xref: /openbmc/linux/kernel/time/timekeeping.c (revision 12eb4683)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29 
30 #define TK_CLEAR_NTP		(1 << 0)
31 #define TK_MIRROR		(1 << 1)
32 #define TK_CLOCK_WAS_SET	(1 << 2)
33 
34 static struct timekeeper timekeeper;
35 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
36 static seqcount_t timekeeper_seq;
37 static struct timekeeper shadow_timekeeper;
38 
39 /* flag for if timekeeping is suspended */
40 int __read_mostly timekeeping_suspended;
41 
42 /* Flag for if there is a persistent clock on this platform */
43 bool __read_mostly persistent_clock_exist = false;
44 
45 static inline void tk_normalize_xtime(struct timekeeper *tk)
46 {
47 	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
48 		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
49 		tk->xtime_sec++;
50 	}
51 }
52 
53 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
54 {
55 	tk->xtime_sec = ts->tv_sec;
56 	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
57 }
58 
59 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
60 {
61 	tk->xtime_sec += ts->tv_sec;
62 	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
63 	tk_normalize_xtime(tk);
64 }
65 
66 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
67 {
68 	struct timespec tmp;
69 
70 	/*
71 	 * Verify consistency of: offset_real = -wall_to_monotonic
72 	 * before modifying anything
73 	 */
74 	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
75 					-tk->wall_to_monotonic.tv_nsec);
76 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
77 	tk->wall_to_monotonic = wtm;
78 	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
79 	tk->offs_real = timespec_to_ktime(tmp);
80 	tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tk->tai_offset, 0));
81 }
82 
83 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
84 {
85 	/* Verify consistency before modifying */
86 	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
87 
88 	tk->total_sleep_time	= t;
89 	tk->offs_boot		= timespec_to_ktime(t);
90 }
91 
92 /**
93  * timekeeper_setup_internals - Set up internals to use clocksource clock.
94  *
95  * @clock:		Pointer to clocksource.
96  *
97  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
98  * pair and interval request.
99  *
100  * Unless you're the timekeeping code, you should not be using this!
101  */
102 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
103 {
104 	cycle_t interval;
105 	u64 tmp, ntpinterval;
106 	struct clocksource *old_clock;
107 
108 	old_clock = tk->clock;
109 	tk->clock = clock;
110 	tk->cycle_last = clock->cycle_last = clock->read(clock);
111 
112 	/* Do the ns -> cycle conversion first, using original mult */
113 	tmp = NTP_INTERVAL_LENGTH;
114 	tmp <<= clock->shift;
115 	ntpinterval = tmp;
116 	tmp += clock->mult/2;
117 	do_div(tmp, clock->mult);
118 	if (tmp == 0)
119 		tmp = 1;
120 
121 	interval = (cycle_t) tmp;
122 	tk->cycle_interval = interval;
123 
124 	/* Go back from cycles -> shifted ns */
125 	tk->xtime_interval = (u64) interval * clock->mult;
126 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
127 	tk->raw_interval =
128 		((u64) interval * clock->mult) >> clock->shift;
129 
130 	 /* if changing clocks, convert xtime_nsec shift units */
131 	if (old_clock) {
132 		int shift_change = clock->shift - old_clock->shift;
133 		if (shift_change < 0)
134 			tk->xtime_nsec >>= -shift_change;
135 		else
136 			tk->xtime_nsec <<= shift_change;
137 	}
138 	tk->shift = clock->shift;
139 
140 	tk->ntp_error = 0;
141 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
142 
143 	/*
144 	 * The timekeeper keeps its own mult values for the currently
145 	 * active clocksource. These value will be adjusted via NTP
146 	 * to counteract clock drifting.
147 	 */
148 	tk->mult = clock->mult;
149 }
150 
151 /* Timekeeper helper functions. */
152 
153 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
154 u32 (*arch_gettimeoffset)(void);
155 
156 u32 get_arch_timeoffset(void)
157 {
158 	if (likely(arch_gettimeoffset))
159 		return arch_gettimeoffset();
160 	return 0;
161 }
162 #else
163 static inline u32 get_arch_timeoffset(void) { return 0; }
164 #endif
165 
166 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
167 {
168 	cycle_t cycle_now, cycle_delta;
169 	struct clocksource *clock;
170 	s64 nsec;
171 
172 	/* read clocksource: */
173 	clock = tk->clock;
174 	cycle_now = clock->read(clock);
175 
176 	/* calculate the delta since the last update_wall_time: */
177 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
178 
179 	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
180 	nsec >>= tk->shift;
181 
182 	/* If arch requires, add in get_arch_timeoffset() */
183 	return nsec + get_arch_timeoffset();
184 }
185 
186 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
187 {
188 	cycle_t cycle_now, cycle_delta;
189 	struct clocksource *clock;
190 	s64 nsec;
191 
192 	/* read clocksource: */
193 	clock = tk->clock;
194 	cycle_now = clock->read(clock);
195 
196 	/* calculate the delta since the last update_wall_time: */
197 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
198 
199 	/* convert delta to nanoseconds. */
200 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
201 
202 	/* If arch requires, add in get_arch_timeoffset() */
203 	return nsec + get_arch_timeoffset();
204 }
205 
206 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
207 
208 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
209 {
210 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
211 }
212 
213 /**
214  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
215  */
216 int pvclock_gtod_register_notifier(struct notifier_block *nb)
217 {
218 	struct timekeeper *tk = &timekeeper;
219 	unsigned long flags;
220 	int ret;
221 
222 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
223 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
224 	update_pvclock_gtod(tk, true);
225 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
226 
227 	return ret;
228 }
229 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
230 
231 /**
232  * pvclock_gtod_unregister_notifier - unregister a pvclock
233  * timedata update listener
234  */
235 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
236 {
237 	unsigned long flags;
238 	int ret;
239 
240 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
241 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
242 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
243 
244 	return ret;
245 }
246 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
247 
248 /* must hold timekeeper_lock */
249 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
250 {
251 	if (action & TK_CLEAR_NTP) {
252 		tk->ntp_error = 0;
253 		ntp_clear();
254 	}
255 	update_vsyscall(tk);
256 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
257 
258 	if (action & TK_MIRROR)
259 		memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
260 }
261 
262 /**
263  * timekeeping_forward_now - update clock to the current time
264  *
265  * Forward the current clock to update its state since the last call to
266  * update_wall_time(). This is useful before significant clock changes,
267  * as it avoids having to deal with this time offset explicitly.
268  */
269 static void timekeeping_forward_now(struct timekeeper *tk)
270 {
271 	cycle_t cycle_now, cycle_delta;
272 	struct clocksource *clock;
273 	s64 nsec;
274 
275 	clock = tk->clock;
276 	cycle_now = clock->read(clock);
277 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
278 	tk->cycle_last = clock->cycle_last = cycle_now;
279 
280 	tk->xtime_nsec += cycle_delta * tk->mult;
281 
282 	/* If arch requires, add in get_arch_timeoffset() */
283 	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
284 
285 	tk_normalize_xtime(tk);
286 
287 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
288 	timespec_add_ns(&tk->raw_time, nsec);
289 }
290 
291 /**
292  * __getnstimeofday - Returns the time of day in a timespec.
293  * @ts:		pointer to the timespec to be set
294  *
295  * Updates the time of day in the timespec.
296  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
297  */
298 int __getnstimeofday(struct timespec *ts)
299 {
300 	struct timekeeper *tk = &timekeeper;
301 	unsigned long seq;
302 	s64 nsecs = 0;
303 
304 	do {
305 		seq = read_seqcount_begin(&timekeeper_seq);
306 
307 		ts->tv_sec = tk->xtime_sec;
308 		nsecs = timekeeping_get_ns(tk);
309 
310 	} while (read_seqcount_retry(&timekeeper_seq, seq));
311 
312 	ts->tv_nsec = 0;
313 	timespec_add_ns(ts, nsecs);
314 
315 	/*
316 	 * Do not bail out early, in case there were callers still using
317 	 * the value, even in the face of the WARN_ON.
318 	 */
319 	if (unlikely(timekeeping_suspended))
320 		return -EAGAIN;
321 	return 0;
322 }
323 EXPORT_SYMBOL(__getnstimeofday);
324 
325 /**
326  * getnstimeofday - Returns the time of day in a timespec.
327  * @ts:		pointer to the timespec to be set
328  *
329  * Returns the time of day in a timespec (WARN if suspended).
330  */
331 void getnstimeofday(struct timespec *ts)
332 {
333 	WARN_ON(__getnstimeofday(ts));
334 }
335 EXPORT_SYMBOL(getnstimeofday);
336 
337 ktime_t ktime_get(void)
338 {
339 	struct timekeeper *tk = &timekeeper;
340 	unsigned int seq;
341 	s64 secs, nsecs;
342 
343 	WARN_ON(timekeeping_suspended);
344 
345 	do {
346 		seq = read_seqcount_begin(&timekeeper_seq);
347 		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
348 		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
349 
350 	} while (read_seqcount_retry(&timekeeper_seq, seq));
351 	/*
352 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
353 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
354 	 */
355 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
356 }
357 EXPORT_SYMBOL_GPL(ktime_get);
358 
359 /**
360  * ktime_get_ts - get the monotonic clock in timespec format
361  * @ts:		pointer to timespec variable
362  *
363  * The function calculates the monotonic clock from the realtime
364  * clock and the wall_to_monotonic offset and stores the result
365  * in normalized timespec format in the variable pointed to by @ts.
366  */
367 void ktime_get_ts(struct timespec *ts)
368 {
369 	struct timekeeper *tk = &timekeeper;
370 	struct timespec tomono;
371 	s64 nsec;
372 	unsigned int seq;
373 
374 	WARN_ON(timekeeping_suspended);
375 
376 	do {
377 		seq = read_seqcount_begin(&timekeeper_seq);
378 		ts->tv_sec = tk->xtime_sec;
379 		nsec = timekeeping_get_ns(tk);
380 		tomono = tk->wall_to_monotonic;
381 
382 	} while (read_seqcount_retry(&timekeeper_seq, seq));
383 
384 	ts->tv_sec += tomono.tv_sec;
385 	ts->tv_nsec = 0;
386 	timespec_add_ns(ts, nsec + tomono.tv_nsec);
387 }
388 EXPORT_SYMBOL_GPL(ktime_get_ts);
389 
390 
391 /**
392  * timekeeping_clocktai - Returns the TAI time of day in a timespec
393  * @ts:		pointer to the timespec to be set
394  *
395  * Returns the time of day in a timespec.
396  */
397 void timekeeping_clocktai(struct timespec *ts)
398 {
399 	struct timekeeper *tk = &timekeeper;
400 	unsigned long seq;
401 	u64 nsecs;
402 
403 	WARN_ON(timekeeping_suspended);
404 
405 	do {
406 		seq = read_seqcount_begin(&timekeeper_seq);
407 
408 		ts->tv_sec = tk->xtime_sec + tk->tai_offset;
409 		nsecs = timekeeping_get_ns(tk);
410 
411 	} while (read_seqcount_retry(&timekeeper_seq, seq));
412 
413 	ts->tv_nsec = 0;
414 	timespec_add_ns(ts, nsecs);
415 
416 }
417 EXPORT_SYMBOL(timekeeping_clocktai);
418 
419 
420 /**
421  * ktime_get_clocktai - Returns the TAI time of day in a ktime
422  *
423  * Returns the time of day in a ktime.
424  */
425 ktime_t ktime_get_clocktai(void)
426 {
427 	struct timespec ts;
428 
429 	timekeeping_clocktai(&ts);
430 	return timespec_to_ktime(ts);
431 }
432 EXPORT_SYMBOL(ktime_get_clocktai);
433 
434 #ifdef CONFIG_NTP_PPS
435 
436 /**
437  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
438  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
439  * @ts_real:	pointer to the timespec to be set to the time of day
440  *
441  * This function reads both the time of day and raw monotonic time at the
442  * same time atomically and stores the resulting timestamps in timespec
443  * format.
444  */
445 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
446 {
447 	struct timekeeper *tk = &timekeeper;
448 	unsigned long seq;
449 	s64 nsecs_raw, nsecs_real;
450 
451 	WARN_ON_ONCE(timekeeping_suspended);
452 
453 	do {
454 		seq = read_seqcount_begin(&timekeeper_seq);
455 
456 		*ts_raw = tk->raw_time;
457 		ts_real->tv_sec = tk->xtime_sec;
458 		ts_real->tv_nsec = 0;
459 
460 		nsecs_raw = timekeeping_get_ns_raw(tk);
461 		nsecs_real = timekeeping_get_ns(tk);
462 
463 	} while (read_seqcount_retry(&timekeeper_seq, seq));
464 
465 	timespec_add_ns(ts_raw, nsecs_raw);
466 	timespec_add_ns(ts_real, nsecs_real);
467 }
468 EXPORT_SYMBOL(getnstime_raw_and_real);
469 
470 #endif /* CONFIG_NTP_PPS */
471 
472 /**
473  * do_gettimeofday - Returns the time of day in a timeval
474  * @tv:		pointer to the timeval to be set
475  *
476  * NOTE: Users should be converted to using getnstimeofday()
477  */
478 void do_gettimeofday(struct timeval *tv)
479 {
480 	struct timespec now;
481 
482 	getnstimeofday(&now);
483 	tv->tv_sec = now.tv_sec;
484 	tv->tv_usec = now.tv_nsec/1000;
485 }
486 EXPORT_SYMBOL(do_gettimeofday);
487 
488 /**
489  * do_settimeofday - Sets the time of day
490  * @tv:		pointer to the timespec variable containing the new time
491  *
492  * Sets the time of day to the new time and update NTP and notify hrtimers
493  */
494 int do_settimeofday(const struct timespec *tv)
495 {
496 	struct timekeeper *tk = &timekeeper;
497 	struct timespec ts_delta, xt;
498 	unsigned long flags;
499 
500 	if (!timespec_valid_strict(tv))
501 		return -EINVAL;
502 
503 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
504 	write_seqcount_begin(&timekeeper_seq);
505 
506 	timekeeping_forward_now(tk);
507 
508 	xt = tk_xtime(tk);
509 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
510 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
511 
512 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
513 
514 	tk_set_xtime(tk, tv);
515 
516 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
517 
518 	write_seqcount_end(&timekeeper_seq);
519 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520 
521 	/* signal hrtimers about time change */
522 	clock_was_set();
523 
524 	return 0;
525 }
526 EXPORT_SYMBOL(do_settimeofday);
527 
528 /**
529  * timekeeping_inject_offset - Adds or subtracts from the current time.
530  * @tv:		pointer to the timespec variable containing the offset
531  *
532  * Adds or subtracts an offset value from the current time.
533  */
534 int timekeeping_inject_offset(struct timespec *ts)
535 {
536 	struct timekeeper *tk = &timekeeper;
537 	unsigned long flags;
538 	struct timespec tmp;
539 	int ret = 0;
540 
541 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
542 		return -EINVAL;
543 
544 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
545 	write_seqcount_begin(&timekeeper_seq);
546 
547 	timekeeping_forward_now(tk);
548 
549 	/* Make sure the proposed value is valid */
550 	tmp = timespec_add(tk_xtime(tk),  *ts);
551 	if (!timespec_valid_strict(&tmp)) {
552 		ret = -EINVAL;
553 		goto error;
554 	}
555 
556 	tk_xtime_add(tk, ts);
557 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
558 
559 error: /* even if we error out, we forwarded the time, so call update */
560 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
561 
562 	write_seqcount_end(&timekeeper_seq);
563 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
564 
565 	/* signal hrtimers about time change */
566 	clock_was_set();
567 
568 	return ret;
569 }
570 EXPORT_SYMBOL(timekeeping_inject_offset);
571 
572 
573 /**
574  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
575  *
576  */
577 s32 timekeeping_get_tai_offset(void)
578 {
579 	struct timekeeper *tk = &timekeeper;
580 	unsigned int seq;
581 	s32 ret;
582 
583 	do {
584 		seq = read_seqcount_begin(&timekeeper_seq);
585 		ret = tk->tai_offset;
586 	} while (read_seqcount_retry(&timekeeper_seq, seq));
587 
588 	return ret;
589 }
590 
591 /**
592  * __timekeeping_set_tai_offset - Lock free worker function
593  *
594  */
595 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
596 {
597 	tk->tai_offset = tai_offset;
598 	tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tai_offset, 0));
599 }
600 
601 /**
602  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
603  *
604  */
605 void timekeeping_set_tai_offset(s32 tai_offset)
606 {
607 	struct timekeeper *tk = &timekeeper;
608 	unsigned long flags;
609 
610 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
611 	write_seqcount_begin(&timekeeper_seq);
612 	__timekeeping_set_tai_offset(tk, tai_offset);
613 	write_seqcount_end(&timekeeper_seq);
614 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
615 	clock_was_set();
616 }
617 
618 /**
619  * change_clocksource - Swaps clocksources if a new one is available
620  *
621  * Accumulates current time interval and initializes new clocksource
622  */
623 static int change_clocksource(void *data)
624 {
625 	struct timekeeper *tk = &timekeeper;
626 	struct clocksource *new, *old;
627 	unsigned long flags;
628 
629 	new = (struct clocksource *) data;
630 
631 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
632 	write_seqcount_begin(&timekeeper_seq);
633 
634 	timekeeping_forward_now(tk);
635 	/*
636 	 * If the cs is in module, get a module reference. Succeeds
637 	 * for built-in code (owner == NULL) as well.
638 	 */
639 	if (try_module_get(new->owner)) {
640 		if (!new->enable || new->enable(new) == 0) {
641 			old = tk->clock;
642 			tk_setup_internals(tk, new);
643 			if (old->disable)
644 				old->disable(old);
645 			module_put(old->owner);
646 		} else {
647 			module_put(new->owner);
648 		}
649 	}
650 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
651 
652 	write_seqcount_end(&timekeeper_seq);
653 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
654 
655 	return 0;
656 }
657 
658 /**
659  * timekeeping_notify - Install a new clock source
660  * @clock:		pointer to the clock source
661  *
662  * This function is called from clocksource.c after a new, better clock
663  * source has been registered. The caller holds the clocksource_mutex.
664  */
665 int timekeeping_notify(struct clocksource *clock)
666 {
667 	struct timekeeper *tk = &timekeeper;
668 
669 	if (tk->clock == clock)
670 		return 0;
671 	stop_machine(change_clocksource, clock, NULL);
672 	tick_clock_notify();
673 	return tk->clock == clock ? 0 : -1;
674 }
675 
676 /**
677  * ktime_get_real - get the real (wall-) time in ktime_t format
678  *
679  * returns the time in ktime_t format
680  */
681 ktime_t ktime_get_real(void)
682 {
683 	struct timespec now;
684 
685 	getnstimeofday(&now);
686 
687 	return timespec_to_ktime(now);
688 }
689 EXPORT_SYMBOL_GPL(ktime_get_real);
690 
691 /**
692  * getrawmonotonic - Returns the raw monotonic time in a timespec
693  * @ts:		pointer to the timespec to be set
694  *
695  * Returns the raw monotonic time (completely un-modified by ntp)
696  */
697 void getrawmonotonic(struct timespec *ts)
698 {
699 	struct timekeeper *tk = &timekeeper;
700 	unsigned long seq;
701 	s64 nsecs;
702 
703 	do {
704 		seq = read_seqcount_begin(&timekeeper_seq);
705 		nsecs = timekeeping_get_ns_raw(tk);
706 		*ts = tk->raw_time;
707 
708 	} while (read_seqcount_retry(&timekeeper_seq, seq));
709 
710 	timespec_add_ns(ts, nsecs);
711 }
712 EXPORT_SYMBOL(getrawmonotonic);
713 
714 /**
715  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
716  */
717 int timekeeping_valid_for_hres(void)
718 {
719 	struct timekeeper *tk = &timekeeper;
720 	unsigned long seq;
721 	int ret;
722 
723 	do {
724 		seq = read_seqcount_begin(&timekeeper_seq);
725 
726 		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
727 
728 	} while (read_seqcount_retry(&timekeeper_seq, seq));
729 
730 	return ret;
731 }
732 
733 /**
734  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
735  */
736 u64 timekeeping_max_deferment(void)
737 {
738 	struct timekeeper *tk = &timekeeper;
739 	unsigned long seq;
740 	u64 ret;
741 
742 	do {
743 		seq = read_seqcount_begin(&timekeeper_seq);
744 
745 		ret = tk->clock->max_idle_ns;
746 
747 	} while (read_seqcount_retry(&timekeeper_seq, seq));
748 
749 	return ret;
750 }
751 
752 /**
753  * read_persistent_clock -  Return time from the persistent clock.
754  *
755  * Weak dummy function for arches that do not yet support it.
756  * Reads the time from the battery backed persistent clock.
757  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
758  *
759  *  XXX - Do be sure to remove it once all arches implement it.
760  */
761 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
762 {
763 	ts->tv_sec = 0;
764 	ts->tv_nsec = 0;
765 }
766 
767 /**
768  * read_boot_clock -  Return time of the system start.
769  *
770  * Weak dummy function for arches that do not yet support it.
771  * Function to read the exact time the system has been started.
772  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
773  *
774  *  XXX - Do be sure to remove it once all arches implement it.
775  */
776 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
777 {
778 	ts->tv_sec = 0;
779 	ts->tv_nsec = 0;
780 }
781 
782 /*
783  * timekeeping_init - Initializes the clocksource and common timekeeping values
784  */
785 void __init timekeeping_init(void)
786 {
787 	struct timekeeper *tk = &timekeeper;
788 	struct clocksource *clock;
789 	unsigned long flags;
790 	struct timespec now, boot, tmp;
791 
792 	read_persistent_clock(&now);
793 
794 	if (!timespec_valid_strict(&now)) {
795 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
796 			"         Check your CMOS/BIOS settings.\n");
797 		now.tv_sec = 0;
798 		now.tv_nsec = 0;
799 	} else if (now.tv_sec || now.tv_nsec)
800 		persistent_clock_exist = true;
801 
802 	read_boot_clock(&boot);
803 	if (!timespec_valid_strict(&boot)) {
804 		pr_warn("WARNING: Boot clock returned invalid value!\n"
805 			"         Check your CMOS/BIOS settings.\n");
806 		boot.tv_sec = 0;
807 		boot.tv_nsec = 0;
808 	}
809 
810 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
811 	write_seqcount_begin(&timekeeper_seq);
812 	ntp_init();
813 
814 	clock = clocksource_default_clock();
815 	if (clock->enable)
816 		clock->enable(clock);
817 	tk_setup_internals(tk, clock);
818 
819 	tk_set_xtime(tk, &now);
820 	tk->raw_time.tv_sec = 0;
821 	tk->raw_time.tv_nsec = 0;
822 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
823 		boot = tk_xtime(tk);
824 
825 	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
826 	tk_set_wall_to_mono(tk, tmp);
827 
828 	tmp.tv_sec = 0;
829 	tmp.tv_nsec = 0;
830 	tk_set_sleep_time(tk, tmp);
831 
832 	memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
833 
834 	write_seqcount_end(&timekeeper_seq);
835 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
836 }
837 
838 /* time in seconds when suspend began */
839 static struct timespec timekeeping_suspend_time;
840 
841 /**
842  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
843  * @delta: pointer to a timespec delta value
844  *
845  * Takes a timespec offset measuring a suspend interval and properly
846  * adds the sleep offset to the timekeeping variables.
847  */
848 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
849 							struct timespec *delta)
850 {
851 	if (!timespec_valid_strict(delta)) {
852 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
853 					"sleep delta value!\n");
854 		return;
855 	}
856 	tk_xtime_add(tk, delta);
857 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
858 	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
859 	tk_debug_account_sleep_time(delta);
860 }
861 
862 /**
863  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
864  * @delta: pointer to a timespec delta value
865  *
866  * This hook is for architectures that cannot support read_persistent_clock
867  * because their RTC/persistent clock is only accessible when irqs are enabled.
868  *
869  * This function should only be called by rtc_resume(), and allows
870  * a suspend offset to be injected into the timekeeping values.
871  */
872 void timekeeping_inject_sleeptime(struct timespec *delta)
873 {
874 	struct timekeeper *tk = &timekeeper;
875 	unsigned long flags;
876 
877 	/*
878 	 * Make sure we don't set the clock twice, as timekeeping_resume()
879 	 * already did it
880 	 */
881 	if (has_persistent_clock())
882 		return;
883 
884 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
885 	write_seqcount_begin(&timekeeper_seq);
886 
887 	timekeeping_forward_now(tk);
888 
889 	__timekeeping_inject_sleeptime(tk, delta);
890 
891 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
892 
893 	write_seqcount_end(&timekeeper_seq);
894 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
895 
896 	/* signal hrtimers about time change */
897 	clock_was_set();
898 }
899 
900 /**
901  * timekeeping_resume - Resumes the generic timekeeping subsystem.
902  *
903  * This is for the generic clocksource timekeeping.
904  * xtime/wall_to_monotonic/jiffies/etc are
905  * still managed by arch specific suspend/resume code.
906  */
907 static void timekeeping_resume(void)
908 {
909 	struct timekeeper *tk = &timekeeper;
910 	struct clocksource *clock = tk->clock;
911 	unsigned long flags;
912 	struct timespec ts_new, ts_delta;
913 	cycle_t cycle_now, cycle_delta;
914 	bool suspendtime_found = false;
915 
916 	read_persistent_clock(&ts_new);
917 
918 	clockevents_resume();
919 	clocksource_resume();
920 
921 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
922 	write_seqcount_begin(&timekeeper_seq);
923 
924 	/*
925 	 * After system resumes, we need to calculate the suspended time and
926 	 * compensate it for the OS time. There are 3 sources that could be
927 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
928 	 * device.
929 	 *
930 	 * One specific platform may have 1 or 2 or all of them, and the
931 	 * preference will be:
932 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
933 	 * The less preferred source will only be tried if there is no better
934 	 * usable source. The rtc part is handled separately in rtc core code.
935 	 */
936 	cycle_now = clock->read(clock);
937 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
938 		cycle_now > clock->cycle_last) {
939 		u64 num, max = ULLONG_MAX;
940 		u32 mult = clock->mult;
941 		u32 shift = clock->shift;
942 		s64 nsec = 0;
943 
944 		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
945 
946 		/*
947 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
948 		 * suspended time is too long. In that case we need do the
949 		 * 64 bits math carefully
950 		 */
951 		do_div(max, mult);
952 		if (cycle_delta > max) {
953 			num = div64_u64(cycle_delta, max);
954 			nsec = (((u64) max * mult) >> shift) * num;
955 			cycle_delta -= num * max;
956 		}
957 		nsec += ((u64) cycle_delta * mult) >> shift;
958 
959 		ts_delta = ns_to_timespec(nsec);
960 		suspendtime_found = true;
961 	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
962 		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
963 		suspendtime_found = true;
964 	}
965 
966 	if (suspendtime_found)
967 		__timekeeping_inject_sleeptime(tk, &ts_delta);
968 
969 	/* Re-base the last cycle value */
970 	tk->cycle_last = clock->cycle_last = cycle_now;
971 	tk->ntp_error = 0;
972 	timekeeping_suspended = 0;
973 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
974 	write_seqcount_end(&timekeeper_seq);
975 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
976 
977 	touch_softlockup_watchdog();
978 
979 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
980 
981 	/* Resume hrtimers */
982 	hrtimers_resume();
983 }
984 
985 static int timekeeping_suspend(void)
986 {
987 	struct timekeeper *tk = &timekeeper;
988 	unsigned long flags;
989 	struct timespec		delta, delta_delta;
990 	static struct timespec	old_delta;
991 
992 	read_persistent_clock(&timekeeping_suspend_time);
993 
994 	/*
995 	 * On some systems the persistent_clock can not be detected at
996 	 * timekeeping_init by its return value, so if we see a valid
997 	 * value returned, update the persistent_clock_exists flag.
998 	 */
999 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1000 		persistent_clock_exist = true;
1001 
1002 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1003 	write_seqcount_begin(&timekeeper_seq);
1004 	timekeeping_forward_now(tk);
1005 	timekeeping_suspended = 1;
1006 
1007 	/*
1008 	 * To avoid drift caused by repeated suspend/resumes,
1009 	 * which each can add ~1 second drift error,
1010 	 * try to compensate so the difference in system time
1011 	 * and persistent_clock time stays close to constant.
1012 	 */
1013 	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
1014 	delta_delta = timespec_sub(delta, old_delta);
1015 	if (abs(delta_delta.tv_sec)  >= 2) {
1016 		/*
1017 		 * if delta_delta is too large, assume time correction
1018 		 * has occured and set old_delta to the current delta.
1019 		 */
1020 		old_delta = delta;
1021 	} else {
1022 		/* Otherwise try to adjust old_system to compensate */
1023 		timekeeping_suspend_time =
1024 			timespec_add(timekeeping_suspend_time, delta_delta);
1025 	}
1026 	write_seqcount_end(&timekeeper_seq);
1027 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1028 
1029 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1030 	clocksource_suspend();
1031 	clockevents_suspend();
1032 
1033 	return 0;
1034 }
1035 
1036 /* sysfs resume/suspend bits for timekeeping */
1037 static struct syscore_ops timekeeping_syscore_ops = {
1038 	.resume		= timekeeping_resume,
1039 	.suspend	= timekeeping_suspend,
1040 };
1041 
1042 static int __init timekeeping_init_ops(void)
1043 {
1044 	register_syscore_ops(&timekeeping_syscore_ops);
1045 	return 0;
1046 }
1047 
1048 device_initcall(timekeeping_init_ops);
1049 
1050 /*
1051  * If the error is already larger, we look ahead even further
1052  * to compensate for late or lost adjustments.
1053  */
1054 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1055 						 s64 error, s64 *interval,
1056 						 s64 *offset)
1057 {
1058 	s64 tick_error, i;
1059 	u32 look_ahead, adj;
1060 	s32 error2, mult;
1061 
1062 	/*
1063 	 * Use the current error value to determine how much to look ahead.
1064 	 * The larger the error the slower we adjust for it to avoid problems
1065 	 * with losing too many ticks, otherwise we would overadjust and
1066 	 * produce an even larger error.  The smaller the adjustment the
1067 	 * faster we try to adjust for it, as lost ticks can do less harm
1068 	 * here.  This is tuned so that an error of about 1 msec is adjusted
1069 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1070 	 */
1071 	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1072 	error2 = abs(error2);
1073 	for (look_ahead = 0; error2 > 0; look_ahead++)
1074 		error2 >>= 2;
1075 
1076 	/*
1077 	 * Now calculate the error in (1 << look_ahead) ticks, but first
1078 	 * remove the single look ahead already included in the error.
1079 	 */
1080 	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1081 	tick_error -= tk->xtime_interval >> 1;
1082 	error = ((error - tick_error) >> look_ahead) + tick_error;
1083 
1084 	/* Finally calculate the adjustment shift value.  */
1085 	i = *interval;
1086 	mult = 1;
1087 	if (error < 0) {
1088 		error = -error;
1089 		*interval = -*interval;
1090 		*offset = -*offset;
1091 		mult = -1;
1092 	}
1093 	for (adj = 0; error > i; adj++)
1094 		error >>= 1;
1095 
1096 	*interval <<= adj;
1097 	*offset <<= adj;
1098 	return mult << adj;
1099 }
1100 
1101 /*
1102  * Adjust the multiplier to reduce the error value,
1103  * this is optimized for the most common adjustments of -1,0,1,
1104  * for other values we can do a bit more work.
1105  */
1106 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1107 {
1108 	s64 error, interval = tk->cycle_interval;
1109 	int adj;
1110 
1111 	/*
1112 	 * The point of this is to check if the error is greater than half
1113 	 * an interval.
1114 	 *
1115 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1116 	 *
1117 	 * Note we subtract one in the shift, so that error is really error*2.
1118 	 * This "saves" dividing(shifting) interval twice, but keeps the
1119 	 * (error > interval) comparison as still measuring if error is
1120 	 * larger than half an interval.
1121 	 *
1122 	 * Note: It does not "save" on aggravation when reading the code.
1123 	 */
1124 	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1125 	if (error > interval) {
1126 		/*
1127 		 * We now divide error by 4(via shift), which checks if
1128 		 * the error is greater than twice the interval.
1129 		 * If it is greater, we need a bigadjust, if its smaller,
1130 		 * we can adjust by 1.
1131 		 */
1132 		error >>= 2;
1133 		/*
1134 		 * XXX - In update_wall_time, we round up to the next
1135 		 * nanosecond, and store the amount rounded up into
1136 		 * the error. This causes the likely below to be unlikely.
1137 		 *
1138 		 * The proper fix is to avoid rounding up by using
1139 		 * the high precision tk->xtime_nsec instead of
1140 		 * xtime.tv_nsec everywhere. Fixing this will take some
1141 		 * time.
1142 		 */
1143 		if (likely(error <= interval))
1144 			adj = 1;
1145 		else
1146 			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1147 	} else {
1148 		if (error < -interval) {
1149 			/* See comment above, this is just switched for the negative */
1150 			error >>= 2;
1151 			if (likely(error >= -interval)) {
1152 				adj = -1;
1153 				interval = -interval;
1154 				offset = -offset;
1155 			} else {
1156 				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1157 			}
1158 		} else {
1159 			goto out_adjust;
1160 		}
1161 	}
1162 
1163 	if (unlikely(tk->clock->maxadj &&
1164 		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1165 		printk_once(KERN_WARNING
1166 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1167 			tk->clock->name, (long)tk->mult + adj,
1168 			(long)tk->clock->mult + tk->clock->maxadj);
1169 	}
1170 	/*
1171 	 * So the following can be confusing.
1172 	 *
1173 	 * To keep things simple, lets assume adj == 1 for now.
1174 	 *
1175 	 * When adj != 1, remember that the interval and offset values
1176 	 * have been appropriately scaled so the math is the same.
1177 	 *
1178 	 * The basic idea here is that we're increasing the multiplier
1179 	 * by one, this causes the xtime_interval to be incremented by
1180 	 * one cycle_interval. This is because:
1181 	 *	xtime_interval = cycle_interval * mult
1182 	 * So if mult is being incremented by one:
1183 	 *	xtime_interval = cycle_interval * (mult + 1)
1184 	 * Its the same as:
1185 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1186 	 * Which can be shortened to:
1187 	 *	xtime_interval += cycle_interval
1188 	 *
1189 	 * So offset stores the non-accumulated cycles. Thus the current
1190 	 * time (in shifted nanoseconds) is:
1191 	 *	now = (offset * adj) + xtime_nsec
1192 	 * Now, even though we're adjusting the clock frequency, we have
1193 	 * to keep time consistent. In other words, we can't jump back
1194 	 * in time, and we also want to avoid jumping forward in time.
1195 	 *
1196 	 * So given the same offset value, we need the time to be the same
1197 	 * both before and after the freq adjustment.
1198 	 *	now = (offset * adj_1) + xtime_nsec_1
1199 	 *	now = (offset * adj_2) + xtime_nsec_2
1200 	 * So:
1201 	 *	(offset * adj_1) + xtime_nsec_1 =
1202 	 *		(offset * adj_2) + xtime_nsec_2
1203 	 * And we know:
1204 	 *	adj_2 = adj_1 + 1
1205 	 * So:
1206 	 *	(offset * adj_1) + xtime_nsec_1 =
1207 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1208 	 *	(offset * adj_1) + xtime_nsec_1 =
1209 	 *		(offset * adj_1) + offset + xtime_nsec_2
1210 	 * Canceling the sides:
1211 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1212 	 * Which gives us:
1213 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1214 	 * Which simplfies to:
1215 	 *	xtime_nsec -= offset
1216 	 *
1217 	 * XXX - TODO: Doc ntp_error calculation.
1218 	 */
1219 	tk->mult += adj;
1220 	tk->xtime_interval += interval;
1221 	tk->xtime_nsec -= offset;
1222 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1223 
1224 out_adjust:
1225 	/*
1226 	 * It may be possible that when we entered this function, xtime_nsec
1227 	 * was very small.  Further, if we're slightly speeding the clocksource
1228 	 * in the code above, its possible the required corrective factor to
1229 	 * xtime_nsec could cause it to underflow.
1230 	 *
1231 	 * Now, since we already accumulated the second, cannot simply roll
1232 	 * the accumulated second back, since the NTP subsystem has been
1233 	 * notified via second_overflow. So instead we push xtime_nsec forward
1234 	 * by the amount we underflowed, and add that amount into the error.
1235 	 *
1236 	 * We'll correct this error next time through this function, when
1237 	 * xtime_nsec is not as small.
1238 	 */
1239 	if (unlikely((s64)tk->xtime_nsec < 0)) {
1240 		s64 neg = -(s64)tk->xtime_nsec;
1241 		tk->xtime_nsec = 0;
1242 		tk->ntp_error += neg << tk->ntp_error_shift;
1243 	}
1244 
1245 }
1246 
1247 /**
1248  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1249  *
1250  * Helper function that accumulates a the nsecs greater then a second
1251  * from the xtime_nsec field to the xtime_secs field.
1252  * It also calls into the NTP code to handle leapsecond processing.
1253  *
1254  */
1255 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1256 {
1257 	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1258 	unsigned int action = 0;
1259 
1260 	while (tk->xtime_nsec >= nsecps) {
1261 		int leap;
1262 
1263 		tk->xtime_nsec -= nsecps;
1264 		tk->xtime_sec++;
1265 
1266 		/* Figure out if its a leap sec and apply if needed */
1267 		leap = second_overflow(tk->xtime_sec);
1268 		if (unlikely(leap)) {
1269 			struct timespec ts;
1270 
1271 			tk->xtime_sec += leap;
1272 
1273 			ts.tv_sec = leap;
1274 			ts.tv_nsec = 0;
1275 			tk_set_wall_to_mono(tk,
1276 				timespec_sub(tk->wall_to_monotonic, ts));
1277 
1278 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1279 
1280 			clock_was_set_delayed();
1281 			action = TK_CLOCK_WAS_SET;
1282 		}
1283 	}
1284 	return action;
1285 }
1286 
1287 /**
1288  * logarithmic_accumulation - shifted accumulation of cycles
1289  *
1290  * This functions accumulates a shifted interval of cycles into
1291  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1292  * loop.
1293  *
1294  * Returns the unconsumed cycles.
1295  */
1296 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1297 						u32 shift)
1298 {
1299 	cycle_t interval = tk->cycle_interval << shift;
1300 	u64 raw_nsecs;
1301 
1302 	/* If the offset is smaller then a shifted interval, do nothing */
1303 	if (offset < interval)
1304 		return offset;
1305 
1306 	/* Accumulate one shifted interval */
1307 	offset -= interval;
1308 	tk->cycle_last += interval;
1309 
1310 	tk->xtime_nsec += tk->xtime_interval << shift;
1311 	accumulate_nsecs_to_secs(tk);
1312 
1313 	/* Accumulate raw time */
1314 	raw_nsecs = (u64)tk->raw_interval << shift;
1315 	raw_nsecs += tk->raw_time.tv_nsec;
1316 	if (raw_nsecs >= NSEC_PER_SEC) {
1317 		u64 raw_secs = raw_nsecs;
1318 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1319 		tk->raw_time.tv_sec += raw_secs;
1320 	}
1321 	tk->raw_time.tv_nsec = raw_nsecs;
1322 
1323 	/* Accumulate error between NTP and clock interval */
1324 	tk->ntp_error += ntp_tick_length() << shift;
1325 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1326 						(tk->ntp_error_shift + shift);
1327 
1328 	return offset;
1329 }
1330 
1331 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
1332 static inline void old_vsyscall_fixup(struct timekeeper *tk)
1333 {
1334 	s64 remainder;
1335 
1336 	/*
1337 	* Store only full nanoseconds into xtime_nsec after rounding
1338 	* it up and add the remainder to the error difference.
1339 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
1340 	* by truncating the remainder in vsyscalls. However, it causes
1341 	* additional work to be done in timekeeping_adjust(). Once
1342 	* the vsyscall implementations are converted to use xtime_nsec
1343 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
1344 	* users are removed, this can be killed.
1345 	*/
1346 	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1347 	tk->xtime_nsec -= remainder;
1348 	tk->xtime_nsec += 1ULL << tk->shift;
1349 	tk->ntp_error += remainder << tk->ntp_error_shift;
1350 	tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
1351 }
1352 #else
1353 #define old_vsyscall_fixup(tk)
1354 #endif
1355 
1356 
1357 
1358 /**
1359  * update_wall_time - Uses the current clocksource to increment the wall time
1360  *
1361  */
1362 static void update_wall_time(void)
1363 {
1364 	struct clocksource *clock;
1365 	struct timekeeper *real_tk = &timekeeper;
1366 	struct timekeeper *tk = &shadow_timekeeper;
1367 	cycle_t offset;
1368 	int shift = 0, maxshift;
1369 	unsigned int action;
1370 	unsigned long flags;
1371 
1372 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1373 
1374 	/* Make sure we're fully resumed: */
1375 	if (unlikely(timekeeping_suspended))
1376 		goto out;
1377 
1378 	clock = real_tk->clock;
1379 
1380 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1381 	offset = real_tk->cycle_interval;
1382 #else
1383 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1384 #endif
1385 
1386 	/* Check if there's really nothing to do */
1387 	if (offset < real_tk->cycle_interval)
1388 		goto out;
1389 
1390 	/*
1391 	 * With NO_HZ we may have to accumulate many cycle_intervals
1392 	 * (think "ticks") worth of time at once. To do this efficiently,
1393 	 * we calculate the largest doubling multiple of cycle_intervals
1394 	 * that is smaller than the offset.  We then accumulate that
1395 	 * chunk in one go, and then try to consume the next smaller
1396 	 * doubled multiple.
1397 	 */
1398 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1399 	shift = max(0, shift);
1400 	/* Bound shift to one less than what overflows tick_length */
1401 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1402 	shift = min(shift, maxshift);
1403 	while (offset >= tk->cycle_interval) {
1404 		offset = logarithmic_accumulation(tk, offset, shift);
1405 		if (offset < tk->cycle_interval<<shift)
1406 			shift--;
1407 	}
1408 
1409 	/* correct the clock when NTP error is too big */
1410 	timekeeping_adjust(tk, offset);
1411 
1412 	/*
1413 	 * XXX This can be killed once everyone converts
1414 	 * to the new update_vsyscall.
1415 	 */
1416 	old_vsyscall_fixup(tk);
1417 
1418 	/*
1419 	 * Finally, make sure that after the rounding
1420 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1421 	 */
1422 	action = accumulate_nsecs_to_secs(tk);
1423 
1424 	write_seqcount_begin(&timekeeper_seq);
1425 	/* Update clock->cycle_last with the new value */
1426 	clock->cycle_last = tk->cycle_last;
1427 	/*
1428 	 * Update the real timekeeper.
1429 	 *
1430 	 * We could avoid this memcpy by switching pointers, but that
1431 	 * requires changes to all other timekeeper usage sites as
1432 	 * well, i.e. move the timekeeper pointer getter into the
1433 	 * spinlocked/seqcount protected sections. And we trade this
1434 	 * memcpy under the timekeeper_seq against one before we start
1435 	 * updating.
1436 	 */
1437 	memcpy(real_tk, tk, sizeof(*tk));
1438 	timekeeping_update(real_tk, action);
1439 	write_seqcount_end(&timekeeper_seq);
1440 out:
1441 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1442 }
1443 
1444 /**
1445  * getboottime - Return the real time of system boot.
1446  * @ts:		pointer to the timespec to be set
1447  *
1448  * Returns the wall-time of boot in a timespec.
1449  *
1450  * This is based on the wall_to_monotonic offset and the total suspend
1451  * time. Calls to settimeofday will affect the value returned (which
1452  * basically means that however wrong your real time clock is at boot time,
1453  * you get the right time here).
1454  */
1455 void getboottime(struct timespec *ts)
1456 {
1457 	struct timekeeper *tk = &timekeeper;
1458 	struct timespec boottime = {
1459 		.tv_sec = tk->wall_to_monotonic.tv_sec +
1460 				tk->total_sleep_time.tv_sec,
1461 		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
1462 				tk->total_sleep_time.tv_nsec
1463 	};
1464 
1465 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1466 }
1467 EXPORT_SYMBOL_GPL(getboottime);
1468 
1469 /**
1470  * get_monotonic_boottime - Returns monotonic time since boot
1471  * @ts:		pointer to the timespec to be set
1472  *
1473  * Returns the monotonic time since boot in a timespec.
1474  *
1475  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1476  * includes the time spent in suspend.
1477  */
1478 void get_monotonic_boottime(struct timespec *ts)
1479 {
1480 	struct timekeeper *tk = &timekeeper;
1481 	struct timespec tomono, sleep;
1482 	s64 nsec;
1483 	unsigned int seq;
1484 
1485 	WARN_ON(timekeeping_suspended);
1486 
1487 	do {
1488 		seq = read_seqcount_begin(&timekeeper_seq);
1489 		ts->tv_sec = tk->xtime_sec;
1490 		nsec = timekeeping_get_ns(tk);
1491 		tomono = tk->wall_to_monotonic;
1492 		sleep = tk->total_sleep_time;
1493 
1494 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1495 
1496 	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1497 	ts->tv_nsec = 0;
1498 	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1499 }
1500 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1501 
1502 /**
1503  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1504  *
1505  * Returns the monotonic time since boot in a ktime
1506  *
1507  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1508  * includes the time spent in suspend.
1509  */
1510 ktime_t ktime_get_boottime(void)
1511 {
1512 	struct timespec ts;
1513 
1514 	get_monotonic_boottime(&ts);
1515 	return timespec_to_ktime(ts);
1516 }
1517 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1518 
1519 /**
1520  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1521  * @ts:		pointer to the timespec to be converted
1522  */
1523 void monotonic_to_bootbased(struct timespec *ts)
1524 {
1525 	struct timekeeper *tk = &timekeeper;
1526 
1527 	*ts = timespec_add(*ts, tk->total_sleep_time);
1528 }
1529 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1530 
1531 unsigned long get_seconds(void)
1532 {
1533 	struct timekeeper *tk = &timekeeper;
1534 
1535 	return tk->xtime_sec;
1536 }
1537 EXPORT_SYMBOL(get_seconds);
1538 
1539 struct timespec __current_kernel_time(void)
1540 {
1541 	struct timekeeper *tk = &timekeeper;
1542 
1543 	return tk_xtime(tk);
1544 }
1545 
1546 struct timespec current_kernel_time(void)
1547 {
1548 	struct timekeeper *tk = &timekeeper;
1549 	struct timespec now;
1550 	unsigned long seq;
1551 
1552 	do {
1553 		seq = read_seqcount_begin(&timekeeper_seq);
1554 
1555 		now = tk_xtime(tk);
1556 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1557 
1558 	return now;
1559 }
1560 EXPORT_SYMBOL(current_kernel_time);
1561 
1562 struct timespec get_monotonic_coarse(void)
1563 {
1564 	struct timekeeper *tk = &timekeeper;
1565 	struct timespec now, mono;
1566 	unsigned long seq;
1567 
1568 	do {
1569 		seq = read_seqcount_begin(&timekeeper_seq);
1570 
1571 		now = tk_xtime(tk);
1572 		mono = tk->wall_to_monotonic;
1573 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1574 
1575 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1576 				now.tv_nsec + mono.tv_nsec);
1577 	return now;
1578 }
1579 
1580 /*
1581  * Must hold jiffies_lock
1582  */
1583 void do_timer(unsigned long ticks)
1584 {
1585 	jiffies_64 += ticks;
1586 	update_wall_time();
1587 	calc_global_load(ticks);
1588 }
1589 
1590 /**
1591  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1592  *    and sleep offsets.
1593  * @xtim:	pointer to timespec to be set with xtime
1594  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1595  * @sleep:	pointer to timespec to be set with time in suspend
1596  */
1597 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1598 				struct timespec *wtom, struct timespec *sleep)
1599 {
1600 	struct timekeeper *tk = &timekeeper;
1601 	unsigned long seq;
1602 
1603 	do {
1604 		seq = read_seqcount_begin(&timekeeper_seq);
1605 		*xtim = tk_xtime(tk);
1606 		*wtom = tk->wall_to_monotonic;
1607 		*sleep = tk->total_sleep_time;
1608 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1609 }
1610 
1611 #ifdef CONFIG_HIGH_RES_TIMERS
1612 /**
1613  * ktime_get_update_offsets - hrtimer helper
1614  * @offs_real:	pointer to storage for monotonic -> realtime offset
1615  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1616  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1617  *
1618  * Returns current monotonic time and updates the offsets
1619  * Called from hrtimer_interrupt() or retrigger_next_event()
1620  */
1621 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
1622 							ktime_t *offs_tai)
1623 {
1624 	struct timekeeper *tk = &timekeeper;
1625 	ktime_t now;
1626 	unsigned int seq;
1627 	u64 secs, nsecs;
1628 
1629 	do {
1630 		seq = read_seqcount_begin(&timekeeper_seq);
1631 
1632 		secs = tk->xtime_sec;
1633 		nsecs = timekeeping_get_ns(tk);
1634 
1635 		*offs_real = tk->offs_real;
1636 		*offs_boot = tk->offs_boot;
1637 		*offs_tai = tk->offs_tai;
1638 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1639 
1640 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1641 	now = ktime_sub(now, *offs_real);
1642 	return now;
1643 }
1644 #endif
1645 
1646 /**
1647  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1648  */
1649 ktime_t ktime_get_monotonic_offset(void)
1650 {
1651 	struct timekeeper *tk = &timekeeper;
1652 	unsigned long seq;
1653 	struct timespec wtom;
1654 
1655 	do {
1656 		seq = read_seqcount_begin(&timekeeper_seq);
1657 		wtom = tk->wall_to_monotonic;
1658 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1659 
1660 	return timespec_to_ktime(wtom);
1661 }
1662 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1663 
1664 /**
1665  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1666  */
1667 int do_adjtimex(struct timex *txc)
1668 {
1669 	struct timekeeper *tk = &timekeeper;
1670 	unsigned long flags;
1671 	struct timespec ts;
1672 	s32 orig_tai, tai;
1673 	int ret;
1674 
1675 	/* Validate the data before disabling interrupts */
1676 	ret = ntp_validate_timex(txc);
1677 	if (ret)
1678 		return ret;
1679 
1680 	if (txc->modes & ADJ_SETOFFSET) {
1681 		struct timespec delta;
1682 		delta.tv_sec  = txc->time.tv_sec;
1683 		delta.tv_nsec = txc->time.tv_usec;
1684 		if (!(txc->modes & ADJ_NANO))
1685 			delta.tv_nsec *= 1000;
1686 		ret = timekeeping_inject_offset(&delta);
1687 		if (ret)
1688 			return ret;
1689 	}
1690 
1691 	getnstimeofday(&ts);
1692 
1693 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1694 	write_seqcount_begin(&timekeeper_seq);
1695 
1696 	orig_tai = tai = tk->tai_offset;
1697 	ret = __do_adjtimex(txc, &ts, &tai);
1698 
1699 	if (tai != orig_tai) {
1700 		__timekeeping_set_tai_offset(tk, tai);
1701 		update_pvclock_gtod(tk, true);
1702 		clock_was_set_delayed();
1703 	}
1704 	write_seqcount_end(&timekeeper_seq);
1705 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1706 
1707 	ntp_notify_cmos_timer();
1708 
1709 	return ret;
1710 }
1711 
1712 #ifdef CONFIG_NTP_PPS
1713 /**
1714  * hardpps() - Accessor function to NTP __hardpps function
1715  */
1716 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1717 {
1718 	unsigned long flags;
1719 
1720 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1721 	write_seqcount_begin(&timekeeper_seq);
1722 
1723 	__hardpps(phase_ts, raw_ts);
1724 
1725 	write_seqcount_end(&timekeeper_seq);
1726 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1727 }
1728 EXPORT_SYMBOL(hardpps);
1729 #endif
1730 
1731 /**
1732  * xtime_update() - advances the timekeeping infrastructure
1733  * @ticks:	number of ticks, that have elapsed since the last call.
1734  *
1735  * Must be called with interrupts disabled.
1736  */
1737 void xtime_update(unsigned long ticks)
1738 {
1739 	write_seqlock(&jiffies_lock);
1740 	do_timer(ticks);
1741 	write_sequnlock(&jiffies_lock);
1742 }
1743