xref: /openbmc/linux/kernel/time/timekeeping.c (revision 1fa0a7dc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25 
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29 
30 #define TK_CLEAR_NTP		(1 << 0)
31 #define TK_MIRROR		(1 << 1)
32 #define TK_CLOCK_WAS_SET	(1 << 2)
33 
34 enum timekeeping_adv_mode {
35 	/* Update timekeeper when a tick has passed */
36 	TK_ADV_TICK,
37 
38 	/* Update timekeeper on a direct frequency change */
39 	TK_ADV_FREQ
40 };
41 
42 /*
43  * The most important data for readout fits into a single 64 byte
44  * cache line.
45  */
46 static struct {
47 	seqcount_t		seq;
48 	struct timekeeper	timekeeper;
49 } tk_core ____cacheline_aligned = {
50 	.seq = SEQCNT_ZERO(tk_core.seq),
51 };
52 
53 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
54 static struct timekeeper shadow_timekeeper;
55 
56 /**
57  * struct tk_fast - NMI safe timekeeper
58  * @seq:	Sequence counter for protecting updates. The lowest bit
59  *		is the index for the tk_read_base array
60  * @base:	tk_read_base array. Access is indexed by the lowest bit of
61  *		@seq.
62  *
63  * See @update_fast_timekeeper() below.
64  */
65 struct tk_fast {
66 	seqcount_t		seq;
67 	struct tk_read_base	base[2];
68 };
69 
70 /* Suspend-time cycles value for halted fast timekeeper. */
71 static u64 cycles_at_suspend;
72 
73 static u64 dummy_clock_read(struct clocksource *cs)
74 {
75 	return cycles_at_suspend;
76 }
77 
78 static struct clocksource dummy_clock = {
79 	.read = dummy_clock_read,
80 };
81 
82 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
83 	.base[0] = { .clock = &dummy_clock, },
84 	.base[1] = { .clock = &dummy_clock, },
85 };
86 
87 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
88 	.base[0] = { .clock = &dummy_clock, },
89 	.base[1] = { .clock = &dummy_clock, },
90 };
91 
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
94 
95 static inline void tk_normalize_xtime(struct timekeeper *tk)
96 {
97 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
98 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
99 		tk->xtime_sec++;
100 	}
101 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
102 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
103 		tk->raw_sec++;
104 	}
105 }
106 
107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
108 {
109 	struct timespec64 ts;
110 
111 	ts.tv_sec = tk->xtime_sec;
112 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
113 	return ts;
114 }
115 
116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
117 {
118 	tk->xtime_sec = ts->tv_sec;
119 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
120 }
121 
122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
123 {
124 	tk->xtime_sec += ts->tv_sec;
125 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
126 	tk_normalize_xtime(tk);
127 }
128 
129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
130 {
131 	struct timespec64 tmp;
132 
133 	/*
134 	 * Verify consistency of: offset_real = -wall_to_monotonic
135 	 * before modifying anything
136 	 */
137 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
138 					-tk->wall_to_monotonic.tv_nsec);
139 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
140 	tk->wall_to_monotonic = wtm;
141 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
142 	tk->offs_real = timespec64_to_ktime(tmp);
143 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
144 }
145 
146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
147 {
148 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
149 }
150 
151 /*
152  * tk_clock_read - atomic clocksource read() helper
153  *
154  * This helper is necessary to use in the read paths because, while the
155  * seqlock ensures we don't return a bad value while structures are updated,
156  * it doesn't protect from potential crashes. There is the possibility that
157  * the tkr's clocksource may change between the read reference, and the
158  * clock reference passed to the read function.  This can cause crashes if
159  * the wrong clocksource is passed to the wrong read function.
160  * This isn't necessary to use when holding the timekeeper_lock or doing
161  * a read of the fast-timekeeper tkrs (which is protected by its own locking
162  * and update logic).
163  */
164 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
165 {
166 	struct clocksource *clock = READ_ONCE(tkr->clock);
167 
168 	return clock->read(clock);
169 }
170 
171 #ifdef CONFIG_DEBUG_TIMEKEEPING
172 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
173 
174 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
175 {
176 
177 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
178 	const char *name = tk->tkr_mono.clock->name;
179 
180 	if (offset > max_cycles) {
181 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
182 				offset, name, max_cycles);
183 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
184 	} else {
185 		if (offset > (max_cycles >> 1)) {
186 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
187 					offset, name, max_cycles >> 1);
188 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
189 		}
190 	}
191 
192 	if (tk->underflow_seen) {
193 		if (jiffies - tk->last_warning > WARNING_FREQ) {
194 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
195 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
196 			printk_deferred("         Your kernel is probably still fine.\n");
197 			tk->last_warning = jiffies;
198 		}
199 		tk->underflow_seen = 0;
200 	}
201 
202 	if (tk->overflow_seen) {
203 		if (jiffies - tk->last_warning > WARNING_FREQ) {
204 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
205 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
206 			printk_deferred("         Your kernel is probably still fine.\n");
207 			tk->last_warning = jiffies;
208 		}
209 		tk->overflow_seen = 0;
210 	}
211 }
212 
213 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
214 {
215 	struct timekeeper *tk = &tk_core.timekeeper;
216 	u64 now, last, mask, max, delta;
217 	unsigned int seq;
218 
219 	/*
220 	 * Since we're called holding a seqlock, the data may shift
221 	 * under us while we're doing the calculation. This can cause
222 	 * false positives, since we'd note a problem but throw the
223 	 * results away. So nest another seqlock here to atomically
224 	 * grab the points we are checking with.
225 	 */
226 	do {
227 		seq = read_seqcount_begin(&tk_core.seq);
228 		now = tk_clock_read(tkr);
229 		last = tkr->cycle_last;
230 		mask = tkr->mask;
231 		max = tkr->clock->max_cycles;
232 	} while (read_seqcount_retry(&tk_core.seq, seq));
233 
234 	delta = clocksource_delta(now, last, mask);
235 
236 	/*
237 	 * Try to catch underflows by checking if we are seeing small
238 	 * mask-relative negative values.
239 	 */
240 	if (unlikely((~delta & mask) < (mask >> 3))) {
241 		tk->underflow_seen = 1;
242 		delta = 0;
243 	}
244 
245 	/* Cap delta value to the max_cycles values to avoid mult overflows */
246 	if (unlikely(delta > max)) {
247 		tk->overflow_seen = 1;
248 		delta = tkr->clock->max_cycles;
249 	}
250 
251 	return delta;
252 }
253 #else
254 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
255 {
256 }
257 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
258 {
259 	u64 cycle_now, delta;
260 
261 	/* read clocksource */
262 	cycle_now = tk_clock_read(tkr);
263 
264 	/* calculate the delta since the last update_wall_time */
265 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
266 
267 	return delta;
268 }
269 #endif
270 
271 /**
272  * tk_setup_internals - Set up internals to use clocksource clock.
273  *
274  * @tk:		The target timekeeper to setup.
275  * @clock:		Pointer to clocksource.
276  *
277  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
278  * pair and interval request.
279  *
280  * Unless you're the timekeeping code, you should not be using this!
281  */
282 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
283 {
284 	u64 interval;
285 	u64 tmp, ntpinterval;
286 	struct clocksource *old_clock;
287 
288 	++tk->cs_was_changed_seq;
289 	old_clock = tk->tkr_mono.clock;
290 	tk->tkr_mono.clock = clock;
291 	tk->tkr_mono.mask = clock->mask;
292 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
293 
294 	tk->tkr_raw.clock = clock;
295 	tk->tkr_raw.mask = clock->mask;
296 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
297 
298 	/* Do the ns -> cycle conversion first, using original mult */
299 	tmp = NTP_INTERVAL_LENGTH;
300 	tmp <<= clock->shift;
301 	ntpinterval = tmp;
302 	tmp += clock->mult/2;
303 	do_div(tmp, clock->mult);
304 	if (tmp == 0)
305 		tmp = 1;
306 
307 	interval = (u64) tmp;
308 	tk->cycle_interval = interval;
309 
310 	/* Go back from cycles -> shifted ns */
311 	tk->xtime_interval = interval * clock->mult;
312 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
313 	tk->raw_interval = interval * clock->mult;
314 
315 	 /* if changing clocks, convert xtime_nsec shift units */
316 	if (old_clock) {
317 		int shift_change = clock->shift - old_clock->shift;
318 		if (shift_change < 0) {
319 			tk->tkr_mono.xtime_nsec >>= -shift_change;
320 			tk->tkr_raw.xtime_nsec >>= -shift_change;
321 		} else {
322 			tk->tkr_mono.xtime_nsec <<= shift_change;
323 			tk->tkr_raw.xtime_nsec <<= shift_change;
324 		}
325 	}
326 
327 	tk->tkr_mono.shift = clock->shift;
328 	tk->tkr_raw.shift = clock->shift;
329 
330 	tk->ntp_error = 0;
331 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
332 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
333 
334 	/*
335 	 * The timekeeper keeps its own mult values for the currently
336 	 * active clocksource. These value will be adjusted via NTP
337 	 * to counteract clock drifting.
338 	 */
339 	tk->tkr_mono.mult = clock->mult;
340 	tk->tkr_raw.mult = clock->mult;
341 	tk->ntp_err_mult = 0;
342 	tk->skip_second_overflow = 0;
343 }
344 
345 /* Timekeeper helper functions. */
346 
347 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
348 static u32 default_arch_gettimeoffset(void) { return 0; }
349 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
350 #else
351 static inline u32 arch_gettimeoffset(void) { return 0; }
352 #endif
353 
354 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
355 {
356 	u64 nsec;
357 
358 	nsec = delta * tkr->mult + tkr->xtime_nsec;
359 	nsec >>= tkr->shift;
360 
361 	/* If arch requires, add in get_arch_timeoffset() */
362 	return nsec + arch_gettimeoffset();
363 }
364 
365 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
366 {
367 	u64 delta;
368 
369 	delta = timekeeping_get_delta(tkr);
370 	return timekeeping_delta_to_ns(tkr, delta);
371 }
372 
373 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
374 {
375 	u64 delta;
376 
377 	/* calculate the delta since the last update_wall_time */
378 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
379 	return timekeeping_delta_to_ns(tkr, delta);
380 }
381 
382 /**
383  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
384  * @tkr: Timekeeping readout base from which we take the update
385  *
386  * We want to use this from any context including NMI and tracing /
387  * instrumenting the timekeeping code itself.
388  *
389  * Employ the latch technique; see @raw_write_seqcount_latch.
390  *
391  * So if a NMI hits the update of base[0] then it will use base[1]
392  * which is still consistent. In the worst case this can result is a
393  * slightly wrong timestamp (a few nanoseconds). See
394  * @ktime_get_mono_fast_ns.
395  */
396 static void update_fast_timekeeper(const struct tk_read_base *tkr,
397 				   struct tk_fast *tkf)
398 {
399 	struct tk_read_base *base = tkf->base;
400 
401 	/* Force readers off to base[1] */
402 	raw_write_seqcount_latch(&tkf->seq);
403 
404 	/* Update base[0] */
405 	memcpy(base, tkr, sizeof(*base));
406 
407 	/* Force readers back to base[0] */
408 	raw_write_seqcount_latch(&tkf->seq);
409 
410 	/* Update base[1] */
411 	memcpy(base + 1, base, sizeof(*base));
412 }
413 
414 /**
415  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
416  *
417  * This timestamp is not guaranteed to be monotonic across an update.
418  * The timestamp is calculated by:
419  *
420  *	now = base_mono + clock_delta * slope
421  *
422  * So if the update lowers the slope, readers who are forced to the
423  * not yet updated second array are still using the old steeper slope.
424  *
425  * tmono
426  * ^
427  * |    o  n
428  * |   o n
429  * |  u
430  * | o
431  * |o
432  * |12345678---> reader order
433  *
434  * o = old slope
435  * u = update
436  * n = new slope
437  *
438  * So reader 6 will observe time going backwards versus reader 5.
439  *
440  * While other CPUs are likely to be able observe that, the only way
441  * for a CPU local observation is when an NMI hits in the middle of
442  * the update. Timestamps taken from that NMI context might be ahead
443  * of the following timestamps. Callers need to be aware of that and
444  * deal with it.
445  */
446 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
447 {
448 	struct tk_read_base *tkr;
449 	unsigned int seq;
450 	u64 now;
451 
452 	do {
453 		seq = raw_read_seqcount_latch(&tkf->seq);
454 		tkr = tkf->base + (seq & 0x01);
455 		now = ktime_to_ns(tkr->base);
456 
457 		now += timekeeping_delta_to_ns(tkr,
458 				clocksource_delta(
459 					tk_clock_read(tkr),
460 					tkr->cycle_last,
461 					tkr->mask));
462 	} while (read_seqcount_retry(&tkf->seq, seq));
463 
464 	return now;
465 }
466 
467 u64 ktime_get_mono_fast_ns(void)
468 {
469 	return __ktime_get_fast_ns(&tk_fast_mono);
470 }
471 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
472 
473 u64 ktime_get_raw_fast_ns(void)
474 {
475 	return __ktime_get_fast_ns(&tk_fast_raw);
476 }
477 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
478 
479 /**
480  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
481  *
482  * To keep it NMI safe since we're accessing from tracing, we're not using a
483  * separate timekeeper with updates to monotonic clock and boot offset
484  * protected with seqlocks. This has the following minor side effects:
485  *
486  * (1) Its possible that a timestamp be taken after the boot offset is updated
487  * but before the timekeeper is updated. If this happens, the new boot offset
488  * is added to the old timekeeping making the clock appear to update slightly
489  * earlier:
490  *    CPU 0                                        CPU 1
491  *    timekeeping_inject_sleeptime64()
492  *    __timekeeping_inject_sleeptime(tk, delta);
493  *                                                 timestamp();
494  *    timekeeping_update(tk, TK_CLEAR_NTP...);
495  *
496  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
497  * partially updated.  Since the tk->offs_boot update is a rare event, this
498  * should be a rare occurrence which postprocessing should be able to handle.
499  */
500 u64 notrace ktime_get_boot_fast_ns(void)
501 {
502 	struct timekeeper *tk = &tk_core.timekeeper;
503 
504 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
505 }
506 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
507 
508 
509 /*
510  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
511  */
512 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
513 {
514 	struct tk_read_base *tkr;
515 	unsigned int seq;
516 	u64 now;
517 
518 	do {
519 		seq = raw_read_seqcount_latch(&tkf->seq);
520 		tkr = tkf->base + (seq & 0x01);
521 		now = ktime_to_ns(tkr->base_real);
522 
523 		now += timekeeping_delta_to_ns(tkr,
524 				clocksource_delta(
525 					tk_clock_read(tkr),
526 					tkr->cycle_last,
527 					tkr->mask));
528 	} while (read_seqcount_retry(&tkf->seq, seq));
529 
530 	return now;
531 }
532 
533 /**
534  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
535  */
536 u64 ktime_get_real_fast_ns(void)
537 {
538 	return __ktime_get_real_fast_ns(&tk_fast_mono);
539 }
540 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
541 
542 /**
543  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
544  * @tk: Timekeeper to snapshot.
545  *
546  * It generally is unsafe to access the clocksource after timekeeping has been
547  * suspended, so take a snapshot of the readout base of @tk and use it as the
548  * fast timekeeper's readout base while suspended.  It will return the same
549  * number of cycles every time until timekeeping is resumed at which time the
550  * proper readout base for the fast timekeeper will be restored automatically.
551  */
552 static void halt_fast_timekeeper(const struct timekeeper *tk)
553 {
554 	static struct tk_read_base tkr_dummy;
555 	const struct tk_read_base *tkr = &tk->tkr_mono;
556 
557 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
558 	cycles_at_suspend = tk_clock_read(tkr);
559 	tkr_dummy.clock = &dummy_clock;
560 	tkr_dummy.base_real = tkr->base + tk->offs_real;
561 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
562 
563 	tkr = &tk->tkr_raw;
564 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
565 	tkr_dummy.clock = &dummy_clock;
566 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
567 }
568 
569 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
570 
571 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
572 {
573 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
574 }
575 
576 /**
577  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
578  */
579 int pvclock_gtod_register_notifier(struct notifier_block *nb)
580 {
581 	struct timekeeper *tk = &tk_core.timekeeper;
582 	unsigned long flags;
583 	int ret;
584 
585 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
586 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
587 	update_pvclock_gtod(tk, true);
588 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
589 
590 	return ret;
591 }
592 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
593 
594 /**
595  * pvclock_gtod_unregister_notifier - unregister a pvclock
596  * timedata update listener
597  */
598 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
599 {
600 	unsigned long flags;
601 	int ret;
602 
603 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
604 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
605 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
606 
607 	return ret;
608 }
609 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
610 
611 /*
612  * tk_update_leap_state - helper to update the next_leap_ktime
613  */
614 static inline void tk_update_leap_state(struct timekeeper *tk)
615 {
616 	tk->next_leap_ktime = ntp_get_next_leap();
617 	if (tk->next_leap_ktime != KTIME_MAX)
618 		/* Convert to monotonic time */
619 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
620 }
621 
622 /*
623  * Update the ktime_t based scalar nsec members of the timekeeper
624  */
625 static inline void tk_update_ktime_data(struct timekeeper *tk)
626 {
627 	u64 seconds;
628 	u32 nsec;
629 
630 	/*
631 	 * The xtime based monotonic readout is:
632 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
633 	 * The ktime based monotonic readout is:
634 	 *	nsec = base_mono + now();
635 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
636 	 */
637 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
638 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
639 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
640 
641 	/*
642 	 * The sum of the nanoseconds portions of xtime and
643 	 * wall_to_monotonic can be greater/equal one second. Take
644 	 * this into account before updating tk->ktime_sec.
645 	 */
646 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
647 	if (nsec >= NSEC_PER_SEC)
648 		seconds++;
649 	tk->ktime_sec = seconds;
650 
651 	/* Update the monotonic raw base */
652 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
653 }
654 
655 /* must hold timekeeper_lock */
656 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
657 {
658 	if (action & TK_CLEAR_NTP) {
659 		tk->ntp_error = 0;
660 		ntp_clear();
661 	}
662 
663 	tk_update_leap_state(tk);
664 	tk_update_ktime_data(tk);
665 
666 	update_vsyscall(tk);
667 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
668 
669 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
670 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
671 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
672 
673 	if (action & TK_CLOCK_WAS_SET)
674 		tk->clock_was_set_seq++;
675 	/*
676 	 * The mirroring of the data to the shadow-timekeeper needs
677 	 * to happen last here to ensure we don't over-write the
678 	 * timekeeper structure on the next update with stale data
679 	 */
680 	if (action & TK_MIRROR)
681 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
682 		       sizeof(tk_core.timekeeper));
683 }
684 
685 /**
686  * timekeeping_forward_now - update clock to the current time
687  *
688  * Forward the current clock to update its state since the last call to
689  * update_wall_time(). This is useful before significant clock changes,
690  * as it avoids having to deal with this time offset explicitly.
691  */
692 static void timekeeping_forward_now(struct timekeeper *tk)
693 {
694 	u64 cycle_now, delta;
695 
696 	cycle_now = tk_clock_read(&tk->tkr_mono);
697 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
698 	tk->tkr_mono.cycle_last = cycle_now;
699 	tk->tkr_raw.cycle_last  = cycle_now;
700 
701 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
702 
703 	/* If arch requires, add in get_arch_timeoffset() */
704 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
705 
706 
707 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
708 
709 	/* If arch requires, add in get_arch_timeoffset() */
710 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
711 
712 	tk_normalize_xtime(tk);
713 }
714 
715 /**
716  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
717  * @ts:		pointer to the timespec to be set
718  *
719  * Returns the time of day in a timespec64 (WARN if suspended).
720  */
721 void ktime_get_real_ts64(struct timespec64 *ts)
722 {
723 	struct timekeeper *tk = &tk_core.timekeeper;
724 	unsigned int seq;
725 	u64 nsecs;
726 
727 	WARN_ON(timekeeping_suspended);
728 
729 	do {
730 		seq = read_seqcount_begin(&tk_core.seq);
731 
732 		ts->tv_sec = tk->xtime_sec;
733 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
734 
735 	} while (read_seqcount_retry(&tk_core.seq, seq));
736 
737 	ts->tv_nsec = 0;
738 	timespec64_add_ns(ts, nsecs);
739 }
740 EXPORT_SYMBOL(ktime_get_real_ts64);
741 
742 ktime_t ktime_get(void)
743 {
744 	struct timekeeper *tk = &tk_core.timekeeper;
745 	unsigned int seq;
746 	ktime_t base;
747 	u64 nsecs;
748 
749 	WARN_ON(timekeeping_suspended);
750 
751 	do {
752 		seq = read_seqcount_begin(&tk_core.seq);
753 		base = tk->tkr_mono.base;
754 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
755 
756 	} while (read_seqcount_retry(&tk_core.seq, seq));
757 
758 	return ktime_add_ns(base, nsecs);
759 }
760 EXPORT_SYMBOL_GPL(ktime_get);
761 
762 u32 ktime_get_resolution_ns(void)
763 {
764 	struct timekeeper *tk = &tk_core.timekeeper;
765 	unsigned int seq;
766 	u32 nsecs;
767 
768 	WARN_ON(timekeeping_suspended);
769 
770 	do {
771 		seq = read_seqcount_begin(&tk_core.seq);
772 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
773 	} while (read_seqcount_retry(&tk_core.seq, seq));
774 
775 	return nsecs;
776 }
777 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
778 
779 static ktime_t *offsets[TK_OFFS_MAX] = {
780 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
781 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
782 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
783 };
784 
785 ktime_t ktime_get_with_offset(enum tk_offsets offs)
786 {
787 	struct timekeeper *tk = &tk_core.timekeeper;
788 	unsigned int seq;
789 	ktime_t base, *offset = offsets[offs];
790 	u64 nsecs;
791 
792 	WARN_ON(timekeeping_suspended);
793 
794 	do {
795 		seq = read_seqcount_begin(&tk_core.seq);
796 		base = ktime_add(tk->tkr_mono.base, *offset);
797 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
798 
799 	} while (read_seqcount_retry(&tk_core.seq, seq));
800 
801 	return ktime_add_ns(base, nsecs);
802 
803 }
804 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
805 
806 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
807 {
808 	struct timekeeper *tk = &tk_core.timekeeper;
809 	unsigned int seq;
810 	ktime_t base, *offset = offsets[offs];
811 
812 	WARN_ON(timekeeping_suspended);
813 
814 	do {
815 		seq = read_seqcount_begin(&tk_core.seq);
816 		base = ktime_add(tk->tkr_mono.base, *offset);
817 
818 	} while (read_seqcount_retry(&tk_core.seq, seq));
819 
820 	return base;
821 
822 }
823 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
824 
825 /**
826  * ktime_mono_to_any() - convert mononotic time to any other time
827  * @tmono:	time to convert.
828  * @offs:	which offset to use
829  */
830 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
831 {
832 	ktime_t *offset = offsets[offs];
833 	unsigned int seq;
834 	ktime_t tconv;
835 
836 	do {
837 		seq = read_seqcount_begin(&tk_core.seq);
838 		tconv = ktime_add(tmono, *offset);
839 	} while (read_seqcount_retry(&tk_core.seq, seq));
840 
841 	return tconv;
842 }
843 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
844 
845 /**
846  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
847  */
848 ktime_t ktime_get_raw(void)
849 {
850 	struct timekeeper *tk = &tk_core.timekeeper;
851 	unsigned int seq;
852 	ktime_t base;
853 	u64 nsecs;
854 
855 	do {
856 		seq = read_seqcount_begin(&tk_core.seq);
857 		base = tk->tkr_raw.base;
858 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
859 
860 	} while (read_seqcount_retry(&tk_core.seq, seq));
861 
862 	return ktime_add_ns(base, nsecs);
863 }
864 EXPORT_SYMBOL_GPL(ktime_get_raw);
865 
866 /**
867  * ktime_get_ts64 - get the monotonic clock in timespec64 format
868  * @ts:		pointer to timespec variable
869  *
870  * The function calculates the monotonic clock from the realtime
871  * clock and the wall_to_monotonic offset and stores the result
872  * in normalized timespec64 format in the variable pointed to by @ts.
873  */
874 void ktime_get_ts64(struct timespec64 *ts)
875 {
876 	struct timekeeper *tk = &tk_core.timekeeper;
877 	struct timespec64 tomono;
878 	unsigned int seq;
879 	u64 nsec;
880 
881 	WARN_ON(timekeeping_suspended);
882 
883 	do {
884 		seq = read_seqcount_begin(&tk_core.seq);
885 		ts->tv_sec = tk->xtime_sec;
886 		nsec = timekeeping_get_ns(&tk->tkr_mono);
887 		tomono = tk->wall_to_monotonic;
888 
889 	} while (read_seqcount_retry(&tk_core.seq, seq));
890 
891 	ts->tv_sec += tomono.tv_sec;
892 	ts->tv_nsec = 0;
893 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
894 }
895 EXPORT_SYMBOL_GPL(ktime_get_ts64);
896 
897 /**
898  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
899  *
900  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
901  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
902  * works on both 32 and 64 bit systems. On 32 bit systems the readout
903  * covers ~136 years of uptime which should be enough to prevent
904  * premature wrap arounds.
905  */
906 time64_t ktime_get_seconds(void)
907 {
908 	struct timekeeper *tk = &tk_core.timekeeper;
909 
910 	WARN_ON(timekeeping_suspended);
911 	return tk->ktime_sec;
912 }
913 EXPORT_SYMBOL_GPL(ktime_get_seconds);
914 
915 /**
916  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
917  *
918  * Returns the wall clock seconds since 1970. This replaces the
919  * get_seconds() interface which is not y2038 safe on 32bit systems.
920  *
921  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
922  * 32bit systems the access must be protected with the sequence
923  * counter to provide "atomic" access to the 64bit tk->xtime_sec
924  * value.
925  */
926 time64_t ktime_get_real_seconds(void)
927 {
928 	struct timekeeper *tk = &tk_core.timekeeper;
929 	time64_t seconds;
930 	unsigned int seq;
931 
932 	if (IS_ENABLED(CONFIG_64BIT))
933 		return tk->xtime_sec;
934 
935 	do {
936 		seq = read_seqcount_begin(&tk_core.seq);
937 		seconds = tk->xtime_sec;
938 
939 	} while (read_seqcount_retry(&tk_core.seq, seq));
940 
941 	return seconds;
942 }
943 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
944 
945 /**
946  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
947  * but without the sequence counter protect. This internal function
948  * is called just when timekeeping lock is already held.
949  */
950 time64_t __ktime_get_real_seconds(void)
951 {
952 	struct timekeeper *tk = &tk_core.timekeeper;
953 
954 	return tk->xtime_sec;
955 }
956 
957 /**
958  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
959  * @systime_snapshot:	pointer to struct receiving the system time snapshot
960  */
961 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
962 {
963 	struct timekeeper *tk = &tk_core.timekeeper;
964 	unsigned int seq;
965 	ktime_t base_raw;
966 	ktime_t base_real;
967 	u64 nsec_raw;
968 	u64 nsec_real;
969 	u64 now;
970 
971 	WARN_ON_ONCE(timekeeping_suspended);
972 
973 	do {
974 		seq = read_seqcount_begin(&tk_core.seq);
975 		now = tk_clock_read(&tk->tkr_mono);
976 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
977 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
978 		base_real = ktime_add(tk->tkr_mono.base,
979 				      tk_core.timekeeper.offs_real);
980 		base_raw = tk->tkr_raw.base;
981 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
982 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
983 	} while (read_seqcount_retry(&tk_core.seq, seq));
984 
985 	systime_snapshot->cycles = now;
986 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
987 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
988 }
989 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
990 
991 /* Scale base by mult/div checking for overflow */
992 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
993 {
994 	u64 tmp, rem;
995 
996 	tmp = div64_u64_rem(*base, div, &rem);
997 
998 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
999 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1000 		return -EOVERFLOW;
1001 	tmp *= mult;
1002 	rem *= mult;
1003 
1004 	do_div(rem, div);
1005 	*base = tmp + rem;
1006 	return 0;
1007 }
1008 
1009 /**
1010  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1011  * @history:			Snapshot representing start of history
1012  * @partial_history_cycles:	Cycle offset into history (fractional part)
1013  * @total_history_cycles:	Total history length in cycles
1014  * @discontinuity:		True indicates clock was set on history period
1015  * @ts:				Cross timestamp that should be adjusted using
1016  *	partial/total ratio
1017  *
1018  * Helper function used by get_device_system_crosststamp() to correct the
1019  * crosstimestamp corresponding to the start of the current interval to the
1020  * system counter value (timestamp point) provided by the driver. The
1021  * total_history_* quantities are the total history starting at the provided
1022  * reference point and ending at the start of the current interval. The cycle
1023  * count between the driver timestamp point and the start of the current
1024  * interval is partial_history_cycles.
1025  */
1026 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1027 					 u64 partial_history_cycles,
1028 					 u64 total_history_cycles,
1029 					 bool discontinuity,
1030 					 struct system_device_crosststamp *ts)
1031 {
1032 	struct timekeeper *tk = &tk_core.timekeeper;
1033 	u64 corr_raw, corr_real;
1034 	bool interp_forward;
1035 	int ret;
1036 
1037 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1038 		return 0;
1039 
1040 	/* Interpolate shortest distance from beginning or end of history */
1041 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1042 	partial_history_cycles = interp_forward ?
1043 		total_history_cycles - partial_history_cycles :
1044 		partial_history_cycles;
1045 
1046 	/*
1047 	 * Scale the monotonic raw time delta by:
1048 	 *	partial_history_cycles / total_history_cycles
1049 	 */
1050 	corr_raw = (u64)ktime_to_ns(
1051 		ktime_sub(ts->sys_monoraw, history->raw));
1052 	ret = scale64_check_overflow(partial_history_cycles,
1053 				     total_history_cycles, &corr_raw);
1054 	if (ret)
1055 		return ret;
1056 
1057 	/*
1058 	 * If there is a discontinuity in the history, scale monotonic raw
1059 	 *	correction by:
1060 	 *	mult(real)/mult(raw) yielding the realtime correction
1061 	 * Otherwise, calculate the realtime correction similar to monotonic
1062 	 *	raw calculation
1063 	 */
1064 	if (discontinuity) {
1065 		corr_real = mul_u64_u32_div
1066 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1067 	} else {
1068 		corr_real = (u64)ktime_to_ns(
1069 			ktime_sub(ts->sys_realtime, history->real));
1070 		ret = scale64_check_overflow(partial_history_cycles,
1071 					     total_history_cycles, &corr_real);
1072 		if (ret)
1073 			return ret;
1074 	}
1075 
1076 	/* Fixup monotonic raw and real time time values */
1077 	if (interp_forward) {
1078 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1079 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1080 	} else {
1081 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1082 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 /*
1089  * cycle_between - true if test occurs chronologically between before and after
1090  */
1091 static bool cycle_between(u64 before, u64 test, u64 after)
1092 {
1093 	if (test > before && test < after)
1094 		return true;
1095 	if (test < before && before > after)
1096 		return true;
1097 	return false;
1098 }
1099 
1100 /**
1101  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1102  * @get_time_fn:	Callback to get simultaneous device time and
1103  *	system counter from the device driver
1104  * @ctx:		Context passed to get_time_fn()
1105  * @history_begin:	Historical reference point used to interpolate system
1106  *	time when counter provided by the driver is before the current interval
1107  * @xtstamp:		Receives simultaneously captured system and device time
1108  *
1109  * Reads a timestamp from a device and correlates it to system time
1110  */
1111 int get_device_system_crosststamp(int (*get_time_fn)
1112 				  (ktime_t *device_time,
1113 				   struct system_counterval_t *sys_counterval,
1114 				   void *ctx),
1115 				  void *ctx,
1116 				  struct system_time_snapshot *history_begin,
1117 				  struct system_device_crosststamp *xtstamp)
1118 {
1119 	struct system_counterval_t system_counterval;
1120 	struct timekeeper *tk = &tk_core.timekeeper;
1121 	u64 cycles, now, interval_start;
1122 	unsigned int clock_was_set_seq = 0;
1123 	ktime_t base_real, base_raw;
1124 	u64 nsec_real, nsec_raw;
1125 	u8 cs_was_changed_seq;
1126 	unsigned int seq;
1127 	bool do_interp;
1128 	int ret;
1129 
1130 	do {
1131 		seq = read_seqcount_begin(&tk_core.seq);
1132 		/*
1133 		 * Try to synchronously capture device time and a system
1134 		 * counter value calling back into the device driver
1135 		 */
1136 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1137 		if (ret)
1138 			return ret;
1139 
1140 		/*
1141 		 * Verify that the clocksource associated with the captured
1142 		 * system counter value is the same as the currently installed
1143 		 * timekeeper clocksource
1144 		 */
1145 		if (tk->tkr_mono.clock != system_counterval.cs)
1146 			return -ENODEV;
1147 		cycles = system_counterval.cycles;
1148 
1149 		/*
1150 		 * Check whether the system counter value provided by the
1151 		 * device driver is on the current timekeeping interval.
1152 		 */
1153 		now = tk_clock_read(&tk->tkr_mono);
1154 		interval_start = tk->tkr_mono.cycle_last;
1155 		if (!cycle_between(interval_start, cycles, now)) {
1156 			clock_was_set_seq = tk->clock_was_set_seq;
1157 			cs_was_changed_seq = tk->cs_was_changed_seq;
1158 			cycles = interval_start;
1159 			do_interp = true;
1160 		} else {
1161 			do_interp = false;
1162 		}
1163 
1164 		base_real = ktime_add(tk->tkr_mono.base,
1165 				      tk_core.timekeeper.offs_real);
1166 		base_raw = tk->tkr_raw.base;
1167 
1168 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1169 						     system_counterval.cycles);
1170 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1171 						    system_counterval.cycles);
1172 	} while (read_seqcount_retry(&tk_core.seq, seq));
1173 
1174 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1175 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1176 
1177 	/*
1178 	 * Interpolate if necessary, adjusting back from the start of the
1179 	 * current interval
1180 	 */
1181 	if (do_interp) {
1182 		u64 partial_history_cycles, total_history_cycles;
1183 		bool discontinuity;
1184 
1185 		/*
1186 		 * Check that the counter value occurs after the provided
1187 		 * history reference and that the history doesn't cross a
1188 		 * clocksource change
1189 		 */
1190 		if (!history_begin ||
1191 		    !cycle_between(history_begin->cycles,
1192 				   system_counterval.cycles, cycles) ||
1193 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1194 			return -EINVAL;
1195 		partial_history_cycles = cycles - system_counterval.cycles;
1196 		total_history_cycles = cycles - history_begin->cycles;
1197 		discontinuity =
1198 			history_begin->clock_was_set_seq != clock_was_set_seq;
1199 
1200 		ret = adjust_historical_crosststamp(history_begin,
1201 						    partial_history_cycles,
1202 						    total_history_cycles,
1203 						    discontinuity, xtstamp);
1204 		if (ret)
1205 			return ret;
1206 	}
1207 
1208 	return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1211 
1212 /**
1213  * do_settimeofday64 - Sets the time of day.
1214  * @ts:     pointer to the timespec64 variable containing the new time
1215  *
1216  * Sets the time of day to the new time and update NTP and notify hrtimers
1217  */
1218 int do_settimeofday64(const struct timespec64 *ts)
1219 {
1220 	struct timekeeper *tk = &tk_core.timekeeper;
1221 	struct timespec64 ts_delta, xt;
1222 	unsigned long flags;
1223 	int ret = 0;
1224 
1225 	if (!timespec64_valid_settod(ts))
1226 		return -EINVAL;
1227 
1228 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1229 	write_seqcount_begin(&tk_core.seq);
1230 
1231 	timekeeping_forward_now(tk);
1232 
1233 	xt = tk_xtime(tk);
1234 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1235 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1236 
1237 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1238 		ret = -EINVAL;
1239 		goto out;
1240 	}
1241 
1242 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1243 
1244 	tk_set_xtime(tk, ts);
1245 out:
1246 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1247 
1248 	write_seqcount_end(&tk_core.seq);
1249 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1250 
1251 	/* signal hrtimers about time change */
1252 	clock_was_set();
1253 
1254 	if (!ret)
1255 		audit_tk_injoffset(ts_delta);
1256 
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL(do_settimeofday64);
1260 
1261 /**
1262  * timekeeping_inject_offset - Adds or subtracts from the current time.
1263  * @tv:		pointer to the timespec variable containing the offset
1264  *
1265  * Adds or subtracts an offset value from the current time.
1266  */
1267 static int timekeeping_inject_offset(const struct timespec64 *ts)
1268 {
1269 	struct timekeeper *tk = &tk_core.timekeeper;
1270 	unsigned long flags;
1271 	struct timespec64 tmp;
1272 	int ret = 0;
1273 
1274 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1275 		return -EINVAL;
1276 
1277 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1278 	write_seqcount_begin(&tk_core.seq);
1279 
1280 	timekeeping_forward_now(tk);
1281 
1282 	/* Make sure the proposed value is valid */
1283 	tmp = timespec64_add(tk_xtime(tk), *ts);
1284 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1285 	    !timespec64_valid_settod(&tmp)) {
1286 		ret = -EINVAL;
1287 		goto error;
1288 	}
1289 
1290 	tk_xtime_add(tk, ts);
1291 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1292 
1293 error: /* even if we error out, we forwarded the time, so call update */
1294 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1295 
1296 	write_seqcount_end(&tk_core.seq);
1297 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1298 
1299 	/* signal hrtimers about time change */
1300 	clock_was_set();
1301 
1302 	return ret;
1303 }
1304 
1305 /*
1306  * Indicates if there is an offset between the system clock and the hardware
1307  * clock/persistent clock/rtc.
1308  */
1309 int persistent_clock_is_local;
1310 
1311 /*
1312  * Adjust the time obtained from the CMOS to be UTC time instead of
1313  * local time.
1314  *
1315  * This is ugly, but preferable to the alternatives.  Otherwise we
1316  * would either need to write a program to do it in /etc/rc (and risk
1317  * confusion if the program gets run more than once; it would also be
1318  * hard to make the program warp the clock precisely n hours)  or
1319  * compile in the timezone information into the kernel.  Bad, bad....
1320  *
1321  *						- TYT, 1992-01-01
1322  *
1323  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1324  * as real UNIX machines always do it. This avoids all headaches about
1325  * daylight saving times and warping kernel clocks.
1326  */
1327 void timekeeping_warp_clock(void)
1328 {
1329 	if (sys_tz.tz_minuteswest != 0) {
1330 		struct timespec64 adjust;
1331 
1332 		persistent_clock_is_local = 1;
1333 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1334 		adjust.tv_nsec = 0;
1335 		timekeeping_inject_offset(&adjust);
1336 	}
1337 }
1338 
1339 /**
1340  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1341  *
1342  */
1343 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1344 {
1345 	tk->tai_offset = tai_offset;
1346 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1347 }
1348 
1349 /**
1350  * change_clocksource - Swaps clocksources if a new one is available
1351  *
1352  * Accumulates current time interval and initializes new clocksource
1353  */
1354 static int change_clocksource(void *data)
1355 {
1356 	struct timekeeper *tk = &tk_core.timekeeper;
1357 	struct clocksource *new, *old;
1358 	unsigned long flags;
1359 
1360 	new = (struct clocksource *) data;
1361 
1362 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1363 	write_seqcount_begin(&tk_core.seq);
1364 
1365 	timekeeping_forward_now(tk);
1366 	/*
1367 	 * If the cs is in module, get a module reference. Succeeds
1368 	 * for built-in code (owner == NULL) as well.
1369 	 */
1370 	if (try_module_get(new->owner)) {
1371 		if (!new->enable || new->enable(new) == 0) {
1372 			old = tk->tkr_mono.clock;
1373 			tk_setup_internals(tk, new);
1374 			if (old->disable)
1375 				old->disable(old);
1376 			module_put(old->owner);
1377 		} else {
1378 			module_put(new->owner);
1379 		}
1380 	}
1381 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1382 
1383 	write_seqcount_end(&tk_core.seq);
1384 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1385 
1386 	return 0;
1387 }
1388 
1389 /**
1390  * timekeeping_notify - Install a new clock source
1391  * @clock:		pointer to the clock source
1392  *
1393  * This function is called from clocksource.c after a new, better clock
1394  * source has been registered. The caller holds the clocksource_mutex.
1395  */
1396 int timekeeping_notify(struct clocksource *clock)
1397 {
1398 	struct timekeeper *tk = &tk_core.timekeeper;
1399 
1400 	if (tk->tkr_mono.clock == clock)
1401 		return 0;
1402 	stop_machine(change_clocksource, clock, NULL);
1403 	tick_clock_notify();
1404 	return tk->tkr_mono.clock == clock ? 0 : -1;
1405 }
1406 
1407 /**
1408  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1409  * @ts:		pointer to the timespec64 to be set
1410  *
1411  * Returns the raw monotonic time (completely un-modified by ntp)
1412  */
1413 void ktime_get_raw_ts64(struct timespec64 *ts)
1414 {
1415 	struct timekeeper *tk = &tk_core.timekeeper;
1416 	unsigned int seq;
1417 	u64 nsecs;
1418 
1419 	do {
1420 		seq = read_seqcount_begin(&tk_core.seq);
1421 		ts->tv_sec = tk->raw_sec;
1422 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1423 
1424 	} while (read_seqcount_retry(&tk_core.seq, seq));
1425 
1426 	ts->tv_nsec = 0;
1427 	timespec64_add_ns(ts, nsecs);
1428 }
1429 EXPORT_SYMBOL(ktime_get_raw_ts64);
1430 
1431 
1432 /**
1433  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1434  */
1435 int timekeeping_valid_for_hres(void)
1436 {
1437 	struct timekeeper *tk = &tk_core.timekeeper;
1438 	unsigned int seq;
1439 	int ret;
1440 
1441 	do {
1442 		seq = read_seqcount_begin(&tk_core.seq);
1443 
1444 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1445 
1446 	} while (read_seqcount_retry(&tk_core.seq, seq));
1447 
1448 	return ret;
1449 }
1450 
1451 /**
1452  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1453  */
1454 u64 timekeeping_max_deferment(void)
1455 {
1456 	struct timekeeper *tk = &tk_core.timekeeper;
1457 	unsigned int seq;
1458 	u64 ret;
1459 
1460 	do {
1461 		seq = read_seqcount_begin(&tk_core.seq);
1462 
1463 		ret = tk->tkr_mono.clock->max_idle_ns;
1464 
1465 	} while (read_seqcount_retry(&tk_core.seq, seq));
1466 
1467 	return ret;
1468 }
1469 
1470 /**
1471  * read_persistent_clock64 -  Return time from the persistent clock.
1472  *
1473  * Weak dummy function for arches that do not yet support it.
1474  * Reads the time from the battery backed persistent clock.
1475  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1476  *
1477  *  XXX - Do be sure to remove it once all arches implement it.
1478  */
1479 void __weak read_persistent_clock64(struct timespec64 *ts)
1480 {
1481 	ts->tv_sec = 0;
1482 	ts->tv_nsec = 0;
1483 }
1484 
1485 /**
1486  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1487  *                                        from the boot.
1488  *
1489  * Weak dummy function for arches that do not yet support it.
1490  * wall_time	- current time as returned by persistent clock
1491  * boot_offset	- offset that is defined as wall_time - boot_time
1492  * The default function calculates offset based on the current value of
1493  * local_clock(). This way architectures that support sched_clock() but don't
1494  * support dedicated boot time clock will provide the best estimate of the
1495  * boot time.
1496  */
1497 void __weak __init
1498 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1499 				     struct timespec64 *boot_offset)
1500 {
1501 	read_persistent_clock64(wall_time);
1502 	*boot_offset = ns_to_timespec64(local_clock());
1503 }
1504 
1505 /*
1506  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1507  *
1508  * The flag starts of false and is only set when a suspend reaches
1509  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1510  * timekeeper clocksource is not stopping across suspend and has been
1511  * used to update sleep time. If the timekeeper clocksource has stopped
1512  * then the flag stays true and is used by the RTC resume code to decide
1513  * whether sleeptime must be injected and if so the flag gets false then.
1514  *
1515  * If a suspend fails before reaching timekeeping_resume() then the flag
1516  * stays false and prevents erroneous sleeptime injection.
1517  */
1518 static bool suspend_timing_needed;
1519 
1520 /* Flag for if there is a persistent clock on this platform */
1521 static bool persistent_clock_exists;
1522 
1523 /*
1524  * timekeeping_init - Initializes the clocksource and common timekeeping values
1525  */
1526 void __init timekeeping_init(void)
1527 {
1528 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1529 	struct timekeeper *tk = &tk_core.timekeeper;
1530 	struct clocksource *clock;
1531 	unsigned long flags;
1532 
1533 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1534 	if (timespec64_valid_settod(&wall_time) &&
1535 	    timespec64_to_ns(&wall_time) > 0) {
1536 		persistent_clock_exists = true;
1537 	} else if (timespec64_to_ns(&wall_time) != 0) {
1538 		pr_warn("Persistent clock returned invalid value");
1539 		wall_time = (struct timespec64){0};
1540 	}
1541 
1542 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1543 		boot_offset = (struct timespec64){0};
1544 
1545 	/*
1546 	 * We want set wall_to_mono, so the following is true:
1547 	 * wall time + wall_to_mono = boot time
1548 	 */
1549 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1550 
1551 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1552 	write_seqcount_begin(&tk_core.seq);
1553 	ntp_init();
1554 
1555 	clock = clocksource_default_clock();
1556 	if (clock->enable)
1557 		clock->enable(clock);
1558 	tk_setup_internals(tk, clock);
1559 
1560 	tk_set_xtime(tk, &wall_time);
1561 	tk->raw_sec = 0;
1562 
1563 	tk_set_wall_to_mono(tk, wall_to_mono);
1564 
1565 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1566 
1567 	write_seqcount_end(&tk_core.seq);
1568 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1569 }
1570 
1571 /* time in seconds when suspend began for persistent clock */
1572 static struct timespec64 timekeeping_suspend_time;
1573 
1574 /**
1575  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1576  * @delta: pointer to a timespec delta value
1577  *
1578  * Takes a timespec offset measuring a suspend interval and properly
1579  * adds the sleep offset to the timekeeping variables.
1580  */
1581 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1582 					   const struct timespec64 *delta)
1583 {
1584 	if (!timespec64_valid_strict(delta)) {
1585 		printk_deferred(KERN_WARNING
1586 				"__timekeeping_inject_sleeptime: Invalid "
1587 				"sleep delta value!\n");
1588 		return;
1589 	}
1590 	tk_xtime_add(tk, delta);
1591 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1592 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1593 	tk_debug_account_sleep_time(delta);
1594 }
1595 
1596 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1597 /**
1598  * We have three kinds of time sources to use for sleep time
1599  * injection, the preference order is:
1600  * 1) non-stop clocksource
1601  * 2) persistent clock (ie: RTC accessible when irqs are off)
1602  * 3) RTC
1603  *
1604  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1605  * If system has neither 1) nor 2), 3) will be used finally.
1606  *
1607  *
1608  * If timekeeping has injected sleeptime via either 1) or 2),
1609  * 3) becomes needless, so in this case we don't need to call
1610  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1611  * means.
1612  */
1613 bool timekeeping_rtc_skipresume(void)
1614 {
1615 	return !suspend_timing_needed;
1616 }
1617 
1618 /**
1619  * 1) can be determined whether to use or not only when doing
1620  * timekeeping_resume() which is invoked after rtc_suspend(),
1621  * so we can't skip rtc_suspend() surely if system has 1).
1622  *
1623  * But if system has 2), 2) will definitely be used, so in this
1624  * case we don't need to call rtc_suspend(), and this is what
1625  * timekeeping_rtc_skipsuspend() means.
1626  */
1627 bool timekeeping_rtc_skipsuspend(void)
1628 {
1629 	return persistent_clock_exists;
1630 }
1631 
1632 /**
1633  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1634  * @delta: pointer to a timespec64 delta value
1635  *
1636  * This hook is for architectures that cannot support read_persistent_clock64
1637  * because their RTC/persistent clock is only accessible when irqs are enabled.
1638  * and also don't have an effective nonstop clocksource.
1639  *
1640  * This function should only be called by rtc_resume(), and allows
1641  * a suspend offset to be injected into the timekeeping values.
1642  */
1643 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1644 {
1645 	struct timekeeper *tk = &tk_core.timekeeper;
1646 	unsigned long flags;
1647 
1648 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1649 	write_seqcount_begin(&tk_core.seq);
1650 
1651 	suspend_timing_needed = false;
1652 
1653 	timekeeping_forward_now(tk);
1654 
1655 	__timekeeping_inject_sleeptime(tk, delta);
1656 
1657 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1658 
1659 	write_seqcount_end(&tk_core.seq);
1660 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1661 
1662 	/* signal hrtimers about time change */
1663 	clock_was_set();
1664 }
1665 #endif
1666 
1667 /**
1668  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1669  */
1670 void timekeeping_resume(void)
1671 {
1672 	struct timekeeper *tk = &tk_core.timekeeper;
1673 	struct clocksource *clock = tk->tkr_mono.clock;
1674 	unsigned long flags;
1675 	struct timespec64 ts_new, ts_delta;
1676 	u64 cycle_now, nsec;
1677 	bool inject_sleeptime = false;
1678 
1679 	read_persistent_clock64(&ts_new);
1680 
1681 	clockevents_resume();
1682 	clocksource_resume();
1683 
1684 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1685 	write_seqcount_begin(&tk_core.seq);
1686 
1687 	/*
1688 	 * After system resumes, we need to calculate the suspended time and
1689 	 * compensate it for the OS time. There are 3 sources that could be
1690 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1691 	 * device.
1692 	 *
1693 	 * One specific platform may have 1 or 2 or all of them, and the
1694 	 * preference will be:
1695 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1696 	 * The less preferred source will only be tried if there is no better
1697 	 * usable source. The rtc part is handled separately in rtc core code.
1698 	 */
1699 	cycle_now = tk_clock_read(&tk->tkr_mono);
1700 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1701 	if (nsec > 0) {
1702 		ts_delta = ns_to_timespec64(nsec);
1703 		inject_sleeptime = true;
1704 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1705 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1706 		inject_sleeptime = true;
1707 	}
1708 
1709 	if (inject_sleeptime) {
1710 		suspend_timing_needed = false;
1711 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1712 	}
1713 
1714 	/* Re-base the last cycle value */
1715 	tk->tkr_mono.cycle_last = cycle_now;
1716 	tk->tkr_raw.cycle_last  = cycle_now;
1717 
1718 	tk->ntp_error = 0;
1719 	timekeeping_suspended = 0;
1720 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1721 	write_seqcount_end(&tk_core.seq);
1722 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1723 
1724 	touch_softlockup_watchdog();
1725 
1726 	tick_resume();
1727 	hrtimers_resume();
1728 }
1729 
1730 int timekeeping_suspend(void)
1731 {
1732 	struct timekeeper *tk = &tk_core.timekeeper;
1733 	unsigned long flags;
1734 	struct timespec64		delta, delta_delta;
1735 	static struct timespec64	old_delta;
1736 	struct clocksource *curr_clock;
1737 	u64 cycle_now;
1738 
1739 	read_persistent_clock64(&timekeeping_suspend_time);
1740 
1741 	/*
1742 	 * On some systems the persistent_clock can not be detected at
1743 	 * timekeeping_init by its return value, so if we see a valid
1744 	 * value returned, update the persistent_clock_exists flag.
1745 	 */
1746 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1747 		persistent_clock_exists = true;
1748 
1749 	suspend_timing_needed = true;
1750 
1751 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1752 	write_seqcount_begin(&tk_core.seq);
1753 	timekeeping_forward_now(tk);
1754 	timekeeping_suspended = 1;
1755 
1756 	/*
1757 	 * Since we've called forward_now, cycle_last stores the value
1758 	 * just read from the current clocksource. Save this to potentially
1759 	 * use in suspend timing.
1760 	 */
1761 	curr_clock = tk->tkr_mono.clock;
1762 	cycle_now = tk->tkr_mono.cycle_last;
1763 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1764 
1765 	if (persistent_clock_exists) {
1766 		/*
1767 		 * To avoid drift caused by repeated suspend/resumes,
1768 		 * which each can add ~1 second drift error,
1769 		 * try to compensate so the difference in system time
1770 		 * and persistent_clock time stays close to constant.
1771 		 */
1772 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1773 		delta_delta = timespec64_sub(delta, old_delta);
1774 		if (abs(delta_delta.tv_sec) >= 2) {
1775 			/*
1776 			 * if delta_delta is too large, assume time correction
1777 			 * has occurred and set old_delta to the current delta.
1778 			 */
1779 			old_delta = delta;
1780 		} else {
1781 			/* Otherwise try to adjust old_system to compensate */
1782 			timekeeping_suspend_time =
1783 				timespec64_add(timekeeping_suspend_time, delta_delta);
1784 		}
1785 	}
1786 
1787 	timekeeping_update(tk, TK_MIRROR);
1788 	halt_fast_timekeeper(tk);
1789 	write_seqcount_end(&tk_core.seq);
1790 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1791 
1792 	tick_suspend();
1793 	clocksource_suspend();
1794 	clockevents_suspend();
1795 
1796 	return 0;
1797 }
1798 
1799 /* sysfs resume/suspend bits for timekeeping */
1800 static struct syscore_ops timekeeping_syscore_ops = {
1801 	.resume		= timekeeping_resume,
1802 	.suspend	= timekeeping_suspend,
1803 };
1804 
1805 static int __init timekeeping_init_ops(void)
1806 {
1807 	register_syscore_ops(&timekeeping_syscore_ops);
1808 	return 0;
1809 }
1810 device_initcall(timekeeping_init_ops);
1811 
1812 /*
1813  * Apply a multiplier adjustment to the timekeeper
1814  */
1815 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1816 							 s64 offset,
1817 							 s32 mult_adj)
1818 {
1819 	s64 interval = tk->cycle_interval;
1820 
1821 	if (mult_adj == 0) {
1822 		return;
1823 	} else if (mult_adj == -1) {
1824 		interval = -interval;
1825 		offset = -offset;
1826 	} else if (mult_adj != 1) {
1827 		interval *= mult_adj;
1828 		offset *= mult_adj;
1829 	}
1830 
1831 	/*
1832 	 * So the following can be confusing.
1833 	 *
1834 	 * To keep things simple, lets assume mult_adj == 1 for now.
1835 	 *
1836 	 * When mult_adj != 1, remember that the interval and offset values
1837 	 * have been appropriately scaled so the math is the same.
1838 	 *
1839 	 * The basic idea here is that we're increasing the multiplier
1840 	 * by one, this causes the xtime_interval to be incremented by
1841 	 * one cycle_interval. This is because:
1842 	 *	xtime_interval = cycle_interval * mult
1843 	 * So if mult is being incremented by one:
1844 	 *	xtime_interval = cycle_interval * (mult + 1)
1845 	 * Its the same as:
1846 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1847 	 * Which can be shortened to:
1848 	 *	xtime_interval += cycle_interval
1849 	 *
1850 	 * So offset stores the non-accumulated cycles. Thus the current
1851 	 * time (in shifted nanoseconds) is:
1852 	 *	now = (offset * adj) + xtime_nsec
1853 	 * Now, even though we're adjusting the clock frequency, we have
1854 	 * to keep time consistent. In other words, we can't jump back
1855 	 * in time, and we also want to avoid jumping forward in time.
1856 	 *
1857 	 * So given the same offset value, we need the time to be the same
1858 	 * both before and after the freq adjustment.
1859 	 *	now = (offset * adj_1) + xtime_nsec_1
1860 	 *	now = (offset * adj_2) + xtime_nsec_2
1861 	 * So:
1862 	 *	(offset * adj_1) + xtime_nsec_1 =
1863 	 *		(offset * adj_2) + xtime_nsec_2
1864 	 * And we know:
1865 	 *	adj_2 = adj_1 + 1
1866 	 * So:
1867 	 *	(offset * adj_1) + xtime_nsec_1 =
1868 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1869 	 *	(offset * adj_1) + xtime_nsec_1 =
1870 	 *		(offset * adj_1) + offset + xtime_nsec_2
1871 	 * Canceling the sides:
1872 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1873 	 * Which gives us:
1874 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1875 	 * Which simplfies to:
1876 	 *	xtime_nsec -= offset
1877 	 */
1878 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1879 		/* NTP adjustment caused clocksource mult overflow */
1880 		WARN_ON_ONCE(1);
1881 		return;
1882 	}
1883 
1884 	tk->tkr_mono.mult += mult_adj;
1885 	tk->xtime_interval += interval;
1886 	tk->tkr_mono.xtime_nsec -= offset;
1887 }
1888 
1889 /*
1890  * Adjust the timekeeper's multiplier to the correct frequency
1891  * and also to reduce the accumulated error value.
1892  */
1893 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1894 {
1895 	u32 mult;
1896 
1897 	/*
1898 	 * Determine the multiplier from the current NTP tick length.
1899 	 * Avoid expensive division when the tick length doesn't change.
1900 	 */
1901 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1902 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1903 	} else {
1904 		tk->ntp_tick = ntp_tick_length();
1905 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1906 				 tk->xtime_remainder, tk->cycle_interval);
1907 	}
1908 
1909 	/*
1910 	 * If the clock is behind the NTP time, increase the multiplier by 1
1911 	 * to catch up with it. If it's ahead and there was a remainder in the
1912 	 * tick division, the clock will slow down. Otherwise it will stay
1913 	 * ahead until the tick length changes to a non-divisible value.
1914 	 */
1915 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1916 	mult += tk->ntp_err_mult;
1917 
1918 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1919 
1920 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1921 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1922 			> tk->tkr_mono.clock->maxadj))) {
1923 		printk_once(KERN_WARNING
1924 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1925 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1926 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1927 	}
1928 
1929 	/*
1930 	 * It may be possible that when we entered this function, xtime_nsec
1931 	 * was very small.  Further, if we're slightly speeding the clocksource
1932 	 * in the code above, its possible the required corrective factor to
1933 	 * xtime_nsec could cause it to underflow.
1934 	 *
1935 	 * Now, since we have already accumulated the second and the NTP
1936 	 * subsystem has been notified via second_overflow(), we need to skip
1937 	 * the next update.
1938 	 */
1939 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1940 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1941 							tk->tkr_mono.shift;
1942 		tk->xtime_sec--;
1943 		tk->skip_second_overflow = 1;
1944 	}
1945 }
1946 
1947 /**
1948  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1949  *
1950  * Helper function that accumulates the nsecs greater than a second
1951  * from the xtime_nsec field to the xtime_secs field.
1952  * It also calls into the NTP code to handle leapsecond processing.
1953  *
1954  */
1955 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1956 {
1957 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1958 	unsigned int clock_set = 0;
1959 
1960 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1961 		int leap;
1962 
1963 		tk->tkr_mono.xtime_nsec -= nsecps;
1964 		tk->xtime_sec++;
1965 
1966 		/*
1967 		 * Skip NTP update if this second was accumulated before,
1968 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1969 		 */
1970 		if (unlikely(tk->skip_second_overflow)) {
1971 			tk->skip_second_overflow = 0;
1972 			continue;
1973 		}
1974 
1975 		/* Figure out if its a leap sec and apply if needed */
1976 		leap = second_overflow(tk->xtime_sec);
1977 		if (unlikely(leap)) {
1978 			struct timespec64 ts;
1979 
1980 			tk->xtime_sec += leap;
1981 
1982 			ts.tv_sec = leap;
1983 			ts.tv_nsec = 0;
1984 			tk_set_wall_to_mono(tk,
1985 				timespec64_sub(tk->wall_to_monotonic, ts));
1986 
1987 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1988 
1989 			clock_set = TK_CLOCK_WAS_SET;
1990 		}
1991 	}
1992 	return clock_set;
1993 }
1994 
1995 /**
1996  * logarithmic_accumulation - shifted accumulation of cycles
1997  *
1998  * This functions accumulates a shifted interval of cycles into
1999  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2000  * loop.
2001  *
2002  * Returns the unconsumed cycles.
2003  */
2004 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2005 				    u32 shift, unsigned int *clock_set)
2006 {
2007 	u64 interval = tk->cycle_interval << shift;
2008 	u64 snsec_per_sec;
2009 
2010 	/* If the offset is smaller than a shifted interval, do nothing */
2011 	if (offset < interval)
2012 		return offset;
2013 
2014 	/* Accumulate one shifted interval */
2015 	offset -= interval;
2016 	tk->tkr_mono.cycle_last += interval;
2017 	tk->tkr_raw.cycle_last  += interval;
2018 
2019 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2020 	*clock_set |= accumulate_nsecs_to_secs(tk);
2021 
2022 	/* Accumulate raw time */
2023 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2024 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2025 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2026 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2027 		tk->raw_sec++;
2028 	}
2029 
2030 	/* Accumulate error between NTP and clock interval */
2031 	tk->ntp_error += tk->ntp_tick << shift;
2032 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2033 						(tk->ntp_error_shift + shift);
2034 
2035 	return offset;
2036 }
2037 
2038 /*
2039  * timekeeping_advance - Updates the timekeeper to the current time and
2040  * current NTP tick length
2041  */
2042 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2043 {
2044 	struct timekeeper *real_tk = &tk_core.timekeeper;
2045 	struct timekeeper *tk = &shadow_timekeeper;
2046 	u64 offset;
2047 	int shift = 0, maxshift;
2048 	unsigned int clock_set = 0;
2049 	unsigned long flags;
2050 
2051 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2052 
2053 	/* Make sure we're fully resumed: */
2054 	if (unlikely(timekeeping_suspended))
2055 		goto out;
2056 
2057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2058 	offset = real_tk->cycle_interval;
2059 
2060 	if (mode != TK_ADV_TICK)
2061 		goto out;
2062 #else
2063 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2064 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2065 
2066 	/* Check if there's really nothing to do */
2067 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2068 		goto out;
2069 #endif
2070 
2071 	/* Do some additional sanity checking */
2072 	timekeeping_check_update(tk, offset);
2073 
2074 	/*
2075 	 * With NO_HZ we may have to accumulate many cycle_intervals
2076 	 * (think "ticks") worth of time at once. To do this efficiently,
2077 	 * we calculate the largest doubling multiple of cycle_intervals
2078 	 * that is smaller than the offset.  We then accumulate that
2079 	 * chunk in one go, and then try to consume the next smaller
2080 	 * doubled multiple.
2081 	 */
2082 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2083 	shift = max(0, shift);
2084 	/* Bound shift to one less than what overflows tick_length */
2085 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2086 	shift = min(shift, maxshift);
2087 	while (offset >= tk->cycle_interval) {
2088 		offset = logarithmic_accumulation(tk, offset, shift,
2089 							&clock_set);
2090 		if (offset < tk->cycle_interval<<shift)
2091 			shift--;
2092 	}
2093 
2094 	/* Adjust the multiplier to correct NTP error */
2095 	timekeeping_adjust(tk, offset);
2096 
2097 	/*
2098 	 * Finally, make sure that after the rounding
2099 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2100 	 */
2101 	clock_set |= accumulate_nsecs_to_secs(tk);
2102 
2103 	write_seqcount_begin(&tk_core.seq);
2104 	/*
2105 	 * Update the real timekeeper.
2106 	 *
2107 	 * We could avoid this memcpy by switching pointers, but that
2108 	 * requires changes to all other timekeeper usage sites as
2109 	 * well, i.e. move the timekeeper pointer getter into the
2110 	 * spinlocked/seqcount protected sections. And we trade this
2111 	 * memcpy under the tk_core.seq against one before we start
2112 	 * updating.
2113 	 */
2114 	timekeeping_update(tk, clock_set);
2115 	memcpy(real_tk, tk, sizeof(*tk));
2116 	/* The memcpy must come last. Do not put anything here! */
2117 	write_seqcount_end(&tk_core.seq);
2118 out:
2119 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2120 	if (clock_set)
2121 		/* Have to call _delayed version, since in irq context*/
2122 		clock_was_set_delayed();
2123 }
2124 
2125 /**
2126  * update_wall_time - Uses the current clocksource to increment the wall time
2127  *
2128  */
2129 void update_wall_time(void)
2130 {
2131 	timekeeping_advance(TK_ADV_TICK);
2132 }
2133 
2134 /**
2135  * getboottime64 - Return the real time of system boot.
2136  * @ts:		pointer to the timespec64 to be set
2137  *
2138  * Returns the wall-time of boot in a timespec64.
2139  *
2140  * This is based on the wall_to_monotonic offset and the total suspend
2141  * time. Calls to settimeofday will affect the value returned (which
2142  * basically means that however wrong your real time clock is at boot time,
2143  * you get the right time here).
2144  */
2145 void getboottime64(struct timespec64 *ts)
2146 {
2147 	struct timekeeper *tk = &tk_core.timekeeper;
2148 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2149 
2150 	*ts = ktime_to_timespec64(t);
2151 }
2152 EXPORT_SYMBOL_GPL(getboottime64);
2153 
2154 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2155 {
2156 	struct timekeeper *tk = &tk_core.timekeeper;
2157 	unsigned int seq;
2158 
2159 	do {
2160 		seq = read_seqcount_begin(&tk_core.seq);
2161 
2162 		*ts = tk_xtime(tk);
2163 	} while (read_seqcount_retry(&tk_core.seq, seq));
2164 }
2165 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2166 
2167 void ktime_get_coarse_ts64(struct timespec64 *ts)
2168 {
2169 	struct timekeeper *tk = &tk_core.timekeeper;
2170 	struct timespec64 now, mono;
2171 	unsigned int seq;
2172 
2173 	do {
2174 		seq = read_seqcount_begin(&tk_core.seq);
2175 
2176 		now = tk_xtime(tk);
2177 		mono = tk->wall_to_monotonic;
2178 	} while (read_seqcount_retry(&tk_core.seq, seq));
2179 
2180 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2181 				now.tv_nsec + mono.tv_nsec);
2182 }
2183 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2184 
2185 /*
2186  * Must hold jiffies_lock
2187  */
2188 void do_timer(unsigned long ticks)
2189 {
2190 	jiffies_64 += ticks;
2191 	calc_global_load(ticks);
2192 }
2193 
2194 /**
2195  * ktime_get_update_offsets_now - hrtimer helper
2196  * @cwsseq:	pointer to check and store the clock was set sequence number
2197  * @offs_real:	pointer to storage for monotonic -> realtime offset
2198  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2199  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2200  *
2201  * Returns current monotonic time and updates the offsets if the
2202  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2203  * different.
2204  *
2205  * Called from hrtimer_interrupt() or retrigger_next_event()
2206  */
2207 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2208 				     ktime_t *offs_boot, ktime_t *offs_tai)
2209 {
2210 	struct timekeeper *tk = &tk_core.timekeeper;
2211 	unsigned int seq;
2212 	ktime_t base;
2213 	u64 nsecs;
2214 
2215 	do {
2216 		seq = read_seqcount_begin(&tk_core.seq);
2217 
2218 		base = tk->tkr_mono.base;
2219 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2220 		base = ktime_add_ns(base, nsecs);
2221 
2222 		if (*cwsseq != tk->clock_was_set_seq) {
2223 			*cwsseq = tk->clock_was_set_seq;
2224 			*offs_real = tk->offs_real;
2225 			*offs_boot = tk->offs_boot;
2226 			*offs_tai = tk->offs_tai;
2227 		}
2228 
2229 		/* Handle leapsecond insertion adjustments */
2230 		if (unlikely(base >= tk->next_leap_ktime))
2231 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2232 
2233 	} while (read_seqcount_retry(&tk_core.seq, seq));
2234 
2235 	return base;
2236 }
2237 
2238 /**
2239  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2240  */
2241 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2242 {
2243 	if (txc->modes & ADJ_ADJTIME) {
2244 		/* singleshot must not be used with any other mode bits */
2245 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2246 			return -EINVAL;
2247 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2248 		    !capable(CAP_SYS_TIME))
2249 			return -EPERM;
2250 	} else {
2251 		/* In order to modify anything, you gotta be super-user! */
2252 		if (txc->modes && !capable(CAP_SYS_TIME))
2253 			return -EPERM;
2254 		/*
2255 		 * if the quartz is off by more than 10% then
2256 		 * something is VERY wrong!
2257 		 */
2258 		if (txc->modes & ADJ_TICK &&
2259 		    (txc->tick <  900000/USER_HZ ||
2260 		     txc->tick > 1100000/USER_HZ))
2261 			return -EINVAL;
2262 	}
2263 
2264 	if (txc->modes & ADJ_SETOFFSET) {
2265 		/* In order to inject time, you gotta be super-user! */
2266 		if (!capable(CAP_SYS_TIME))
2267 			return -EPERM;
2268 
2269 		/*
2270 		 * Validate if a timespec/timeval used to inject a time
2271 		 * offset is valid.  Offsets can be postive or negative, so
2272 		 * we don't check tv_sec. The value of the timeval/timespec
2273 		 * is the sum of its fields,but *NOTE*:
2274 		 * The field tv_usec/tv_nsec must always be non-negative and
2275 		 * we can't have more nanoseconds/microseconds than a second.
2276 		 */
2277 		if (txc->time.tv_usec < 0)
2278 			return -EINVAL;
2279 
2280 		if (txc->modes & ADJ_NANO) {
2281 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2282 				return -EINVAL;
2283 		} else {
2284 			if (txc->time.tv_usec >= USEC_PER_SEC)
2285 				return -EINVAL;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * Check for potential multiplication overflows that can
2291 	 * only happen on 64-bit systems:
2292 	 */
2293 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2294 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2295 			return -EINVAL;
2296 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2297 			return -EINVAL;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 
2304 /**
2305  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2306  */
2307 int do_adjtimex(struct __kernel_timex *txc)
2308 {
2309 	struct timekeeper *tk = &tk_core.timekeeper;
2310 	struct audit_ntp_data ad;
2311 	unsigned long flags;
2312 	struct timespec64 ts;
2313 	s32 orig_tai, tai;
2314 	int ret;
2315 
2316 	/* Validate the data before disabling interrupts */
2317 	ret = timekeeping_validate_timex(txc);
2318 	if (ret)
2319 		return ret;
2320 
2321 	if (txc->modes & ADJ_SETOFFSET) {
2322 		struct timespec64 delta;
2323 		delta.tv_sec  = txc->time.tv_sec;
2324 		delta.tv_nsec = txc->time.tv_usec;
2325 		if (!(txc->modes & ADJ_NANO))
2326 			delta.tv_nsec *= 1000;
2327 		ret = timekeeping_inject_offset(&delta);
2328 		if (ret)
2329 			return ret;
2330 
2331 		audit_tk_injoffset(delta);
2332 	}
2333 
2334 	audit_ntp_init(&ad);
2335 
2336 	ktime_get_real_ts64(&ts);
2337 
2338 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2339 	write_seqcount_begin(&tk_core.seq);
2340 
2341 	orig_tai = tai = tk->tai_offset;
2342 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2343 
2344 	if (tai != orig_tai) {
2345 		__timekeeping_set_tai_offset(tk, tai);
2346 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2347 	}
2348 	tk_update_leap_state(tk);
2349 
2350 	write_seqcount_end(&tk_core.seq);
2351 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2352 
2353 	audit_ntp_log(&ad);
2354 
2355 	/* Update the multiplier immediately if frequency was set directly */
2356 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2357 		timekeeping_advance(TK_ADV_FREQ);
2358 
2359 	if (tai != orig_tai)
2360 		clock_was_set();
2361 
2362 	ntp_notify_cmos_timer();
2363 
2364 	return ret;
2365 }
2366 
2367 #ifdef CONFIG_NTP_PPS
2368 /**
2369  * hardpps() - Accessor function to NTP __hardpps function
2370  */
2371 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2372 {
2373 	unsigned long flags;
2374 
2375 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2376 	write_seqcount_begin(&tk_core.seq);
2377 
2378 	__hardpps(phase_ts, raw_ts);
2379 
2380 	write_seqcount_end(&tk_core.seq);
2381 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2382 }
2383 EXPORT_SYMBOL(hardpps);
2384 #endif /* CONFIG_NTP_PPS */
2385 
2386 /**
2387  * xtime_update() - advances the timekeeping infrastructure
2388  * @ticks:	number of ticks, that have elapsed since the last call.
2389  *
2390  * Must be called with interrupts disabled.
2391  */
2392 void xtime_update(unsigned long ticks)
2393 {
2394 	write_seqlock(&jiffies_lock);
2395 	do_timer(ticks);
2396 	write_sequnlock(&jiffies_lock);
2397 	update_wall_time();
2398 }
2399