleep delta value!\n"); 1277 return; 1278 } 1279 tk_xtime_add(tk, delta); 1280 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1281 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1282 tk_debug_account_sleep_time(delta); 1283 } 1284 1285 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1286 /** 1287 * We have three kinds of time sources to use for sleep time 1288 * injection, the preference order is: 1289 * 1) non-stop clocksource 1290 * 2) persistent clock (ie: RTC accessible when irqs are off) 1291 * 3) RTC 1292 * 1293 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1294 * If system has neither 1) nor 2), 3) will be used finally. 1295 * 1296 * 1297 * If timekeeping has injected sleeptime via either 1) or 2), 1298 * 3) becomes needless, so in this case we don't need to call 1299 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1300 * means. 1301 */ 1302 bool timekeeping_rtc_skipresume(void) 1303 { 1304 return sleeptime_injected; 1305 } 1306 1307 /** 1308 * 1) can be determined whether to use or not only when doing 1309 * timekeeping_resume() which is invoked after rtc_suspend(), 1310 * so we can't skip rtc_suspend() surely if system has 1). 1311 * 1312 * But if system has 2), 2) will definitely be used, so in this 1313 * case we don't need to call rtc_suspend(), and this is what 1314 * timekeeping_rtc_skipsuspend() means. 1315 */ 1316 bool timekeeping_rtc_skipsuspend(void) 1317 { 1318 return persistent_clock_exists; 1319 } 1320 1321 /** 1322 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1323 * @delta: pointer to a timespec64 delta value 1324 * 1325 * This hook is for architectures that cannot support read_persistent_clock64 1326 * because their RTC/persistent clock is only accessible when irqs are enabled. 1327 * and also don't have an effective nonstop clocksource. 1328 * 1329 * This function should only be called by rtc_resume(), and allows 1330 * a suspend offset to be injected into the timekeeping values. 1331 */ 1332 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1333 { 1334 struct timekeeper *tk = &tk_core.timekeeper; 1335 unsigned long flags; 1336 1337 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1338 write_seqcount_begin(&tk_core.seq); 1339 1340 timekeeping_forward_now(tk); 1341 1342 __timekeeping_inject_sleeptime(tk, delta); 1343 1344 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1345 1346 write_seqcount_end(&tk_core.seq); 1347 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1348 1349 /* signal hrtimers about time change */ 1350 clock_was_set(); 1351 } 1352 #endif 1353 1354 /** 1355 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1356 */ 1357 void timekeeping_resume(void) 1358 { 1359 struct timekeeper *tk = &tk_core.timekeeper; 1360 struct clocksource *clock = tk->tkr_mono.clock; 1361 unsigned long flags; 1362 struct timespec64 ts_new, ts_delta; 1363 cycle_t cycle_now, cycle_delta; 1364 1365 sleeptime_injected = false; 1366 read_persistent_clock64(&ts_new); 1367 1368 clockevents_resume(); 1369 clocksource_resume(); 1370 1371 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1372 write_seqcount_begin(&tk_core.seq); 1373 1374 /* 1375 * After system resumes, we need to calculate the suspended time and 1376 * compensate it for the OS time. There are 3 sources that could be 1377 * used: Nonstop clocksource during suspend, persistent clock and rtc 1378 * device. 1379 * 1380 * One specific platform may have 1 or 2 or all of them, and the 1381 * preference will be: 1382 * suspend-nonstop clocksource -> persistent clock -> rtc 1383 * The less preferred source will only be tried if there is no better 1384 * usable source. The rtc part is handled separately in rtc core code. 1385 */ 1386 cycle_now = tk->tkr_mono.read(clock); 1387 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1388 cycle_now > tk->tkr_mono.cycle_last) { 1389 u64 num, max = ULLONG_MAX; 1390 u32 mult = clock->mult; 1391 u32 shift = clock->shift; 1392 s64 nsec = 0; 1393 1394 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1395 tk->tkr_mono.mask); 1396 1397 /* 1398 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1399 * suspended time is too long. In that case we need do the 1400 * 64 bits math carefully 1401 */ 1402 do_div(max, mult); 1403 if (cycle_delta > max) { 1404 num = div64_u64(cycle_delta, max); 1405 nsec = (((u64) max * mult) >> shift) * num; 1406 cycle_delta -= num * max; 1407 } 1408 nsec += ((u64) cycle_delta * mult) >> shift; 1409 1410 ts_delta = ns_to_timespec64(nsec); 1411 sleeptime_injected = true; 1412 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1413 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1414 sleeptime_injected = true; 1415 } 1416 1417 if (sleeptime_injected) 1418 __timekeeping_inject_sleeptime(tk, &ts_delta); 1419 1420 /* Re-base the last cycle value */ 1421 tk->tkr_mono.cycle_last = cycle_now; 1422 tk->tkr_raw.cycle_last = cycle_now; 1423 1424 tk->ntp_error = 0; 1425 timekeeping_suspended = 0; 1426 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1427 write_seqcount_end(&tk_core.seq); 1428 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1429 1430 touch_softlockup_watchdog(); 1431 1432 tick_resume(); 1433 hrtimers_resume(); 1434 } 1435 1436 int timekeeping_suspend(void) 1437 { 1438 struct timekeeper *tk = &tk_core.timekeeper; 1439 unsigned long flags; 1440 struct timespec64 delta, delta_delta; 1441 static struct timespec64 old_delta; 1442 1443 read_persistent_clock64(&timekeeping_suspend_time); 1444 1445 /* 1446 * On some systems the persistent_clock can not be detected at 1447 * timekeeping_init by its return value, so if we see a valid 1448 * value returned, update the persistent_clock_exists flag. 1449 */ 1450 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1451 persistent_clock_exists = true; 1452 1453 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1454 write_seqcount_begin(&tk_core.seq); 1455 timekeeping_forward_now(tk); 1456 timekeeping_suspended = 1; 1457 1458 if (persistent_clock_exists) { 1459 /* 1460 * To avoid drift caused by repeated suspend/resumes, 1461 * which each can add ~1 second drift error, 1462 * try to compensate so the difference in system time 1463 * and persistent_clock time stays close to constant. 1464 */ 1465 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1466 delta_delta = timespec64_sub(delta, old_delta); 1467 if (abs(delta_delta.tv_sec) >= 2) { 1468 /* 1469 * if delta_delta is too large, assume time correction 1470 * has occurred and set old_delta to the current delta. 1471 */ 1472 old_delta = delta; 1473 } else { 1474 /* Otherwise try to adjust old_system to compensate */ 1475 timekeeping_suspend_time = 1476 timespec64_add(timekeeping_suspend_time, delta_delta); 1477 } 1478 } 1479 1480 timekeeping_update(tk, TK_MIRROR); 1481 halt_fast_timekeeper(tk); 1482 write_seqcount_end(&tk_core.seq); 1483 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1484 1485 tick_suspend(); 1486 clocksource_suspend(); 1487 clockevents_suspend(); 1488 1489 return 0; 1490 } 1491 1492 /* sysfs resume/suspend bits for timekeeping */ 1493 static struct syscore_ops timekeeping_syscore_ops = { 1494 .resume = timekeeping_resume, 1495 .suspend = timekeeping_suspend, 1496 }; 1497 1498 static int __init timekeeping_init_ops(void) 1499 { 1500 register_syscore_ops(&timekeeping_syscore_ops); 1501 return 0; 1502 } 1503 device_initcall(timekeeping_init_ops); 1504 1505 /* 1506 * Apply a multiplier adjustment to the timekeeper 1507 */ 1508 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1509 s64 offset, 1510 bool negative, 1511 int adj_scale) 1512 { 1513 s64 interval = tk->cycle_interval; 1514 s32 mult_adj = 1; 1515 1516 if (negative) { 1517 mult_adj = -mult_adj; 1518 interval = -interval; 1519 offset = -offset; 1520 } 1521 mult_adj <<= adj_scale; 1522 interval <<= adj_scale; 1523 offset <<= adj_scale; 1524 1525 /* 1526 * So the following can be confusing. 1527 * 1528 * To keep things simple, lets assume mult_adj == 1 for now. 1529 * 1530 * When mult_adj != 1, remember that the interval and offset values 1531 * have been appropriately scaled so the math is the same. 1532 * 1533 * The basic idea here is that we're increasing the multiplier 1534 * by one, this causes the xtime_interval to be incremented by 1535 * one cycle_interval. This is because: 1536 * xtime_interval = cycle_interval * mult 1537 * So if mult is being incremented by one: 1538 * xtime_interval = cycle_interval * (mult + 1) 1539 * Its the same as: 1540 * xtime_interval = (cycle_interval * mult) + cycle_interval 1541 * Which can be shortened to: 1542 * xtime_interval += cycle_interval 1543 * 1544 * So offset stores the non-accumulated cycles. Thus the current 1545 * time (in shifted nanoseconds) is: 1546 * now = (offset * adj) + xtime_nsec 1547 * Now, even though we're adjusting the clock frequency, we have 1548 * to keep time consistent. In other words, we can't jump back 1549 * in time, and we also want to avoid jumping forward in time. 1550 * 1551 * So given the same offset value, we need the time to be the same 1552 * both before and after the freq adjustment. 1553 * now = (offset * adj_1) + xtime_nsec_1 1554 * now = (offset * adj_2) + xtime_nsec_2 1555 * So: 1556 * (offset * adj_1) + xtime_nsec_1 = 1557 * (offset * adj_2) + xtime_nsec_2 1558 * And we know: 1559 * adj_2 = adj_1 + 1 1560 * So: 1561 * (offset * adj_1) + xtime_nsec_1 = 1562 * (offset * (adj_1+1)) + xtime_nsec_2 1563 * (offset * adj_1) + xtime_nsec_1 = 1564 * (offset * adj_1) + offset + xtime_nsec_2 1565 * Canceling the sides: 1566 * xtime_nsec_1 = offset + xtime_nsec_2 1567 * Which gives us: 1568 * xtime_nsec_2 = xtime_nsec_1 - offset 1569 * Which simplfies to: 1570 * xtime_nsec -= offset 1571 * 1572 * XXX - TODO: Doc ntp_error calculation. 1573 */ 1574 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1575 /* NTP adjustment caused clocksource mult overflow */ 1576 WARN_ON_ONCE(1); 1577 return; 1578 } 1579 1580 tk->tkr_mono.mult += mult_adj; 1581 tk->xtime_interval += interval; 1582 tk->tkr_mono.xtime_nsec -= offset; 1583 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1584 } 1585 1586 /* 1587 * Calculate the multiplier adjustment needed to match the frequency 1588 * specified by NTP 1589 */ 1590 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1591 s64 offset) 1592 { 1593 s64 interval = tk->cycle_interval; 1594 s64 xinterval = tk->xtime_interval; 1595 s64 tick_error; 1596 bool negative; 1597 u32 adj; 1598 1599 /* Remove any current error adj from freq calculation */ 1600 if (tk->ntp_err_mult) 1601 xinterval -= tk->cycle_interval; 1602 1603 tk->ntp_tick = ntp_tick_length(); 1604 1605 /* Calculate current error per tick */ 1606 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1607 tick_error -= (xinterval + tk->xtime_remainder); 1608 1609 /* Don't worry about correcting it if its small */ 1610 if (likely((tick_error >= 0) && (tick_error <= interval))) 1611 return; 1612 1613 /* preserve the direction of correction */ 1614 negative = (tick_error < 0); 1615 1616 /* Sort out the magnitude of the correction */ 1617 tick_error = abs(tick_error); 1618 for (adj = 0; tick_error > interval; adj++) 1619 tick_error >>= 1; 1620 1621 /* scale the corrections */ 1622 timekeeping_apply_adjustment(tk, offset, negative, adj); 1623 } 1624 1625 /* 1626 * Adjust the timekeeper's multiplier to the correct frequency 1627 * and also to reduce the accumulated error value. 1628 */ 1629 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1630 { 1631 /* Correct for the current frequency error */ 1632 timekeeping_freqadjust(tk, offset); 1633 1634 /* Next make a small adjustment to fix any cumulative error */ 1635 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1636 tk->ntp_err_mult = 1; 1637 timekeeping_apply_adjustment(tk, offset, 0, 0); 1638 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1639 /* Undo any existing error adjustment */ 1640 timekeeping_apply_adjustment(tk, offset, 1, 0); 1641 tk->ntp_err_mult = 0; 1642 } 1643 1644 if (unlikely(tk->tkr_mono.clock->maxadj && 1645 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1646 > tk->tkr_mono.clock->maxadj))) { 1647 printk_once(KERN_WARNING 1648 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1649 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1650 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1651 } 1652 1653 /* 1654 * It may be possible that when we entered this function, xtime_nsec 1655 * was very small. Further, if we're slightly speeding the clocksource 1656 * in the code above, its possible the required corrective factor to 1657 * xtime_nsec could cause it to underflow. 1658 * 1659 * Now, since we already accumulated the second, cannot simply roll 1660 * the accumulated second back, since the NTP subsystem has been 1661 * notified via second_overflow. So instead we push xtime_nsec forward 1662 * by the amount we underflowed, and add that amount into the error. 1663 * 1664 * We'll correct this error next time through this function, when 1665 * xtime_nsec is not as small. 1666 */ 1667 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1668 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1669 tk->tkr_mono.xtime_nsec = 0; 1670 tk->ntp_error += neg << tk->ntp_error_shift; 1671 } 1672 } 1673 1674 /** 1675 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1676 * 1677 * Helper function that accumulates a the nsecs greater then a second 1678 * from the xtime_nsec field to the xtime_secs field. 1679 * It also calls into the NTP code to handle leapsecond processing. 1680 * 1681 */ 1682 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1683 { 1684 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1685 unsigned int clock_set = 0; 1686 1687 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1688 int leap; 1689 1690 tk->tkr_mono.xtime_nsec -= nsecps; 1691 tk->xtime_sec++; 1692 1693 /* Figure out if its a leap sec and apply if needed */ 1694 leap = second_overflow(tk->xtime_sec); 1695 if (unlikely(leap)) { 1696 struct timespec64 ts; 1697 1698 tk->xtime_sec += leap; 1699 1700 ts.tv_sec = leap; 1701 ts.tv_nsec = 0; 1702 tk_set_wall_to_mono(tk, 1703 timespec64_sub(tk->wall_to_monotonic, ts)); 1704 1705 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1706 1707 clock_set = TK_CLOCK_WAS_SET; 1708 } 1709 } 1710 return clock_set; 1711 } 1712 1713 /** 1714 * logarithmic_accumulation - shifted accumulation of cycles 1715 * 1716 * This functions accumulates a shifted interval of cycles into 1717 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1718 * loop. 1719 * 1720 * Returns the unconsumed cycles. 1721 */ 1722 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1723 u32 shift, 1724 unsigned int *clock_set) 1725 { 1726 cycle_t interval = tk->cycle_interval << shift; 1727 u64 raw_nsecs; 1728 1729 /* If the offset is smaller then a shifted interval, do nothing */ 1730 if (offset < interval) 1731 return offset; 1732 1733 /* Accumulate one shifted interval */ 1734 offset -= interval; 1735 tk->tkr_mono.cycle_last += interval; 1736 tk->tkr_raw.cycle_last += interval; 1737 1738 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 1739 *clock_set |= accumulate_nsecs_to_secs(tk); 1740 1741 /* Accumulate raw time */ 1742 raw_nsecs = (u64)tk->raw_interval << shift; 1743 raw_nsecs += tk->raw_time.tv_nsec; 1744 if (raw_nsecs >= NSEC_PER_SEC) { 1745 u64 raw_secs = raw_nsecs; 1746 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1747 tk->raw_time.tv_sec += raw_secs; 1748 } 1749 tk->raw_time.tv_nsec = raw_nsecs; 1750 1751 /* Accumulate error between NTP and clock interval */ 1752 tk->ntp_error += tk->ntp_tick << shift; 1753 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1754 (tk->ntp_error_shift + shift); 1755 1756 return offset; 1757 } 1758 1759 /** 1760 * update_wall_time - Uses the current clocksource to increment the wall time 1761 * 1762 */ 1763 void update_wall_time(void) 1764 { 1765 struct timekeeper *real_tk = &tk_core.timekeeper; 1766 struct timekeeper *tk = &shadow_timekeeper; 1767 cycle_t offset; 1768 int shift = 0, maxshift; 1769 unsigned int clock_set = 0; 1770 unsigned long flags; 1771 1772 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1773 1774 /* Make sure we're fully resumed: */ 1775 if (unlikely(timekeeping_suspended)) 1776 goto out; 1777 1778 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1779 offset = real_tk->cycle_interval; 1780 #else 1781 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 1782 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 1783 #endif 1784 1785 /* Check if there's really nothing to do */ 1786 if (offset < real_tk->cycle_interval) 1787 goto out; 1788 1789 /* Do some additional sanity checking */ 1790 timekeeping_check_update(real_tk, offset); 1791 1792 /* 1793 * With NO_HZ we may have to accumulate many cycle_intervals 1794 * (think "ticks") worth of time at once. To do this efficiently, 1795 * we calculate the largest doubling multiple of cycle_intervals 1796 * that is smaller than the offset. We then accumulate that 1797 * chunk in one go, and then try to consume the next smaller 1798 * doubled multiple. 1799 */ 1800 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1801 shift = max(0, shift); 1802 /* Bound shift to one less than what overflows tick_length */ 1803 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1804 shift = min(shift, maxshift); 1805 while (offset >= tk->cycle_interval) { 1806 offset = logarithmic_accumulation(tk, offset, shift, 1807 &clock_set); 1808 if (offset < tk->cycle_interval<<shift) 1809 shift--; 1810 } 1811 1812 /* correct the clock when NTP error is too big */ 1813 timekeeping_adjust(tk, offset); 1814 1815 /* 1816 * XXX This can be killed once everyone converts 1817 * to the new update_vsyscall. 1818 */ 1819 old_vsyscall_fixup(tk); 1820 1821 /* 1822 * Finally, make sure that after the rounding 1823 * xtime_nsec isn't larger than NSEC_PER_SEC 1824 */ 1825 clock_set |= accumulate_nsecs_to_secs(tk); 1826 1827 write_seqcount_begin(&tk_core.seq); 1828 /* 1829 * Update the real timekeeper. 1830 * 1831 * We could avoid this memcpy by switching pointers, but that 1832 * requires changes to all other timekeeper usage sites as 1833 * well, i.e. move the timekeeper pointer getter into the 1834 * spinlocked/seqcount protected sections. And we trade this 1835 * memcpy under the tk_core.seq against one before we start 1836 * updating. 1837 */ 1838 timekeeping_update(tk, clock_set); 1839 memcpy(real_tk, tk, sizeof(*tk)); 1840 /* The memcpy must come last. Do not put anything here! */ 1841 write_seqcount_end(&tk_core.seq); 1842 out: 1843 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1844 if (clock_set) 1845 /* Have to call _delayed version, since in irq context*/ 1846 clock_was_set_delayed(); 1847 } 1848 1849 /** 1850 * getboottime64 - Return the real time of system boot. 1851 * @ts: pointer to the timespec64 to be set 1852 * 1853 * Returns the wall-time of boot in a timespec64. 1854 * 1855 * This is based on the wall_to_monotonic offset and the total suspend 1856 * time. Calls to settimeofday will affect the value returned (which 1857 * basically means that however wrong your real time clock is at boot time, 1858 * you get the right time here). 1859 */ 1860 void getboottime64(struct timespec64 *ts) 1861 { 1862 struct timekeeper *tk = &tk_core.timekeeper; 1863 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 1864 1865 *ts = ktime_to_timespec64(t); 1866 } 1867 EXPORT_SYMBOL_GPL(getboottime64); 1868 1869 unsigned long get_seconds(void) 1870 { 1871 struct timekeeper *tk = &tk_core.timekeeper; 1872 1873 return tk->xtime_sec; 1874 } 1875 EXPORT_SYMBOL(get_seconds); 1876 1877 struct timespec __current_kernel_time(void) 1878 { 1879 struct timekeeper *tk = &tk_core.timekeeper; 1880 1881 return timespec64_to_timespec(tk_xtime(tk)); 1882 } 1883 1884 struct timespec64 current_kernel_time64(void) 1885 { 1886 struct timekeeper *tk = &tk_core.timekeeper; 1887 struct timespec64 now; 1888 unsigned long seq; 1889 1890 do { 1891 seq = read_seqcount_begin(&tk_core.seq); 1892 1893 now = tk_xtime(tk); 1894 } while (read_seqcount_retry(&tk_core.seq, seq)); 1895 1896 return now; 1897 } 1898 EXPORT_SYMBOL(current_kernel_time64); 1899 1900 struct timespec64 get_monotonic_coarse64(void) 1901 { 1902 struct timekeeper *tk = &tk_core.timekeeper; 1903 struct timespec64 now, mono; 1904 unsigned long seq; 1905 1906 do { 1907 seq = read_seqcount_begin(&tk_core.seq); 1908 1909 now = tk_xtime(tk); 1910 mono = tk->wall_to_monotonic; 1911 } while (read_seqcount_retry(&tk_core.seq, seq)); 1912 1913 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 1914 now.tv_nsec + mono.tv_nsec); 1915 1916 return now; 1917 } 1918 1919 /* 1920 * Must hold jiffies_lock 1921 */ 1922 void do_timer(unsigned long ticks) 1923 { 1924 jiffies_64 += ticks; 1925 calc_global_load(ticks); 1926 } 1927 1928 /** 1929 * ktime_get_update_offsets_now - hrtimer helper 1930 * @cwsseq: pointer to check and store the clock was set sequence number 1931 * @offs_real: pointer to storage for monotonic -> realtime offset 1932 * @offs_boot: pointer to storage for monotonic -> boottime offset 1933 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1934 * 1935 * Returns current monotonic time and updates the offsets if the 1936 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 1937 * different. 1938 * 1939 * Called from hrtimer_interrupt() or retrigger_next_event() 1940 */ 1941 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 1942 ktime_t *offs_boot, ktime_t *offs_tai) 1943 { 1944 struct timekeeper *tk = &tk_core.timekeeper; 1945 unsigned int seq; 1946 ktime_t base; 1947 u64 nsecs; 1948 1949 do { 1950 seq = read_seqcount_begin(&tk_core.seq); 1951 1952 base = tk->tkr_mono.base; 1953 nsecs = timekeeping_get_ns(&tk->tkr_mono); 1954 base = ktime_add_ns(base, nsecs); 1955 1956 if (*cwsseq != tk->clock_was_set_seq) { 1957 *cwsseq = tk->clock_was_set_seq; 1958 *offs_real = tk->offs_real; 1959 *offs_boot = tk->offs_boot; 1960 *offs_tai = tk->offs_tai; 1961 } 1962 1963 /* Handle leapsecond insertion adjustments */ 1964 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) 1965 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 1966 1967 } while (read_seqcount_retry(&tk_core.seq, seq)); 1968 1969 return base; 1970 } 1971 1972 /** 1973 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1974 */ 1975 int do_adjtimex(struct timex *txc) 1976 { 1977 struct timekeeper *tk = &tk_core.timekeeper; 1978 unsigned long flags; 1979 struct timespec64 ts; 1980 s32 orig_tai, tai; 1981 int ret; 1982 1983 /* Validate the data before disabling interrupts */ 1984 ret = ntp_validate_timex(txc); 1985 if (ret) 1986 return ret; 1987 1988 if (txc->modes & ADJ_SETOFFSET) { 1989 struct timespec delta; 1990 delta.tv_sec = txc->time.tv_sec; 1991 delta.tv_nsec = txc->time.tv_usec; 1992 if (!(txc->modes & ADJ_NANO)) 1993 delta.tv_nsec *= 1000; 1994 ret = timekeeping_inject_offset(&delta); 1995 if (ret) 1996 return ret; 1997 } 1998 1999 getnstimeofday64(&ts); 2000 2001 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2002 write_seqcount_begin(&tk_core.seq); 2003 2004 orig_tai = tai = tk->tai_offset; 2005 ret = __do_adjtimex(txc, &ts, &tai); 2006 2007 if (tai != orig_tai) { 2008 __timekeeping_set_tai_offset(tk, tai); 2009 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2010 } 2011 tk_update_leap_state(tk); 2012 2013 write_seqcount_end(&tk_core.seq); 2014 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2015 2016 if (tai != orig_tai) 2017 clock_was_set(); 2018 2019 ntp_notify_cmos_timer(); 2020 2021 return ret; 2022 } 2023 2024 #ifdef CONFIG_NTP_PPS 2025 /** 2026 * hardpps() - Accessor function to NTP __hardpps function 2027 */ 2028 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 2029 { 2030 unsigned long flags; 2031 2032 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2033 write_seqcount_begin(&tk_core.seq); 2034 2035 __hardpps(phase_ts, raw_ts); 2036 2037 write_seqcount_end(&tk_core.seq); 2038 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2039 } 2040 EXPORT_SYMBOL(hardpps); 2041 #endif 2042 2043 /** 2044 * xtime_update() - advances the timekeeping infrastructure 2045 * @ticks: number of ticks, that have elapsed since the last call. 2046 * 2047 * Must be called with interrupts disabled. 2048 */ 2049 void xtime_update(unsigned long ticks) 2050 { 2051 write_seqlock(&jiffies_lock); 2052 do_timer(ticks); 2053 write_sequnlock(&jiffies_lock); 2054 update_wall_time(); 2055 } 2056