1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/nmi.h> 18 #include <linux/sched.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/syscore_ops.h> 21 #include <linux/clocksource.h> 22 #include <linux/jiffies.h> 23 #include <linux/time.h> 24 #include <linux/tick.h> 25 #include <linux/stop_machine.h> 26 #include <linux/pvclock_gtod.h> 27 #include <linux/compiler.h> 28 29 #include "tick-internal.h" 30 #include "ntp_internal.h" 31 #include "timekeeping_internal.h" 32 33 #define TK_CLEAR_NTP (1 << 0) 34 #define TK_MIRROR (1 << 1) 35 #define TK_CLOCK_WAS_SET (1 << 2) 36 37 /* 38 * The most important data for readout fits into a single 64 byte 39 * cache line. 40 */ 41 static struct { 42 seqcount_t seq; 43 struct timekeeper timekeeper; 44 } tk_core ____cacheline_aligned; 45 46 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 47 static struct timekeeper shadow_timekeeper; 48 49 /** 50 * struct tk_fast - NMI safe timekeeper 51 * @seq: Sequence counter for protecting updates. The lowest bit 52 * is the index for the tk_read_base array 53 * @base: tk_read_base array. Access is indexed by the lowest bit of 54 * @seq. 55 * 56 * See @update_fast_timekeeper() below. 57 */ 58 struct tk_fast { 59 seqcount_t seq; 60 struct tk_read_base base[2]; 61 }; 62 63 static struct tk_fast tk_fast_mono ____cacheline_aligned; 64 static struct tk_fast tk_fast_raw ____cacheline_aligned; 65 66 /* flag for if timekeeping is suspended */ 67 int __read_mostly timekeeping_suspended; 68 69 static inline void tk_normalize_xtime(struct timekeeper *tk) 70 { 71 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 72 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 73 tk->xtime_sec++; 74 } 75 } 76 77 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 78 { 79 struct timespec64 ts; 80 81 ts.tv_sec = tk->xtime_sec; 82 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 83 return ts; 84 } 85 86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 87 { 88 tk->xtime_sec = ts->tv_sec; 89 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 90 } 91 92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 93 { 94 tk->xtime_sec += ts->tv_sec; 95 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 96 tk_normalize_xtime(tk); 97 } 98 99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 100 { 101 struct timespec64 tmp; 102 103 /* 104 * Verify consistency of: offset_real = -wall_to_monotonic 105 * before modifying anything 106 */ 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 108 -tk->wall_to_monotonic.tv_nsec); 109 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 110 tk->wall_to_monotonic = wtm; 111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 112 tk->offs_real = timespec64_to_ktime(tmp); 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 114 } 115 116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 117 { 118 tk->offs_boot = ktime_add(tk->offs_boot, delta); 119 } 120 121 #ifdef CONFIG_DEBUG_TIMEKEEPING 122 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 123 124 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 125 { 126 127 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 128 const char *name = tk->tkr_mono.clock->name; 129 130 if (offset > max_cycles) { 131 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 132 offset, name, max_cycles); 133 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 134 } else { 135 if (offset > (max_cycles >> 1)) { 136 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 137 offset, name, max_cycles >> 1); 138 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 139 } 140 } 141 142 if (tk->underflow_seen) { 143 if (jiffies - tk->last_warning > WARNING_FREQ) { 144 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 145 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 146 printk_deferred(" Your kernel is probably still fine.\n"); 147 tk->last_warning = jiffies; 148 } 149 tk->underflow_seen = 0; 150 } 151 152 if (tk->overflow_seen) { 153 if (jiffies - tk->last_warning > WARNING_FREQ) { 154 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 156 printk_deferred(" Your kernel is probably still fine.\n"); 157 tk->last_warning = jiffies; 158 } 159 tk->overflow_seen = 0; 160 } 161 } 162 163 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 164 { 165 struct timekeeper *tk = &tk_core.timekeeper; 166 u64 now, last, mask, max, delta; 167 unsigned int seq; 168 169 /* 170 * Since we're called holding a seqlock, the data may shift 171 * under us while we're doing the calculation. This can cause 172 * false positives, since we'd note a problem but throw the 173 * results away. So nest another seqlock here to atomically 174 * grab the points we are checking with. 175 */ 176 do { 177 seq = read_seqcount_begin(&tk_core.seq); 178 now = tkr->read(tkr->clock); 179 last = tkr->cycle_last; 180 mask = tkr->mask; 181 max = tkr->clock->max_cycles; 182 } while (read_seqcount_retry(&tk_core.seq, seq)); 183 184 delta = clocksource_delta(now, last, mask); 185 186 /* 187 * Try to catch underflows by checking if we are seeing small 188 * mask-relative negative values. 189 */ 190 if (unlikely((~delta & mask) < (mask >> 3))) { 191 tk->underflow_seen = 1; 192 delta = 0; 193 } 194 195 /* Cap delta value to the max_cycles values to avoid mult overflows */ 196 if (unlikely(delta > max)) { 197 tk->overflow_seen = 1; 198 delta = tkr->clock->max_cycles; 199 } 200 201 return delta; 202 } 203 #else 204 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 205 { 206 } 207 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 208 { 209 u64 cycle_now, delta; 210 211 /* read clocksource */ 212 cycle_now = tkr->read(tkr->clock); 213 214 /* calculate the delta since the last update_wall_time */ 215 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 216 217 return delta; 218 } 219 #endif 220 221 /** 222 * tk_setup_internals - Set up internals to use clocksource clock. 223 * 224 * @tk: The target timekeeper to setup. 225 * @clock: Pointer to clocksource. 226 * 227 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 228 * pair and interval request. 229 * 230 * Unless you're the timekeeping code, you should not be using this! 231 */ 232 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 233 { 234 u64 interval; 235 u64 tmp, ntpinterval; 236 struct clocksource *old_clock; 237 238 ++tk->cs_was_changed_seq; 239 old_clock = tk->tkr_mono.clock; 240 tk->tkr_mono.clock = clock; 241 tk->tkr_mono.read = clock->read; 242 tk->tkr_mono.mask = clock->mask; 243 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 244 245 tk->tkr_raw.clock = clock; 246 tk->tkr_raw.read = clock->read; 247 tk->tkr_raw.mask = clock->mask; 248 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 249 250 /* Do the ns -> cycle conversion first, using original mult */ 251 tmp = NTP_INTERVAL_LENGTH; 252 tmp <<= clock->shift; 253 ntpinterval = tmp; 254 tmp += clock->mult/2; 255 do_div(tmp, clock->mult); 256 if (tmp == 0) 257 tmp = 1; 258 259 interval = (u64) tmp; 260 tk->cycle_interval = interval; 261 262 /* Go back from cycles -> shifted ns */ 263 tk->xtime_interval = interval * clock->mult; 264 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 265 tk->raw_interval = (interval * clock->mult) >> clock->shift; 266 267 /* if changing clocks, convert xtime_nsec shift units */ 268 if (old_clock) { 269 int shift_change = clock->shift - old_clock->shift; 270 if (shift_change < 0) 271 tk->tkr_mono.xtime_nsec >>= -shift_change; 272 else 273 tk->tkr_mono.xtime_nsec <<= shift_change; 274 } 275 tk->tkr_raw.xtime_nsec = 0; 276 277 tk->tkr_mono.shift = clock->shift; 278 tk->tkr_raw.shift = clock->shift; 279 280 tk->ntp_error = 0; 281 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 282 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 283 284 /* 285 * The timekeeper keeps its own mult values for the currently 286 * active clocksource. These value will be adjusted via NTP 287 * to counteract clock drifting. 288 */ 289 tk->tkr_mono.mult = clock->mult; 290 tk->tkr_raw.mult = clock->mult; 291 tk->ntp_err_mult = 0; 292 } 293 294 /* Timekeeper helper functions. */ 295 296 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 297 static u32 default_arch_gettimeoffset(void) { return 0; } 298 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 299 #else 300 static inline u32 arch_gettimeoffset(void) { return 0; } 301 #endif 302 303 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta) 304 { 305 u64 nsec; 306 307 nsec = delta * tkr->mult + tkr->xtime_nsec; 308 nsec >>= tkr->shift; 309 310 /* If arch requires, add in get_arch_timeoffset() */ 311 return nsec + arch_gettimeoffset(); 312 } 313 314 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) 315 { 316 u64 delta; 317 318 delta = timekeeping_get_delta(tkr); 319 return timekeeping_delta_to_ns(tkr, delta); 320 } 321 322 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles) 323 { 324 u64 delta; 325 326 /* calculate the delta since the last update_wall_time */ 327 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 328 return timekeeping_delta_to_ns(tkr, delta); 329 } 330 331 /** 332 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 333 * @tkr: Timekeeping readout base from which we take the update 334 * 335 * We want to use this from any context including NMI and tracing / 336 * instrumenting the timekeeping code itself. 337 * 338 * Employ the latch technique; see @raw_write_seqcount_latch. 339 * 340 * So if a NMI hits the update of base[0] then it will use base[1] 341 * which is still consistent. In the worst case this can result is a 342 * slightly wrong timestamp (a few nanoseconds). See 343 * @ktime_get_mono_fast_ns. 344 */ 345 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 346 { 347 struct tk_read_base *base = tkf->base; 348 349 /* Force readers off to base[1] */ 350 raw_write_seqcount_latch(&tkf->seq); 351 352 /* Update base[0] */ 353 memcpy(base, tkr, sizeof(*base)); 354 355 /* Force readers back to base[0] */ 356 raw_write_seqcount_latch(&tkf->seq); 357 358 /* Update base[1] */ 359 memcpy(base + 1, base, sizeof(*base)); 360 } 361 362 /** 363 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 364 * 365 * This timestamp is not guaranteed to be monotonic across an update. 366 * The timestamp is calculated by: 367 * 368 * now = base_mono + clock_delta * slope 369 * 370 * So if the update lowers the slope, readers who are forced to the 371 * not yet updated second array are still using the old steeper slope. 372 * 373 * tmono 374 * ^ 375 * | o n 376 * | o n 377 * | u 378 * | o 379 * |o 380 * |12345678---> reader order 381 * 382 * o = old slope 383 * u = update 384 * n = new slope 385 * 386 * So reader 6 will observe time going backwards versus reader 5. 387 * 388 * While other CPUs are likely to be able observe that, the only way 389 * for a CPU local observation is when an NMI hits in the middle of 390 * the update. Timestamps taken from that NMI context might be ahead 391 * of the following timestamps. Callers need to be aware of that and 392 * deal with it. 393 */ 394 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 395 { 396 struct tk_read_base *tkr; 397 unsigned int seq; 398 u64 now; 399 400 do { 401 seq = raw_read_seqcount_latch(&tkf->seq); 402 tkr = tkf->base + (seq & 0x01); 403 now = ktime_to_ns(tkr->base); 404 405 now += timekeeping_delta_to_ns(tkr, 406 clocksource_delta( 407 tkr->read(tkr->clock), 408 tkr->cycle_last, 409 tkr->mask)); 410 } while (read_seqcount_retry(&tkf->seq, seq)); 411 412 return now; 413 } 414 415 u64 ktime_get_mono_fast_ns(void) 416 { 417 return __ktime_get_fast_ns(&tk_fast_mono); 418 } 419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 420 421 u64 ktime_get_raw_fast_ns(void) 422 { 423 return __ktime_get_fast_ns(&tk_fast_raw); 424 } 425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 426 427 /** 428 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 429 * 430 * To keep it NMI safe since we're accessing from tracing, we're not using a 431 * separate timekeeper with updates to monotonic clock and boot offset 432 * protected with seqlocks. This has the following minor side effects: 433 * 434 * (1) Its possible that a timestamp be taken after the boot offset is updated 435 * but before the timekeeper is updated. If this happens, the new boot offset 436 * is added to the old timekeeping making the clock appear to update slightly 437 * earlier: 438 * CPU 0 CPU 1 439 * timekeeping_inject_sleeptime64() 440 * __timekeeping_inject_sleeptime(tk, delta); 441 * timestamp(); 442 * timekeeping_update(tk, TK_CLEAR_NTP...); 443 * 444 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 445 * partially updated. Since the tk->offs_boot update is a rare event, this 446 * should be a rare occurrence which postprocessing should be able to handle. 447 */ 448 u64 notrace ktime_get_boot_fast_ns(void) 449 { 450 struct timekeeper *tk = &tk_core.timekeeper; 451 452 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 453 } 454 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 455 456 /* Suspend-time cycles value for halted fast timekeeper. */ 457 static u64 cycles_at_suspend; 458 459 static u64 dummy_clock_read(struct clocksource *cs) 460 { 461 return cycles_at_suspend; 462 } 463 464 /** 465 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 466 * @tk: Timekeeper to snapshot. 467 * 468 * It generally is unsafe to access the clocksource after timekeeping has been 469 * suspended, so take a snapshot of the readout base of @tk and use it as the 470 * fast timekeeper's readout base while suspended. It will return the same 471 * number of cycles every time until timekeeping is resumed at which time the 472 * proper readout base for the fast timekeeper will be restored automatically. 473 */ 474 static void halt_fast_timekeeper(struct timekeeper *tk) 475 { 476 static struct tk_read_base tkr_dummy; 477 struct tk_read_base *tkr = &tk->tkr_mono; 478 479 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 480 cycles_at_suspend = tkr->read(tkr->clock); 481 tkr_dummy.read = dummy_clock_read; 482 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 483 484 tkr = &tk->tkr_raw; 485 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 486 tkr_dummy.read = dummy_clock_read; 487 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 488 } 489 490 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 491 492 static inline void update_vsyscall(struct timekeeper *tk) 493 { 494 struct timespec xt, wm; 495 496 xt = timespec64_to_timespec(tk_xtime(tk)); 497 wm = timespec64_to_timespec(tk->wall_to_monotonic); 498 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 499 tk->tkr_mono.cycle_last); 500 } 501 502 static inline void old_vsyscall_fixup(struct timekeeper *tk) 503 { 504 s64 remainder; 505 506 /* 507 * Store only full nanoseconds into xtime_nsec after rounding 508 * it up and add the remainder to the error difference. 509 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 510 * by truncating the remainder in vsyscalls. However, it causes 511 * additional work to be done in timekeeping_adjust(). Once 512 * the vsyscall implementations are converted to use xtime_nsec 513 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 514 * users are removed, this can be killed. 515 */ 516 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 517 if (remainder != 0) { 518 tk->tkr_mono.xtime_nsec -= remainder; 519 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 520 tk->ntp_error += remainder << tk->ntp_error_shift; 521 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 522 } 523 } 524 #else 525 #define old_vsyscall_fixup(tk) 526 #endif 527 528 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 529 530 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 531 { 532 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 533 } 534 535 /** 536 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 537 */ 538 int pvclock_gtod_register_notifier(struct notifier_block *nb) 539 { 540 struct timekeeper *tk = &tk_core.timekeeper; 541 unsigned long flags; 542 int ret; 543 544 raw_spin_lock_irqsave(&timekeeper_lock, flags); 545 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 546 update_pvclock_gtod(tk, true); 547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 548 549 return ret; 550 } 551 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 552 553 /** 554 * pvclock_gtod_unregister_notifier - unregister a pvclock 555 * timedata update listener 556 */ 557 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 558 { 559 unsigned long flags; 560 int ret; 561 562 raw_spin_lock_irqsave(&timekeeper_lock, flags); 563 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 564 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 565 566 return ret; 567 } 568 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 569 570 /* 571 * tk_update_leap_state - helper to update the next_leap_ktime 572 */ 573 static inline void tk_update_leap_state(struct timekeeper *tk) 574 { 575 tk->next_leap_ktime = ntp_get_next_leap(); 576 if (tk->next_leap_ktime != KTIME_MAX) 577 /* Convert to monotonic time */ 578 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 579 } 580 581 /* 582 * Update the ktime_t based scalar nsec members of the timekeeper 583 */ 584 static inline void tk_update_ktime_data(struct timekeeper *tk) 585 { 586 u64 seconds; 587 u32 nsec; 588 589 /* 590 * The xtime based monotonic readout is: 591 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 592 * The ktime based monotonic readout is: 593 * nsec = base_mono + now(); 594 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 595 */ 596 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 597 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 598 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 599 600 /* Update the monotonic raw base */ 601 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 602 603 /* 604 * The sum of the nanoseconds portions of xtime and 605 * wall_to_monotonic can be greater/equal one second. Take 606 * this into account before updating tk->ktime_sec. 607 */ 608 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 609 if (nsec >= NSEC_PER_SEC) 610 seconds++; 611 tk->ktime_sec = seconds; 612 } 613 614 /* must hold timekeeper_lock */ 615 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 616 { 617 if (action & TK_CLEAR_NTP) { 618 tk->ntp_error = 0; 619 ntp_clear(); 620 } 621 622 tk_update_leap_state(tk); 623 tk_update_ktime_data(tk); 624 625 update_vsyscall(tk); 626 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 627 628 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 629 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 630 631 if (action & TK_CLOCK_WAS_SET) 632 tk->clock_was_set_seq++; 633 /* 634 * The mirroring of the data to the shadow-timekeeper needs 635 * to happen last here to ensure we don't over-write the 636 * timekeeper structure on the next update with stale data 637 */ 638 if (action & TK_MIRROR) 639 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 640 sizeof(tk_core.timekeeper)); 641 } 642 643 /** 644 * timekeeping_forward_now - update clock to the current time 645 * 646 * Forward the current clock to update its state since the last call to 647 * update_wall_time(). This is useful before significant clock changes, 648 * as it avoids having to deal with this time offset explicitly. 649 */ 650 static void timekeeping_forward_now(struct timekeeper *tk) 651 { 652 struct clocksource *clock = tk->tkr_mono.clock; 653 u64 cycle_now, delta; 654 u64 nsec; 655 656 cycle_now = tk->tkr_mono.read(clock); 657 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 658 tk->tkr_mono.cycle_last = cycle_now; 659 tk->tkr_raw.cycle_last = cycle_now; 660 661 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 662 663 /* If arch requires, add in get_arch_timeoffset() */ 664 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 665 666 tk_normalize_xtime(tk); 667 668 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 669 timespec64_add_ns(&tk->raw_time, nsec); 670 } 671 672 /** 673 * __getnstimeofday64 - Returns the time of day in a timespec64. 674 * @ts: pointer to the timespec to be set 675 * 676 * Updates the time of day in the timespec. 677 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 678 */ 679 int __getnstimeofday64(struct timespec64 *ts) 680 { 681 struct timekeeper *tk = &tk_core.timekeeper; 682 unsigned long seq; 683 u64 nsecs; 684 685 do { 686 seq = read_seqcount_begin(&tk_core.seq); 687 688 ts->tv_sec = tk->xtime_sec; 689 nsecs = timekeeping_get_ns(&tk->tkr_mono); 690 691 } while (read_seqcount_retry(&tk_core.seq, seq)); 692 693 ts->tv_nsec = 0; 694 timespec64_add_ns(ts, nsecs); 695 696 /* 697 * Do not bail out early, in case there were callers still using 698 * the value, even in the face of the WARN_ON. 699 */ 700 if (unlikely(timekeeping_suspended)) 701 return -EAGAIN; 702 return 0; 703 } 704 EXPORT_SYMBOL(__getnstimeofday64); 705 706 /** 707 * getnstimeofday64 - Returns the time of day in a timespec64. 708 * @ts: pointer to the timespec64 to be set 709 * 710 * Returns the time of day in a timespec64 (WARN if suspended). 711 */ 712 void getnstimeofday64(struct timespec64 *ts) 713 { 714 WARN_ON(__getnstimeofday64(ts)); 715 } 716 EXPORT_SYMBOL(getnstimeofday64); 717 718 ktime_t ktime_get(void) 719 { 720 struct timekeeper *tk = &tk_core.timekeeper; 721 unsigned int seq; 722 ktime_t base; 723 u64 nsecs; 724 725 WARN_ON(timekeeping_suspended); 726 727 do { 728 seq = read_seqcount_begin(&tk_core.seq); 729 base = tk->tkr_mono.base; 730 nsecs = timekeeping_get_ns(&tk->tkr_mono); 731 732 } while (read_seqcount_retry(&tk_core.seq, seq)); 733 734 return ktime_add_ns(base, nsecs); 735 } 736 EXPORT_SYMBOL_GPL(ktime_get); 737 738 u32 ktime_get_resolution_ns(void) 739 { 740 struct timekeeper *tk = &tk_core.timekeeper; 741 unsigned int seq; 742 u32 nsecs; 743 744 WARN_ON(timekeeping_suspended); 745 746 do { 747 seq = read_seqcount_begin(&tk_core.seq); 748 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 749 } while (read_seqcount_retry(&tk_core.seq, seq)); 750 751 return nsecs; 752 } 753 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 754 755 static ktime_t *offsets[TK_OFFS_MAX] = { 756 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 757 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 758 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 759 }; 760 761 ktime_t ktime_get_with_offset(enum tk_offsets offs) 762 { 763 struct timekeeper *tk = &tk_core.timekeeper; 764 unsigned int seq; 765 ktime_t base, *offset = offsets[offs]; 766 u64 nsecs; 767 768 WARN_ON(timekeeping_suspended); 769 770 do { 771 seq = read_seqcount_begin(&tk_core.seq); 772 base = ktime_add(tk->tkr_mono.base, *offset); 773 nsecs = timekeeping_get_ns(&tk->tkr_mono); 774 775 } while (read_seqcount_retry(&tk_core.seq, seq)); 776 777 return ktime_add_ns(base, nsecs); 778 779 } 780 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 781 782 /** 783 * ktime_mono_to_any() - convert mononotic time to any other time 784 * @tmono: time to convert. 785 * @offs: which offset to use 786 */ 787 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 788 { 789 ktime_t *offset = offsets[offs]; 790 unsigned long seq; 791 ktime_t tconv; 792 793 do { 794 seq = read_seqcount_begin(&tk_core.seq); 795 tconv = ktime_add(tmono, *offset); 796 } while (read_seqcount_retry(&tk_core.seq, seq)); 797 798 return tconv; 799 } 800 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 801 802 /** 803 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 804 */ 805 ktime_t ktime_get_raw(void) 806 { 807 struct timekeeper *tk = &tk_core.timekeeper; 808 unsigned int seq; 809 ktime_t base; 810 u64 nsecs; 811 812 do { 813 seq = read_seqcount_begin(&tk_core.seq); 814 base = tk->tkr_raw.base; 815 nsecs = timekeeping_get_ns(&tk->tkr_raw); 816 817 } while (read_seqcount_retry(&tk_core.seq, seq)); 818 819 return ktime_add_ns(base, nsecs); 820 } 821 EXPORT_SYMBOL_GPL(ktime_get_raw); 822 823 /** 824 * ktime_get_ts64 - get the monotonic clock in timespec64 format 825 * @ts: pointer to timespec variable 826 * 827 * The function calculates the monotonic clock from the realtime 828 * clock and the wall_to_monotonic offset and stores the result 829 * in normalized timespec64 format in the variable pointed to by @ts. 830 */ 831 void ktime_get_ts64(struct timespec64 *ts) 832 { 833 struct timekeeper *tk = &tk_core.timekeeper; 834 struct timespec64 tomono; 835 unsigned int seq; 836 u64 nsec; 837 838 WARN_ON(timekeeping_suspended); 839 840 do { 841 seq = read_seqcount_begin(&tk_core.seq); 842 ts->tv_sec = tk->xtime_sec; 843 nsec = timekeeping_get_ns(&tk->tkr_mono); 844 tomono = tk->wall_to_monotonic; 845 846 } while (read_seqcount_retry(&tk_core.seq, seq)); 847 848 ts->tv_sec += tomono.tv_sec; 849 ts->tv_nsec = 0; 850 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 851 } 852 EXPORT_SYMBOL_GPL(ktime_get_ts64); 853 854 /** 855 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 856 * 857 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 858 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 859 * works on both 32 and 64 bit systems. On 32 bit systems the readout 860 * covers ~136 years of uptime which should be enough to prevent 861 * premature wrap arounds. 862 */ 863 time64_t ktime_get_seconds(void) 864 { 865 struct timekeeper *tk = &tk_core.timekeeper; 866 867 WARN_ON(timekeeping_suspended); 868 return tk->ktime_sec; 869 } 870 EXPORT_SYMBOL_GPL(ktime_get_seconds); 871 872 /** 873 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 874 * 875 * Returns the wall clock seconds since 1970. This replaces the 876 * get_seconds() interface which is not y2038 safe on 32bit systems. 877 * 878 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 879 * 32bit systems the access must be protected with the sequence 880 * counter to provide "atomic" access to the 64bit tk->xtime_sec 881 * value. 882 */ 883 time64_t ktime_get_real_seconds(void) 884 { 885 struct timekeeper *tk = &tk_core.timekeeper; 886 time64_t seconds; 887 unsigned int seq; 888 889 if (IS_ENABLED(CONFIG_64BIT)) 890 return tk->xtime_sec; 891 892 do { 893 seq = read_seqcount_begin(&tk_core.seq); 894 seconds = tk->xtime_sec; 895 896 } while (read_seqcount_retry(&tk_core.seq, seq)); 897 898 return seconds; 899 } 900 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 901 902 /** 903 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 904 * but without the sequence counter protect. This internal function 905 * is called just when timekeeping lock is already held. 906 */ 907 time64_t __ktime_get_real_seconds(void) 908 { 909 struct timekeeper *tk = &tk_core.timekeeper; 910 911 return tk->xtime_sec; 912 } 913 914 /** 915 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 916 * @systime_snapshot: pointer to struct receiving the system time snapshot 917 */ 918 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 919 { 920 struct timekeeper *tk = &tk_core.timekeeper; 921 unsigned long seq; 922 ktime_t base_raw; 923 ktime_t base_real; 924 u64 nsec_raw; 925 u64 nsec_real; 926 u64 now; 927 928 WARN_ON_ONCE(timekeeping_suspended); 929 930 do { 931 seq = read_seqcount_begin(&tk_core.seq); 932 933 now = tk->tkr_mono.read(tk->tkr_mono.clock); 934 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 935 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 936 base_real = ktime_add(tk->tkr_mono.base, 937 tk_core.timekeeper.offs_real); 938 base_raw = tk->tkr_raw.base; 939 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 940 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 941 } while (read_seqcount_retry(&tk_core.seq, seq)); 942 943 systime_snapshot->cycles = now; 944 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 945 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 946 } 947 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 948 949 /* Scale base by mult/div checking for overflow */ 950 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 951 { 952 u64 tmp, rem; 953 954 tmp = div64_u64_rem(*base, div, &rem); 955 956 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 957 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 958 return -EOVERFLOW; 959 tmp *= mult; 960 rem *= mult; 961 962 do_div(rem, div); 963 *base = tmp + rem; 964 return 0; 965 } 966 967 /** 968 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 969 * @history: Snapshot representing start of history 970 * @partial_history_cycles: Cycle offset into history (fractional part) 971 * @total_history_cycles: Total history length in cycles 972 * @discontinuity: True indicates clock was set on history period 973 * @ts: Cross timestamp that should be adjusted using 974 * partial/total ratio 975 * 976 * Helper function used by get_device_system_crosststamp() to correct the 977 * crosstimestamp corresponding to the start of the current interval to the 978 * system counter value (timestamp point) provided by the driver. The 979 * total_history_* quantities are the total history starting at the provided 980 * reference point and ending at the start of the current interval. The cycle 981 * count between the driver timestamp point and the start of the current 982 * interval is partial_history_cycles. 983 */ 984 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 985 u64 partial_history_cycles, 986 u64 total_history_cycles, 987 bool discontinuity, 988 struct system_device_crosststamp *ts) 989 { 990 struct timekeeper *tk = &tk_core.timekeeper; 991 u64 corr_raw, corr_real; 992 bool interp_forward; 993 int ret; 994 995 if (total_history_cycles == 0 || partial_history_cycles == 0) 996 return 0; 997 998 /* Interpolate shortest distance from beginning or end of history */ 999 interp_forward = partial_history_cycles > total_history_cycles/2 ? 1000 true : false; 1001 partial_history_cycles = interp_forward ? 1002 total_history_cycles - partial_history_cycles : 1003 partial_history_cycles; 1004 1005 /* 1006 * Scale the monotonic raw time delta by: 1007 * partial_history_cycles / total_history_cycles 1008 */ 1009 corr_raw = (u64)ktime_to_ns( 1010 ktime_sub(ts->sys_monoraw, history->raw)); 1011 ret = scale64_check_overflow(partial_history_cycles, 1012 total_history_cycles, &corr_raw); 1013 if (ret) 1014 return ret; 1015 1016 /* 1017 * If there is a discontinuity in the history, scale monotonic raw 1018 * correction by: 1019 * mult(real)/mult(raw) yielding the realtime correction 1020 * Otherwise, calculate the realtime correction similar to monotonic 1021 * raw calculation 1022 */ 1023 if (discontinuity) { 1024 corr_real = mul_u64_u32_div 1025 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1026 } else { 1027 corr_real = (u64)ktime_to_ns( 1028 ktime_sub(ts->sys_realtime, history->real)); 1029 ret = scale64_check_overflow(partial_history_cycles, 1030 total_history_cycles, &corr_real); 1031 if (ret) 1032 return ret; 1033 } 1034 1035 /* Fixup monotonic raw and real time time values */ 1036 if (interp_forward) { 1037 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1038 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1039 } else { 1040 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1041 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1042 } 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * cycle_between - true if test occurs chronologically between before and after 1049 */ 1050 static bool cycle_between(u64 before, u64 test, u64 after) 1051 { 1052 if (test > before && test < after) 1053 return true; 1054 if (test < before && before > after) 1055 return true; 1056 return false; 1057 } 1058 1059 /** 1060 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1061 * @get_time_fn: Callback to get simultaneous device time and 1062 * system counter from the device driver 1063 * @ctx: Context passed to get_time_fn() 1064 * @history_begin: Historical reference point used to interpolate system 1065 * time when counter provided by the driver is before the current interval 1066 * @xtstamp: Receives simultaneously captured system and device time 1067 * 1068 * Reads a timestamp from a device and correlates it to system time 1069 */ 1070 int get_device_system_crosststamp(int (*get_time_fn) 1071 (ktime_t *device_time, 1072 struct system_counterval_t *sys_counterval, 1073 void *ctx), 1074 void *ctx, 1075 struct system_time_snapshot *history_begin, 1076 struct system_device_crosststamp *xtstamp) 1077 { 1078 struct system_counterval_t system_counterval; 1079 struct timekeeper *tk = &tk_core.timekeeper; 1080 u64 cycles, now, interval_start; 1081 unsigned int clock_was_set_seq = 0; 1082 ktime_t base_real, base_raw; 1083 u64 nsec_real, nsec_raw; 1084 u8 cs_was_changed_seq; 1085 unsigned long seq; 1086 bool do_interp; 1087 int ret; 1088 1089 do { 1090 seq = read_seqcount_begin(&tk_core.seq); 1091 /* 1092 * Try to synchronously capture device time and a system 1093 * counter value calling back into the device driver 1094 */ 1095 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1096 if (ret) 1097 return ret; 1098 1099 /* 1100 * Verify that the clocksource associated with the captured 1101 * system counter value is the same as the currently installed 1102 * timekeeper clocksource 1103 */ 1104 if (tk->tkr_mono.clock != system_counterval.cs) 1105 return -ENODEV; 1106 cycles = system_counterval.cycles; 1107 1108 /* 1109 * Check whether the system counter value provided by the 1110 * device driver is on the current timekeeping interval. 1111 */ 1112 now = tk->tkr_mono.read(tk->tkr_mono.clock); 1113 interval_start = tk->tkr_mono.cycle_last; 1114 if (!cycle_between(interval_start, cycles, now)) { 1115 clock_was_set_seq = tk->clock_was_set_seq; 1116 cs_was_changed_seq = tk->cs_was_changed_seq; 1117 cycles = interval_start; 1118 do_interp = true; 1119 } else { 1120 do_interp = false; 1121 } 1122 1123 base_real = ktime_add(tk->tkr_mono.base, 1124 tk_core.timekeeper.offs_real); 1125 base_raw = tk->tkr_raw.base; 1126 1127 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1128 system_counterval.cycles); 1129 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1130 system_counterval.cycles); 1131 } while (read_seqcount_retry(&tk_core.seq, seq)); 1132 1133 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1134 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1135 1136 /* 1137 * Interpolate if necessary, adjusting back from the start of the 1138 * current interval 1139 */ 1140 if (do_interp) { 1141 u64 partial_history_cycles, total_history_cycles; 1142 bool discontinuity; 1143 1144 /* 1145 * Check that the counter value occurs after the provided 1146 * history reference and that the history doesn't cross a 1147 * clocksource change 1148 */ 1149 if (!history_begin || 1150 !cycle_between(history_begin->cycles, 1151 system_counterval.cycles, cycles) || 1152 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1153 return -EINVAL; 1154 partial_history_cycles = cycles - system_counterval.cycles; 1155 total_history_cycles = cycles - history_begin->cycles; 1156 discontinuity = 1157 history_begin->clock_was_set_seq != clock_was_set_seq; 1158 1159 ret = adjust_historical_crosststamp(history_begin, 1160 partial_history_cycles, 1161 total_history_cycles, 1162 discontinuity, xtstamp); 1163 if (ret) 1164 return ret; 1165 } 1166 1167 return 0; 1168 } 1169 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1170 1171 /** 1172 * do_gettimeofday - Returns the time of day in a timeval 1173 * @tv: pointer to the timeval to be set 1174 * 1175 * NOTE: Users should be converted to using getnstimeofday() 1176 */ 1177 void do_gettimeofday(struct timeval *tv) 1178 { 1179 struct timespec64 now; 1180 1181 getnstimeofday64(&now); 1182 tv->tv_sec = now.tv_sec; 1183 tv->tv_usec = now.tv_nsec/1000; 1184 } 1185 EXPORT_SYMBOL(do_gettimeofday); 1186 1187 /** 1188 * do_settimeofday64 - Sets the time of day. 1189 * @ts: pointer to the timespec64 variable containing the new time 1190 * 1191 * Sets the time of day to the new time and update NTP and notify hrtimers 1192 */ 1193 int do_settimeofday64(const struct timespec64 *ts) 1194 { 1195 struct timekeeper *tk = &tk_core.timekeeper; 1196 struct timespec64 ts_delta, xt; 1197 unsigned long flags; 1198 int ret = 0; 1199 1200 if (!timespec64_valid_strict(ts)) 1201 return -EINVAL; 1202 1203 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1204 write_seqcount_begin(&tk_core.seq); 1205 1206 timekeeping_forward_now(tk); 1207 1208 xt = tk_xtime(tk); 1209 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1210 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1211 1212 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1213 ret = -EINVAL; 1214 goto out; 1215 } 1216 1217 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1218 1219 tk_set_xtime(tk, ts); 1220 out: 1221 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1222 1223 write_seqcount_end(&tk_core.seq); 1224 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1225 1226 /* signal hrtimers about time change */ 1227 clock_was_set(); 1228 1229 return ret; 1230 } 1231 EXPORT_SYMBOL(do_settimeofday64); 1232 1233 /** 1234 * timekeeping_inject_offset - Adds or subtracts from the current time. 1235 * @tv: pointer to the timespec variable containing the offset 1236 * 1237 * Adds or subtracts an offset value from the current time. 1238 */ 1239 int timekeeping_inject_offset(struct timespec *ts) 1240 { 1241 struct timekeeper *tk = &tk_core.timekeeper; 1242 unsigned long flags; 1243 struct timespec64 ts64, tmp; 1244 int ret = 0; 1245 1246 if (!timespec_inject_offset_valid(ts)) 1247 return -EINVAL; 1248 1249 ts64 = timespec_to_timespec64(*ts); 1250 1251 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1252 write_seqcount_begin(&tk_core.seq); 1253 1254 timekeeping_forward_now(tk); 1255 1256 /* Make sure the proposed value is valid */ 1257 tmp = timespec64_add(tk_xtime(tk), ts64); 1258 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1259 !timespec64_valid_strict(&tmp)) { 1260 ret = -EINVAL; 1261 goto error; 1262 } 1263 1264 tk_xtime_add(tk, &ts64); 1265 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1266 1267 error: /* even if we error out, we forwarded the time, so call update */ 1268 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1269 1270 write_seqcount_end(&tk_core.seq); 1271 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1272 1273 /* signal hrtimers about time change */ 1274 clock_was_set(); 1275 1276 return ret; 1277 } 1278 EXPORT_SYMBOL(timekeeping_inject_offset); 1279 1280 /** 1281 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1282 * 1283 */ 1284 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1285 { 1286 tk->tai_offset = tai_offset; 1287 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1288 } 1289 1290 /** 1291 * change_clocksource - Swaps clocksources if a new one is available 1292 * 1293 * Accumulates current time interval and initializes new clocksource 1294 */ 1295 static int change_clocksource(void *data) 1296 { 1297 struct timekeeper *tk = &tk_core.timekeeper; 1298 struct clocksource *new, *old; 1299 unsigned long flags; 1300 1301 new = (struct clocksource *) data; 1302 1303 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1304 write_seqcount_begin(&tk_core.seq); 1305 1306 timekeeping_forward_now(tk); 1307 /* 1308 * If the cs is in module, get a module reference. Succeeds 1309 * for built-in code (owner == NULL) as well. 1310 */ 1311 if (try_module_get(new->owner)) { 1312 if (!new->enable || new->enable(new) == 0) { 1313 old = tk->tkr_mono.clock; 1314 tk_setup_internals(tk, new); 1315 if (old->disable) 1316 old->disable(old); 1317 module_put(old->owner); 1318 } else { 1319 module_put(new->owner); 1320 } 1321 } 1322 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1323 1324 write_seqcount_end(&tk_core.seq); 1325 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1326 1327 return 0; 1328 } 1329 1330 /** 1331 * timekeeping_notify - Install a new clock source 1332 * @clock: pointer to the clock source 1333 * 1334 * This function is called from clocksource.c after a new, better clock 1335 * source has been registered. The caller holds the clocksource_mutex. 1336 */ 1337 int timekeeping_notify(struct clocksource *clock) 1338 { 1339 struct timekeeper *tk = &tk_core.timekeeper; 1340 1341 if (tk->tkr_mono.clock == clock) 1342 return 0; 1343 stop_machine(change_clocksource, clock, NULL); 1344 tick_clock_notify(); 1345 return tk->tkr_mono.clock == clock ? 0 : -1; 1346 } 1347 1348 /** 1349 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1350 * @ts: pointer to the timespec64 to be set 1351 * 1352 * Returns the raw monotonic time (completely un-modified by ntp) 1353 */ 1354 void getrawmonotonic64(struct timespec64 *ts) 1355 { 1356 struct timekeeper *tk = &tk_core.timekeeper; 1357 struct timespec64 ts64; 1358 unsigned long seq; 1359 u64 nsecs; 1360 1361 do { 1362 seq = read_seqcount_begin(&tk_core.seq); 1363 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1364 ts64 = tk->raw_time; 1365 1366 } while (read_seqcount_retry(&tk_core.seq, seq)); 1367 1368 timespec64_add_ns(&ts64, nsecs); 1369 *ts = ts64; 1370 } 1371 EXPORT_SYMBOL(getrawmonotonic64); 1372 1373 1374 /** 1375 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1376 */ 1377 int timekeeping_valid_for_hres(void) 1378 { 1379 struct timekeeper *tk = &tk_core.timekeeper; 1380 unsigned long seq; 1381 int ret; 1382 1383 do { 1384 seq = read_seqcount_begin(&tk_core.seq); 1385 1386 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1387 1388 } while (read_seqcount_retry(&tk_core.seq, seq)); 1389 1390 return ret; 1391 } 1392 1393 /** 1394 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1395 */ 1396 u64 timekeeping_max_deferment(void) 1397 { 1398 struct timekeeper *tk = &tk_core.timekeeper; 1399 unsigned long seq; 1400 u64 ret; 1401 1402 do { 1403 seq = read_seqcount_begin(&tk_core.seq); 1404 1405 ret = tk->tkr_mono.clock->max_idle_ns; 1406 1407 } while (read_seqcount_retry(&tk_core.seq, seq)); 1408 1409 return ret; 1410 } 1411 1412 /** 1413 * read_persistent_clock - Return time from the persistent clock. 1414 * 1415 * Weak dummy function for arches that do not yet support it. 1416 * Reads the time from the battery backed persistent clock. 1417 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1418 * 1419 * XXX - Do be sure to remove it once all arches implement it. 1420 */ 1421 void __weak read_persistent_clock(struct timespec *ts) 1422 { 1423 ts->tv_sec = 0; 1424 ts->tv_nsec = 0; 1425 } 1426 1427 void __weak read_persistent_clock64(struct timespec64 *ts64) 1428 { 1429 struct timespec ts; 1430 1431 read_persistent_clock(&ts); 1432 *ts64 = timespec_to_timespec64(ts); 1433 } 1434 1435 /** 1436 * read_boot_clock64 - Return time of the system start. 1437 * 1438 * Weak dummy function for arches that do not yet support it. 1439 * Function to read the exact time the system has been started. 1440 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1441 * 1442 * XXX - Do be sure to remove it once all arches implement it. 1443 */ 1444 void __weak read_boot_clock64(struct timespec64 *ts) 1445 { 1446 ts->tv_sec = 0; 1447 ts->tv_nsec = 0; 1448 } 1449 1450 /* Flag for if timekeeping_resume() has injected sleeptime */ 1451 static bool sleeptime_injected; 1452 1453 /* Flag for if there is a persistent clock on this platform */ 1454 static bool persistent_clock_exists; 1455 1456 /* 1457 * timekeeping_init - Initializes the clocksource and common timekeeping values 1458 */ 1459 void __init timekeeping_init(void) 1460 { 1461 struct timekeeper *tk = &tk_core.timekeeper; 1462 struct clocksource *clock; 1463 unsigned long flags; 1464 struct timespec64 now, boot, tmp; 1465 1466 read_persistent_clock64(&now); 1467 if (!timespec64_valid_strict(&now)) { 1468 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1469 " Check your CMOS/BIOS settings.\n"); 1470 now.tv_sec = 0; 1471 now.tv_nsec = 0; 1472 } else if (now.tv_sec || now.tv_nsec) 1473 persistent_clock_exists = true; 1474 1475 read_boot_clock64(&boot); 1476 if (!timespec64_valid_strict(&boot)) { 1477 pr_warn("WARNING: Boot clock returned invalid value!\n" 1478 " Check your CMOS/BIOS settings.\n"); 1479 boot.tv_sec = 0; 1480 boot.tv_nsec = 0; 1481 } 1482 1483 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1484 write_seqcount_begin(&tk_core.seq); 1485 ntp_init(); 1486 1487 clock = clocksource_default_clock(); 1488 if (clock->enable) 1489 clock->enable(clock); 1490 tk_setup_internals(tk, clock); 1491 1492 tk_set_xtime(tk, &now); 1493 tk->raw_time.tv_sec = 0; 1494 tk->raw_time.tv_nsec = 0; 1495 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1496 boot = tk_xtime(tk); 1497 1498 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1499 tk_set_wall_to_mono(tk, tmp); 1500 1501 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1502 1503 write_seqcount_end(&tk_core.seq); 1504 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1505 } 1506 1507 /* time in seconds when suspend began for persistent clock */ 1508 static struct timespec64 timekeeping_suspend_time; 1509 1510 /** 1511 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1512 * @delta: pointer to a timespec delta value 1513 * 1514 * Takes a timespec offset measuring a suspend interval and properly 1515 * adds the sleep offset to the timekeeping variables. 1516 */ 1517 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1518 struct timespec64 *delta) 1519 { 1520 if (!timespec64_valid_strict(delta)) { 1521 printk_deferred(KERN_WARNING 1522 "__timekeeping_inject_sleeptime: Invalid " 1523 "sleep delta value!\n"); 1524 return; 1525 } 1526 tk_xtime_add(tk, delta); 1527 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1528 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1529 tk_debug_account_sleep_time(delta); 1530 } 1531 1532 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1533 /** 1534 * We have three kinds of time sources to use for sleep time 1535 * injection, the preference order is: 1536 * 1) non-stop clocksource 1537 * 2) persistent clock (ie: RTC accessible when irqs are off) 1538 * 3) RTC 1539 * 1540 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1541 * If system has neither 1) nor 2), 3) will be used finally. 1542 * 1543 * 1544 * If timekeeping has injected sleeptime via either 1) or 2), 1545 * 3) becomes needless, so in this case we don't need to call 1546 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1547 * means. 1548 */ 1549 bool timekeeping_rtc_skipresume(void) 1550 { 1551 return sleeptime_injected; 1552 } 1553 1554 /** 1555 * 1) can be determined whether to use or not only when doing 1556 * timekeeping_resume() which is invoked after rtc_suspend(), 1557 * so we can't skip rtc_suspend() surely if system has 1). 1558 * 1559 * But if system has 2), 2) will definitely be used, so in this 1560 * case we don't need to call rtc_suspend(), and this is what 1561 * timekeeping_rtc_skipsuspend() means. 1562 */ 1563 bool timekeeping_rtc_skipsuspend(void) 1564 { 1565 return persistent_clock_exists; 1566 } 1567 1568 /** 1569 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1570 * @delta: pointer to a timespec64 delta value 1571 * 1572 * This hook is for architectures that cannot support read_persistent_clock64 1573 * because their RTC/persistent clock is only accessible when irqs are enabled. 1574 * and also don't have an effective nonstop clocksource. 1575 * 1576 * This function should only be called by rtc_resume(), and allows 1577 * a suspend offset to be injected into the timekeeping values. 1578 */ 1579 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1580 { 1581 struct timekeeper *tk = &tk_core.timekeeper; 1582 unsigned long flags; 1583 1584 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1585 write_seqcount_begin(&tk_core.seq); 1586 1587 timekeeping_forward_now(tk); 1588 1589 __timekeeping_inject_sleeptime(tk, delta); 1590 1591 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1592 1593 write_seqcount_end(&tk_core.seq); 1594 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1595 1596 /* signal hrtimers about time change */ 1597 clock_was_set(); 1598 } 1599 #endif 1600 1601 /** 1602 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1603 */ 1604 void timekeeping_resume(void) 1605 { 1606 struct timekeeper *tk = &tk_core.timekeeper; 1607 struct clocksource *clock = tk->tkr_mono.clock; 1608 unsigned long flags; 1609 struct timespec64 ts_new, ts_delta; 1610 u64 cycle_now; 1611 1612 sleeptime_injected = false; 1613 read_persistent_clock64(&ts_new); 1614 1615 clockevents_resume(); 1616 clocksource_resume(); 1617 1618 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1619 write_seqcount_begin(&tk_core.seq); 1620 1621 /* 1622 * After system resumes, we need to calculate the suspended time and 1623 * compensate it for the OS time. There are 3 sources that could be 1624 * used: Nonstop clocksource during suspend, persistent clock and rtc 1625 * device. 1626 * 1627 * One specific platform may have 1 or 2 or all of them, and the 1628 * preference will be: 1629 * suspend-nonstop clocksource -> persistent clock -> rtc 1630 * The less preferred source will only be tried if there is no better 1631 * usable source. The rtc part is handled separately in rtc core code. 1632 */ 1633 cycle_now = tk->tkr_mono.read(clock); 1634 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1635 cycle_now > tk->tkr_mono.cycle_last) { 1636 u64 nsec, cyc_delta; 1637 1638 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1639 tk->tkr_mono.mask); 1640 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); 1641 ts_delta = ns_to_timespec64(nsec); 1642 sleeptime_injected = true; 1643 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1644 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1645 sleeptime_injected = true; 1646 } 1647 1648 if (sleeptime_injected) 1649 __timekeeping_inject_sleeptime(tk, &ts_delta); 1650 1651 /* Re-base the last cycle value */ 1652 tk->tkr_mono.cycle_last = cycle_now; 1653 tk->tkr_raw.cycle_last = cycle_now; 1654 1655 tk->ntp_error = 0; 1656 timekeeping_suspended = 0; 1657 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1658 write_seqcount_end(&tk_core.seq); 1659 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1660 1661 touch_softlockup_watchdog(); 1662 1663 tick_resume(); 1664 hrtimers_resume(); 1665 } 1666 1667 int timekeeping_suspend(void) 1668 { 1669 struct timekeeper *tk = &tk_core.timekeeper; 1670 unsigned long flags; 1671 struct timespec64 delta, delta_delta; 1672 static struct timespec64 old_delta; 1673 1674 read_persistent_clock64(&timekeeping_suspend_time); 1675 1676 /* 1677 * On some systems the persistent_clock can not be detected at 1678 * timekeeping_init by its return value, so if we see a valid 1679 * value returned, update the persistent_clock_exists flag. 1680 */ 1681 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1682 persistent_clock_exists = true; 1683 1684 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1685 write_seqcount_begin(&tk_core.seq); 1686 timekeeping_forward_now(tk); 1687 timekeeping_suspended = 1; 1688 1689 if (persistent_clock_exists) { 1690 /* 1691 * To avoid drift caused by repeated suspend/resumes, 1692 * which each can add ~1 second drift error, 1693 * try to compensate so the difference in system time 1694 * and persistent_clock time stays close to constant. 1695 */ 1696 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1697 delta_delta = timespec64_sub(delta, old_delta); 1698 if (abs(delta_delta.tv_sec) >= 2) { 1699 /* 1700 * if delta_delta is too large, assume time correction 1701 * has occurred and set old_delta to the current delta. 1702 */ 1703 old_delta = delta; 1704 } else { 1705 /* Otherwise try to adjust old_system to compensate */ 1706 timekeeping_suspend_time = 1707 timespec64_add(timekeeping_suspend_time, delta_delta); 1708 } 1709 } 1710 1711 timekeeping_update(tk, TK_MIRROR); 1712 halt_fast_timekeeper(tk); 1713 write_seqcount_end(&tk_core.seq); 1714 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1715 1716 tick_suspend(); 1717 clocksource_suspend(); 1718 clockevents_suspend(); 1719 1720 return 0; 1721 } 1722 1723 /* sysfs resume/suspend bits for timekeeping */ 1724 static struct syscore_ops timekeeping_syscore_ops = { 1725 .resume = timekeeping_resume, 1726 .suspend = timekeeping_suspend, 1727 }; 1728 1729 static int __init timekeeping_init_ops(void) 1730 { 1731 register_syscore_ops(&timekeeping_syscore_ops); 1732 return 0; 1733 } 1734 device_initcall(timekeeping_init_ops); 1735 1736 /* 1737 * Apply a multiplier adjustment to the timekeeper 1738 */ 1739 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1740 s64 offset, 1741 bool negative, 1742 int adj_scale) 1743 { 1744 s64 interval = tk->cycle_interval; 1745 s32 mult_adj = 1; 1746 1747 if (negative) { 1748 mult_adj = -mult_adj; 1749 interval = -interval; 1750 offset = -offset; 1751 } 1752 mult_adj <<= adj_scale; 1753 interval <<= adj_scale; 1754 offset <<= adj_scale; 1755 1756 /* 1757 * So the following can be confusing. 1758 * 1759 * To keep things simple, lets assume mult_adj == 1 for now. 1760 * 1761 * When mult_adj != 1, remember that the interval and offset values 1762 * have been appropriately scaled so the math is the same. 1763 * 1764 * The basic idea here is that we're increasing the multiplier 1765 * by one, this causes the xtime_interval to be incremented by 1766 * one cycle_interval. This is because: 1767 * xtime_interval = cycle_interval * mult 1768 * So if mult is being incremented by one: 1769 * xtime_interval = cycle_interval * (mult + 1) 1770 * Its the same as: 1771 * xtime_interval = (cycle_interval * mult) + cycle_interval 1772 * Which can be shortened to: 1773 * xtime_interval += cycle_interval 1774 * 1775 * So offset stores the non-accumulated cycles. Thus the current 1776 * time (in shifted nanoseconds) is: 1777 * now = (offset * adj) + xtime_nsec 1778 * Now, even though we're adjusting the clock frequency, we have 1779 * to keep time consistent. In other words, we can't jump back 1780 * in time, and we also want to avoid jumping forward in time. 1781 * 1782 * So given the same offset value, we need the time to be the same 1783 * both before and after the freq adjustment. 1784 * now = (offset * adj_1) + xtime_nsec_1 1785 * now = (offset * adj_2) + xtime_nsec_2 1786 * So: 1787 * (offset * adj_1) + xtime_nsec_1 = 1788 * (offset * adj_2) + xtime_nsec_2 1789 * And we know: 1790 * adj_2 = adj_1 + 1 1791 * So: 1792 * (offset * adj_1) + xtime_nsec_1 = 1793 * (offset * (adj_1+1)) + xtime_nsec_2 1794 * (offset * adj_1) + xtime_nsec_1 = 1795 * (offset * adj_1) + offset + xtime_nsec_2 1796 * Canceling the sides: 1797 * xtime_nsec_1 = offset + xtime_nsec_2 1798 * Which gives us: 1799 * xtime_nsec_2 = xtime_nsec_1 - offset 1800 * Which simplfies to: 1801 * xtime_nsec -= offset 1802 * 1803 * XXX - TODO: Doc ntp_error calculation. 1804 */ 1805 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1806 /* NTP adjustment caused clocksource mult overflow */ 1807 WARN_ON_ONCE(1); 1808 return; 1809 } 1810 1811 tk->tkr_mono.mult += mult_adj; 1812 tk->xtime_interval += interval; 1813 tk->tkr_mono.xtime_nsec -= offset; 1814 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1815 } 1816 1817 /* 1818 * Calculate the multiplier adjustment needed to match the frequency 1819 * specified by NTP 1820 */ 1821 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1822 s64 offset) 1823 { 1824 s64 interval = tk->cycle_interval; 1825 s64 xinterval = tk->xtime_interval; 1826 u32 base = tk->tkr_mono.clock->mult; 1827 u32 max = tk->tkr_mono.clock->maxadj; 1828 u32 cur_adj = tk->tkr_mono.mult; 1829 s64 tick_error; 1830 bool negative; 1831 u32 adj_scale; 1832 1833 /* Remove any current error adj from freq calculation */ 1834 if (tk->ntp_err_mult) 1835 xinterval -= tk->cycle_interval; 1836 1837 tk->ntp_tick = ntp_tick_length(); 1838 1839 /* Calculate current error per tick */ 1840 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1841 tick_error -= (xinterval + tk->xtime_remainder); 1842 1843 /* Don't worry about correcting it if its small */ 1844 if (likely((tick_error >= 0) && (tick_error <= interval))) 1845 return; 1846 1847 /* preserve the direction of correction */ 1848 negative = (tick_error < 0); 1849 1850 /* If any adjustment would pass the max, just return */ 1851 if (negative && (cur_adj - 1) <= (base - max)) 1852 return; 1853 if (!negative && (cur_adj + 1) >= (base + max)) 1854 return; 1855 /* 1856 * Sort out the magnitude of the correction, but 1857 * avoid making so large a correction that we go 1858 * over the max adjustment. 1859 */ 1860 adj_scale = 0; 1861 tick_error = abs(tick_error); 1862 while (tick_error > interval) { 1863 u32 adj = 1 << (adj_scale + 1); 1864 1865 /* Check if adjustment gets us within 1 unit from the max */ 1866 if (negative && (cur_adj - adj) <= (base - max)) 1867 break; 1868 if (!negative && (cur_adj + adj) >= (base + max)) 1869 break; 1870 1871 adj_scale++; 1872 tick_error >>= 1; 1873 } 1874 1875 /* scale the corrections */ 1876 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1877 } 1878 1879 /* 1880 * Adjust the timekeeper's multiplier to the correct frequency 1881 * and also to reduce the accumulated error value. 1882 */ 1883 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1884 { 1885 /* Correct for the current frequency error */ 1886 timekeeping_freqadjust(tk, offset); 1887 1888 /* Next make a small adjustment to fix any cumulative error */ 1889 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1890 tk->ntp_err_mult = 1; 1891 timekeeping_apply_adjustment(tk, offset, 0, 0); 1892 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1893 /* Undo any existing error adjustment */ 1894 timekeeping_apply_adjustment(tk, offset, 1, 0); 1895 tk->ntp_err_mult = 0; 1896 } 1897 1898 if (unlikely(tk->tkr_mono.clock->maxadj && 1899 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1900 > tk->tkr_mono.clock->maxadj))) { 1901 printk_once(KERN_WARNING 1902 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1903 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1904 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1905 } 1906 1907 /* 1908 * It may be possible that when we entered this function, xtime_nsec 1909 * was very small. Further, if we're slightly speeding the clocksource 1910 * in the code above, its possible the required corrective factor to 1911 * xtime_nsec could cause it to underflow. 1912 * 1913 * Now, since we already accumulated the second, cannot simply roll 1914 * the accumulated second back, since the NTP subsystem has been 1915 * notified via second_overflow. So instead we push xtime_nsec forward 1916 * by the amount we underflowed, and add that amount into the error. 1917 * 1918 * We'll correct this error next time through this function, when 1919 * xtime_nsec is not as small. 1920 */ 1921 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1922 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1923 tk->tkr_mono.xtime_nsec = 0; 1924 tk->ntp_error += neg << tk->ntp_error_shift; 1925 } 1926 } 1927 1928 /** 1929 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1930 * 1931 * Helper function that accumulates the nsecs greater than a second 1932 * from the xtime_nsec field to the xtime_secs field. 1933 * It also calls into the NTP code to handle leapsecond processing. 1934 * 1935 */ 1936 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1937 { 1938 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1939 unsigned int clock_set = 0; 1940 1941 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1942 int leap; 1943 1944 tk->tkr_mono.xtime_nsec -= nsecps; 1945 tk->xtime_sec++; 1946 1947 /* Figure out if its a leap sec and apply if needed */ 1948 leap = second_overflow(tk->xtime_sec); 1949 if (unlikely(leap)) { 1950 struct timespec64 ts; 1951 1952 tk->xtime_sec += leap; 1953 1954 ts.tv_sec = leap; 1955 ts.tv_nsec = 0; 1956 tk_set_wall_to_mono(tk, 1957 timespec64_sub(tk->wall_to_monotonic, ts)); 1958 1959 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1960 1961 clock_set = TK_CLOCK_WAS_SET; 1962 } 1963 } 1964 return clock_set; 1965 } 1966 1967 /** 1968 * logarithmic_accumulation - shifted accumulation of cycles 1969 * 1970 * This functions accumulates a shifted interval of cycles into 1971 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1972 * loop. 1973 * 1974 * Returns the unconsumed cycles. 1975 */ 1976 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 1977 u32 shift, unsigned int *clock_set) 1978 { 1979 u64 interval = tk->cycle_interval << shift; 1980 u64 raw_nsecs; 1981 1982 /* If the offset is smaller than a shifted interval, do nothing */ 1983 if (offset < interval) 1984 return offset; 1985 1986 /* Accumulate one shifted interval */ 1987 offset -= interval; 1988 tk->tkr_mono.cycle_last += interval; 1989 tk->tkr_raw.cycle_last += interval; 1990 1991 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 1992 *clock_set |= accumulate_nsecs_to_secs(tk); 1993 1994 /* Accumulate raw time */ 1995 raw_nsecs = (u64)tk->raw_interval << shift; 1996 raw_nsecs += tk->raw_time.tv_nsec; 1997 if (raw_nsecs >= NSEC_PER_SEC) { 1998 u64 raw_secs = raw_nsecs; 1999 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 2000 tk->raw_time.tv_sec += raw_secs; 2001 } 2002 tk->raw_time.tv_nsec = raw_nsecs; 2003 2004 /* Accumulate error between NTP and clock interval */ 2005 tk->ntp_error += tk->ntp_tick << shift; 2006 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2007 (tk->ntp_error_shift + shift); 2008 2009 return offset; 2010 } 2011 2012 /** 2013 * update_wall_time - Uses the current clocksource to increment the wall time 2014 * 2015 */ 2016 void update_wall_time(void) 2017 { 2018 struct timekeeper *real_tk = &tk_core.timekeeper; 2019 struct timekeeper *tk = &shadow_timekeeper; 2020 u64 offset; 2021 int shift = 0, maxshift; 2022 unsigned int clock_set = 0; 2023 unsigned long flags; 2024 2025 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2026 2027 /* Make sure we're fully resumed: */ 2028 if (unlikely(timekeeping_suspended)) 2029 goto out; 2030 2031 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2032 offset = real_tk->cycle_interval; 2033 #else 2034 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 2035 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2036 #endif 2037 2038 /* Check if there's really nothing to do */ 2039 if (offset < real_tk->cycle_interval) 2040 goto out; 2041 2042 /* Do some additional sanity checking */ 2043 timekeeping_check_update(real_tk, offset); 2044 2045 /* 2046 * With NO_HZ we may have to accumulate many cycle_intervals 2047 * (think "ticks") worth of time at once. To do this efficiently, 2048 * we calculate the largest doubling multiple of cycle_intervals 2049 * that is smaller than the offset. We then accumulate that 2050 * chunk in one go, and then try to consume the next smaller 2051 * doubled multiple. 2052 */ 2053 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2054 shift = max(0, shift); 2055 /* Bound shift to one less than what overflows tick_length */ 2056 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2057 shift = min(shift, maxshift); 2058 while (offset >= tk->cycle_interval) { 2059 offset = logarithmic_accumulation(tk, offset, shift, 2060 &clock_set); 2061 if (offset < tk->cycle_interval<<shift) 2062 shift--; 2063 } 2064 2065 /* correct the clock when NTP error is too big */ 2066 timekeeping_adjust(tk, offset); 2067 2068 /* 2069 * XXX This can be killed once everyone converts 2070 * to the new update_vsyscall. 2071 */ 2072 old_vsyscall_fixup(tk); 2073 2074 /* 2075 * Finally, make sure that after the rounding 2076 * xtime_nsec isn't larger than NSEC_PER_SEC 2077 */ 2078 clock_set |= accumulate_nsecs_to_secs(tk); 2079 2080 write_seqcount_begin(&tk_core.seq); 2081 /* 2082 * Update the real timekeeper. 2083 * 2084 * We could avoid this memcpy by switching pointers, but that 2085 * requires changes to all other timekeeper usage sites as 2086 * well, i.e. move the timekeeper pointer getter into the 2087 * spinlocked/seqcount protected sections. And we trade this 2088 * memcpy under the tk_core.seq against one before we start 2089 * updating. 2090 */ 2091 timekeeping_update(tk, clock_set); 2092 memcpy(real_tk, tk, sizeof(*tk)); 2093 /* The memcpy must come last. Do not put anything here! */ 2094 write_seqcount_end(&tk_core.seq); 2095 out: 2096 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2097 if (clock_set) 2098 /* Have to call _delayed version, since in irq context*/ 2099 clock_was_set_delayed(); 2100 } 2101 2102 /** 2103 * getboottime64 - Return the real time of system boot. 2104 * @ts: pointer to the timespec64 to be set 2105 * 2106 * Returns the wall-time of boot in a timespec64. 2107 * 2108 * This is based on the wall_to_monotonic offset and the total suspend 2109 * time. Calls to settimeofday will affect the value returned (which 2110 * basically means that however wrong your real time clock is at boot time, 2111 * you get the right time here). 2112 */ 2113 void getboottime64(struct timespec64 *ts) 2114 { 2115 struct timekeeper *tk = &tk_core.timekeeper; 2116 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2117 2118 *ts = ktime_to_timespec64(t); 2119 } 2120 EXPORT_SYMBOL_GPL(getboottime64); 2121 2122 unsigned long get_seconds(void) 2123 { 2124 struct timekeeper *tk = &tk_core.timekeeper; 2125 2126 return tk->xtime_sec; 2127 } 2128 EXPORT_SYMBOL(get_seconds); 2129 2130 struct timespec __current_kernel_time(void) 2131 { 2132 struct timekeeper *tk = &tk_core.timekeeper; 2133 2134 return timespec64_to_timespec(tk_xtime(tk)); 2135 } 2136 2137 struct timespec64 current_kernel_time64(void) 2138 { 2139 struct timekeeper *tk = &tk_core.timekeeper; 2140 struct timespec64 now; 2141 unsigned long seq; 2142 2143 do { 2144 seq = read_seqcount_begin(&tk_core.seq); 2145 2146 now = tk_xtime(tk); 2147 } while (read_seqcount_retry(&tk_core.seq, seq)); 2148 2149 return now; 2150 } 2151 EXPORT_SYMBOL(current_kernel_time64); 2152 2153 struct timespec64 get_monotonic_coarse64(void) 2154 { 2155 struct timekeeper *tk = &tk_core.timekeeper; 2156 struct timespec64 now, mono; 2157 unsigned long seq; 2158 2159 do { 2160 seq = read_seqcount_begin(&tk_core.seq); 2161 2162 now = tk_xtime(tk); 2163 mono = tk->wall_to_monotonic; 2164 } while (read_seqcount_retry(&tk_core.seq, seq)); 2165 2166 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2167 now.tv_nsec + mono.tv_nsec); 2168 2169 return now; 2170 } 2171 EXPORT_SYMBOL(get_monotonic_coarse64); 2172 2173 /* 2174 * Must hold jiffies_lock 2175 */ 2176 void do_timer(unsigned long ticks) 2177 { 2178 jiffies_64 += ticks; 2179 calc_global_load(ticks); 2180 } 2181 2182 /** 2183 * ktime_get_update_offsets_now - hrtimer helper 2184 * @cwsseq: pointer to check and store the clock was set sequence number 2185 * @offs_real: pointer to storage for monotonic -> realtime offset 2186 * @offs_boot: pointer to storage for monotonic -> boottime offset 2187 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2188 * 2189 * Returns current monotonic time and updates the offsets if the 2190 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2191 * different. 2192 * 2193 * Called from hrtimer_interrupt() or retrigger_next_event() 2194 */ 2195 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2196 ktime_t *offs_boot, ktime_t *offs_tai) 2197 { 2198 struct timekeeper *tk = &tk_core.timekeeper; 2199 unsigned int seq; 2200 ktime_t base; 2201 u64 nsecs; 2202 2203 do { 2204 seq = read_seqcount_begin(&tk_core.seq); 2205 2206 base = tk->tkr_mono.base; 2207 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2208 base = ktime_add_ns(base, nsecs); 2209 2210 if (*cwsseq != tk->clock_was_set_seq) { 2211 *cwsseq = tk->clock_was_set_seq; 2212 *offs_real = tk->offs_real; 2213 *offs_boot = tk->offs_boot; 2214 *offs_tai = tk->offs_tai; 2215 } 2216 2217 /* Handle leapsecond insertion adjustments */ 2218 if (unlikely(base >= tk->next_leap_ktime)) 2219 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2220 2221 } while (read_seqcount_retry(&tk_core.seq, seq)); 2222 2223 return base; 2224 } 2225 2226 /** 2227 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2228 */ 2229 int do_adjtimex(struct timex *txc) 2230 { 2231 struct timekeeper *tk = &tk_core.timekeeper; 2232 unsigned long flags; 2233 struct timespec64 ts; 2234 s32 orig_tai, tai; 2235 int ret; 2236 2237 /* Validate the data before disabling interrupts */ 2238 ret = ntp_validate_timex(txc); 2239 if (ret) 2240 return ret; 2241 2242 if (txc->modes & ADJ_SETOFFSET) { 2243 struct timespec delta; 2244 delta.tv_sec = txc->time.tv_sec; 2245 delta.tv_nsec = txc->time.tv_usec; 2246 if (!(txc->modes & ADJ_NANO)) 2247 delta.tv_nsec *= 1000; 2248 ret = timekeeping_inject_offset(&delta); 2249 if (ret) 2250 return ret; 2251 } 2252 2253 getnstimeofday64(&ts); 2254 2255 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2256 write_seqcount_begin(&tk_core.seq); 2257 2258 orig_tai = tai = tk->tai_offset; 2259 ret = __do_adjtimex(txc, &ts, &tai); 2260 2261 if (tai != orig_tai) { 2262 __timekeeping_set_tai_offset(tk, tai); 2263 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2264 } 2265 tk_update_leap_state(tk); 2266 2267 write_seqcount_end(&tk_core.seq); 2268 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2269 2270 if (tai != orig_tai) 2271 clock_was_set(); 2272 2273 ntp_notify_cmos_timer(); 2274 2275 return ret; 2276 } 2277 2278 #ifdef CONFIG_NTP_PPS 2279 /** 2280 * hardpps() - Accessor function to NTP __hardpps function 2281 */ 2282 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2283 { 2284 unsigned long flags; 2285 2286 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2287 write_seqcount_begin(&tk_core.seq); 2288 2289 __hardpps(phase_ts, raw_ts); 2290 2291 write_seqcount_end(&tk_core.seq); 2292 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2293 } 2294 EXPORT_SYMBOL(hardpps); 2295 #endif 2296 2297 /** 2298 * xtime_update() - advances the timekeeping infrastructure 2299 * @ticks: number of ticks, that have elapsed since the last call. 2300 * 2301 * Must be called with interrupts disabled. 2302 */ 2303 void xtime_update(unsigned long ticks) 2304 { 2305 write_seqlock(&jiffies_lock); 2306 do_timer(ticks); 2307 write_sequnlock(&jiffies_lock); 2308 update_wall_time(); 2309 } 2310