xref: /openbmc/linux/kernel/time/timekeeping.c (revision 1fa6ac37)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* The shift value of the current clocksource. */
29 	int	shift;
30 
31 	/* Number of clock cycles in one NTP interval. */
32 	cycle_t cycle_interval;
33 	/* Number of clock shifted nano seconds in one NTP interval. */
34 	u64	xtime_interval;
35 	/* Raw nano seconds accumulated per NTP interval. */
36 	u32	raw_interval;
37 
38 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
39 	u64	xtime_nsec;
40 	/* Difference between accumulated time and NTP time in ntp
41 	 * shifted nano seconds. */
42 	s64	ntp_error;
43 	/* Shift conversion between clock shifted nano seconds and
44 	 * ntp shifted nano seconds. */
45 	int	ntp_error_shift;
46 	/* NTP adjusted clock multiplier */
47 	u32	mult;
48 };
49 
50 struct timekeeper timekeeper;
51 
52 /**
53  * timekeeper_setup_internals - Set up internals to use clocksource clock.
54  *
55  * @clock:		Pointer to clocksource.
56  *
57  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
58  * pair and interval request.
59  *
60  * Unless you're the timekeeping code, you should not be using this!
61  */
62 static void timekeeper_setup_internals(struct clocksource *clock)
63 {
64 	cycle_t interval;
65 	u64 tmp;
66 
67 	timekeeper.clock = clock;
68 	clock->cycle_last = clock->read(clock);
69 
70 	/* Do the ns -> cycle conversion first, using original mult */
71 	tmp = NTP_INTERVAL_LENGTH;
72 	tmp <<= clock->shift;
73 	tmp += clock->mult/2;
74 	do_div(tmp, clock->mult);
75 	if (tmp == 0)
76 		tmp = 1;
77 
78 	interval = (cycle_t) tmp;
79 	timekeeper.cycle_interval = interval;
80 
81 	/* Go back from cycles -> shifted ns */
82 	timekeeper.xtime_interval = (u64) interval * clock->mult;
83 	timekeeper.raw_interval =
84 		((u64) interval * clock->mult) >> clock->shift;
85 
86 	timekeeper.xtime_nsec = 0;
87 	timekeeper.shift = clock->shift;
88 
89 	timekeeper.ntp_error = 0;
90 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
91 
92 	/*
93 	 * The timekeeper keeps its own mult values for the currently
94 	 * active clocksource. These value will be adjusted via NTP
95 	 * to counteract clock drifting.
96 	 */
97 	timekeeper.mult = clock->mult;
98 }
99 
100 /* Timekeeper helper functions. */
101 static inline s64 timekeeping_get_ns(void)
102 {
103 	cycle_t cycle_now, cycle_delta;
104 	struct clocksource *clock;
105 
106 	/* read clocksource: */
107 	clock = timekeeper.clock;
108 	cycle_now = clock->read(clock);
109 
110 	/* calculate the delta since the last update_wall_time: */
111 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
112 
113 	/* return delta convert to nanoseconds using ntp adjusted mult. */
114 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
115 				  timekeeper.shift);
116 }
117 
118 static inline s64 timekeeping_get_ns_raw(void)
119 {
120 	cycle_t cycle_now, cycle_delta;
121 	struct clocksource *clock;
122 
123 	/* read clocksource: */
124 	clock = timekeeper.clock;
125 	cycle_now = clock->read(clock);
126 
127 	/* calculate the delta since the last update_wall_time: */
128 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
129 
130 	/* return delta convert to nanoseconds using ntp adjusted mult. */
131 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
132 }
133 
134 /*
135  * This read-write spinlock protects us from races in SMP while
136  * playing with xtime.
137  */
138 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
139 
140 
141 /*
142  * The current time
143  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
144  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
145  * at zero at system boot time, so wall_to_monotonic will be negative,
146  * however, we will ALWAYS keep the tv_nsec part positive so we can use
147  * the usual normalization.
148  *
149  * wall_to_monotonic is moved after resume from suspend for the monotonic
150  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
151  * to get the real boot based time offset.
152  *
153  * - wall_to_monotonic is no longer the boot time, getboottime must be
154  * used instead.
155  */
156 struct timespec xtime __attribute__ ((aligned (16)));
157 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
158 static struct timespec total_sleep_time;
159 
160 /*
161  * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
162  */
163 struct timespec raw_time;
164 
165 /* flag for if timekeeping is suspended */
166 int __read_mostly timekeeping_suspended;
167 
168 /* must hold xtime_lock */
169 void timekeeping_leap_insert(int leapsecond)
170 {
171 	xtime.tv_sec += leapsecond;
172 	wall_to_monotonic.tv_sec -= leapsecond;
173 	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
174 }
175 
176 #ifdef CONFIG_GENERIC_TIME
177 
178 /**
179  * timekeeping_forward_now - update clock to the current time
180  *
181  * Forward the current clock to update its state since the last call to
182  * update_wall_time(). This is useful before significant clock changes,
183  * as it avoids having to deal with this time offset explicitly.
184  */
185 static void timekeeping_forward_now(void)
186 {
187 	cycle_t cycle_now, cycle_delta;
188 	struct clocksource *clock;
189 	s64 nsec;
190 
191 	clock = timekeeper.clock;
192 	cycle_now = clock->read(clock);
193 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
194 	clock->cycle_last = cycle_now;
195 
196 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
197 				  timekeeper.shift);
198 
199 	/* If arch requires, add in gettimeoffset() */
200 	nsec += arch_gettimeoffset();
201 
202 	timespec_add_ns(&xtime, nsec);
203 
204 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
205 	timespec_add_ns(&raw_time, nsec);
206 }
207 
208 /**
209  * getnstimeofday - Returns the time of day in a timespec
210  * @ts:		pointer to the timespec to be set
211  *
212  * Returns the time of day in a timespec.
213  */
214 void getnstimeofday(struct timespec *ts)
215 {
216 	unsigned long seq;
217 	s64 nsecs;
218 
219 	WARN_ON(timekeeping_suspended);
220 
221 	do {
222 		seq = read_seqbegin(&xtime_lock);
223 
224 		*ts = xtime;
225 		nsecs = timekeeping_get_ns();
226 
227 		/* If arch requires, add in gettimeoffset() */
228 		nsecs += arch_gettimeoffset();
229 
230 	} while (read_seqretry(&xtime_lock, seq));
231 
232 	timespec_add_ns(ts, nsecs);
233 }
234 
235 EXPORT_SYMBOL(getnstimeofday);
236 
237 ktime_t ktime_get(void)
238 {
239 	unsigned int seq;
240 	s64 secs, nsecs;
241 
242 	WARN_ON(timekeeping_suspended);
243 
244 	do {
245 		seq = read_seqbegin(&xtime_lock);
246 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
247 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
248 		nsecs += timekeeping_get_ns();
249 
250 	} while (read_seqretry(&xtime_lock, seq));
251 	/*
252 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
253 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
254 	 */
255 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
256 }
257 EXPORT_SYMBOL_GPL(ktime_get);
258 
259 /**
260  * ktime_get_ts - get the monotonic clock in timespec format
261  * @ts:		pointer to timespec variable
262  *
263  * The function calculates the monotonic clock from the realtime
264  * clock and the wall_to_monotonic offset and stores the result
265  * in normalized timespec format in the variable pointed to by @ts.
266  */
267 void ktime_get_ts(struct timespec *ts)
268 {
269 	struct timespec tomono;
270 	unsigned int seq;
271 	s64 nsecs;
272 
273 	WARN_ON(timekeeping_suspended);
274 
275 	do {
276 		seq = read_seqbegin(&xtime_lock);
277 		*ts = xtime;
278 		tomono = wall_to_monotonic;
279 		nsecs = timekeeping_get_ns();
280 
281 	} while (read_seqretry(&xtime_lock, seq));
282 
283 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
284 				ts->tv_nsec + tomono.tv_nsec + nsecs);
285 }
286 EXPORT_SYMBOL_GPL(ktime_get_ts);
287 
288 /**
289  * do_gettimeofday - Returns the time of day in a timeval
290  * @tv:		pointer to the timeval to be set
291  *
292  * NOTE: Users should be converted to using getnstimeofday()
293  */
294 void do_gettimeofday(struct timeval *tv)
295 {
296 	struct timespec now;
297 
298 	getnstimeofday(&now);
299 	tv->tv_sec = now.tv_sec;
300 	tv->tv_usec = now.tv_nsec/1000;
301 }
302 
303 EXPORT_SYMBOL(do_gettimeofday);
304 /**
305  * do_settimeofday - Sets the time of day
306  * @tv:		pointer to the timespec variable containing the new time
307  *
308  * Sets the time of day to the new time and update NTP and notify hrtimers
309  */
310 int do_settimeofday(struct timespec *tv)
311 {
312 	struct timespec ts_delta;
313 	unsigned long flags;
314 
315 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
316 		return -EINVAL;
317 
318 	write_seqlock_irqsave(&xtime_lock, flags);
319 
320 	timekeeping_forward_now();
321 
322 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
323 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
324 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
325 
326 	xtime = *tv;
327 
328 	timekeeper.ntp_error = 0;
329 	ntp_clear();
330 
331 	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
332 
333 	write_sequnlock_irqrestore(&xtime_lock, flags);
334 
335 	/* signal hrtimers about time change */
336 	clock_was_set();
337 
338 	return 0;
339 }
340 
341 EXPORT_SYMBOL(do_settimeofday);
342 
343 /**
344  * change_clocksource - Swaps clocksources if a new one is available
345  *
346  * Accumulates current time interval and initializes new clocksource
347  */
348 static int change_clocksource(void *data)
349 {
350 	struct clocksource *new, *old;
351 
352 	new = (struct clocksource *) data;
353 
354 	timekeeping_forward_now();
355 	if (!new->enable || new->enable(new) == 0) {
356 		old = timekeeper.clock;
357 		timekeeper_setup_internals(new);
358 		if (old->disable)
359 			old->disable(old);
360 	}
361 	return 0;
362 }
363 
364 /**
365  * timekeeping_notify - Install a new clock source
366  * @clock:		pointer to the clock source
367  *
368  * This function is called from clocksource.c after a new, better clock
369  * source has been registered. The caller holds the clocksource_mutex.
370  */
371 void timekeeping_notify(struct clocksource *clock)
372 {
373 	if (timekeeper.clock == clock)
374 		return;
375 	stop_machine(change_clocksource, clock, NULL);
376 	tick_clock_notify();
377 }
378 
379 #else /* GENERIC_TIME */
380 
381 static inline void timekeeping_forward_now(void) { }
382 
383 /**
384  * ktime_get - get the monotonic time in ktime_t format
385  *
386  * returns the time in ktime_t format
387  */
388 ktime_t ktime_get(void)
389 {
390 	struct timespec now;
391 
392 	ktime_get_ts(&now);
393 
394 	return timespec_to_ktime(now);
395 }
396 EXPORT_SYMBOL_GPL(ktime_get);
397 
398 /**
399  * ktime_get_ts - get the monotonic clock in timespec format
400  * @ts:		pointer to timespec variable
401  *
402  * The function calculates the monotonic clock from the realtime
403  * clock and the wall_to_monotonic offset and stores the result
404  * in normalized timespec format in the variable pointed to by @ts.
405  */
406 void ktime_get_ts(struct timespec *ts)
407 {
408 	struct timespec tomono;
409 	unsigned long seq;
410 
411 	do {
412 		seq = read_seqbegin(&xtime_lock);
413 		getnstimeofday(ts);
414 		tomono = wall_to_monotonic;
415 
416 	} while (read_seqretry(&xtime_lock, seq));
417 
418 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
419 				ts->tv_nsec + tomono.tv_nsec);
420 }
421 EXPORT_SYMBOL_GPL(ktime_get_ts);
422 
423 #endif /* !GENERIC_TIME */
424 
425 /**
426  * ktime_get_real - get the real (wall-) time in ktime_t format
427  *
428  * returns the time in ktime_t format
429  */
430 ktime_t ktime_get_real(void)
431 {
432 	struct timespec now;
433 
434 	getnstimeofday(&now);
435 
436 	return timespec_to_ktime(now);
437 }
438 EXPORT_SYMBOL_GPL(ktime_get_real);
439 
440 /**
441  * getrawmonotonic - Returns the raw monotonic time in a timespec
442  * @ts:		pointer to the timespec to be set
443  *
444  * Returns the raw monotonic time (completely un-modified by ntp)
445  */
446 void getrawmonotonic(struct timespec *ts)
447 {
448 	unsigned long seq;
449 	s64 nsecs;
450 
451 	do {
452 		seq = read_seqbegin(&xtime_lock);
453 		nsecs = timekeeping_get_ns_raw();
454 		*ts = raw_time;
455 
456 	} while (read_seqretry(&xtime_lock, seq));
457 
458 	timespec_add_ns(ts, nsecs);
459 }
460 EXPORT_SYMBOL(getrawmonotonic);
461 
462 
463 /**
464  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
465  */
466 int timekeeping_valid_for_hres(void)
467 {
468 	unsigned long seq;
469 	int ret;
470 
471 	do {
472 		seq = read_seqbegin(&xtime_lock);
473 
474 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
475 
476 	} while (read_seqretry(&xtime_lock, seq));
477 
478 	return ret;
479 }
480 
481 /**
482  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
483  *
484  * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
485  * ensure that the clocksource does not change!
486  */
487 u64 timekeeping_max_deferment(void)
488 {
489 	return timekeeper.clock->max_idle_ns;
490 }
491 
492 /**
493  * read_persistent_clock -  Return time from the persistent clock.
494  *
495  * Weak dummy function for arches that do not yet support it.
496  * Reads the time from the battery backed persistent clock.
497  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
498  *
499  *  XXX - Do be sure to remove it once all arches implement it.
500  */
501 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
502 {
503 	ts->tv_sec = 0;
504 	ts->tv_nsec = 0;
505 }
506 
507 /**
508  * read_boot_clock -  Return time of the system start.
509  *
510  * Weak dummy function for arches that do not yet support it.
511  * Function to read the exact time the system has been started.
512  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
513  *
514  *  XXX - Do be sure to remove it once all arches implement it.
515  */
516 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
517 {
518 	ts->tv_sec = 0;
519 	ts->tv_nsec = 0;
520 }
521 
522 /*
523  * timekeeping_init - Initializes the clocksource and common timekeeping values
524  */
525 void __init timekeeping_init(void)
526 {
527 	struct clocksource *clock;
528 	unsigned long flags;
529 	struct timespec now, boot;
530 
531 	read_persistent_clock(&now);
532 	read_boot_clock(&boot);
533 
534 	write_seqlock_irqsave(&xtime_lock, flags);
535 
536 	ntp_init();
537 
538 	clock = clocksource_default_clock();
539 	if (clock->enable)
540 		clock->enable(clock);
541 	timekeeper_setup_internals(clock);
542 
543 	xtime.tv_sec = now.tv_sec;
544 	xtime.tv_nsec = now.tv_nsec;
545 	raw_time.tv_sec = 0;
546 	raw_time.tv_nsec = 0;
547 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
548 		boot.tv_sec = xtime.tv_sec;
549 		boot.tv_nsec = xtime.tv_nsec;
550 	}
551 	set_normalized_timespec(&wall_to_monotonic,
552 				-boot.tv_sec, -boot.tv_nsec);
553 	total_sleep_time.tv_sec = 0;
554 	total_sleep_time.tv_nsec = 0;
555 	write_sequnlock_irqrestore(&xtime_lock, flags);
556 }
557 
558 /* time in seconds when suspend began */
559 static struct timespec timekeeping_suspend_time;
560 
561 /**
562  * timekeeping_resume - Resumes the generic timekeeping subsystem.
563  * @dev:	unused
564  *
565  * This is for the generic clocksource timekeeping.
566  * xtime/wall_to_monotonic/jiffies/etc are
567  * still managed by arch specific suspend/resume code.
568  */
569 static int timekeeping_resume(struct sys_device *dev)
570 {
571 	unsigned long flags;
572 	struct timespec ts;
573 
574 	read_persistent_clock(&ts);
575 
576 	clocksource_resume();
577 
578 	write_seqlock_irqsave(&xtime_lock, flags);
579 
580 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
581 		ts = timespec_sub(ts, timekeeping_suspend_time);
582 		xtime = timespec_add_safe(xtime, ts);
583 		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
584 		total_sleep_time = timespec_add_safe(total_sleep_time, ts);
585 	}
586 	/* re-base the last cycle value */
587 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
588 	timekeeper.ntp_error = 0;
589 	timekeeping_suspended = 0;
590 	write_sequnlock_irqrestore(&xtime_lock, flags);
591 
592 	touch_softlockup_watchdog();
593 
594 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
595 
596 	/* Resume hrtimers */
597 	hres_timers_resume();
598 
599 	return 0;
600 }
601 
602 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
603 {
604 	unsigned long flags;
605 
606 	read_persistent_clock(&timekeeping_suspend_time);
607 
608 	write_seqlock_irqsave(&xtime_lock, flags);
609 	timekeeping_forward_now();
610 	timekeeping_suspended = 1;
611 	write_sequnlock_irqrestore(&xtime_lock, flags);
612 
613 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
614 	clocksource_suspend();
615 
616 	return 0;
617 }
618 
619 /* sysfs resume/suspend bits for timekeeping */
620 static struct sysdev_class timekeeping_sysclass = {
621 	.name		= "timekeeping",
622 	.resume		= timekeeping_resume,
623 	.suspend	= timekeeping_suspend,
624 };
625 
626 static struct sys_device device_timer = {
627 	.id		= 0,
628 	.cls		= &timekeeping_sysclass,
629 };
630 
631 static int __init timekeeping_init_device(void)
632 {
633 	int error = sysdev_class_register(&timekeeping_sysclass);
634 	if (!error)
635 		error = sysdev_register(&device_timer);
636 	return error;
637 }
638 
639 device_initcall(timekeeping_init_device);
640 
641 /*
642  * If the error is already larger, we look ahead even further
643  * to compensate for late or lost adjustments.
644  */
645 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
646 						 s64 *offset)
647 {
648 	s64 tick_error, i;
649 	u32 look_ahead, adj;
650 	s32 error2, mult;
651 
652 	/*
653 	 * Use the current error value to determine how much to look ahead.
654 	 * The larger the error the slower we adjust for it to avoid problems
655 	 * with losing too many ticks, otherwise we would overadjust and
656 	 * produce an even larger error.  The smaller the adjustment the
657 	 * faster we try to adjust for it, as lost ticks can do less harm
658 	 * here.  This is tuned so that an error of about 1 msec is adjusted
659 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
660 	 */
661 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
662 	error2 = abs(error2);
663 	for (look_ahead = 0; error2 > 0; look_ahead++)
664 		error2 >>= 2;
665 
666 	/*
667 	 * Now calculate the error in (1 << look_ahead) ticks, but first
668 	 * remove the single look ahead already included in the error.
669 	 */
670 	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
671 	tick_error -= timekeeper.xtime_interval >> 1;
672 	error = ((error - tick_error) >> look_ahead) + tick_error;
673 
674 	/* Finally calculate the adjustment shift value.  */
675 	i = *interval;
676 	mult = 1;
677 	if (error < 0) {
678 		error = -error;
679 		*interval = -*interval;
680 		*offset = -*offset;
681 		mult = -1;
682 	}
683 	for (adj = 0; error > i; adj++)
684 		error >>= 1;
685 
686 	*interval <<= adj;
687 	*offset <<= adj;
688 	return mult << adj;
689 }
690 
691 /*
692  * Adjust the multiplier to reduce the error value,
693  * this is optimized for the most common adjustments of -1,0,1,
694  * for other values we can do a bit more work.
695  */
696 static void timekeeping_adjust(s64 offset)
697 {
698 	s64 error, interval = timekeeper.cycle_interval;
699 	int adj;
700 
701 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
702 	if (error > interval) {
703 		error >>= 2;
704 		if (likely(error <= interval))
705 			adj = 1;
706 		else
707 			adj = timekeeping_bigadjust(error, &interval, &offset);
708 	} else if (error < -interval) {
709 		error >>= 2;
710 		if (likely(error >= -interval)) {
711 			adj = -1;
712 			interval = -interval;
713 			offset = -offset;
714 		} else
715 			adj = timekeeping_bigadjust(error, &interval, &offset);
716 	} else
717 		return;
718 
719 	timekeeper.mult += adj;
720 	timekeeper.xtime_interval += interval;
721 	timekeeper.xtime_nsec -= offset;
722 	timekeeper.ntp_error -= (interval - offset) <<
723 				timekeeper.ntp_error_shift;
724 }
725 
726 
727 /**
728  * logarithmic_accumulation - shifted accumulation of cycles
729  *
730  * This functions accumulates a shifted interval of cycles into
731  * into a shifted interval nanoseconds. Allows for O(log) accumulation
732  * loop.
733  *
734  * Returns the unconsumed cycles.
735  */
736 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
737 {
738 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
739 
740 	/* If the offset is smaller then a shifted interval, do nothing */
741 	if (offset < timekeeper.cycle_interval<<shift)
742 		return offset;
743 
744 	/* Accumulate one shifted interval */
745 	offset -= timekeeper.cycle_interval << shift;
746 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
747 
748 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
749 	while (timekeeper.xtime_nsec >= nsecps) {
750 		timekeeper.xtime_nsec -= nsecps;
751 		xtime.tv_sec++;
752 		second_overflow();
753 	}
754 
755 	/* Accumulate into raw time */
756 	raw_time.tv_nsec += timekeeper.raw_interval << shift;;
757 	while (raw_time.tv_nsec >= NSEC_PER_SEC) {
758 		raw_time.tv_nsec -= NSEC_PER_SEC;
759 		raw_time.tv_sec++;
760 	}
761 
762 	/* Accumulate error between NTP and clock interval */
763 	timekeeper.ntp_error += tick_length << shift;
764 	timekeeper.ntp_error -= timekeeper.xtime_interval <<
765 				(timekeeper.ntp_error_shift + shift);
766 
767 	return offset;
768 }
769 
770 
771 /**
772  * update_wall_time - Uses the current clocksource to increment the wall time
773  *
774  * Called from the timer interrupt, must hold a write on xtime_lock.
775  */
776 void update_wall_time(void)
777 {
778 	struct clocksource *clock;
779 	cycle_t offset;
780 	int shift = 0, maxshift;
781 
782 	/* Make sure we're fully resumed: */
783 	if (unlikely(timekeeping_suspended))
784 		return;
785 
786 	clock = timekeeper.clock;
787 #ifdef CONFIG_GENERIC_TIME
788 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
789 #else
790 	offset = timekeeper.cycle_interval;
791 #endif
792 	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
793 
794 	/*
795 	 * With NO_HZ we may have to accumulate many cycle_intervals
796 	 * (think "ticks") worth of time at once. To do this efficiently,
797 	 * we calculate the largest doubling multiple of cycle_intervals
798 	 * that is smaller then the offset. We then accumulate that
799 	 * chunk in one go, and then try to consume the next smaller
800 	 * doubled multiple.
801 	 */
802 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
803 	shift = max(0, shift);
804 	/* Bound shift to one less then what overflows tick_length */
805 	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
806 	shift = min(shift, maxshift);
807 	while (offset >= timekeeper.cycle_interval) {
808 		offset = logarithmic_accumulation(offset, shift);
809 		if(offset < timekeeper.cycle_interval<<shift)
810 			shift--;
811 	}
812 
813 	/* correct the clock when NTP error is too big */
814 	timekeeping_adjust(offset);
815 
816 	/*
817 	 * Since in the loop above, we accumulate any amount of time
818 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
819 	 * xtime_nsec to be fairly small after the loop. Further, if we're
820 	 * slightly speeding the clocksource up in timekeeping_adjust(),
821 	 * its possible the required corrective factor to xtime_nsec could
822 	 * cause it to underflow.
823 	 *
824 	 * Now, we cannot simply roll the accumulated second back, since
825 	 * the NTP subsystem has been notified via second_overflow. So
826 	 * instead we push xtime_nsec forward by the amount we underflowed,
827 	 * and add that amount into the error.
828 	 *
829 	 * We'll correct this error next time through this function, when
830 	 * xtime_nsec is not as small.
831 	 */
832 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
833 		s64 neg = -(s64)timekeeper.xtime_nsec;
834 		timekeeper.xtime_nsec = 0;
835 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
836 	}
837 
838 
839 	/*
840 	 * Store full nanoseconds into xtime after rounding it up and
841 	 * add the remainder to the error difference.
842 	 */
843 	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
844 	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
845 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
846 				timekeeper.ntp_error_shift;
847 
848 	/*
849 	 * Finally, make sure that after the rounding
850 	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
851 	 */
852 	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
853 		xtime.tv_nsec -= NSEC_PER_SEC;
854 		xtime.tv_sec++;
855 		second_overflow();
856 	}
857 
858 	/* check to see if there is a new clocksource to use */
859 	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
860 }
861 
862 /**
863  * getboottime - Return the real time of system boot.
864  * @ts:		pointer to the timespec to be set
865  *
866  * Returns the time of day in a timespec.
867  *
868  * This is based on the wall_to_monotonic offset and the total suspend
869  * time. Calls to settimeofday will affect the value returned (which
870  * basically means that however wrong your real time clock is at boot time,
871  * you get the right time here).
872  */
873 void getboottime(struct timespec *ts)
874 {
875 	struct timespec boottime = {
876 		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
877 		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
878 	};
879 
880 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
881 }
882 EXPORT_SYMBOL_GPL(getboottime);
883 
884 /**
885  * monotonic_to_bootbased - Convert the monotonic time to boot based.
886  * @ts:		pointer to the timespec to be converted
887  */
888 void monotonic_to_bootbased(struct timespec *ts)
889 {
890 	*ts = timespec_add_safe(*ts, total_sleep_time);
891 }
892 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
893 
894 unsigned long get_seconds(void)
895 {
896 	return xtime.tv_sec;
897 }
898 EXPORT_SYMBOL(get_seconds);
899 
900 struct timespec __current_kernel_time(void)
901 {
902 	return xtime;
903 }
904 
905 struct timespec current_kernel_time(void)
906 {
907 	struct timespec now;
908 	unsigned long seq;
909 
910 	do {
911 		seq = read_seqbegin(&xtime_lock);
912 
913 		now = xtime;
914 	} while (read_seqretry(&xtime_lock, seq));
915 
916 	return now;
917 }
918 EXPORT_SYMBOL(current_kernel_time);
919 
920 struct timespec get_monotonic_coarse(void)
921 {
922 	struct timespec now, mono;
923 	unsigned long seq;
924 
925 	do {
926 		seq = read_seqbegin(&xtime_lock);
927 
928 		now = xtime;
929 		mono = wall_to_monotonic;
930 	} while (read_seqretry(&xtime_lock, seq));
931 
932 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
933 				now.tv_nsec + mono.tv_nsec);
934 	return now;
935 }
936