1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 /* 122 * These simple flag variables are managed 123 * without locks, which is racy, but ok since 124 * we don't really care about being super 125 * precise about how many events were seen, 126 * just that a problem was observed. 127 */ 128 static int timekeeping_underflow_seen; 129 static int timekeeping_overflow_seen; 130 131 /* last_warning is only modified under the timekeeping lock */ 132 static long timekeeping_last_warning; 133 134 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 135 { 136 137 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 138 const char *name = tk->tkr_mono.clock->name; 139 140 if (offset > max_cycles) { 141 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 142 offset, name, max_cycles); 143 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 144 } else { 145 if (offset > (max_cycles >> 1)) { 146 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n", 147 offset, name, max_cycles >> 1); 148 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 149 } 150 } 151 152 if (timekeeping_underflow_seen) { 153 if (jiffies - timekeeping_last_warning > WARNING_FREQ) { 154 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 156 printk_deferred(" Your kernel is probably still fine.\n"); 157 timekeeping_last_warning = jiffies; 158 } 159 timekeeping_underflow_seen = 0; 160 } 161 162 if (timekeeping_overflow_seen) { 163 if (jiffies - timekeeping_last_warning > WARNING_FREQ) { 164 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 166 printk_deferred(" Your kernel is probably still fine.\n"); 167 timekeeping_last_warning = jiffies; 168 } 169 timekeeping_overflow_seen = 0; 170 } 171 } 172 173 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 174 { 175 cycle_t now, last, mask, max, delta; 176 unsigned int seq; 177 178 /* 179 * Since we're called holding a seqlock, the data may shift 180 * under us while we're doing the calculation. This can cause 181 * false positives, since we'd note a problem but throw the 182 * results away. So nest another seqlock here to atomically 183 * grab the points we are checking with. 184 */ 185 do { 186 seq = read_seqcount_begin(&tk_core.seq); 187 now = tkr->read(tkr->clock); 188 last = tkr->cycle_last; 189 mask = tkr->mask; 190 max = tkr->clock->max_cycles; 191 } while (read_seqcount_retry(&tk_core.seq, seq)); 192 193 delta = clocksource_delta(now, last, mask); 194 195 /* 196 * Try to catch underflows by checking if we are seeing small 197 * mask-relative negative values. 198 */ 199 if (unlikely((~delta & mask) < (mask >> 3))) { 200 timekeeping_underflow_seen = 1; 201 delta = 0; 202 } 203 204 /* Cap delta value to the max_cycles values to avoid mult overflows */ 205 if (unlikely(delta > max)) { 206 timekeeping_overflow_seen = 1; 207 delta = tkr->clock->max_cycles; 208 } 209 210 return delta; 211 } 212 #else 213 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 214 { 215 } 216 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 217 { 218 cycle_t cycle_now, delta; 219 220 /* read clocksource */ 221 cycle_now = tkr->read(tkr->clock); 222 223 /* calculate the delta since the last update_wall_time */ 224 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 225 226 return delta; 227 } 228 #endif 229 230 /** 231 * tk_setup_internals - Set up internals to use clocksource clock. 232 * 233 * @tk: The target timekeeper to setup. 234 * @clock: Pointer to clocksource. 235 * 236 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 237 * pair and interval request. 238 * 239 * Unless you're the timekeeping code, you should not be using this! 240 */ 241 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 242 { 243 cycle_t interval; 244 u64 tmp, ntpinterval; 245 struct clocksource *old_clock; 246 247 old_clock = tk->tkr_mono.clock; 248 tk->tkr_mono.clock = clock; 249 tk->tkr_mono.read = clock->read; 250 tk->tkr_mono.mask = clock->mask; 251 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 252 253 tk->tkr_raw.clock = clock; 254 tk->tkr_raw.read = clock->read; 255 tk->tkr_raw.mask = clock->mask; 256 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 257 258 /* Do the ns -> cycle conversion first, using original mult */ 259 tmp = NTP_INTERVAL_LENGTH; 260 tmp <<= clock->shift; 261 ntpinterval = tmp; 262 tmp += clock->mult/2; 263 do_div(tmp, clock->mult); 264 if (tmp == 0) 265 tmp = 1; 266 267 interval = (cycle_t) tmp; 268 tk->cycle_interval = interval; 269 270 /* Go back from cycles -> shifted ns */ 271 tk->xtime_interval = (u64) interval * clock->mult; 272 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 273 tk->raw_interval = 274 ((u64) interval * clock->mult) >> clock->shift; 275 276 /* if changing clocks, convert xtime_nsec shift units */ 277 if (old_clock) { 278 int shift_change = clock->shift - old_clock->shift; 279 if (shift_change < 0) 280 tk->tkr_mono.xtime_nsec >>= -shift_change; 281 else 282 tk->tkr_mono.xtime_nsec <<= shift_change; 283 } 284 tk->tkr_raw.xtime_nsec = 0; 285 286 tk->tkr_mono.shift = clock->shift; 287 tk->tkr_raw.shift = clock->shift; 288 289 tk->ntp_error = 0; 290 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 291 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 292 293 /* 294 * The timekeeper keeps its own mult values for the currently 295 * active clocksource. These value will be adjusted via NTP 296 * to counteract clock drifting. 297 */ 298 tk->tkr_mono.mult = clock->mult; 299 tk->tkr_raw.mult = clock->mult; 300 tk->ntp_err_mult = 0; 301 } 302 303 /* Timekeeper helper functions. */ 304 305 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 306 static u32 default_arch_gettimeoffset(void) { return 0; } 307 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 308 #else 309 static inline u32 arch_gettimeoffset(void) { return 0; } 310 #endif 311 312 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 313 { 314 cycle_t delta; 315 s64 nsec; 316 317 delta = timekeeping_get_delta(tkr); 318 319 nsec = delta * tkr->mult + tkr->xtime_nsec; 320 nsec >>= tkr->shift; 321 322 /* If arch requires, add in get_arch_timeoffset() */ 323 return nsec + arch_gettimeoffset(); 324 } 325 326 /** 327 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 328 * @tkr: Timekeeping readout base from which we take the update 329 * 330 * We want to use this from any context including NMI and tracing / 331 * instrumenting the timekeeping code itself. 332 * 333 * So we handle this differently than the other timekeeping accessor 334 * functions which retry when the sequence count has changed. The 335 * update side does: 336 * 337 * smp_wmb(); <- Ensure that the last base[1] update is visible 338 * tkf->seq++; 339 * smp_wmb(); <- Ensure that the seqcount update is visible 340 * update(tkf->base[0], tkr); 341 * smp_wmb(); <- Ensure that the base[0] update is visible 342 * tkf->seq++; 343 * smp_wmb(); <- Ensure that the seqcount update is visible 344 * update(tkf->base[1], tkr); 345 * 346 * The reader side does: 347 * 348 * do { 349 * seq = tkf->seq; 350 * smp_rmb(); 351 * idx = seq & 0x01; 352 * now = now(tkf->base[idx]); 353 * smp_rmb(); 354 * } while (seq != tkf->seq) 355 * 356 * As long as we update base[0] readers are forced off to 357 * base[1]. Once base[0] is updated readers are redirected to base[0] 358 * and the base[1] update takes place. 359 * 360 * So if a NMI hits the update of base[0] then it will use base[1] 361 * which is still consistent. In the worst case this can result is a 362 * slightly wrong timestamp (a few nanoseconds). See 363 * @ktime_get_mono_fast_ns. 364 */ 365 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 366 { 367 struct tk_read_base *base = tkf->base; 368 369 /* Force readers off to base[1] */ 370 raw_write_seqcount_latch(&tkf->seq); 371 372 /* Update base[0] */ 373 memcpy(base, tkr, sizeof(*base)); 374 375 /* Force readers back to base[0] */ 376 raw_write_seqcount_latch(&tkf->seq); 377 378 /* Update base[1] */ 379 memcpy(base + 1, base, sizeof(*base)); 380 } 381 382 /** 383 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 384 * 385 * This timestamp is not guaranteed to be monotonic across an update. 386 * The timestamp is calculated by: 387 * 388 * now = base_mono + clock_delta * slope 389 * 390 * So if the update lowers the slope, readers who are forced to the 391 * not yet updated second array are still using the old steeper slope. 392 * 393 * tmono 394 * ^ 395 * | o n 396 * | o n 397 * | u 398 * | o 399 * |o 400 * |12345678---> reader order 401 * 402 * o = old slope 403 * u = update 404 * n = new slope 405 * 406 * So reader 6 will observe time going backwards versus reader 5. 407 * 408 * While other CPUs are likely to be able observe that, the only way 409 * for a CPU local observation is when an NMI hits in the middle of 410 * the update. Timestamps taken from that NMI context might be ahead 411 * of the following timestamps. Callers need to be aware of that and 412 * deal with it. 413 */ 414 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 415 { 416 struct tk_read_base *tkr; 417 unsigned int seq; 418 u64 now; 419 420 do { 421 seq = raw_read_seqcount(&tkf->seq); 422 tkr = tkf->base + (seq & 0x01); 423 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr); 424 } while (read_seqcount_retry(&tkf->seq, seq)); 425 426 return now; 427 } 428 429 u64 ktime_get_mono_fast_ns(void) 430 { 431 return __ktime_get_fast_ns(&tk_fast_mono); 432 } 433 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 434 435 u64 ktime_get_raw_fast_ns(void) 436 { 437 return __ktime_get_fast_ns(&tk_fast_raw); 438 } 439 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 440 441 /* Suspend-time cycles value for halted fast timekeeper. */ 442 static cycle_t cycles_at_suspend; 443 444 static cycle_t dummy_clock_read(struct clocksource *cs) 445 { 446 return cycles_at_suspend; 447 } 448 449 /** 450 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 451 * @tk: Timekeeper to snapshot. 452 * 453 * It generally is unsafe to access the clocksource after timekeeping has been 454 * suspended, so take a snapshot of the readout base of @tk and use it as the 455 * fast timekeeper's readout base while suspended. It will return the same 456 * number of cycles every time until timekeeping is resumed at which time the 457 * proper readout base for the fast timekeeper will be restored automatically. 458 */ 459 static void halt_fast_timekeeper(struct timekeeper *tk) 460 { 461 static struct tk_read_base tkr_dummy; 462 struct tk_read_base *tkr = &tk->tkr_mono; 463 464 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 465 cycles_at_suspend = tkr->read(tkr->clock); 466 tkr_dummy.read = dummy_clock_read; 467 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 468 469 tkr = &tk->tkr_raw; 470 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 471 tkr_dummy.read = dummy_clock_read; 472 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 473 } 474 475 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 476 477 static inline void update_vsyscall(struct timekeeper *tk) 478 { 479 struct timespec xt, wm; 480 481 xt = timespec64_to_timespec(tk_xtime(tk)); 482 wm = timespec64_to_timespec(tk->wall_to_monotonic); 483 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 484 tk->tkr_mono.cycle_last); 485 } 486 487 static inline void old_vsyscall_fixup(struct timekeeper *tk) 488 { 489 s64 remainder; 490 491 /* 492 * Store only full nanoseconds into xtime_nsec after rounding 493 * it up and add the remainder to the error difference. 494 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 495 * by truncating the remainder in vsyscalls. However, it causes 496 * additional work to be done in timekeeping_adjust(). Once 497 * the vsyscall implementations are converted to use xtime_nsec 498 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 499 * users are removed, this can be killed. 500 */ 501 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 502 tk->tkr_mono.xtime_nsec -= remainder; 503 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 504 tk->ntp_error += remainder << tk->ntp_error_shift; 505 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 506 } 507 #else 508 #define old_vsyscall_fixup(tk) 509 #endif 510 511 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 512 513 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 514 { 515 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 516 } 517 518 /** 519 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 520 */ 521 int pvclock_gtod_register_notifier(struct notifier_block *nb) 522 { 523 struct timekeeper *tk = &tk_core.timekeeper; 524 unsigned long flags; 525 int ret; 526 527 raw_spin_lock_irqsave(&timekeeper_lock, flags); 528 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 529 update_pvclock_gtod(tk, true); 530 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 531 532 return ret; 533 } 534 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 535 536 /** 537 * pvclock_gtod_unregister_notifier - unregister a pvclock 538 * timedata update listener 539 */ 540 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 541 { 542 unsigned long flags; 543 int ret; 544 545 raw_spin_lock_irqsave(&timekeeper_lock, flags); 546 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 548 549 return ret; 550 } 551 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 552 553 /* 554 * Update the ktime_t based scalar nsec members of the timekeeper 555 */ 556 static inline void tk_update_ktime_data(struct timekeeper *tk) 557 { 558 u64 seconds; 559 u32 nsec; 560 561 /* 562 * The xtime based monotonic readout is: 563 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 564 * The ktime based monotonic readout is: 565 * nsec = base_mono + now(); 566 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 567 */ 568 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 569 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 570 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 571 572 /* Update the monotonic raw base */ 573 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 574 575 /* 576 * The sum of the nanoseconds portions of xtime and 577 * wall_to_monotonic can be greater/equal one second. Take 578 * this into account before updating tk->ktime_sec. 579 */ 580 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 581 if (nsec >= NSEC_PER_SEC) 582 seconds++; 583 tk->ktime_sec = seconds; 584 } 585 586 /* must hold timekeeper_lock */ 587 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 588 { 589 if (action & TK_CLEAR_NTP) { 590 tk->ntp_error = 0; 591 ntp_clear(); 592 } 593 594 tk_update_ktime_data(tk); 595 596 update_vsyscall(tk); 597 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 598 599 if (action & TK_MIRROR) 600 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 601 sizeof(tk_core.timekeeper)); 602 603 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 604 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 605 } 606 607 /** 608 * timekeeping_forward_now - update clock to the current time 609 * 610 * Forward the current clock to update its state since the last call to 611 * update_wall_time(). This is useful before significant clock changes, 612 * as it avoids having to deal with this time offset explicitly. 613 */ 614 static void timekeeping_forward_now(struct timekeeper *tk) 615 { 616 struct clocksource *clock = tk->tkr_mono.clock; 617 cycle_t cycle_now, delta; 618 s64 nsec; 619 620 cycle_now = tk->tkr_mono.read(clock); 621 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 622 tk->tkr_mono.cycle_last = cycle_now; 623 tk->tkr_raw.cycle_last = cycle_now; 624 625 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 626 627 /* If arch requires, add in get_arch_timeoffset() */ 628 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 629 630 tk_normalize_xtime(tk); 631 632 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 633 timespec64_add_ns(&tk->raw_time, nsec); 634 } 635 636 /** 637 * __getnstimeofday64 - Returns the time of day in a timespec64. 638 * @ts: pointer to the timespec to be set 639 * 640 * Updates the time of day in the timespec. 641 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 642 */ 643 int __getnstimeofday64(struct timespec64 *ts) 644 { 645 struct timekeeper *tk = &tk_core.timekeeper; 646 unsigned long seq; 647 s64 nsecs = 0; 648 649 do { 650 seq = read_seqcount_begin(&tk_core.seq); 651 652 ts->tv_sec = tk->xtime_sec; 653 nsecs = timekeeping_get_ns(&tk->tkr_mono); 654 655 } while (read_seqcount_retry(&tk_core.seq, seq)); 656 657 ts->tv_nsec = 0; 658 timespec64_add_ns(ts, nsecs); 659 660 /* 661 * Do not bail out early, in case there were callers still using 662 * the value, even in the face of the WARN_ON. 663 */ 664 if (unlikely(timekeeping_suspended)) 665 return -EAGAIN; 666 return 0; 667 } 668 EXPORT_SYMBOL(__getnstimeofday64); 669 670 /** 671 * getnstimeofday64 - Returns the time of day in a timespec64. 672 * @ts: pointer to the timespec64 to be set 673 * 674 * Returns the time of day in a timespec64 (WARN if suspended). 675 */ 676 void getnstimeofday64(struct timespec64 *ts) 677 { 678 WARN_ON(__getnstimeofday64(ts)); 679 } 680 EXPORT_SYMBOL(getnstimeofday64); 681 682 ktime_t ktime_get(void) 683 { 684 struct timekeeper *tk = &tk_core.timekeeper; 685 unsigned int seq; 686 ktime_t base; 687 s64 nsecs; 688 689 WARN_ON(timekeeping_suspended); 690 691 do { 692 seq = read_seqcount_begin(&tk_core.seq); 693 base = tk->tkr_mono.base; 694 nsecs = timekeeping_get_ns(&tk->tkr_mono); 695 696 } while (read_seqcount_retry(&tk_core.seq, seq)); 697 698 return ktime_add_ns(base, nsecs); 699 } 700 EXPORT_SYMBOL_GPL(ktime_get); 701 702 static ktime_t *offsets[TK_OFFS_MAX] = { 703 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 704 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 705 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 706 }; 707 708 ktime_t ktime_get_with_offset(enum tk_offsets offs) 709 { 710 struct timekeeper *tk = &tk_core.timekeeper; 711 unsigned int seq; 712 ktime_t base, *offset = offsets[offs]; 713 s64 nsecs; 714 715 WARN_ON(timekeeping_suspended); 716 717 do { 718 seq = read_seqcount_begin(&tk_core.seq); 719 base = ktime_add(tk->tkr_mono.base, *offset); 720 nsecs = timekeeping_get_ns(&tk->tkr_mono); 721 722 } while (read_seqcount_retry(&tk_core.seq, seq)); 723 724 return ktime_add_ns(base, nsecs); 725 726 } 727 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 728 729 /** 730 * ktime_mono_to_any() - convert mononotic time to any other time 731 * @tmono: time to convert. 732 * @offs: which offset to use 733 */ 734 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 735 { 736 ktime_t *offset = offsets[offs]; 737 unsigned long seq; 738 ktime_t tconv; 739 740 do { 741 seq = read_seqcount_begin(&tk_core.seq); 742 tconv = ktime_add(tmono, *offset); 743 } while (read_seqcount_retry(&tk_core.seq, seq)); 744 745 return tconv; 746 } 747 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 748 749 /** 750 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 751 */ 752 ktime_t ktime_get_raw(void) 753 { 754 struct timekeeper *tk = &tk_core.timekeeper; 755 unsigned int seq; 756 ktime_t base; 757 s64 nsecs; 758 759 do { 760 seq = read_seqcount_begin(&tk_core.seq); 761 base = tk->tkr_raw.base; 762 nsecs = timekeeping_get_ns(&tk->tkr_raw); 763 764 } while (read_seqcount_retry(&tk_core.seq, seq)); 765 766 return ktime_add_ns(base, nsecs); 767 } 768 EXPORT_SYMBOL_GPL(ktime_get_raw); 769 770 /** 771 * ktime_get_ts64 - get the monotonic clock in timespec64 format 772 * @ts: pointer to timespec variable 773 * 774 * The function calculates the monotonic clock from the realtime 775 * clock and the wall_to_monotonic offset and stores the result 776 * in normalized timespec64 format in the variable pointed to by @ts. 777 */ 778 void ktime_get_ts64(struct timespec64 *ts) 779 { 780 struct timekeeper *tk = &tk_core.timekeeper; 781 struct timespec64 tomono; 782 s64 nsec; 783 unsigned int seq; 784 785 WARN_ON(timekeeping_suspended); 786 787 do { 788 seq = read_seqcount_begin(&tk_core.seq); 789 ts->tv_sec = tk->xtime_sec; 790 nsec = timekeeping_get_ns(&tk->tkr_mono); 791 tomono = tk->wall_to_monotonic; 792 793 } while (read_seqcount_retry(&tk_core.seq, seq)); 794 795 ts->tv_sec += tomono.tv_sec; 796 ts->tv_nsec = 0; 797 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 798 } 799 EXPORT_SYMBOL_GPL(ktime_get_ts64); 800 801 /** 802 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 803 * 804 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 805 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 806 * works on both 32 and 64 bit systems. On 32 bit systems the readout 807 * covers ~136 years of uptime which should be enough to prevent 808 * premature wrap arounds. 809 */ 810 time64_t ktime_get_seconds(void) 811 { 812 struct timekeeper *tk = &tk_core.timekeeper; 813 814 WARN_ON(timekeeping_suspended); 815 return tk->ktime_sec; 816 } 817 EXPORT_SYMBOL_GPL(ktime_get_seconds); 818 819 /** 820 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 821 * 822 * Returns the wall clock seconds since 1970. This replaces the 823 * get_seconds() interface which is not y2038 safe on 32bit systems. 824 * 825 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 826 * 32bit systems the access must be protected with the sequence 827 * counter to provide "atomic" access to the 64bit tk->xtime_sec 828 * value. 829 */ 830 time64_t ktime_get_real_seconds(void) 831 { 832 struct timekeeper *tk = &tk_core.timekeeper; 833 time64_t seconds; 834 unsigned int seq; 835 836 if (IS_ENABLED(CONFIG_64BIT)) 837 return tk->xtime_sec; 838 839 do { 840 seq = read_seqcount_begin(&tk_core.seq); 841 seconds = tk->xtime_sec; 842 843 } while (read_seqcount_retry(&tk_core.seq, seq)); 844 845 return seconds; 846 } 847 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 848 849 #ifdef CONFIG_NTP_PPS 850 851 /** 852 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 853 * @ts_raw: pointer to the timespec to be set to raw monotonic time 854 * @ts_real: pointer to the timespec to be set to the time of day 855 * 856 * This function reads both the time of day and raw monotonic time at the 857 * same time atomically and stores the resulting timestamps in timespec 858 * format. 859 */ 860 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 861 { 862 struct timekeeper *tk = &tk_core.timekeeper; 863 unsigned long seq; 864 s64 nsecs_raw, nsecs_real; 865 866 WARN_ON_ONCE(timekeeping_suspended); 867 868 do { 869 seq = read_seqcount_begin(&tk_core.seq); 870 871 *ts_raw = timespec64_to_timespec(tk->raw_time); 872 ts_real->tv_sec = tk->xtime_sec; 873 ts_real->tv_nsec = 0; 874 875 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw); 876 nsecs_real = timekeeping_get_ns(&tk->tkr_mono); 877 878 } while (read_seqcount_retry(&tk_core.seq, seq)); 879 880 timespec_add_ns(ts_raw, nsecs_raw); 881 timespec_add_ns(ts_real, nsecs_real); 882 } 883 EXPORT_SYMBOL(getnstime_raw_and_real); 884 885 #endif /* CONFIG_NTP_PPS */ 886 887 /** 888 * do_gettimeofday - Returns the time of day in a timeval 889 * @tv: pointer to the timeval to be set 890 * 891 * NOTE: Users should be converted to using getnstimeofday() 892 */ 893 void do_gettimeofday(struct timeval *tv) 894 { 895 struct timespec64 now; 896 897 getnstimeofday64(&now); 898 tv->tv_sec = now.tv_sec; 899 tv->tv_usec = now.tv_nsec/1000; 900 } 901 EXPORT_SYMBOL(do_gettimeofday); 902 903 /** 904 * do_settimeofday64 - Sets the time of day. 905 * @ts: pointer to the timespec64 variable containing the new time 906 * 907 * Sets the time of day to the new time and update NTP and notify hrtimers 908 */ 909 int do_settimeofday64(const struct timespec64 *ts) 910 { 911 struct timekeeper *tk = &tk_core.timekeeper; 912 struct timespec64 ts_delta, xt; 913 unsigned long flags; 914 915 if (!timespec64_valid_strict(ts)) 916 return -EINVAL; 917 918 raw_spin_lock_irqsave(&timekeeper_lock, flags); 919 write_seqcount_begin(&tk_core.seq); 920 921 timekeeping_forward_now(tk); 922 923 xt = tk_xtime(tk); 924 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 925 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 926 927 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 928 929 tk_set_xtime(tk, ts); 930 931 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 932 933 write_seqcount_end(&tk_core.seq); 934 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 935 936 /* signal hrtimers about time change */ 937 clock_was_set(); 938 939 return 0; 940 } 941 EXPORT_SYMBOL(do_settimeofday64); 942 943 /** 944 * timekeeping_inject_offset - Adds or subtracts from the current time. 945 * @tv: pointer to the timespec variable containing the offset 946 * 947 * Adds or subtracts an offset value from the current time. 948 */ 949 int timekeeping_inject_offset(struct timespec *ts) 950 { 951 struct timekeeper *tk = &tk_core.timekeeper; 952 unsigned long flags; 953 struct timespec64 ts64, tmp; 954 int ret = 0; 955 956 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 957 return -EINVAL; 958 959 ts64 = timespec_to_timespec64(*ts); 960 961 raw_spin_lock_irqsave(&timekeeper_lock, flags); 962 write_seqcount_begin(&tk_core.seq); 963 964 timekeeping_forward_now(tk); 965 966 /* Make sure the proposed value is valid */ 967 tmp = timespec64_add(tk_xtime(tk), ts64); 968 if (!timespec64_valid_strict(&tmp)) { 969 ret = -EINVAL; 970 goto error; 971 } 972 973 tk_xtime_add(tk, &ts64); 974 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 975 976 error: /* even if we error out, we forwarded the time, so call update */ 977 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 978 979 write_seqcount_end(&tk_core.seq); 980 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 981 982 /* signal hrtimers about time change */ 983 clock_was_set(); 984 985 return ret; 986 } 987 EXPORT_SYMBOL(timekeeping_inject_offset); 988 989 990 /** 991 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 992 * 993 */ 994 s32 timekeeping_get_tai_offset(void) 995 { 996 struct timekeeper *tk = &tk_core.timekeeper; 997 unsigned int seq; 998 s32 ret; 999 1000 do { 1001 seq = read_seqcount_begin(&tk_core.seq); 1002 ret = tk->tai_offset; 1003 } while (read_seqcount_retry(&tk_core.seq, seq)); 1004 1005 return ret; 1006 } 1007 1008 /** 1009 * __timekeeping_set_tai_offset - Lock free worker function 1010 * 1011 */ 1012 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1013 { 1014 tk->tai_offset = tai_offset; 1015 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1016 } 1017 1018 /** 1019 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1020 * 1021 */ 1022 void timekeeping_set_tai_offset(s32 tai_offset) 1023 { 1024 struct timekeeper *tk = &tk_core.timekeeper; 1025 unsigned long flags; 1026 1027 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1028 write_seqcount_begin(&tk_core.seq); 1029 __timekeeping_set_tai_offset(tk, tai_offset); 1030 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1031 write_seqcount_end(&tk_core.seq); 1032 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1033 clock_was_set(); 1034 } 1035 1036 /** 1037 * change_clocksource - Swaps clocksources if a new one is available 1038 * 1039 * Accumulates current time interval and initializes new clocksource 1040 */ 1041 static int change_clocksource(void *data) 1042 { 1043 struct timekeeper *tk = &tk_core.timekeeper; 1044 struct clocksource *new, *old; 1045 unsigned long flags; 1046 1047 new = (struct clocksource *) data; 1048 1049 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1050 write_seqcount_begin(&tk_core.seq); 1051 1052 timekeeping_forward_now(tk); 1053 /* 1054 * If the cs is in module, get a module reference. Succeeds 1055 * for built-in code (owner == NULL) as well. 1056 */ 1057 if (try_module_get(new->owner)) { 1058 if (!new->enable || new->enable(new) == 0) { 1059 old = tk->tkr_mono.clock; 1060 tk_setup_internals(tk, new); 1061 if (old->disable) 1062 old->disable(old); 1063 module_put(old->owner); 1064 } else { 1065 module_put(new->owner); 1066 } 1067 } 1068 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1069 1070 write_seqcount_end(&tk_core.seq); 1071 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1072 1073 return 0; 1074 } 1075 1076 /** 1077 * timekeeping_notify - Install a new clock source 1078 * @clock: pointer to the clock source 1079 * 1080 * This function is called from clocksource.c after a new, better clock 1081 * source has been registered. The caller holds the clocksource_mutex. 1082 */ 1083 int timekeeping_notify(struct clocksource *clock) 1084 { 1085 struct timekeeper *tk = &tk_core.timekeeper; 1086 1087 if (tk->tkr_mono.clock == clock) 1088 return 0; 1089 stop_machine(change_clocksource, clock, NULL); 1090 tick_clock_notify(); 1091 return tk->tkr_mono.clock == clock ? 0 : -1; 1092 } 1093 1094 /** 1095 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1096 * @ts: pointer to the timespec64 to be set 1097 * 1098 * Returns the raw monotonic time (completely un-modified by ntp) 1099 */ 1100 void getrawmonotonic64(struct timespec64 *ts) 1101 { 1102 struct timekeeper *tk = &tk_core.timekeeper; 1103 struct timespec64 ts64; 1104 unsigned long seq; 1105 s64 nsecs; 1106 1107 do { 1108 seq = read_seqcount_begin(&tk_core.seq); 1109 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1110 ts64 = tk->raw_time; 1111 1112 } while (read_seqcount_retry(&tk_core.seq, seq)); 1113 1114 timespec64_add_ns(&ts64, nsecs); 1115 *ts = ts64; 1116 } 1117 EXPORT_SYMBOL(getrawmonotonic64); 1118 1119 1120 /** 1121 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1122 */ 1123 int timekeeping_valid_for_hres(void) 1124 { 1125 struct timekeeper *tk = &tk_core.timekeeper; 1126 unsigned long seq; 1127 int ret; 1128 1129 do { 1130 seq = read_seqcount_begin(&tk_core.seq); 1131 1132 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1133 1134 } while (read_seqcount_retry(&tk_core.seq, seq)); 1135 1136 return ret; 1137 } 1138 1139 /** 1140 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1141 */ 1142 u64 timekeeping_max_deferment(void) 1143 { 1144 struct timekeeper *tk = &tk_core.timekeeper; 1145 unsigned long seq; 1146 u64 ret; 1147 1148 do { 1149 seq = read_seqcount_begin(&tk_core.seq); 1150 1151 ret = tk->tkr_mono.clock->max_idle_ns; 1152 1153 } while (read_seqcount_retry(&tk_core.seq, seq)); 1154 1155 return ret; 1156 } 1157 1158 /** 1159 * read_persistent_clock - Return time from the persistent clock. 1160 * 1161 * Weak dummy function for arches that do not yet support it. 1162 * Reads the time from the battery backed persistent clock. 1163 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1164 * 1165 * XXX - Do be sure to remove it once all arches implement it. 1166 */ 1167 void __weak read_persistent_clock(struct timespec *ts) 1168 { 1169 ts->tv_sec = 0; 1170 ts->tv_nsec = 0; 1171 } 1172 1173 void __weak read_persistent_clock64(struct timespec64 *ts64) 1174 { 1175 struct timespec ts; 1176 1177 read_persistent_clock(&ts); 1178 *ts64 = timespec_to_timespec64(ts); 1179 } 1180 1181 /** 1182 * read_boot_clock - Return time of the system start. 1183 * 1184 * Weak dummy function for arches that do not yet support it. 1185 * Function to read the exact time the system has been started. 1186 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1187 * 1188 * XXX - Do be sure to remove it once all arches implement it. 1189 */ 1190 void __weak read_boot_clock(struct timespec *ts) 1191 { 1192 ts->tv_sec = 0; 1193 ts->tv_nsec = 0; 1194 } 1195 1196 void __weak read_boot_clock64(struct timespec64 *ts64) 1197 { 1198 struct timespec ts; 1199 1200 read_boot_clock(&ts); 1201 *ts64 = timespec_to_timespec64(ts); 1202 } 1203 1204 /* Flag for if timekeeping_resume() has injected sleeptime */ 1205 static bool sleeptime_injected; 1206 1207 /* Flag for if there is a persistent clock on this platform */ 1208 static bool persistent_clock_exists; 1209 1210 /* 1211 * timekeeping_init - Initializes the clocksource and common timekeeping values 1212 */ 1213 void __init timekeeping_init(void) 1214 { 1215 struct timekeeper *tk = &tk_core.timekeeper; 1216 struct clocksource *clock; 1217 unsigned long flags; 1218 struct timespec64 now, boot, tmp; 1219 1220 read_persistent_clock64(&now); 1221 if (!timespec64_valid_strict(&now)) { 1222 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1223 " Check your CMOS/BIOS settings.\n"); 1224 now.tv_sec = 0; 1225 now.tv_nsec = 0; 1226 } else if (now.tv_sec || now.tv_nsec) 1227 persistent_clock_exists = true; 1228 1229 read_boot_clock64(&boot); 1230 if (!timespec64_valid_strict(&boot)) { 1231 pr_warn("WARNING: Boot clock returned invalid value!\n" 1232 " Check your CMOS/BIOS settings.\n"); 1233 boot.tv_sec = 0; 1234 boot.tv_nsec = 0; 1235 } 1236 1237 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1238 write_seqcount_begin(&tk_core.seq); 1239 ntp_init(); 1240 1241 clock = clocksource_default_clock(); 1242 if (clock->enable) 1243 clock->enable(clock); 1244 tk_setup_internals(tk, clock); 1245 1246 tk_set_xtime(tk, &now); 1247 tk->raw_time.tv_sec = 0; 1248 tk->raw_time.tv_nsec = 0; 1249 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1250 boot = tk_xtime(tk); 1251 1252 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1253 tk_set_wall_to_mono(tk, tmp); 1254 1255 timekeeping_update(tk, TK_MIRROR); 1256 1257 write_seqcount_end(&tk_core.seq); 1258 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1259 } 1260 1261 /* time in seconds when suspend began for persistent clock */ 1262 static struct timespec64 timekeeping_suspend_time; 1263 1264 /** 1265 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1266 * @delta: pointer to a timespec delta value 1267 * 1268 * Takes a timespec offset measuring a suspend interval and properly 1269 * adds the sleep offset to the timekeeping variables. 1270 */ 1271 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1272 struct timespec64 *delta) 1273 { 1274 if (!timespec64_valid_strict(delta)) { 1275 printk_deferred(KERN_WARNING 1276 "__timekeeping_inject_sleeptime: Invalid " 1277 "sleep delta value!\n"); 1278 return; 1279 } 1280 tk_xtime_add(tk, delta); 1281 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1282 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1283 tk_debug_account_sleep_time(delta); 1284 } 1285 1286 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1287 /** 1288 * We have three kinds of time sources to use for sleep time 1289 * injection, the preference order is: 1290 * 1) non-stop clocksource 1291 * 2) persistent clock (ie: RTC accessible when irqs are off) 1292 * 3) RTC 1293 * 1294 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1295 * If system has neither 1) nor 2), 3) will be used finally. 1296 * 1297 * 1298 * If timekeeping has injected sleeptime via either 1) or 2), 1299 * 3) becomes needless, so in this case we don't need to call 1300 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1301 * means. 1302 */ 1303 bool timekeeping_rtc_skipresume(void) 1304 { 1305 return sleeptime_injected; 1306 } 1307 1308 /** 1309 * 1) can be determined whether to use or not only when doing 1310 * timekeeping_resume() which is invoked after rtc_suspend(), 1311 * so we can't skip rtc_suspend() surely if system has 1). 1312 * 1313 * But if system has 2), 2) will definitely be used, so in this 1314 * case we don't need to call rtc_suspend(), and this is what 1315 * timekeeping_rtc_skipsuspend() means. 1316 */ 1317 bool timekeeping_rtc_skipsuspend(void) 1318 { 1319 return persistent_clock_exists; 1320 } 1321 1322 /** 1323 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1324 * @delta: pointer to a timespec64 delta value 1325 * 1326 * This hook is for architectures that cannot support read_persistent_clock64 1327 * because their RTC/persistent clock is only accessible when irqs are enabled. 1328 * and also don't have an effective nonstop clocksource. 1329 * 1330 * This function should only be called by rtc_resume(), and allows 1331 * a suspend offset to be injected into the timekeeping values. 1332 */ 1333 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1334 { 1335 struct timekeeper *tk = &tk_core.timekeeper; 1336 unsigned long flags; 1337 1338 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1339 write_seqcount_begin(&tk_core.seq); 1340 1341 timekeeping_forward_now(tk); 1342 1343 __timekeeping_inject_sleeptime(tk, delta); 1344 1345 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1346 1347 write_seqcount_end(&tk_core.seq); 1348 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1349 1350 /* signal hrtimers about time change */ 1351 clock_was_set(); 1352 } 1353 #endif 1354 1355 /** 1356 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1357 */ 1358 void timekeeping_resume(void) 1359 { 1360 struct timekeeper *tk = &tk_core.timekeeper; 1361 struct clocksource *clock = tk->tkr_mono.clock; 1362 unsigned long flags; 1363 struct timespec64 ts_new, ts_delta; 1364 cycle_t cycle_now, cycle_delta; 1365 1366 sleeptime_injected = false; 1367 read_persistent_clock64(&ts_new); 1368 1369 clockevents_resume(); 1370 clocksource_resume(); 1371 1372 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1373 write_seqcount_begin(&tk_core.seq); 1374 1375 /* 1376 * After system resumes, we need to calculate the suspended time and 1377 * compensate it for the OS time. There are 3 sources that could be 1378 * used: Nonstop clocksource during suspend, persistent clock and rtc 1379 * device. 1380 * 1381 * One specific platform may have 1 or 2 or all of them, and the 1382 * preference will be: 1383 * suspend-nonstop clocksource -> persistent clock -> rtc 1384 * The less preferred source will only be tried if there is no better 1385 * usable source. The rtc part is handled separately in rtc core code. 1386 */ 1387 cycle_now = tk->tkr_mono.read(clock); 1388 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1389 cycle_now > tk->tkr_mono.cycle_last) { 1390 u64 num, max = ULLONG_MAX; 1391 u32 mult = clock->mult; 1392 u32 shift = clock->shift; 1393 s64 nsec = 0; 1394 1395 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1396 tk->tkr_mono.mask); 1397 1398 /* 1399 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1400 * suspended time is too long. In that case we need do the 1401 * 64 bits math carefully 1402 */ 1403 do_div(max, mult); 1404 if (cycle_delta > max) { 1405 num = div64_u64(cycle_delta, max); 1406 nsec = (((u64) max * mult) >> shift) * num; 1407 cycle_delta -= num * max; 1408 } 1409 nsec += ((u64) cycle_delta * mult) >> shift; 1410 1411 ts_delta = ns_to_timespec64(nsec); 1412 sleeptime_injected = true; 1413 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1414 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1415 sleeptime_injected = true; 1416 } 1417 1418 if (sleeptime_injected) 1419 __timekeeping_inject_sleeptime(tk, &ts_delta); 1420 1421 /* Re-base the last cycle value */ 1422 tk->tkr_mono.cycle_last = cycle_now; 1423 tk->tkr_raw.cycle_last = cycle_now; 1424 1425 tk->ntp_error = 0; 1426 timekeeping_suspended = 0; 1427 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1428 write_seqcount_end(&tk_core.seq); 1429 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1430 1431 touch_softlockup_watchdog(); 1432 1433 tick_resume(); 1434 hrtimers_resume(); 1435 } 1436 1437 int timekeeping_suspend(void) 1438 { 1439 struct timekeeper *tk = &tk_core.timekeeper; 1440 unsigned long flags; 1441 struct timespec64 delta, delta_delta; 1442 static struct timespec64 old_delta; 1443 1444 read_persistent_clock64(&timekeeping_suspend_time); 1445 1446 /* 1447 * On some systems the persistent_clock can not be detected at 1448 * timekeeping_init by its return value, so if we see a valid 1449 * value returned, update the persistent_clock_exists flag. 1450 */ 1451 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1452 persistent_clock_exists = true; 1453 1454 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1455 write_seqcount_begin(&tk_core.seq); 1456 timekeeping_forward_now(tk); 1457 timekeeping_suspended = 1; 1458 1459 if (persistent_clock_exists) { 1460 /* 1461 * To avoid drift caused by repeated suspend/resumes, 1462 * which each can add ~1 second drift error, 1463 * try to compensate so the difference in system time 1464 * and persistent_clock time stays close to constant. 1465 */ 1466 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1467 delta_delta = timespec64_sub(delta, old_delta); 1468 if (abs(delta_delta.tv_sec) >= 2) { 1469 /* 1470 * if delta_delta is too large, assume time correction 1471 * has occurred and set old_delta to the current delta. 1472 */ 1473 old_delta = delta; 1474 } else { 1475 /* Otherwise try to adjust old_system to compensate */ 1476 timekeeping_suspend_time = 1477 timespec64_add(timekeeping_suspend_time, delta_delta); 1478 } 1479 } 1480 1481 timekeeping_update(tk, TK_MIRROR); 1482 halt_fast_timekeeper(tk); 1483 write_seqcount_end(&tk_core.seq); 1484 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1485 1486 tick_suspend(); 1487 clocksource_suspend(); 1488 clockevents_suspend(); 1489 1490 return 0; 1491 } 1492 1493 /* sysfs resume/suspend bits for timekeeping */ 1494 static struct syscore_ops timekeeping_syscore_ops = { 1495 .resume = timekeeping_resume, 1496 .suspend = timekeeping_suspend, 1497 }; 1498 1499 static int __init timekeeping_init_ops(void) 1500 { 1501 register_syscore_ops(&timekeeping_syscore_ops); 1502 return 0; 1503 } 1504 device_initcall(timekeeping_init_ops); 1505 1506 /* 1507 * Apply a multiplier adjustment to the timekeeper 1508 */ 1509 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1510 s64 offset, 1511 bool negative, 1512 int adj_scale) 1513 { 1514 s64 interval = tk->cycle_interval; 1515 s32 mult_adj = 1; 1516 1517 if (negative) { 1518 mult_adj = -mult_adj; 1519 interval = -interval; 1520 offset = -offset; 1521 } 1522 mult_adj <<= adj_scale; 1523 interval <<= adj_scale; 1524 offset <<= adj_scale; 1525 1526 /* 1527 * So the following can be confusing. 1528 * 1529 * To keep things simple, lets assume mult_adj == 1 for now. 1530 * 1531 * When mult_adj != 1, remember that the interval and offset values 1532 * have been appropriately scaled so the math is the same. 1533 * 1534 * The basic idea here is that we're increasing the multiplier 1535 * by one, this causes the xtime_interval to be incremented by 1536 * one cycle_interval. This is because: 1537 * xtime_interval = cycle_interval * mult 1538 * So if mult is being incremented by one: 1539 * xtime_interval = cycle_interval * (mult + 1) 1540 * Its the same as: 1541 * xtime_interval = (cycle_interval * mult) + cycle_interval 1542 * Which can be shortened to: 1543 * xtime_interval += cycle_interval 1544 * 1545 * So offset stores the non-accumulated cycles. Thus the current 1546 * time (in shifted nanoseconds) is: 1547 * now = (offset * adj) + xtime_nsec 1548 * Now, even though we're adjusting the clock frequency, we have 1549 * to keep time consistent. In other words, we can't jump back 1550 * in time, and we also want to avoid jumping forward in time. 1551 * 1552 * So given the same offset value, we need the time to be the same 1553 * both before and after the freq adjustment. 1554 * now = (offset * adj_1) + xtime_nsec_1 1555 * now = (offset * adj_2) + xtime_nsec_2 1556 * So: 1557 * (offset * adj_1) + xtime_nsec_1 = 1558 * (offset * adj_2) + xtime_nsec_2 1559 * And we know: 1560 * adj_2 = adj_1 + 1 1561 * So: 1562 * (offset * adj_1) + xtime_nsec_1 = 1563 * (offset * (adj_1+1)) + xtime_nsec_2 1564 * (offset * adj_1) + xtime_nsec_1 = 1565 * (offset * adj_1) + offset + xtime_nsec_2 1566 * Canceling the sides: 1567 * xtime_nsec_1 = offset + xtime_nsec_2 1568 * Which gives us: 1569 * xtime_nsec_2 = xtime_nsec_1 - offset 1570 * Which simplfies to: 1571 * xtime_nsec -= offset 1572 * 1573 * XXX - TODO: Doc ntp_error calculation. 1574 */ 1575 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1576 /* NTP adjustment caused clocksource mult overflow */ 1577 WARN_ON_ONCE(1); 1578 return; 1579 } 1580 1581 tk->tkr_mono.mult += mult_adj; 1582 tk->xtime_interval += interval; 1583 tk->tkr_mono.xtime_nsec -= offset; 1584 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1585 } 1586 1587 /* 1588 * Calculate the multiplier adjustment needed to match the frequency 1589 * specified by NTP 1590 */ 1591 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1592 s64 offset) 1593 { 1594 s64 interval = tk->cycle_interval; 1595 s64 xinterval = tk->xtime_interval; 1596 s64 tick_error; 1597 bool negative; 1598 u32 adj; 1599 1600 /* Remove any current error adj from freq calculation */ 1601 if (tk->ntp_err_mult) 1602 xinterval -= tk->cycle_interval; 1603 1604 tk->ntp_tick = ntp_tick_length(); 1605 1606 /* Calculate current error per tick */ 1607 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1608 tick_error -= (xinterval + tk->xtime_remainder); 1609 1610 /* Don't worry about correcting it if its small */ 1611 if (likely((tick_error >= 0) && (tick_error <= interval))) 1612 return; 1613 1614 /* preserve the direction of correction */ 1615 negative = (tick_error < 0); 1616 1617 /* Sort out the magnitude of the correction */ 1618 tick_error = abs(tick_error); 1619 for (adj = 0; tick_error > interval; adj++) 1620 tick_error >>= 1; 1621 1622 /* scale the corrections */ 1623 timekeeping_apply_adjustment(tk, offset, negative, adj); 1624 } 1625 1626 /* 1627 * Adjust the timekeeper's multiplier to the correct frequency 1628 * and also to reduce the accumulated error value. 1629 */ 1630 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1631 { 1632 /* Correct for the current frequency error */ 1633 timekeeping_freqadjust(tk, offset); 1634 1635 /* Next make a small adjustment to fix any cumulative error */ 1636 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1637 tk->ntp_err_mult = 1; 1638 timekeeping_apply_adjustment(tk, offset, 0, 0); 1639 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1640 /* Undo any existing error adjustment */ 1641 timekeeping_apply_adjustment(tk, offset, 1, 0); 1642 tk->ntp_err_mult = 0; 1643 } 1644 1645 if (unlikely(tk->tkr_mono.clock->maxadj && 1646 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1647 > tk->tkr_mono.clock->maxadj))) { 1648 printk_once(KERN_WARNING 1649 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1650 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1651 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1652 } 1653 1654 /* 1655 * It may be possible that when we entered this function, xtime_nsec 1656 * was very small. Further, if we're slightly speeding the clocksource 1657 * in the code above, its possible the required corrective factor to 1658 * xtime_nsec could cause it to underflow. 1659 * 1660 * Now, since we already accumulated the second, cannot simply roll 1661 * the accumulated second back, since the NTP subsystem has been 1662 * notified via second_overflow. So instead we push xtime_nsec forward 1663 * by the amount we underflowed, and add that amount into the error. 1664 * 1665 * We'll correct this error next time through this function, when 1666 * xtime_nsec is not as small. 1667 */ 1668 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1669 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1670 tk->tkr_mono.xtime_nsec = 0; 1671 tk->ntp_error += neg << tk->ntp_error_shift; 1672 } 1673 } 1674 1675 /** 1676 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1677 * 1678 * Helper function that accumulates a the nsecs greater then a second 1679 * from the xtime_nsec field to the xtime_secs field. 1680 * It also calls into the NTP code to handle leapsecond processing. 1681 * 1682 */ 1683 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1684 { 1685 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1686 unsigned int clock_set = 0; 1687 1688 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1689 int leap; 1690 1691 tk->tkr_mono.xtime_nsec -= nsecps; 1692 tk->xtime_sec++; 1693 1694 /* Figure out if its a leap sec and apply if needed */ 1695 leap = second_overflow(tk->xtime_sec); 1696 if (unlikely(leap)) { 1697 struct timespec64 ts; 1698 1699 tk->xtime_sec += leap; 1700 1701 ts.tv_sec = leap; 1702 ts.tv_nsec = 0; 1703 tk_set_wall_to_mono(tk, 1704 timespec64_sub(tk->wall_to_monotonic, ts)); 1705 1706 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1707 1708 clock_set = TK_CLOCK_WAS_SET; 1709 } 1710 } 1711 return clock_set; 1712 } 1713 1714 /** 1715 * logarithmic_accumulation - shifted accumulation of cycles 1716 * 1717 * This functions accumulates a shifted interval of cycles into 1718 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1719 * loop. 1720 * 1721 * Returns the unconsumed cycles. 1722 */ 1723 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1724 u32 shift, 1725 unsigned int *clock_set) 1726 { 1727 cycle_t interval = tk->cycle_interval << shift; 1728 u64 raw_nsecs; 1729 1730 /* If the offset is smaller then a shifted interval, do nothing */ 1731 if (offset < interval) 1732 return offset; 1733 1734 /* Accumulate one shifted interval */ 1735 offset -= interval; 1736 tk->tkr_mono.cycle_last += interval; 1737 tk->tkr_raw.cycle_last += interval; 1738 1739 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 1740 *clock_set |= accumulate_nsecs_to_secs(tk); 1741 1742 /* Accumulate raw time */ 1743 raw_nsecs = (u64)tk->raw_interval << shift; 1744 raw_nsecs += tk->raw_time.tv_nsec; 1745 if (raw_nsecs >= NSEC_PER_SEC) { 1746 u64 raw_secs = raw_nsecs; 1747 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1748 tk->raw_time.tv_sec += raw_secs; 1749 } 1750 tk->raw_time.tv_nsec = raw_nsecs; 1751 1752 /* Accumulate error between NTP and clock interval */ 1753 tk->ntp_error += tk->ntp_tick << shift; 1754 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1755 (tk->ntp_error_shift + shift); 1756 1757 return offset; 1758 } 1759 1760 /** 1761 * update_wall_time - Uses the current clocksource to increment the wall time 1762 * 1763 */ 1764 void update_wall_time(void) 1765 { 1766 struct timekeeper *real_tk = &tk_core.timekeeper; 1767 struct timekeeper *tk = &shadow_timekeeper; 1768 cycle_t offset; 1769 int shift = 0, maxshift; 1770 unsigned int clock_set = 0; 1771 unsigned long flags; 1772 1773 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1774 1775 /* Make sure we're fully resumed: */ 1776 if (unlikely(timekeeping_suspended)) 1777 goto out; 1778 1779 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1780 offset = real_tk->cycle_interval; 1781 #else 1782 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 1783 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 1784 #endif 1785 1786 /* Check if there's really nothing to do */ 1787 if (offset < real_tk->cycle_interval) 1788 goto out; 1789 1790 /* Do some additional sanity checking */ 1791 timekeeping_check_update(real_tk, offset); 1792 1793 /* 1794 * With NO_HZ we may have to accumulate many cycle_intervals 1795 * (think "ticks") worth of time at once. To do this efficiently, 1796 * we calculate the largest doubling multiple of cycle_intervals 1797 * that is smaller than the offset. We then accumulate that 1798 * chunk in one go, and then try to consume the next smaller 1799 * doubled multiple. 1800 */ 1801 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1802 shift = max(0, shift); 1803 /* Bound shift to one less than what overflows tick_length */ 1804 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1805 shift = min(shift, maxshift); 1806 while (offset >= tk->cycle_interval) { 1807 offset = logarithmic_accumulation(tk, offset, shift, 1808 &clock_set); 1809 if (offset < tk->cycle_interval<<shift) 1810 shift--; 1811 } 1812 1813 /* correct the clock when NTP error is too big */ 1814 timekeeping_adjust(tk, offset); 1815 1816 /* 1817 * XXX This can be killed once everyone converts 1818 * to the new update_vsyscall. 1819 */ 1820 old_vsyscall_fixup(tk); 1821 1822 /* 1823 * Finally, make sure that after the rounding 1824 * xtime_nsec isn't larger than NSEC_PER_SEC 1825 */ 1826 clock_set |= accumulate_nsecs_to_secs(tk); 1827 1828 write_seqcount_begin(&tk_core.seq); 1829 /* 1830 * Update the real timekeeper. 1831 * 1832 * We could avoid this memcpy by switching pointers, but that 1833 * requires changes to all other timekeeper usage sites as 1834 * well, i.e. move the timekeeper pointer getter into the 1835 * spinlocked/seqcount protected sections. And we trade this 1836 * memcpy under the tk_core.seq against one before we start 1837 * updating. 1838 */ 1839 memcpy(real_tk, tk, sizeof(*tk)); 1840 timekeeping_update(real_tk, clock_set); 1841 write_seqcount_end(&tk_core.seq); 1842 out: 1843 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1844 if (clock_set) 1845 /* Have to call _delayed version, since in irq context*/ 1846 clock_was_set_delayed(); 1847 } 1848 1849 /** 1850 * getboottime64 - Return the real time of system boot. 1851 * @ts: pointer to the timespec64 to be set 1852 * 1853 * Returns the wall-time of boot in a timespec64. 1854 * 1855 * This is based on the wall_to_monotonic offset and the total suspend 1856 * time. Calls to settimeofday will affect the value returned (which 1857 * basically means that however wrong your real time clock is at boot time, 1858 * you get the right time here). 1859 */ 1860 void getboottime64(struct timespec64 *ts) 1861 { 1862 struct timekeeper *tk = &tk_core.timekeeper; 1863 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 1864 1865 *ts = ktime_to_timespec64(t); 1866 } 1867 EXPORT_SYMBOL_GPL(getboottime64); 1868 1869 unsigned long get_seconds(void) 1870 { 1871 struct timekeeper *tk = &tk_core.timekeeper; 1872 1873 return tk->xtime_sec; 1874 } 1875 EXPORT_SYMBOL(get_seconds); 1876 1877 struct timespec __current_kernel_time(void) 1878 { 1879 struct timekeeper *tk = &tk_core.timekeeper; 1880 1881 return timespec64_to_timespec(tk_xtime(tk)); 1882 } 1883 1884 struct timespec current_kernel_time(void) 1885 { 1886 struct timekeeper *tk = &tk_core.timekeeper; 1887 struct timespec64 now; 1888 unsigned long seq; 1889 1890 do { 1891 seq = read_seqcount_begin(&tk_core.seq); 1892 1893 now = tk_xtime(tk); 1894 } while (read_seqcount_retry(&tk_core.seq, seq)); 1895 1896 return timespec64_to_timespec(now); 1897 } 1898 EXPORT_SYMBOL(current_kernel_time); 1899 1900 struct timespec64 get_monotonic_coarse64(void) 1901 { 1902 struct timekeeper *tk = &tk_core.timekeeper; 1903 struct timespec64 now, mono; 1904 unsigned long seq; 1905 1906 do { 1907 seq = read_seqcount_begin(&tk_core.seq); 1908 1909 now = tk_xtime(tk); 1910 mono = tk->wall_to_monotonic; 1911 } while (read_seqcount_retry(&tk_core.seq, seq)); 1912 1913 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 1914 now.tv_nsec + mono.tv_nsec); 1915 1916 return now; 1917 } 1918 1919 /* 1920 * Must hold jiffies_lock 1921 */ 1922 void do_timer(unsigned long ticks) 1923 { 1924 jiffies_64 += ticks; 1925 calc_global_load(ticks); 1926 } 1927 1928 /** 1929 * ktime_get_update_offsets_tick - hrtimer helper 1930 * @offs_real: pointer to storage for monotonic -> realtime offset 1931 * @offs_boot: pointer to storage for monotonic -> boottime offset 1932 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1933 * 1934 * Returns monotonic time at last tick and various offsets 1935 */ 1936 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot, 1937 ktime_t *offs_tai) 1938 { 1939 struct timekeeper *tk = &tk_core.timekeeper; 1940 unsigned int seq; 1941 ktime_t base; 1942 u64 nsecs; 1943 1944 do { 1945 seq = read_seqcount_begin(&tk_core.seq); 1946 1947 base = tk->tkr_mono.base; 1948 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 1949 1950 *offs_real = tk->offs_real; 1951 *offs_boot = tk->offs_boot; 1952 *offs_tai = tk->offs_tai; 1953 } while (read_seqcount_retry(&tk_core.seq, seq)); 1954 1955 return ktime_add_ns(base, nsecs); 1956 } 1957 1958 #ifdef CONFIG_HIGH_RES_TIMERS 1959 /** 1960 * ktime_get_update_offsets_now - hrtimer helper 1961 * @offs_real: pointer to storage for monotonic -> realtime offset 1962 * @offs_boot: pointer to storage for monotonic -> boottime offset 1963 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1964 * 1965 * Returns current monotonic time and updates the offsets 1966 * Called from hrtimer_interrupt() or retrigger_next_event() 1967 */ 1968 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot, 1969 ktime_t *offs_tai) 1970 { 1971 struct timekeeper *tk = &tk_core.timekeeper; 1972 unsigned int seq; 1973 ktime_t base; 1974 u64 nsecs; 1975 1976 do { 1977 seq = read_seqcount_begin(&tk_core.seq); 1978 1979 base = tk->tkr_mono.base; 1980 nsecs = timekeeping_get_ns(&tk->tkr_mono); 1981 1982 *offs_real = tk->offs_real; 1983 *offs_boot = tk->offs_boot; 1984 *offs_tai = tk->offs_tai; 1985 } while (read_seqcount_retry(&tk_core.seq, seq)); 1986 1987 return ktime_add_ns(base, nsecs); 1988 } 1989 #endif 1990 1991 /** 1992 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1993 */ 1994 int do_adjtimex(struct timex *txc) 1995 { 1996 struct timekeeper *tk = &tk_core.timekeeper; 1997 unsigned long flags; 1998 struct timespec64 ts; 1999 s32 orig_tai, tai; 2000 int ret; 2001 2002 /* Validate the data before disabling interrupts */ 2003 ret = ntp_validate_timex(txc); 2004 if (ret) 2005 return ret; 2006 2007 if (txc->modes & ADJ_SETOFFSET) { 2008 struct timespec delta; 2009 delta.tv_sec = txc->time.tv_sec; 2010 delta.tv_nsec = txc->time.tv_usec; 2011 if (!(txc->modes & ADJ_NANO)) 2012 delta.tv_nsec *= 1000; 2013 ret = timekeeping_inject_offset(&delta); 2014 if (ret) 2015 return ret; 2016 } 2017 2018 getnstimeofday64(&ts); 2019 2020 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2021 write_seqcount_begin(&tk_core.seq); 2022 2023 orig_tai = tai = tk->tai_offset; 2024 ret = __do_adjtimex(txc, &ts, &tai); 2025 2026 if (tai != orig_tai) { 2027 __timekeeping_set_tai_offset(tk, tai); 2028 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2029 } 2030 write_seqcount_end(&tk_core.seq); 2031 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2032 2033 if (tai != orig_tai) 2034 clock_was_set(); 2035 2036 ntp_notify_cmos_timer(); 2037 2038 return ret; 2039 } 2040 2041 #ifdef CONFIG_NTP_PPS 2042 /** 2043 * hardpps() - Accessor function to NTP __hardpps function 2044 */ 2045 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 2046 { 2047 unsigned long flags; 2048 2049 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2050 write_seqcount_begin(&tk_core.seq); 2051 2052 __hardpps(phase_ts, raw_ts); 2053 2054 write_seqcount_end(&tk_core.seq); 2055 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2056 } 2057 EXPORT_SYMBOL(hardpps); 2058 #endif 2059 2060 /** 2061 * xtime_update() - advances the timekeeping infrastructure 2062 * @ticks: number of ticks, that have elapsed since the last call. 2063 * 2064 * Must be called with interrupts disabled. 2065 */ 2066 void xtime_update(unsigned long ticks) 2067 { 2068 write_seqlock(&jiffies_lock); 2069 do_timer(ticks); 2070 write_sequnlock(&jiffies_lock); 2071 update_wall_time(); 2072 } 2073