xref: /openbmc/linux/kernel/time/timekeeping.c (revision 174cd4b1)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28 
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32 
33 #define TK_CLEAR_NTP		(1 << 0)
34 #define TK_MIRROR		(1 << 1)
35 #define TK_CLOCK_WAS_SET	(1 << 2)
36 
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42 	seqcount_t		seq;
43 	struct timekeeper	timekeeper;
44 } tk_core ____cacheline_aligned;
45 
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48 
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:	Sequence counter for protecting updates. The lowest bit
52  *		is the index for the tk_read_base array
53  * @base:	tk_read_base array. Access is indexed by the lowest bit of
54  *		@seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59 	seqcount_t		seq;
60 	struct tk_read_base	base[2];
61 };
62 
63 static struct tk_fast tk_fast_mono ____cacheline_aligned;
64 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
65 
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended;
68 
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 		tk->xtime_sec++;
74 	}
75 }
76 
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 	struct timespec64 ts;
80 
81 	ts.tv_sec = tk->xtime_sec;
82 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
83 	return ts;
84 }
85 
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 	tk->xtime_sec = ts->tv_sec;
89 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 }
91 
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 	tk->xtime_sec += ts->tv_sec;
95 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
96 	tk_normalize_xtime(tk);
97 }
98 
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 	struct timespec64 tmp;
102 
103 	/*
104 	 * Verify consistency of: offset_real = -wall_to_monotonic
105 	 * before modifying anything
106 	 */
107 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 					-tk->wall_to_monotonic.tv_nsec);
109 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
110 	tk->wall_to_monotonic = wtm;
111 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 	tk->offs_real = timespec64_to_ktime(tmp);
113 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115 
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120 
121 #ifdef CONFIG_DEBUG_TIMEKEEPING
122 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
123 
124 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
125 {
126 
127 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
128 	const char *name = tk->tkr_mono.clock->name;
129 
130 	if (offset > max_cycles) {
131 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
132 				offset, name, max_cycles);
133 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
134 	} else {
135 		if (offset > (max_cycles >> 1)) {
136 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
137 					offset, name, max_cycles >> 1);
138 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
139 		}
140 	}
141 
142 	if (tk->underflow_seen) {
143 		if (jiffies - tk->last_warning > WARNING_FREQ) {
144 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
145 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
146 			printk_deferred("         Your kernel is probably still fine.\n");
147 			tk->last_warning = jiffies;
148 		}
149 		tk->underflow_seen = 0;
150 	}
151 
152 	if (tk->overflow_seen) {
153 		if (jiffies - tk->last_warning > WARNING_FREQ) {
154 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
155 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
156 			printk_deferred("         Your kernel is probably still fine.\n");
157 			tk->last_warning = jiffies;
158 		}
159 		tk->overflow_seen = 0;
160 	}
161 }
162 
163 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
164 {
165 	struct timekeeper *tk = &tk_core.timekeeper;
166 	u64 now, last, mask, max, delta;
167 	unsigned int seq;
168 
169 	/*
170 	 * Since we're called holding a seqlock, the data may shift
171 	 * under us while we're doing the calculation. This can cause
172 	 * false positives, since we'd note a problem but throw the
173 	 * results away. So nest another seqlock here to atomically
174 	 * grab the points we are checking with.
175 	 */
176 	do {
177 		seq = read_seqcount_begin(&tk_core.seq);
178 		now = tkr->read(tkr->clock);
179 		last = tkr->cycle_last;
180 		mask = tkr->mask;
181 		max = tkr->clock->max_cycles;
182 	} while (read_seqcount_retry(&tk_core.seq, seq));
183 
184 	delta = clocksource_delta(now, last, mask);
185 
186 	/*
187 	 * Try to catch underflows by checking if we are seeing small
188 	 * mask-relative negative values.
189 	 */
190 	if (unlikely((~delta & mask) < (mask >> 3))) {
191 		tk->underflow_seen = 1;
192 		delta = 0;
193 	}
194 
195 	/* Cap delta value to the max_cycles values to avoid mult overflows */
196 	if (unlikely(delta > max)) {
197 		tk->overflow_seen = 1;
198 		delta = tkr->clock->max_cycles;
199 	}
200 
201 	return delta;
202 }
203 #else
204 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
205 {
206 }
207 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
208 {
209 	u64 cycle_now, delta;
210 
211 	/* read clocksource */
212 	cycle_now = tkr->read(tkr->clock);
213 
214 	/* calculate the delta since the last update_wall_time */
215 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
216 
217 	return delta;
218 }
219 #endif
220 
221 /**
222  * tk_setup_internals - Set up internals to use clocksource clock.
223  *
224  * @tk:		The target timekeeper to setup.
225  * @clock:		Pointer to clocksource.
226  *
227  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
228  * pair and interval request.
229  *
230  * Unless you're the timekeeping code, you should not be using this!
231  */
232 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
233 {
234 	u64 interval;
235 	u64 tmp, ntpinterval;
236 	struct clocksource *old_clock;
237 
238 	++tk->cs_was_changed_seq;
239 	old_clock = tk->tkr_mono.clock;
240 	tk->tkr_mono.clock = clock;
241 	tk->tkr_mono.read = clock->read;
242 	tk->tkr_mono.mask = clock->mask;
243 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
244 
245 	tk->tkr_raw.clock = clock;
246 	tk->tkr_raw.read = clock->read;
247 	tk->tkr_raw.mask = clock->mask;
248 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
249 
250 	/* Do the ns -> cycle conversion first, using original mult */
251 	tmp = NTP_INTERVAL_LENGTH;
252 	tmp <<= clock->shift;
253 	ntpinterval = tmp;
254 	tmp += clock->mult/2;
255 	do_div(tmp, clock->mult);
256 	if (tmp == 0)
257 		tmp = 1;
258 
259 	interval = (u64) tmp;
260 	tk->cycle_interval = interval;
261 
262 	/* Go back from cycles -> shifted ns */
263 	tk->xtime_interval = interval * clock->mult;
264 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
265 	tk->raw_interval = (interval * clock->mult) >> clock->shift;
266 
267 	 /* if changing clocks, convert xtime_nsec shift units */
268 	if (old_clock) {
269 		int shift_change = clock->shift - old_clock->shift;
270 		if (shift_change < 0)
271 			tk->tkr_mono.xtime_nsec >>= -shift_change;
272 		else
273 			tk->tkr_mono.xtime_nsec <<= shift_change;
274 	}
275 	tk->tkr_raw.xtime_nsec = 0;
276 
277 	tk->tkr_mono.shift = clock->shift;
278 	tk->tkr_raw.shift = clock->shift;
279 
280 	tk->ntp_error = 0;
281 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
282 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
283 
284 	/*
285 	 * The timekeeper keeps its own mult values for the currently
286 	 * active clocksource. These value will be adjusted via NTP
287 	 * to counteract clock drifting.
288 	 */
289 	tk->tkr_mono.mult = clock->mult;
290 	tk->tkr_raw.mult = clock->mult;
291 	tk->ntp_err_mult = 0;
292 }
293 
294 /* Timekeeper helper functions. */
295 
296 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
297 static u32 default_arch_gettimeoffset(void) { return 0; }
298 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
299 #else
300 static inline u32 arch_gettimeoffset(void) { return 0; }
301 #endif
302 
303 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
304 {
305 	u64 nsec;
306 
307 	nsec = delta * tkr->mult + tkr->xtime_nsec;
308 	nsec >>= tkr->shift;
309 
310 	/* If arch requires, add in get_arch_timeoffset() */
311 	return nsec + arch_gettimeoffset();
312 }
313 
314 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316 	u64 delta;
317 
318 	delta = timekeeping_get_delta(tkr);
319 	return timekeeping_delta_to_ns(tkr, delta);
320 }
321 
322 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
323 {
324 	u64 delta;
325 
326 	/* calculate the delta since the last update_wall_time */
327 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
328 	return timekeeping_delta_to_ns(tkr, delta);
329 }
330 
331 /**
332  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333  * @tkr: Timekeeping readout base from which we take the update
334  *
335  * We want to use this from any context including NMI and tracing /
336  * instrumenting the timekeeping code itself.
337  *
338  * Employ the latch technique; see @raw_write_seqcount_latch.
339  *
340  * So if a NMI hits the update of base[0] then it will use base[1]
341  * which is still consistent. In the worst case this can result is a
342  * slightly wrong timestamp (a few nanoseconds). See
343  * @ktime_get_mono_fast_ns.
344  */
345 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
346 {
347 	struct tk_read_base *base = tkf->base;
348 
349 	/* Force readers off to base[1] */
350 	raw_write_seqcount_latch(&tkf->seq);
351 
352 	/* Update base[0] */
353 	memcpy(base, tkr, sizeof(*base));
354 
355 	/* Force readers back to base[0] */
356 	raw_write_seqcount_latch(&tkf->seq);
357 
358 	/* Update base[1] */
359 	memcpy(base + 1, base, sizeof(*base));
360 }
361 
362 /**
363  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
364  *
365  * This timestamp is not guaranteed to be monotonic across an update.
366  * The timestamp is calculated by:
367  *
368  *	now = base_mono + clock_delta * slope
369  *
370  * So if the update lowers the slope, readers who are forced to the
371  * not yet updated second array are still using the old steeper slope.
372  *
373  * tmono
374  * ^
375  * |    o  n
376  * |   o n
377  * |  u
378  * | o
379  * |o
380  * |12345678---> reader order
381  *
382  * o = old slope
383  * u = update
384  * n = new slope
385  *
386  * So reader 6 will observe time going backwards versus reader 5.
387  *
388  * While other CPUs are likely to be able observe that, the only way
389  * for a CPU local observation is when an NMI hits in the middle of
390  * the update. Timestamps taken from that NMI context might be ahead
391  * of the following timestamps. Callers need to be aware of that and
392  * deal with it.
393  */
394 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
395 {
396 	struct tk_read_base *tkr;
397 	unsigned int seq;
398 	u64 now;
399 
400 	do {
401 		seq = raw_read_seqcount_latch(&tkf->seq);
402 		tkr = tkf->base + (seq & 0x01);
403 		now = ktime_to_ns(tkr->base);
404 
405 		now += timekeeping_delta_to_ns(tkr,
406 				clocksource_delta(
407 					tkr->read(tkr->clock),
408 					tkr->cycle_last,
409 					tkr->mask));
410 	} while (read_seqcount_retry(&tkf->seq, seq));
411 
412 	return now;
413 }
414 
415 u64 ktime_get_mono_fast_ns(void)
416 {
417 	return __ktime_get_fast_ns(&tk_fast_mono);
418 }
419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
420 
421 u64 ktime_get_raw_fast_ns(void)
422 {
423 	return __ktime_get_fast_ns(&tk_fast_raw);
424 }
425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
426 
427 /**
428  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
429  *
430  * To keep it NMI safe since we're accessing from tracing, we're not using a
431  * separate timekeeper with updates to monotonic clock and boot offset
432  * protected with seqlocks. This has the following minor side effects:
433  *
434  * (1) Its possible that a timestamp be taken after the boot offset is updated
435  * but before the timekeeper is updated. If this happens, the new boot offset
436  * is added to the old timekeeping making the clock appear to update slightly
437  * earlier:
438  *    CPU 0                                        CPU 1
439  *    timekeeping_inject_sleeptime64()
440  *    __timekeeping_inject_sleeptime(tk, delta);
441  *                                                 timestamp();
442  *    timekeeping_update(tk, TK_CLEAR_NTP...);
443  *
444  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
445  * partially updated.  Since the tk->offs_boot update is a rare event, this
446  * should be a rare occurrence which postprocessing should be able to handle.
447  */
448 u64 notrace ktime_get_boot_fast_ns(void)
449 {
450 	struct timekeeper *tk = &tk_core.timekeeper;
451 
452 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
453 }
454 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
455 
456 /* Suspend-time cycles value for halted fast timekeeper. */
457 static u64 cycles_at_suspend;
458 
459 static u64 dummy_clock_read(struct clocksource *cs)
460 {
461 	return cycles_at_suspend;
462 }
463 
464 /**
465  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
466  * @tk: Timekeeper to snapshot.
467  *
468  * It generally is unsafe to access the clocksource after timekeeping has been
469  * suspended, so take a snapshot of the readout base of @tk and use it as the
470  * fast timekeeper's readout base while suspended.  It will return the same
471  * number of cycles every time until timekeeping is resumed at which time the
472  * proper readout base for the fast timekeeper will be restored automatically.
473  */
474 static void halt_fast_timekeeper(struct timekeeper *tk)
475 {
476 	static struct tk_read_base tkr_dummy;
477 	struct tk_read_base *tkr = &tk->tkr_mono;
478 
479 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
480 	cycles_at_suspend = tkr->read(tkr->clock);
481 	tkr_dummy.read = dummy_clock_read;
482 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
483 
484 	tkr = &tk->tkr_raw;
485 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
486 	tkr_dummy.read = dummy_clock_read;
487 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
488 }
489 
490 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
491 
492 static inline void update_vsyscall(struct timekeeper *tk)
493 {
494 	struct timespec xt, wm;
495 
496 	xt = timespec64_to_timespec(tk_xtime(tk));
497 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
498 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
499 			    tk->tkr_mono.cycle_last);
500 }
501 
502 static inline void old_vsyscall_fixup(struct timekeeper *tk)
503 {
504 	s64 remainder;
505 
506 	/*
507 	* Store only full nanoseconds into xtime_nsec after rounding
508 	* it up and add the remainder to the error difference.
509 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
510 	* by truncating the remainder in vsyscalls. However, it causes
511 	* additional work to be done in timekeeping_adjust(). Once
512 	* the vsyscall implementations are converted to use xtime_nsec
513 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
514 	* users are removed, this can be killed.
515 	*/
516 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
517 	if (remainder != 0) {
518 		tk->tkr_mono.xtime_nsec -= remainder;
519 		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
520 		tk->ntp_error += remainder << tk->ntp_error_shift;
521 		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
522 	}
523 }
524 #else
525 #define old_vsyscall_fixup(tk)
526 #endif
527 
528 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
529 
530 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
531 {
532 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
533 }
534 
535 /**
536  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
537  */
538 int pvclock_gtod_register_notifier(struct notifier_block *nb)
539 {
540 	struct timekeeper *tk = &tk_core.timekeeper;
541 	unsigned long flags;
542 	int ret;
543 
544 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
545 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
546 	update_pvclock_gtod(tk, true);
547 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
548 
549 	return ret;
550 }
551 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
552 
553 /**
554  * pvclock_gtod_unregister_notifier - unregister a pvclock
555  * timedata update listener
556  */
557 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
558 {
559 	unsigned long flags;
560 	int ret;
561 
562 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
563 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
564 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
565 
566 	return ret;
567 }
568 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
569 
570 /*
571  * tk_update_leap_state - helper to update the next_leap_ktime
572  */
573 static inline void tk_update_leap_state(struct timekeeper *tk)
574 {
575 	tk->next_leap_ktime = ntp_get_next_leap();
576 	if (tk->next_leap_ktime != KTIME_MAX)
577 		/* Convert to monotonic time */
578 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
579 }
580 
581 /*
582  * Update the ktime_t based scalar nsec members of the timekeeper
583  */
584 static inline void tk_update_ktime_data(struct timekeeper *tk)
585 {
586 	u64 seconds;
587 	u32 nsec;
588 
589 	/*
590 	 * The xtime based monotonic readout is:
591 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
592 	 * The ktime based monotonic readout is:
593 	 *	nsec = base_mono + now();
594 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
595 	 */
596 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
597 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
598 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
599 
600 	/* Update the monotonic raw base */
601 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
602 
603 	/*
604 	 * The sum of the nanoseconds portions of xtime and
605 	 * wall_to_monotonic can be greater/equal one second. Take
606 	 * this into account before updating tk->ktime_sec.
607 	 */
608 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
609 	if (nsec >= NSEC_PER_SEC)
610 		seconds++;
611 	tk->ktime_sec = seconds;
612 }
613 
614 /* must hold timekeeper_lock */
615 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
616 {
617 	if (action & TK_CLEAR_NTP) {
618 		tk->ntp_error = 0;
619 		ntp_clear();
620 	}
621 
622 	tk_update_leap_state(tk);
623 	tk_update_ktime_data(tk);
624 
625 	update_vsyscall(tk);
626 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
627 
628 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
629 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
630 
631 	if (action & TK_CLOCK_WAS_SET)
632 		tk->clock_was_set_seq++;
633 	/*
634 	 * The mirroring of the data to the shadow-timekeeper needs
635 	 * to happen last here to ensure we don't over-write the
636 	 * timekeeper structure on the next update with stale data
637 	 */
638 	if (action & TK_MIRROR)
639 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
640 		       sizeof(tk_core.timekeeper));
641 }
642 
643 /**
644  * timekeeping_forward_now - update clock to the current time
645  *
646  * Forward the current clock to update its state since the last call to
647  * update_wall_time(). This is useful before significant clock changes,
648  * as it avoids having to deal with this time offset explicitly.
649  */
650 static void timekeeping_forward_now(struct timekeeper *tk)
651 {
652 	struct clocksource *clock = tk->tkr_mono.clock;
653 	u64 cycle_now, delta;
654 	u64 nsec;
655 
656 	cycle_now = tk->tkr_mono.read(clock);
657 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
658 	tk->tkr_mono.cycle_last = cycle_now;
659 	tk->tkr_raw.cycle_last  = cycle_now;
660 
661 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
662 
663 	/* If arch requires, add in get_arch_timeoffset() */
664 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
665 
666 	tk_normalize_xtime(tk);
667 
668 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
669 	timespec64_add_ns(&tk->raw_time, nsec);
670 }
671 
672 /**
673  * __getnstimeofday64 - Returns the time of day in a timespec64.
674  * @ts:		pointer to the timespec to be set
675  *
676  * Updates the time of day in the timespec.
677  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
678  */
679 int __getnstimeofday64(struct timespec64 *ts)
680 {
681 	struct timekeeper *tk = &tk_core.timekeeper;
682 	unsigned long seq;
683 	u64 nsecs;
684 
685 	do {
686 		seq = read_seqcount_begin(&tk_core.seq);
687 
688 		ts->tv_sec = tk->xtime_sec;
689 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
690 
691 	} while (read_seqcount_retry(&tk_core.seq, seq));
692 
693 	ts->tv_nsec = 0;
694 	timespec64_add_ns(ts, nsecs);
695 
696 	/*
697 	 * Do not bail out early, in case there were callers still using
698 	 * the value, even in the face of the WARN_ON.
699 	 */
700 	if (unlikely(timekeeping_suspended))
701 		return -EAGAIN;
702 	return 0;
703 }
704 EXPORT_SYMBOL(__getnstimeofday64);
705 
706 /**
707  * getnstimeofday64 - Returns the time of day in a timespec64.
708  * @ts:		pointer to the timespec64 to be set
709  *
710  * Returns the time of day in a timespec64 (WARN if suspended).
711  */
712 void getnstimeofday64(struct timespec64 *ts)
713 {
714 	WARN_ON(__getnstimeofday64(ts));
715 }
716 EXPORT_SYMBOL(getnstimeofday64);
717 
718 ktime_t ktime_get(void)
719 {
720 	struct timekeeper *tk = &tk_core.timekeeper;
721 	unsigned int seq;
722 	ktime_t base;
723 	u64 nsecs;
724 
725 	WARN_ON(timekeeping_suspended);
726 
727 	do {
728 		seq = read_seqcount_begin(&tk_core.seq);
729 		base = tk->tkr_mono.base;
730 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
731 
732 	} while (read_seqcount_retry(&tk_core.seq, seq));
733 
734 	return ktime_add_ns(base, nsecs);
735 }
736 EXPORT_SYMBOL_GPL(ktime_get);
737 
738 u32 ktime_get_resolution_ns(void)
739 {
740 	struct timekeeper *tk = &tk_core.timekeeper;
741 	unsigned int seq;
742 	u32 nsecs;
743 
744 	WARN_ON(timekeeping_suspended);
745 
746 	do {
747 		seq = read_seqcount_begin(&tk_core.seq);
748 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
749 	} while (read_seqcount_retry(&tk_core.seq, seq));
750 
751 	return nsecs;
752 }
753 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
754 
755 static ktime_t *offsets[TK_OFFS_MAX] = {
756 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
757 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
758 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
759 };
760 
761 ktime_t ktime_get_with_offset(enum tk_offsets offs)
762 {
763 	struct timekeeper *tk = &tk_core.timekeeper;
764 	unsigned int seq;
765 	ktime_t base, *offset = offsets[offs];
766 	u64 nsecs;
767 
768 	WARN_ON(timekeeping_suspended);
769 
770 	do {
771 		seq = read_seqcount_begin(&tk_core.seq);
772 		base = ktime_add(tk->tkr_mono.base, *offset);
773 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
774 
775 	} while (read_seqcount_retry(&tk_core.seq, seq));
776 
777 	return ktime_add_ns(base, nsecs);
778 
779 }
780 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
781 
782 /**
783  * ktime_mono_to_any() - convert mononotic time to any other time
784  * @tmono:	time to convert.
785  * @offs:	which offset to use
786  */
787 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
788 {
789 	ktime_t *offset = offsets[offs];
790 	unsigned long seq;
791 	ktime_t tconv;
792 
793 	do {
794 		seq = read_seqcount_begin(&tk_core.seq);
795 		tconv = ktime_add(tmono, *offset);
796 	} while (read_seqcount_retry(&tk_core.seq, seq));
797 
798 	return tconv;
799 }
800 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
801 
802 /**
803  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
804  */
805 ktime_t ktime_get_raw(void)
806 {
807 	struct timekeeper *tk = &tk_core.timekeeper;
808 	unsigned int seq;
809 	ktime_t base;
810 	u64 nsecs;
811 
812 	do {
813 		seq = read_seqcount_begin(&tk_core.seq);
814 		base = tk->tkr_raw.base;
815 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
816 
817 	} while (read_seqcount_retry(&tk_core.seq, seq));
818 
819 	return ktime_add_ns(base, nsecs);
820 }
821 EXPORT_SYMBOL_GPL(ktime_get_raw);
822 
823 /**
824  * ktime_get_ts64 - get the monotonic clock in timespec64 format
825  * @ts:		pointer to timespec variable
826  *
827  * The function calculates the monotonic clock from the realtime
828  * clock and the wall_to_monotonic offset and stores the result
829  * in normalized timespec64 format in the variable pointed to by @ts.
830  */
831 void ktime_get_ts64(struct timespec64 *ts)
832 {
833 	struct timekeeper *tk = &tk_core.timekeeper;
834 	struct timespec64 tomono;
835 	unsigned int seq;
836 	u64 nsec;
837 
838 	WARN_ON(timekeeping_suspended);
839 
840 	do {
841 		seq = read_seqcount_begin(&tk_core.seq);
842 		ts->tv_sec = tk->xtime_sec;
843 		nsec = timekeeping_get_ns(&tk->tkr_mono);
844 		tomono = tk->wall_to_monotonic;
845 
846 	} while (read_seqcount_retry(&tk_core.seq, seq));
847 
848 	ts->tv_sec += tomono.tv_sec;
849 	ts->tv_nsec = 0;
850 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
851 }
852 EXPORT_SYMBOL_GPL(ktime_get_ts64);
853 
854 /**
855  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
856  *
857  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
858  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
859  * works on both 32 and 64 bit systems. On 32 bit systems the readout
860  * covers ~136 years of uptime which should be enough to prevent
861  * premature wrap arounds.
862  */
863 time64_t ktime_get_seconds(void)
864 {
865 	struct timekeeper *tk = &tk_core.timekeeper;
866 
867 	WARN_ON(timekeeping_suspended);
868 	return tk->ktime_sec;
869 }
870 EXPORT_SYMBOL_GPL(ktime_get_seconds);
871 
872 /**
873  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
874  *
875  * Returns the wall clock seconds since 1970. This replaces the
876  * get_seconds() interface which is not y2038 safe on 32bit systems.
877  *
878  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
879  * 32bit systems the access must be protected with the sequence
880  * counter to provide "atomic" access to the 64bit tk->xtime_sec
881  * value.
882  */
883 time64_t ktime_get_real_seconds(void)
884 {
885 	struct timekeeper *tk = &tk_core.timekeeper;
886 	time64_t seconds;
887 	unsigned int seq;
888 
889 	if (IS_ENABLED(CONFIG_64BIT))
890 		return tk->xtime_sec;
891 
892 	do {
893 		seq = read_seqcount_begin(&tk_core.seq);
894 		seconds = tk->xtime_sec;
895 
896 	} while (read_seqcount_retry(&tk_core.seq, seq));
897 
898 	return seconds;
899 }
900 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
901 
902 /**
903  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
904  * but without the sequence counter protect. This internal function
905  * is called just when timekeeping lock is already held.
906  */
907 time64_t __ktime_get_real_seconds(void)
908 {
909 	struct timekeeper *tk = &tk_core.timekeeper;
910 
911 	return tk->xtime_sec;
912 }
913 
914 /**
915  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
916  * @systime_snapshot:	pointer to struct receiving the system time snapshot
917  */
918 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
919 {
920 	struct timekeeper *tk = &tk_core.timekeeper;
921 	unsigned long seq;
922 	ktime_t base_raw;
923 	ktime_t base_real;
924 	u64 nsec_raw;
925 	u64 nsec_real;
926 	u64 now;
927 
928 	WARN_ON_ONCE(timekeeping_suspended);
929 
930 	do {
931 		seq = read_seqcount_begin(&tk_core.seq);
932 
933 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
934 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
935 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
936 		base_real = ktime_add(tk->tkr_mono.base,
937 				      tk_core.timekeeper.offs_real);
938 		base_raw = tk->tkr_raw.base;
939 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
940 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
941 	} while (read_seqcount_retry(&tk_core.seq, seq));
942 
943 	systime_snapshot->cycles = now;
944 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
945 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
946 }
947 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
948 
949 /* Scale base by mult/div checking for overflow */
950 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
951 {
952 	u64 tmp, rem;
953 
954 	tmp = div64_u64_rem(*base, div, &rem);
955 
956 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
957 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
958 		return -EOVERFLOW;
959 	tmp *= mult;
960 	rem *= mult;
961 
962 	do_div(rem, div);
963 	*base = tmp + rem;
964 	return 0;
965 }
966 
967 /**
968  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
969  * @history:			Snapshot representing start of history
970  * @partial_history_cycles:	Cycle offset into history (fractional part)
971  * @total_history_cycles:	Total history length in cycles
972  * @discontinuity:		True indicates clock was set on history period
973  * @ts:				Cross timestamp that should be adjusted using
974  *	partial/total ratio
975  *
976  * Helper function used by get_device_system_crosststamp() to correct the
977  * crosstimestamp corresponding to the start of the current interval to the
978  * system counter value (timestamp point) provided by the driver. The
979  * total_history_* quantities are the total history starting at the provided
980  * reference point and ending at the start of the current interval. The cycle
981  * count between the driver timestamp point and the start of the current
982  * interval is partial_history_cycles.
983  */
984 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
985 					 u64 partial_history_cycles,
986 					 u64 total_history_cycles,
987 					 bool discontinuity,
988 					 struct system_device_crosststamp *ts)
989 {
990 	struct timekeeper *tk = &tk_core.timekeeper;
991 	u64 corr_raw, corr_real;
992 	bool interp_forward;
993 	int ret;
994 
995 	if (total_history_cycles == 0 || partial_history_cycles == 0)
996 		return 0;
997 
998 	/* Interpolate shortest distance from beginning or end of history */
999 	interp_forward = partial_history_cycles > total_history_cycles/2 ?
1000 		true : false;
1001 	partial_history_cycles = interp_forward ?
1002 		total_history_cycles - partial_history_cycles :
1003 		partial_history_cycles;
1004 
1005 	/*
1006 	 * Scale the monotonic raw time delta by:
1007 	 *	partial_history_cycles / total_history_cycles
1008 	 */
1009 	corr_raw = (u64)ktime_to_ns(
1010 		ktime_sub(ts->sys_monoraw, history->raw));
1011 	ret = scale64_check_overflow(partial_history_cycles,
1012 				     total_history_cycles, &corr_raw);
1013 	if (ret)
1014 		return ret;
1015 
1016 	/*
1017 	 * If there is a discontinuity in the history, scale monotonic raw
1018 	 *	correction by:
1019 	 *	mult(real)/mult(raw) yielding the realtime correction
1020 	 * Otherwise, calculate the realtime correction similar to monotonic
1021 	 *	raw calculation
1022 	 */
1023 	if (discontinuity) {
1024 		corr_real = mul_u64_u32_div
1025 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1026 	} else {
1027 		corr_real = (u64)ktime_to_ns(
1028 			ktime_sub(ts->sys_realtime, history->real));
1029 		ret = scale64_check_overflow(partial_history_cycles,
1030 					     total_history_cycles, &corr_real);
1031 		if (ret)
1032 			return ret;
1033 	}
1034 
1035 	/* Fixup monotonic raw and real time time values */
1036 	if (interp_forward) {
1037 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1038 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1039 	} else {
1040 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1041 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 /*
1048  * cycle_between - true if test occurs chronologically between before and after
1049  */
1050 static bool cycle_between(u64 before, u64 test, u64 after)
1051 {
1052 	if (test > before && test < after)
1053 		return true;
1054 	if (test < before && before > after)
1055 		return true;
1056 	return false;
1057 }
1058 
1059 /**
1060  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1061  * @get_time_fn:	Callback to get simultaneous device time and
1062  *	system counter from the device driver
1063  * @ctx:		Context passed to get_time_fn()
1064  * @history_begin:	Historical reference point used to interpolate system
1065  *	time when counter provided by the driver is before the current interval
1066  * @xtstamp:		Receives simultaneously captured system and device time
1067  *
1068  * Reads a timestamp from a device and correlates it to system time
1069  */
1070 int get_device_system_crosststamp(int (*get_time_fn)
1071 				  (ktime_t *device_time,
1072 				   struct system_counterval_t *sys_counterval,
1073 				   void *ctx),
1074 				  void *ctx,
1075 				  struct system_time_snapshot *history_begin,
1076 				  struct system_device_crosststamp *xtstamp)
1077 {
1078 	struct system_counterval_t system_counterval;
1079 	struct timekeeper *tk = &tk_core.timekeeper;
1080 	u64 cycles, now, interval_start;
1081 	unsigned int clock_was_set_seq = 0;
1082 	ktime_t base_real, base_raw;
1083 	u64 nsec_real, nsec_raw;
1084 	u8 cs_was_changed_seq;
1085 	unsigned long seq;
1086 	bool do_interp;
1087 	int ret;
1088 
1089 	do {
1090 		seq = read_seqcount_begin(&tk_core.seq);
1091 		/*
1092 		 * Try to synchronously capture device time and a system
1093 		 * counter value calling back into the device driver
1094 		 */
1095 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1096 		if (ret)
1097 			return ret;
1098 
1099 		/*
1100 		 * Verify that the clocksource associated with the captured
1101 		 * system counter value is the same as the currently installed
1102 		 * timekeeper clocksource
1103 		 */
1104 		if (tk->tkr_mono.clock != system_counterval.cs)
1105 			return -ENODEV;
1106 		cycles = system_counterval.cycles;
1107 
1108 		/*
1109 		 * Check whether the system counter value provided by the
1110 		 * device driver is on the current timekeeping interval.
1111 		 */
1112 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
1113 		interval_start = tk->tkr_mono.cycle_last;
1114 		if (!cycle_between(interval_start, cycles, now)) {
1115 			clock_was_set_seq = tk->clock_was_set_seq;
1116 			cs_was_changed_seq = tk->cs_was_changed_seq;
1117 			cycles = interval_start;
1118 			do_interp = true;
1119 		} else {
1120 			do_interp = false;
1121 		}
1122 
1123 		base_real = ktime_add(tk->tkr_mono.base,
1124 				      tk_core.timekeeper.offs_real);
1125 		base_raw = tk->tkr_raw.base;
1126 
1127 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1128 						     system_counterval.cycles);
1129 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1130 						    system_counterval.cycles);
1131 	} while (read_seqcount_retry(&tk_core.seq, seq));
1132 
1133 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1134 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1135 
1136 	/*
1137 	 * Interpolate if necessary, adjusting back from the start of the
1138 	 * current interval
1139 	 */
1140 	if (do_interp) {
1141 		u64 partial_history_cycles, total_history_cycles;
1142 		bool discontinuity;
1143 
1144 		/*
1145 		 * Check that the counter value occurs after the provided
1146 		 * history reference and that the history doesn't cross a
1147 		 * clocksource change
1148 		 */
1149 		if (!history_begin ||
1150 		    !cycle_between(history_begin->cycles,
1151 				   system_counterval.cycles, cycles) ||
1152 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1153 			return -EINVAL;
1154 		partial_history_cycles = cycles - system_counterval.cycles;
1155 		total_history_cycles = cycles - history_begin->cycles;
1156 		discontinuity =
1157 			history_begin->clock_was_set_seq != clock_was_set_seq;
1158 
1159 		ret = adjust_historical_crosststamp(history_begin,
1160 						    partial_history_cycles,
1161 						    total_history_cycles,
1162 						    discontinuity, xtstamp);
1163 		if (ret)
1164 			return ret;
1165 	}
1166 
1167 	return 0;
1168 }
1169 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1170 
1171 /**
1172  * do_gettimeofday - Returns the time of day in a timeval
1173  * @tv:		pointer to the timeval to be set
1174  *
1175  * NOTE: Users should be converted to using getnstimeofday()
1176  */
1177 void do_gettimeofday(struct timeval *tv)
1178 {
1179 	struct timespec64 now;
1180 
1181 	getnstimeofday64(&now);
1182 	tv->tv_sec = now.tv_sec;
1183 	tv->tv_usec = now.tv_nsec/1000;
1184 }
1185 EXPORT_SYMBOL(do_gettimeofday);
1186 
1187 /**
1188  * do_settimeofday64 - Sets the time of day.
1189  * @ts:     pointer to the timespec64 variable containing the new time
1190  *
1191  * Sets the time of day to the new time and update NTP and notify hrtimers
1192  */
1193 int do_settimeofday64(const struct timespec64 *ts)
1194 {
1195 	struct timekeeper *tk = &tk_core.timekeeper;
1196 	struct timespec64 ts_delta, xt;
1197 	unsigned long flags;
1198 	int ret = 0;
1199 
1200 	if (!timespec64_valid_strict(ts))
1201 		return -EINVAL;
1202 
1203 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1204 	write_seqcount_begin(&tk_core.seq);
1205 
1206 	timekeeping_forward_now(tk);
1207 
1208 	xt = tk_xtime(tk);
1209 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1210 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1211 
1212 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1213 		ret = -EINVAL;
1214 		goto out;
1215 	}
1216 
1217 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1218 
1219 	tk_set_xtime(tk, ts);
1220 out:
1221 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1222 
1223 	write_seqcount_end(&tk_core.seq);
1224 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1225 
1226 	/* signal hrtimers about time change */
1227 	clock_was_set();
1228 
1229 	return ret;
1230 }
1231 EXPORT_SYMBOL(do_settimeofday64);
1232 
1233 /**
1234  * timekeeping_inject_offset - Adds or subtracts from the current time.
1235  * @tv:		pointer to the timespec variable containing the offset
1236  *
1237  * Adds or subtracts an offset value from the current time.
1238  */
1239 int timekeeping_inject_offset(struct timespec *ts)
1240 {
1241 	struct timekeeper *tk = &tk_core.timekeeper;
1242 	unsigned long flags;
1243 	struct timespec64 ts64, tmp;
1244 	int ret = 0;
1245 
1246 	if (!timespec_inject_offset_valid(ts))
1247 		return -EINVAL;
1248 
1249 	ts64 = timespec_to_timespec64(*ts);
1250 
1251 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1252 	write_seqcount_begin(&tk_core.seq);
1253 
1254 	timekeeping_forward_now(tk);
1255 
1256 	/* Make sure the proposed value is valid */
1257 	tmp = timespec64_add(tk_xtime(tk),  ts64);
1258 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1259 	    !timespec64_valid_strict(&tmp)) {
1260 		ret = -EINVAL;
1261 		goto error;
1262 	}
1263 
1264 	tk_xtime_add(tk, &ts64);
1265 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1266 
1267 error: /* even if we error out, we forwarded the time, so call update */
1268 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1269 
1270 	write_seqcount_end(&tk_core.seq);
1271 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1272 
1273 	/* signal hrtimers about time change */
1274 	clock_was_set();
1275 
1276 	return ret;
1277 }
1278 EXPORT_SYMBOL(timekeeping_inject_offset);
1279 
1280 /**
1281  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1282  *
1283  */
1284 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1285 {
1286 	tk->tai_offset = tai_offset;
1287 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1288 }
1289 
1290 /**
1291  * change_clocksource - Swaps clocksources if a new one is available
1292  *
1293  * Accumulates current time interval and initializes new clocksource
1294  */
1295 static int change_clocksource(void *data)
1296 {
1297 	struct timekeeper *tk = &tk_core.timekeeper;
1298 	struct clocksource *new, *old;
1299 	unsigned long flags;
1300 
1301 	new = (struct clocksource *) data;
1302 
1303 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1304 	write_seqcount_begin(&tk_core.seq);
1305 
1306 	timekeeping_forward_now(tk);
1307 	/*
1308 	 * If the cs is in module, get a module reference. Succeeds
1309 	 * for built-in code (owner == NULL) as well.
1310 	 */
1311 	if (try_module_get(new->owner)) {
1312 		if (!new->enable || new->enable(new) == 0) {
1313 			old = tk->tkr_mono.clock;
1314 			tk_setup_internals(tk, new);
1315 			if (old->disable)
1316 				old->disable(old);
1317 			module_put(old->owner);
1318 		} else {
1319 			module_put(new->owner);
1320 		}
1321 	}
1322 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1323 
1324 	write_seqcount_end(&tk_core.seq);
1325 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1326 
1327 	return 0;
1328 }
1329 
1330 /**
1331  * timekeeping_notify - Install a new clock source
1332  * @clock:		pointer to the clock source
1333  *
1334  * This function is called from clocksource.c after a new, better clock
1335  * source has been registered. The caller holds the clocksource_mutex.
1336  */
1337 int timekeeping_notify(struct clocksource *clock)
1338 {
1339 	struct timekeeper *tk = &tk_core.timekeeper;
1340 
1341 	if (tk->tkr_mono.clock == clock)
1342 		return 0;
1343 	stop_machine(change_clocksource, clock, NULL);
1344 	tick_clock_notify();
1345 	return tk->tkr_mono.clock == clock ? 0 : -1;
1346 }
1347 
1348 /**
1349  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1350  * @ts:		pointer to the timespec64 to be set
1351  *
1352  * Returns the raw monotonic time (completely un-modified by ntp)
1353  */
1354 void getrawmonotonic64(struct timespec64 *ts)
1355 {
1356 	struct timekeeper *tk = &tk_core.timekeeper;
1357 	struct timespec64 ts64;
1358 	unsigned long seq;
1359 	u64 nsecs;
1360 
1361 	do {
1362 		seq = read_seqcount_begin(&tk_core.seq);
1363 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1364 		ts64 = tk->raw_time;
1365 
1366 	} while (read_seqcount_retry(&tk_core.seq, seq));
1367 
1368 	timespec64_add_ns(&ts64, nsecs);
1369 	*ts = ts64;
1370 }
1371 EXPORT_SYMBOL(getrawmonotonic64);
1372 
1373 
1374 /**
1375  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1376  */
1377 int timekeeping_valid_for_hres(void)
1378 {
1379 	struct timekeeper *tk = &tk_core.timekeeper;
1380 	unsigned long seq;
1381 	int ret;
1382 
1383 	do {
1384 		seq = read_seqcount_begin(&tk_core.seq);
1385 
1386 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1387 
1388 	} while (read_seqcount_retry(&tk_core.seq, seq));
1389 
1390 	return ret;
1391 }
1392 
1393 /**
1394  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1395  */
1396 u64 timekeeping_max_deferment(void)
1397 {
1398 	struct timekeeper *tk = &tk_core.timekeeper;
1399 	unsigned long seq;
1400 	u64 ret;
1401 
1402 	do {
1403 		seq = read_seqcount_begin(&tk_core.seq);
1404 
1405 		ret = tk->tkr_mono.clock->max_idle_ns;
1406 
1407 	} while (read_seqcount_retry(&tk_core.seq, seq));
1408 
1409 	return ret;
1410 }
1411 
1412 /**
1413  * read_persistent_clock -  Return time from the persistent clock.
1414  *
1415  * Weak dummy function for arches that do not yet support it.
1416  * Reads the time from the battery backed persistent clock.
1417  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1418  *
1419  *  XXX - Do be sure to remove it once all arches implement it.
1420  */
1421 void __weak read_persistent_clock(struct timespec *ts)
1422 {
1423 	ts->tv_sec = 0;
1424 	ts->tv_nsec = 0;
1425 }
1426 
1427 void __weak read_persistent_clock64(struct timespec64 *ts64)
1428 {
1429 	struct timespec ts;
1430 
1431 	read_persistent_clock(&ts);
1432 	*ts64 = timespec_to_timespec64(ts);
1433 }
1434 
1435 /**
1436  * read_boot_clock64 -  Return time of the system start.
1437  *
1438  * Weak dummy function for arches that do not yet support it.
1439  * Function to read the exact time the system has been started.
1440  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1441  *
1442  *  XXX - Do be sure to remove it once all arches implement it.
1443  */
1444 void __weak read_boot_clock64(struct timespec64 *ts)
1445 {
1446 	ts->tv_sec = 0;
1447 	ts->tv_nsec = 0;
1448 }
1449 
1450 /* Flag for if timekeeping_resume() has injected sleeptime */
1451 static bool sleeptime_injected;
1452 
1453 /* Flag for if there is a persistent clock on this platform */
1454 static bool persistent_clock_exists;
1455 
1456 /*
1457  * timekeeping_init - Initializes the clocksource and common timekeeping values
1458  */
1459 void __init timekeeping_init(void)
1460 {
1461 	struct timekeeper *tk = &tk_core.timekeeper;
1462 	struct clocksource *clock;
1463 	unsigned long flags;
1464 	struct timespec64 now, boot, tmp;
1465 
1466 	read_persistent_clock64(&now);
1467 	if (!timespec64_valid_strict(&now)) {
1468 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1469 			"         Check your CMOS/BIOS settings.\n");
1470 		now.tv_sec = 0;
1471 		now.tv_nsec = 0;
1472 	} else if (now.tv_sec || now.tv_nsec)
1473 		persistent_clock_exists = true;
1474 
1475 	read_boot_clock64(&boot);
1476 	if (!timespec64_valid_strict(&boot)) {
1477 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1478 			"         Check your CMOS/BIOS settings.\n");
1479 		boot.tv_sec = 0;
1480 		boot.tv_nsec = 0;
1481 	}
1482 
1483 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1484 	write_seqcount_begin(&tk_core.seq);
1485 	ntp_init();
1486 
1487 	clock = clocksource_default_clock();
1488 	if (clock->enable)
1489 		clock->enable(clock);
1490 	tk_setup_internals(tk, clock);
1491 
1492 	tk_set_xtime(tk, &now);
1493 	tk->raw_time.tv_sec = 0;
1494 	tk->raw_time.tv_nsec = 0;
1495 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1496 		boot = tk_xtime(tk);
1497 
1498 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1499 	tk_set_wall_to_mono(tk, tmp);
1500 
1501 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1502 
1503 	write_seqcount_end(&tk_core.seq);
1504 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1505 }
1506 
1507 /* time in seconds when suspend began for persistent clock */
1508 static struct timespec64 timekeeping_suspend_time;
1509 
1510 /**
1511  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1512  * @delta: pointer to a timespec delta value
1513  *
1514  * Takes a timespec offset measuring a suspend interval and properly
1515  * adds the sleep offset to the timekeeping variables.
1516  */
1517 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1518 					   struct timespec64 *delta)
1519 {
1520 	if (!timespec64_valid_strict(delta)) {
1521 		printk_deferred(KERN_WARNING
1522 				"__timekeeping_inject_sleeptime: Invalid "
1523 				"sleep delta value!\n");
1524 		return;
1525 	}
1526 	tk_xtime_add(tk, delta);
1527 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1528 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1529 	tk_debug_account_sleep_time(delta);
1530 }
1531 
1532 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1533 /**
1534  * We have three kinds of time sources to use for sleep time
1535  * injection, the preference order is:
1536  * 1) non-stop clocksource
1537  * 2) persistent clock (ie: RTC accessible when irqs are off)
1538  * 3) RTC
1539  *
1540  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1541  * If system has neither 1) nor 2), 3) will be used finally.
1542  *
1543  *
1544  * If timekeeping has injected sleeptime via either 1) or 2),
1545  * 3) becomes needless, so in this case we don't need to call
1546  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1547  * means.
1548  */
1549 bool timekeeping_rtc_skipresume(void)
1550 {
1551 	return sleeptime_injected;
1552 }
1553 
1554 /**
1555  * 1) can be determined whether to use or not only when doing
1556  * timekeeping_resume() which is invoked after rtc_suspend(),
1557  * so we can't skip rtc_suspend() surely if system has 1).
1558  *
1559  * But if system has 2), 2) will definitely be used, so in this
1560  * case we don't need to call rtc_suspend(), and this is what
1561  * timekeeping_rtc_skipsuspend() means.
1562  */
1563 bool timekeeping_rtc_skipsuspend(void)
1564 {
1565 	return persistent_clock_exists;
1566 }
1567 
1568 /**
1569  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1570  * @delta: pointer to a timespec64 delta value
1571  *
1572  * This hook is for architectures that cannot support read_persistent_clock64
1573  * because their RTC/persistent clock is only accessible when irqs are enabled.
1574  * and also don't have an effective nonstop clocksource.
1575  *
1576  * This function should only be called by rtc_resume(), and allows
1577  * a suspend offset to be injected into the timekeeping values.
1578  */
1579 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1580 {
1581 	struct timekeeper *tk = &tk_core.timekeeper;
1582 	unsigned long flags;
1583 
1584 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1585 	write_seqcount_begin(&tk_core.seq);
1586 
1587 	timekeeping_forward_now(tk);
1588 
1589 	__timekeeping_inject_sleeptime(tk, delta);
1590 
1591 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1592 
1593 	write_seqcount_end(&tk_core.seq);
1594 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1595 
1596 	/* signal hrtimers about time change */
1597 	clock_was_set();
1598 }
1599 #endif
1600 
1601 /**
1602  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1603  */
1604 void timekeeping_resume(void)
1605 {
1606 	struct timekeeper *tk = &tk_core.timekeeper;
1607 	struct clocksource *clock = tk->tkr_mono.clock;
1608 	unsigned long flags;
1609 	struct timespec64 ts_new, ts_delta;
1610 	u64 cycle_now;
1611 
1612 	sleeptime_injected = false;
1613 	read_persistent_clock64(&ts_new);
1614 
1615 	clockevents_resume();
1616 	clocksource_resume();
1617 
1618 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1619 	write_seqcount_begin(&tk_core.seq);
1620 
1621 	/*
1622 	 * After system resumes, we need to calculate the suspended time and
1623 	 * compensate it for the OS time. There are 3 sources that could be
1624 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1625 	 * device.
1626 	 *
1627 	 * One specific platform may have 1 or 2 or all of them, and the
1628 	 * preference will be:
1629 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1630 	 * The less preferred source will only be tried if there is no better
1631 	 * usable source. The rtc part is handled separately in rtc core code.
1632 	 */
1633 	cycle_now = tk->tkr_mono.read(clock);
1634 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1635 		cycle_now > tk->tkr_mono.cycle_last) {
1636 		u64 nsec, cyc_delta;
1637 
1638 		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1639 					      tk->tkr_mono.mask);
1640 		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1641 		ts_delta = ns_to_timespec64(nsec);
1642 		sleeptime_injected = true;
1643 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1644 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1645 		sleeptime_injected = true;
1646 	}
1647 
1648 	if (sleeptime_injected)
1649 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1650 
1651 	/* Re-base the last cycle value */
1652 	tk->tkr_mono.cycle_last = cycle_now;
1653 	tk->tkr_raw.cycle_last  = cycle_now;
1654 
1655 	tk->ntp_error = 0;
1656 	timekeeping_suspended = 0;
1657 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1658 	write_seqcount_end(&tk_core.seq);
1659 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1660 
1661 	touch_softlockup_watchdog();
1662 
1663 	tick_resume();
1664 	hrtimers_resume();
1665 }
1666 
1667 int timekeeping_suspend(void)
1668 {
1669 	struct timekeeper *tk = &tk_core.timekeeper;
1670 	unsigned long flags;
1671 	struct timespec64		delta, delta_delta;
1672 	static struct timespec64	old_delta;
1673 
1674 	read_persistent_clock64(&timekeeping_suspend_time);
1675 
1676 	/*
1677 	 * On some systems the persistent_clock can not be detected at
1678 	 * timekeeping_init by its return value, so if we see a valid
1679 	 * value returned, update the persistent_clock_exists flag.
1680 	 */
1681 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1682 		persistent_clock_exists = true;
1683 
1684 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1685 	write_seqcount_begin(&tk_core.seq);
1686 	timekeeping_forward_now(tk);
1687 	timekeeping_suspended = 1;
1688 
1689 	if (persistent_clock_exists) {
1690 		/*
1691 		 * To avoid drift caused by repeated suspend/resumes,
1692 		 * which each can add ~1 second drift error,
1693 		 * try to compensate so the difference in system time
1694 		 * and persistent_clock time stays close to constant.
1695 		 */
1696 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1697 		delta_delta = timespec64_sub(delta, old_delta);
1698 		if (abs(delta_delta.tv_sec) >= 2) {
1699 			/*
1700 			 * if delta_delta is too large, assume time correction
1701 			 * has occurred and set old_delta to the current delta.
1702 			 */
1703 			old_delta = delta;
1704 		} else {
1705 			/* Otherwise try to adjust old_system to compensate */
1706 			timekeeping_suspend_time =
1707 				timespec64_add(timekeeping_suspend_time, delta_delta);
1708 		}
1709 	}
1710 
1711 	timekeeping_update(tk, TK_MIRROR);
1712 	halt_fast_timekeeper(tk);
1713 	write_seqcount_end(&tk_core.seq);
1714 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1715 
1716 	tick_suspend();
1717 	clocksource_suspend();
1718 	clockevents_suspend();
1719 
1720 	return 0;
1721 }
1722 
1723 /* sysfs resume/suspend bits for timekeeping */
1724 static struct syscore_ops timekeeping_syscore_ops = {
1725 	.resume		= timekeeping_resume,
1726 	.suspend	= timekeeping_suspend,
1727 };
1728 
1729 static int __init timekeeping_init_ops(void)
1730 {
1731 	register_syscore_ops(&timekeeping_syscore_ops);
1732 	return 0;
1733 }
1734 device_initcall(timekeeping_init_ops);
1735 
1736 /*
1737  * Apply a multiplier adjustment to the timekeeper
1738  */
1739 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1740 							 s64 offset,
1741 							 bool negative,
1742 							 int adj_scale)
1743 {
1744 	s64 interval = tk->cycle_interval;
1745 	s32 mult_adj = 1;
1746 
1747 	if (negative) {
1748 		mult_adj = -mult_adj;
1749 		interval = -interval;
1750 		offset  = -offset;
1751 	}
1752 	mult_adj <<= adj_scale;
1753 	interval <<= adj_scale;
1754 	offset <<= adj_scale;
1755 
1756 	/*
1757 	 * So the following can be confusing.
1758 	 *
1759 	 * To keep things simple, lets assume mult_adj == 1 for now.
1760 	 *
1761 	 * When mult_adj != 1, remember that the interval and offset values
1762 	 * have been appropriately scaled so the math is the same.
1763 	 *
1764 	 * The basic idea here is that we're increasing the multiplier
1765 	 * by one, this causes the xtime_interval to be incremented by
1766 	 * one cycle_interval. This is because:
1767 	 *	xtime_interval = cycle_interval * mult
1768 	 * So if mult is being incremented by one:
1769 	 *	xtime_interval = cycle_interval * (mult + 1)
1770 	 * Its the same as:
1771 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1772 	 * Which can be shortened to:
1773 	 *	xtime_interval += cycle_interval
1774 	 *
1775 	 * So offset stores the non-accumulated cycles. Thus the current
1776 	 * time (in shifted nanoseconds) is:
1777 	 *	now = (offset * adj) + xtime_nsec
1778 	 * Now, even though we're adjusting the clock frequency, we have
1779 	 * to keep time consistent. In other words, we can't jump back
1780 	 * in time, and we also want to avoid jumping forward in time.
1781 	 *
1782 	 * So given the same offset value, we need the time to be the same
1783 	 * both before and after the freq adjustment.
1784 	 *	now = (offset * adj_1) + xtime_nsec_1
1785 	 *	now = (offset * adj_2) + xtime_nsec_2
1786 	 * So:
1787 	 *	(offset * adj_1) + xtime_nsec_1 =
1788 	 *		(offset * adj_2) + xtime_nsec_2
1789 	 * And we know:
1790 	 *	adj_2 = adj_1 + 1
1791 	 * So:
1792 	 *	(offset * adj_1) + xtime_nsec_1 =
1793 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1794 	 *	(offset * adj_1) + xtime_nsec_1 =
1795 	 *		(offset * adj_1) + offset + xtime_nsec_2
1796 	 * Canceling the sides:
1797 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1798 	 * Which gives us:
1799 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1800 	 * Which simplfies to:
1801 	 *	xtime_nsec -= offset
1802 	 *
1803 	 * XXX - TODO: Doc ntp_error calculation.
1804 	 */
1805 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1806 		/* NTP adjustment caused clocksource mult overflow */
1807 		WARN_ON_ONCE(1);
1808 		return;
1809 	}
1810 
1811 	tk->tkr_mono.mult += mult_adj;
1812 	tk->xtime_interval += interval;
1813 	tk->tkr_mono.xtime_nsec -= offset;
1814 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1815 }
1816 
1817 /*
1818  * Calculate the multiplier adjustment needed to match the frequency
1819  * specified by NTP
1820  */
1821 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1822 							s64 offset)
1823 {
1824 	s64 interval = tk->cycle_interval;
1825 	s64 xinterval = tk->xtime_interval;
1826 	u32 base = tk->tkr_mono.clock->mult;
1827 	u32 max = tk->tkr_mono.clock->maxadj;
1828 	u32 cur_adj = tk->tkr_mono.mult;
1829 	s64 tick_error;
1830 	bool negative;
1831 	u32 adj_scale;
1832 
1833 	/* Remove any current error adj from freq calculation */
1834 	if (tk->ntp_err_mult)
1835 		xinterval -= tk->cycle_interval;
1836 
1837 	tk->ntp_tick = ntp_tick_length();
1838 
1839 	/* Calculate current error per tick */
1840 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1841 	tick_error -= (xinterval + tk->xtime_remainder);
1842 
1843 	/* Don't worry about correcting it if its small */
1844 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1845 		return;
1846 
1847 	/* preserve the direction of correction */
1848 	negative = (tick_error < 0);
1849 
1850 	/* If any adjustment would pass the max, just return */
1851 	if (negative && (cur_adj - 1) <= (base - max))
1852 		return;
1853 	if (!negative && (cur_adj + 1) >= (base + max))
1854 		return;
1855 	/*
1856 	 * Sort out the magnitude of the correction, but
1857 	 * avoid making so large a correction that we go
1858 	 * over the max adjustment.
1859 	 */
1860 	adj_scale = 0;
1861 	tick_error = abs(tick_error);
1862 	while (tick_error > interval) {
1863 		u32 adj = 1 << (adj_scale + 1);
1864 
1865 		/* Check if adjustment gets us within 1 unit from the max */
1866 		if (negative && (cur_adj - adj) <= (base - max))
1867 			break;
1868 		if (!negative && (cur_adj + adj) >= (base + max))
1869 			break;
1870 
1871 		adj_scale++;
1872 		tick_error >>= 1;
1873 	}
1874 
1875 	/* scale the corrections */
1876 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1877 }
1878 
1879 /*
1880  * Adjust the timekeeper's multiplier to the correct frequency
1881  * and also to reduce the accumulated error value.
1882  */
1883 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1884 {
1885 	/* Correct for the current frequency error */
1886 	timekeeping_freqadjust(tk, offset);
1887 
1888 	/* Next make a small adjustment to fix any cumulative error */
1889 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1890 		tk->ntp_err_mult = 1;
1891 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1892 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1893 		/* Undo any existing error adjustment */
1894 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1895 		tk->ntp_err_mult = 0;
1896 	}
1897 
1898 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1899 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1900 			> tk->tkr_mono.clock->maxadj))) {
1901 		printk_once(KERN_WARNING
1902 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1903 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1904 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1905 	}
1906 
1907 	/*
1908 	 * It may be possible that when we entered this function, xtime_nsec
1909 	 * was very small.  Further, if we're slightly speeding the clocksource
1910 	 * in the code above, its possible the required corrective factor to
1911 	 * xtime_nsec could cause it to underflow.
1912 	 *
1913 	 * Now, since we already accumulated the second, cannot simply roll
1914 	 * the accumulated second back, since the NTP subsystem has been
1915 	 * notified via second_overflow. So instead we push xtime_nsec forward
1916 	 * by the amount we underflowed, and add that amount into the error.
1917 	 *
1918 	 * We'll correct this error next time through this function, when
1919 	 * xtime_nsec is not as small.
1920 	 */
1921 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1922 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1923 		tk->tkr_mono.xtime_nsec = 0;
1924 		tk->ntp_error += neg << tk->ntp_error_shift;
1925 	}
1926 }
1927 
1928 /**
1929  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1930  *
1931  * Helper function that accumulates the nsecs greater than a second
1932  * from the xtime_nsec field to the xtime_secs field.
1933  * It also calls into the NTP code to handle leapsecond processing.
1934  *
1935  */
1936 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1937 {
1938 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1939 	unsigned int clock_set = 0;
1940 
1941 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1942 		int leap;
1943 
1944 		tk->tkr_mono.xtime_nsec -= nsecps;
1945 		tk->xtime_sec++;
1946 
1947 		/* Figure out if its a leap sec and apply if needed */
1948 		leap = second_overflow(tk->xtime_sec);
1949 		if (unlikely(leap)) {
1950 			struct timespec64 ts;
1951 
1952 			tk->xtime_sec += leap;
1953 
1954 			ts.tv_sec = leap;
1955 			ts.tv_nsec = 0;
1956 			tk_set_wall_to_mono(tk,
1957 				timespec64_sub(tk->wall_to_monotonic, ts));
1958 
1959 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1960 
1961 			clock_set = TK_CLOCK_WAS_SET;
1962 		}
1963 	}
1964 	return clock_set;
1965 }
1966 
1967 /**
1968  * logarithmic_accumulation - shifted accumulation of cycles
1969  *
1970  * This functions accumulates a shifted interval of cycles into
1971  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1972  * loop.
1973  *
1974  * Returns the unconsumed cycles.
1975  */
1976 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1977 				    u32 shift, unsigned int *clock_set)
1978 {
1979 	u64 interval = tk->cycle_interval << shift;
1980 	u64 raw_nsecs;
1981 
1982 	/* If the offset is smaller than a shifted interval, do nothing */
1983 	if (offset < interval)
1984 		return offset;
1985 
1986 	/* Accumulate one shifted interval */
1987 	offset -= interval;
1988 	tk->tkr_mono.cycle_last += interval;
1989 	tk->tkr_raw.cycle_last  += interval;
1990 
1991 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1992 	*clock_set |= accumulate_nsecs_to_secs(tk);
1993 
1994 	/* Accumulate raw time */
1995 	raw_nsecs = (u64)tk->raw_interval << shift;
1996 	raw_nsecs += tk->raw_time.tv_nsec;
1997 	if (raw_nsecs >= NSEC_PER_SEC) {
1998 		u64 raw_secs = raw_nsecs;
1999 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2000 		tk->raw_time.tv_sec += raw_secs;
2001 	}
2002 	tk->raw_time.tv_nsec = raw_nsecs;
2003 
2004 	/* Accumulate error between NTP and clock interval */
2005 	tk->ntp_error += tk->ntp_tick << shift;
2006 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2007 						(tk->ntp_error_shift + shift);
2008 
2009 	return offset;
2010 }
2011 
2012 /**
2013  * update_wall_time - Uses the current clocksource to increment the wall time
2014  *
2015  */
2016 void update_wall_time(void)
2017 {
2018 	struct timekeeper *real_tk = &tk_core.timekeeper;
2019 	struct timekeeper *tk = &shadow_timekeeper;
2020 	u64 offset;
2021 	int shift = 0, maxshift;
2022 	unsigned int clock_set = 0;
2023 	unsigned long flags;
2024 
2025 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2026 
2027 	/* Make sure we're fully resumed: */
2028 	if (unlikely(timekeeping_suspended))
2029 		goto out;
2030 
2031 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2032 	offset = real_tk->cycle_interval;
2033 #else
2034 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2035 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2036 #endif
2037 
2038 	/* Check if there's really nothing to do */
2039 	if (offset < real_tk->cycle_interval)
2040 		goto out;
2041 
2042 	/* Do some additional sanity checking */
2043 	timekeeping_check_update(real_tk, offset);
2044 
2045 	/*
2046 	 * With NO_HZ we may have to accumulate many cycle_intervals
2047 	 * (think "ticks") worth of time at once. To do this efficiently,
2048 	 * we calculate the largest doubling multiple of cycle_intervals
2049 	 * that is smaller than the offset.  We then accumulate that
2050 	 * chunk in one go, and then try to consume the next smaller
2051 	 * doubled multiple.
2052 	 */
2053 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2054 	shift = max(0, shift);
2055 	/* Bound shift to one less than what overflows tick_length */
2056 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2057 	shift = min(shift, maxshift);
2058 	while (offset >= tk->cycle_interval) {
2059 		offset = logarithmic_accumulation(tk, offset, shift,
2060 							&clock_set);
2061 		if (offset < tk->cycle_interval<<shift)
2062 			shift--;
2063 	}
2064 
2065 	/* correct the clock when NTP error is too big */
2066 	timekeeping_adjust(tk, offset);
2067 
2068 	/*
2069 	 * XXX This can be killed once everyone converts
2070 	 * to the new update_vsyscall.
2071 	 */
2072 	old_vsyscall_fixup(tk);
2073 
2074 	/*
2075 	 * Finally, make sure that after the rounding
2076 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2077 	 */
2078 	clock_set |= accumulate_nsecs_to_secs(tk);
2079 
2080 	write_seqcount_begin(&tk_core.seq);
2081 	/*
2082 	 * Update the real timekeeper.
2083 	 *
2084 	 * We could avoid this memcpy by switching pointers, but that
2085 	 * requires changes to all other timekeeper usage sites as
2086 	 * well, i.e. move the timekeeper pointer getter into the
2087 	 * spinlocked/seqcount protected sections. And we trade this
2088 	 * memcpy under the tk_core.seq against one before we start
2089 	 * updating.
2090 	 */
2091 	timekeeping_update(tk, clock_set);
2092 	memcpy(real_tk, tk, sizeof(*tk));
2093 	/* The memcpy must come last. Do not put anything here! */
2094 	write_seqcount_end(&tk_core.seq);
2095 out:
2096 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2097 	if (clock_set)
2098 		/* Have to call _delayed version, since in irq context*/
2099 		clock_was_set_delayed();
2100 }
2101 
2102 /**
2103  * getboottime64 - Return the real time of system boot.
2104  * @ts:		pointer to the timespec64 to be set
2105  *
2106  * Returns the wall-time of boot in a timespec64.
2107  *
2108  * This is based on the wall_to_monotonic offset and the total suspend
2109  * time. Calls to settimeofday will affect the value returned (which
2110  * basically means that however wrong your real time clock is at boot time,
2111  * you get the right time here).
2112  */
2113 void getboottime64(struct timespec64 *ts)
2114 {
2115 	struct timekeeper *tk = &tk_core.timekeeper;
2116 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2117 
2118 	*ts = ktime_to_timespec64(t);
2119 }
2120 EXPORT_SYMBOL_GPL(getboottime64);
2121 
2122 unsigned long get_seconds(void)
2123 {
2124 	struct timekeeper *tk = &tk_core.timekeeper;
2125 
2126 	return tk->xtime_sec;
2127 }
2128 EXPORT_SYMBOL(get_seconds);
2129 
2130 struct timespec __current_kernel_time(void)
2131 {
2132 	struct timekeeper *tk = &tk_core.timekeeper;
2133 
2134 	return timespec64_to_timespec(tk_xtime(tk));
2135 }
2136 
2137 struct timespec64 current_kernel_time64(void)
2138 {
2139 	struct timekeeper *tk = &tk_core.timekeeper;
2140 	struct timespec64 now;
2141 	unsigned long seq;
2142 
2143 	do {
2144 		seq = read_seqcount_begin(&tk_core.seq);
2145 
2146 		now = tk_xtime(tk);
2147 	} while (read_seqcount_retry(&tk_core.seq, seq));
2148 
2149 	return now;
2150 }
2151 EXPORT_SYMBOL(current_kernel_time64);
2152 
2153 struct timespec64 get_monotonic_coarse64(void)
2154 {
2155 	struct timekeeper *tk = &tk_core.timekeeper;
2156 	struct timespec64 now, mono;
2157 	unsigned long seq;
2158 
2159 	do {
2160 		seq = read_seqcount_begin(&tk_core.seq);
2161 
2162 		now = tk_xtime(tk);
2163 		mono = tk->wall_to_monotonic;
2164 	} while (read_seqcount_retry(&tk_core.seq, seq));
2165 
2166 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2167 				now.tv_nsec + mono.tv_nsec);
2168 
2169 	return now;
2170 }
2171 EXPORT_SYMBOL(get_monotonic_coarse64);
2172 
2173 /*
2174  * Must hold jiffies_lock
2175  */
2176 void do_timer(unsigned long ticks)
2177 {
2178 	jiffies_64 += ticks;
2179 	calc_global_load(ticks);
2180 }
2181 
2182 /**
2183  * ktime_get_update_offsets_now - hrtimer helper
2184  * @cwsseq:	pointer to check and store the clock was set sequence number
2185  * @offs_real:	pointer to storage for monotonic -> realtime offset
2186  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2187  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2188  *
2189  * Returns current monotonic time and updates the offsets if the
2190  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2191  * different.
2192  *
2193  * Called from hrtimer_interrupt() or retrigger_next_event()
2194  */
2195 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2196 				     ktime_t *offs_boot, ktime_t *offs_tai)
2197 {
2198 	struct timekeeper *tk = &tk_core.timekeeper;
2199 	unsigned int seq;
2200 	ktime_t base;
2201 	u64 nsecs;
2202 
2203 	do {
2204 		seq = read_seqcount_begin(&tk_core.seq);
2205 
2206 		base = tk->tkr_mono.base;
2207 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2208 		base = ktime_add_ns(base, nsecs);
2209 
2210 		if (*cwsseq != tk->clock_was_set_seq) {
2211 			*cwsseq = tk->clock_was_set_seq;
2212 			*offs_real = tk->offs_real;
2213 			*offs_boot = tk->offs_boot;
2214 			*offs_tai = tk->offs_tai;
2215 		}
2216 
2217 		/* Handle leapsecond insertion adjustments */
2218 		if (unlikely(base >= tk->next_leap_ktime))
2219 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2220 
2221 	} while (read_seqcount_retry(&tk_core.seq, seq));
2222 
2223 	return base;
2224 }
2225 
2226 /**
2227  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2228  */
2229 int do_adjtimex(struct timex *txc)
2230 {
2231 	struct timekeeper *tk = &tk_core.timekeeper;
2232 	unsigned long flags;
2233 	struct timespec64 ts;
2234 	s32 orig_tai, tai;
2235 	int ret;
2236 
2237 	/* Validate the data before disabling interrupts */
2238 	ret = ntp_validate_timex(txc);
2239 	if (ret)
2240 		return ret;
2241 
2242 	if (txc->modes & ADJ_SETOFFSET) {
2243 		struct timespec delta;
2244 		delta.tv_sec  = txc->time.tv_sec;
2245 		delta.tv_nsec = txc->time.tv_usec;
2246 		if (!(txc->modes & ADJ_NANO))
2247 			delta.tv_nsec *= 1000;
2248 		ret = timekeeping_inject_offset(&delta);
2249 		if (ret)
2250 			return ret;
2251 	}
2252 
2253 	getnstimeofday64(&ts);
2254 
2255 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2256 	write_seqcount_begin(&tk_core.seq);
2257 
2258 	orig_tai = tai = tk->tai_offset;
2259 	ret = __do_adjtimex(txc, &ts, &tai);
2260 
2261 	if (tai != orig_tai) {
2262 		__timekeeping_set_tai_offset(tk, tai);
2263 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2264 	}
2265 	tk_update_leap_state(tk);
2266 
2267 	write_seqcount_end(&tk_core.seq);
2268 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2269 
2270 	if (tai != orig_tai)
2271 		clock_was_set();
2272 
2273 	ntp_notify_cmos_timer();
2274 
2275 	return ret;
2276 }
2277 
2278 #ifdef CONFIG_NTP_PPS
2279 /**
2280  * hardpps() - Accessor function to NTP __hardpps function
2281  */
2282 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2283 {
2284 	unsigned long flags;
2285 
2286 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2287 	write_seqcount_begin(&tk_core.seq);
2288 
2289 	__hardpps(phase_ts, raw_ts);
2290 
2291 	write_seqcount_end(&tk_core.seq);
2292 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2293 }
2294 EXPORT_SYMBOL(hardpps);
2295 #endif
2296 
2297 /**
2298  * xtime_update() - advances the timekeeping infrastructure
2299  * @ticks:	number of ticks, that have elapsed since the last call.
2300  *
2301  * Must be called with interrupts disabled.
2302  */
2303 void xtime_update(unsigned long ticks)
2304 {
2305 	write_seqlock(&jiffies_lock);
2306 	do_timer(ticks);
2307 	write_sequnlock(&jiffies_lock);
2308 	update_wall_time();
2309 }
2310