xref: /openbmc/linux/kernel/time/timekeeping.c (revision 0d456bad)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 
26 
27 static struct timekeeper timekeeper;
28 
29 /* flag for if timekeeping is suspended */
30 int __read_mostly timekeeping_suspended;
31 
32 static inline void tk_normalize_xtime(struct timekeeper *tk)
33 {
34 	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
35 		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
36 		tk->xtime_sec++;
37 	}
38 }
39 
40 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
41 {
42 	tk->xtime_sec = ts->tv_sec;
43 	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
44 }
45 
46 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
47 {
48 	tk->xtime_sec += ts->tv_sec;
49 	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
50 	tk_normalize_xtime(tk);
51 }
52 
53 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
54 {
55 	struct timespec tmp;
56 
57 	/*
58 	 * Verify consistency of: offset_real = -wall_to_monotonic
59 	 * before modifying anything
60 	 */
61 	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
62 					-tk->wall_to_monotonic.tv_nsec);
63 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
64 	tk->wall_to_monotonic = wtm;
65 	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
66 	tk->offs_real = timespec_to_ktime(tmp);
67 }
68 
69 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
70 {
71 	/* Verify consistency before modifying */
72 	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
73 
74 	tk->total_sleep_time	= t;
75 	tk->offs_boot		= timespec_to_ktime(t);
76 }
77 
78 /**
79  * timekeeper_setup_internals - Set up internals to use clocksource clock.
80  *
81  * @clock:		Pointer to clocksource.
82  *
83  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
84  * pair and interval request.
85  *
86  * Unless you're the timekeeping code, you should not be using this!
87  */
88 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
89 {
90 	cycle_t interval;
91 	u64 tmp, ntpinterval;
92 	struct clocksource *old_clock;
93 
94 	old_clock = tk->clock;
95 	tk->clock = clock;
96 	clock->cycle_last = clock->read(clock);
97 
98 	/* Do the ns -> cycle conversion first, using original mult */
99 	tmp = NTP_INTERVAL_LENGTH;
100 	tmp <<= clock->shift;
101 	ntpinterval = tmp;
102 	tmp += clock->mult/2;
103 	do_div(tmp, clock->mult);
104 	if (tmp == 0)
105 		tmp = 1;
106 
107 	interval = (cycle_t) tmp;
108 	tk->cycle_interval = interval;
109 
110 	/* Go back from cycles -> shifted ns */
111 	tk->xtime_interval = (u64) interval * clock->mult;
112 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
113 	tk->raw_interval =
114 		((u64) interval * clock->mult) >> clock->shift;
115 
116 	 /* if changing clocks, convert xtime_nsec shift units */
117 	if (old_clock) {
118 		int shift_change = clock->shift - old_clock->shift;
119 		if (shift_change < 0)
120 			tk->xtime_nsec >>= -shift_change;
121 		else
122 			tk->xtime_nsec <<= shift_change;
123 	}
124 	tk->shift = clock->shift;
125 
126 	tk->ntp_error = 0;
127 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
128 
129 	/*
130 	 * The timekeeper keeps its own mult values for the currently
131 	 * active clocksource. These value will be adjusted via NTP
132 	 * to counteract clock drifting.
133 	 */
134 	tk->mult = clock->mult;
135 }
136 
137 /* Timekeeper helper functions. */
138 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
139 {
140 	cycle_t cycle_now, cycle_delta;
141 	struct clocksource *clock;
142 	s64 nsec;
143 
144 	/* read clocksource: */
145 	clock = tk->clock;
146 	cycle_now = clock->read(clock);
147 
148 	/* calculate the delta since the last update_wall_time: */
149 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
150 
151 	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
152 	nsec >>= tk->shift;
153 
154 	/* If arch requires, add in gettimeoffset() */
155 	return nsec + arch_gettimeoffset();
156 }
157 
158 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
159 {
160 	cycle_t cycle_now, cycle_delta;
161 	struct clocksource *clock;
162 	s64 nsec;
163 
164 	/* read clocksource: */
165 	clock = tk->clock;
166 	cycle_now = clock->read(clock);
167 
168 	/* calculate the delta since the last update_wall_time: */
169 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
170 
171 	/* convert delta to nanoseconds. */
172 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
173 
174 	/* If arch requires, add in gettimeoffset() */
175 	return nsec + arch_gettimeoffset();
176 }
177 
178 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
179 
180 static void update_pvclock_gtod(struct timekeeper *tk)
181 {
182 	raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
183 }
184 
185 /**
186  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
187  *
188  * Must hold write on timekeeper.lock
189  */
190 int pvclock_gtod_register_notifier(struct notifier_block *nb)
191 {
192 	struct timekeeper *tk = &timekeeper;
193 	unsigned long flags;
194 	int ret;
195 
196 	write_seqlock_irqsave(&tk->lock, flags);
197 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
198 	/* update timekeeping data */
199 	update_pvclock_gtod(tk);
200 	write_sequnlock_irqrestore(&tk->lock, flags);
201 
202 	return ret;
203 }
204 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
205 
206 /**
207  * pvclock_gtod_unregister_notifier - unregister a pvclock
208  * timedata update listener
209  *
210  * Must hold write on timekeeper.lock
211  */
212 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
213 {
214 	struct timekeeper *tk = &timekeeper;
215 	unsigned long flags;
216 	int ret;
217 
218 	write_seqlock_irqsave(&tk->lock, flags);
219 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
220 	write_sequnlock_irqrestore(&tk->lock, flags);
221 
222 	return ret;
223 }
224 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
225 
226 /* must hold write on timekeeper.lock */
227 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
228 {
229 	if (clearntp) {
230 		tk->ntp_error = 0;
231 		ntp_clear();
232 	}
233 	update_vsyscall(tk);
234 	update_pvclock_gtod(tk);
235 }
236 
237 /**
238  * timekeeping_forward_now - update clock to the current time
239  *
240  * Forward the current clock to update its state since the last call to
241  * update_wall_time(). This is useful before significant clock changes,
242  * as it avoids having to deal with this time offset explicitly.
243  */
244 static void timekeeping_forward_now(struct timekeeper *tk)
245 {
246 	cycle_t cycle_now, cycle_delta;
247 	struct clocksource *clock;
248 	s64 nsec;
249 
250 	clock = tk->clock;
251 	cycle_now = clock->read(clock);
252 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
253 	clock->cycle_last = cycle_now;
254 
255 	tk->xtime_nsec += cycle_delta * tk->mult;
256 
257 	/* If arch requires, add in gettimeoffset() */
258 	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
259 
260 	tk_normalize_xtime(tk);
261 
262 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
263 	timespec_add_ns(&tk->raw_time, nsec);
264 }
265 
266 /**
267  * getnstimeofday - Returns the time of day in a timespec
268  * @ts:		pointer to the timespec to be set
269  *
270  * Returns the time of day in a timespec.
271  */
272 void getnstimeofday(struct timespec *ts)
273 {
274 	struct timekeeper *tk = &timekeeper;
275 	unsigned long seq;
276 	s64 nsecs = 0;
277 
278 	WARN_ON(timekeeping_suspended);
279 
280 	do {
281 		seq = read_seqbegin(&tk->lock);
282 
283 		ts->tv_sec = tk->xtime_sec;
284 		nsecs = timekeeping_get_ns(tk);
285 
286 	} while (read_seqretry(&tk->lock, seq));
287 
288 	ts->tv_nsec = 0;
289 	timespec_add_ns(ts, nsecs);
290 }
291 EXPORT_SYMBOL(getnstimeofday);
292 
293 ktime_t ktime_get(void)
294 {
295 	struct timekeeper *tk = &timekeeper;
296 	unsigned int seq;
297 	s64 secs, nsecs;
298 
299 	WARN_ON(timekeeping_suspended);
300 
301 	do {
302 		seq = read_seqbegin(&tk->lock);
303 		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
304 		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
305 
306 	} while (read_seqretry(&tk->lock, seq));
307 	/*
308 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
309 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
310 	 */
311 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
312 }
313 EXPORT_SYMBOL_GPL(ktime_get);
314 
315 /**
316  * ktime_get_ts - get the monotonic clock in timespec format
317  * @ts:		pointer to timespec variable
318  *
319  * The function calculates the monotonic clock from the realtime
320  * clock and the wall_to_monotonic offset and stores the result
321  * in normalized timespec format in the variable pointed to by @ts.
322  */
323 void ktime_get_ts(struct timespec *ts)
324 {
325 	struct timekeeper *tk = &timekeeper;
326 	struct timespec tomono;
327 	s64 nsec;
328 	unsigned int seq;
329 
330 	WARN_ON(timekeeping_suspended);
331 
332 	do {
333 		seq = read_seqbegin(&tk->lock);
334 		ts->tv_sec = tk->xtime_sec;
335 		nsec = timekeeping_get_ns(tk);
336 		tomono = tk->wall_to_monotonic;
337 
338 	} while (read_seqretry(&tk->lock, seq));
339 
340 	ts->tv_sec += tomono.tv_sec;
341 	ts->tv_nsec = 0;
342 	timespec_add_ns(ts, nsec + tomono.tv_nsec);
343 }
344 EXPORT_SYMBOL_GPL(ktime_get_ts);
345 
346 #ifdef CONFIG_NTP_PPS
347 
348 /**
349  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
350  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
351  * @ts_real:	pointer to the timespec to be set to the time of day
352  *
353  * This function reads both the time of day and raw monotonic time at the
354  * same time atomically and stores the resulting timestamps in timespec
355  * format.
356  */
357 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
358 {
359 	struct timekeeper *tk = &timekeeper;
360 	unsigned long seq;
361 	s64 nsecs_raw, nsecs_real;
362 
363 	WARN_ON_ONCE(timekeeping_suspended);
364 
365 	do {
366 		seq = read_seqbegin(&tk->lock);
367 
368 		*ts_raw = tk->raw_time;
369 		ts_real->tv_sec = tk->xtime_sec;
370 		ts_real->tv_nsec = 0;
371 
372 		nsecs_raw = timekeeping_get_ns_raw(tk);
373 		nsecs_real = timekeeping_get_ns(tk);
374 
375 	} while (read_seqretry(&tk->lock, seq));
376 
377 	timespec_add_ns(ts_raw, nsecs_raw);
378 	timespec_add_ns(ts_real, nsecs_real);
379 }
380 EXPORT_SYMBOL(getnstime_raw_and_real);
381 
382 #endif /* CONFIG_NTP_PPS */
383 
384 /**
385  * do_gettimeofday - Returns the time of day in a timeval
386  * @tv:		pointer to the timeval to be set
387  *
388  * NOTE: Users should be converted to using getnstimeofday()
389  */
390 void do_gettimeofday(struct timeval *tv)
391 {
392 	struct timespec now;
393 
394 	getnstimeofday(&now);
395 	tv->tv_sec = now.tv_sec;
396 	tv->tv_usec = now.tv_nsec/1000;
397 }
398 EXPORT_SYMBOL(do_gettimeofday);
399 
400 /**
401  * do_settimeofday - Sets the time of day
402  * @tv:		pointer to the timespec variable containing the new time
403  *
404  * Sets the time of day to the new time and update NTP and notify hrtimers
405  */
406 int do_settimeofday(const struct timespec *tv)
407 {
408 	struct timekeeper *tk = &timekeeper;
409 	struct timespec ts_delta, xt;
410 	unsigned long flags;
411 
412 	if (!timespec_valid_strict(tv))
413 		return -EINVAL;
414 
415 	write_seqlock_irqsave(&tk->lock, flags);
416 
417 	timekeeping_forward_now(tk);
418 
419 	xt = tk_xtime(tk);
420 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
421 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
422 
423 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
424 
425 	tk_set_xtime(tk, tv);
426 
427 	timekeeping_update(tk, true);
428 
429 	write_sequnlock_irqrestore(&tk->lock, flags);
430 
431 	/* signal hrtimers about time change */
432 	clock_was_set();
433 
434 	return 0;
435 }
436 EXPORT_SYMBOL(do_settimeofday);
437 
438 /**
439  * timekeeping_inject_offset - Adds or subtracts from the current time.
440  * @tv:		pointer to the timespec variable containing the offset
441  *
442  * Adds or subtracts an offset value from the current time.
443  */
444 int timekeeping_inject_offset(struct timespec *ts)
445 {
446 	struct timekeeper *tk = &timekeeper;
447 	unsigned long flags;
448 	struct timespec tmp;
449 	int ret = 0;
450 
451 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
452 		return -EINVAL;
453 
454 	write_seqlock_irqsave(&tk->lock, flags);
455 
456 	timekeeping_forward_now(tk);
457 
458 	/* Make sure the proposed value is valid */
459 	tmp = timespec_add(tk_xtime(tk),  *ts);
460 	if (!timespec_valid_strict(&tmp)) {
461 		ret = -EINVAL;
462 		goto error;
463 	}
464 
465 	tk_xtime_add(tk, ts);
466 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
467 
468 error: /* even if we error out, we forwarded the time, so call update */
469 	timekeeping_update(tk, true);
470 
471 	write_sequnlock_irqrestore(&tk->lock, flags);
472 
473 	/* signal hrtimers about time change */
474 	clock_was_set();
475 
476 	return ret;
477 }
478 EXPORT_SYMBOL(timekeeping_inject_offset);
479 
480 /**
481  * change_clocksource - Swaps clocksources if a new one is available
482  *
483  * Accumulates current time interval and initializes new clocksource
484  */
485 static int change_clocksource(void *data)
486 {
487 	struct timekeeper *tk = &timekeeper;
488 	struct clocksource *new, *old;
489 	unsigned long flags;
490 
491 	new = (struct clocksource *) data;
492 
493 	write_seqlock_irqsave(&tk->lock, flags);
494 
495 	timekeeping_forward_now(tk);
496 	if (!new->enable || new->enable(new) == 0) {
497 		old = tk->clock;
498 		tk_setup_internals(tk, new);
499 		if (old->disable)
500 			old->disable(old);
501 	}
502 	timekeeping_update(tk, true);
503 
504 	write_sequnlock_irqrestore(&tk->lock, flags);
505 
506 	return 0;
507 }
508 
509 /**
510  * timekeeping_notify - Install a new clock source
511  * @clock:		pointer to the clock source
512  *
513  * This function is called from clocksource.c after a new, better clock
514  * source has been registered. The caller holds the clocksource_mutex.
515  */
516 void timekeeping_notify(struct clocksource *clock)
517 {
518 	struct timekeeper *tk = &timekeeper;
519 
520 	if (tk->clock == clock)
521 		return;
522 	stop_machine(change_clocksource, clock, NULL);
523 	tick_clock_notify();
524 }
525 
526 /**
527  * ktime_get_real - get the real (wall-) time in ktime_t format
528  *
529  * returns the time in ktime_t format
530  */
531 ktime_t ktime_get_real(void)
532 {
533 	struct timespec now;
534 
535 	getnstimeofday(&now);
536 
537 	return timespec_to_ktime(now);
538 }
539 EXPORT_SYMBOL_GPL(ktime_get_real);
540 
541 /**
542  * getrawmonotonic - Returns the raw monotonic time in a timespec
543  * @ts:		pointer to the timespec to be set
544  *
545  * Returns the raw monotonic time (completely un-modified by ntp)
546  */
547 void getrawmonotonic(struct timespec *ts)
548 {
549 	struct timekeeper *tk = &timekeeper;
550 	unsigned long seq;
551 	s64 nsecs;
552 
553 	do {
554 		seq = read_seqbegin(&tk->lock);
555 		nsecs = timekeeping_get_ns_raw(tk);
556 		*ts = tk->raw_time;
557 
558 	} while (read_seqretry(&tk->lock, seq));
559 
560 	timespec_add_ns(ts, nsecs);
561 }
562 EXPORT_SYMBOL(getrawmonotonic);
563 
564 /**
565  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
566  */
567 int timekeeping_valid_for_hres(void)
568 {
569 	struct timekeeper *tk = &timekeeper;
570 	unsigned long seq;
571 	int ret;
572 
573 	do {
574 		seq = read_seqbegin(&tk->lock);
575 
576 		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
577 
578 	} while (read_seqretry(&tk->lock, seq));
579 
580 	return ret;
581 }
582 
583 /**
584  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
585  */
586 u64 timekeeping_max_deferment(void)
587 {
588 	struct timekeeper *tk = &timekeeper;
589 	unsigned long seq;
590 	u64 ret;
591 
592 	do {
593 		seq = read_seqbegin(&tk->lock);
594 
595 		ret = tk->clock->max_idle_ns;
596 
597 	} while (read_seqretry(&tk->lock, seq));
598 
599 	return ret;
600 }
601 
602 /**
603  * read_persistent_clock -  Return time from the persistent clock.
604  *
605  * Weak dummy function for arches that do not yet support it.
606  * Reads the time from the battery backed persistent clock.
607  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
608  *
609  *  XXX - Do be sure to remove it once all arches implement it.
610  */
611 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
612 {
613 	ts->tv_sec = 0;
614 	ts->tv_nsec = 0;
615 }
616 
617 /**
618  * read_boot_clock -  Return time of the system start.
619  *
620  * Weak dummy function for arches that do not yet support it.
621  * Function to read the exact time the system has been started.
622  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
623  *
624  *  XXX - Do be sure to remove it once all arches implement it.
625  */
626 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
627 {
628 	ts->tv_sec = 0;
629 	ts->tv_nsec = 0;
630 }
631 
632 /*
633  * timekeeping_init - Initializes the clocksource and common timekeeping values
634  */
635 void __init timekeeping_init(void)
636 {
637 	struct timekeeper *tk = &timekeeper;
638 	struct clocksource *clock;
639 	unsigned long flags;
640 	struct timespec now, boot, tmp;
641 
642 	read_persistent_clock(&now);
643 	if (!timespec_valid_strict(&now)) {
644 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
645 			"         Check your CMOS/BIOS settings.\n");
646 		now.tv_sec = 0;
647 		now.tv_nsec = 0;
648 	}
649 
650 	read_boot_clock(&boot);
651 	if (!timespec_valid_strict(&boot)) {
652 		pr_warn("WARNING: Boot clock returned invalid value!\n"
653 			"         Check your CMOS/BIOS settings.\n");
654 		boot.tv_sec = 0;
655 		boot.tv_nsec = 0;
656 	}
657 
658 	seqlock_init(&tk->lock);
659 
660 	ntp_init();
661 
662 	write_seqlock_irqsave(&tk->lock, flags);
663 	clock = clocksource_default_clock();
664 	if (clock->enable)
665 		clock->enable(clock);
666 	tk_setup_internals(tk, clock);
667 
668 	tk_set_xtime(tk, &now);
669 	tk->raw_time.tv_sec = 0;
670 	tk->raw_time.tv_nsec = 0;
671 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
672 		boot = tk_xtime(tk);
673 
674 	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
675 	tk_set_wall_to_mono(tk, tmp);
676 
677 	tmp.tv_sec = 0;
678 	tmp.tv_nsec = 0;
679 	tk_set_sleep_time(tk, tmp);
680 
681 	write_sequnlock_irqrestore(&tk->lock, flags);
682 }
683 
684 /* time in seconds when suspend began */
685 static struct timespec timekeeping_suspend_time;
686 
687 /**
688  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
689  * @delta: pointer to a timespec delta value
690  *
691  * Takes a timespec offset measuring a suspend interval and properly
692  * adds the sleep offset to the timekeeping variables.
693  */
694 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
695 							struct timespec *delta)
696 {
697 	if (!timespec_valid_strict(delta)) {
698 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
699 					"sleep delta value!\n");
700 		return;
701 	}
702 	tk_xtime_add(tk, delta);
703 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
704 	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
705 }
706 
707 /**
708  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
709  * @delta: pointer to a timespec delta value
710  *
711  * This hook is for architectures that cannot support read_persistent_clock
712  * because their RTC/persistent clock is only accessible when irqs are enabled.
713  *
714  * This function should only be called by rtc_resume(), and allows
715  * a suspend offset to be injected into the timekeeping values.
716  */
717 void timekeeping_inject_sleeptime(struct timespec *delta)
718 {
719 	struct timekeeper *tk = &timekeeper;
720 	unsigned long flags;
721 	struct timespec ts;
722 
723 	/* Make sure we don't set the clock twice */
724 	read_persistent_clock(&ts);
725 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
726 		return;
727 
728 	write_seqlock_irqsave(&tk->lock, flags);
729 
730 	timekeeping_forward_now(tk);
731 
732 	__timekeeping_inject_sleeptime(tk, delta);
733 
734 	timekeeping_update(tk, true);
735 
736 	write_sequnlock_irqrestore(&tk->lock, flags);
737 
738 	/* signal hrtimers about time change */
739 	clock_was_set();
740 }
741 
742 /**
743  * timekeeping_resume - Resumes the generic timekeeping subsystem.
744  *
745  * This is for the generic clocksource timekeeping.
746  * xtime/wall_to_monotonic/jiffies/etc are
747  * still managed by arch specific suspend/resume code.
748  */
749 static void timekeeping_resume(void)
750 {
751 	struct timekeeper *tk = &timekeeper;
752 	unsigned long flags;
753 	struct timespec ts;
754 
755 	read_persistent_clock(&ts);
756 
757 	clockevents_resume();
758 	clocksource_resume();
759 
760 	write_seqlock_irqsave(&tk->lock, flags);
761 
762 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
763 		ts = timespec_sub(ts, timekeeping_suspend_time);
764 		__timekeeping_inject_sleeptime(tk, &ts);
765 	}
766 	/* re-base the last cycle value */
767 	tk->clock->cycle_last = tk->clock->read(tk->clock);
768 	tk->ntp_error = 0;
769 	timekeeping_suspended = 0;
770 	timekeeping_update(tk, false);
771 	write_sequnlock_irqrestore(&tk->lock, flags);
772 
773 	touch_softlockup_watchdog();
774 
775 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
776 
777 	/* Resume hrtimers */
778 	hrtimers_resume();
779 }
780 
781 static int timekeeping_suspend(void)
782 {
783 	struct timekeeper *tk = &timekeeper;
784 	unsigned long flags;
785 	struct timespec		delta, delta_delta;
786 	static struct timespec	old_delta;
787 
788 	read_persistent_clock(&timekeeping_suspend_time);
789 
790 	write_seqlock_irqsave(&tk->lock, flags);
791 	timekeeping_forward_now(tk);
792 	timekeeping_suspended = 1;
793 
794 	/*
795 	 * To avoid drift caused by repeated suspend/resumes,
796 	 * which each can add ~1 second drift error,
797 	 * try to compensate so the difference in system time
798 	 * and persistent_clock time stays close to constant.
799 	 */
800 	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
801 	delta_delta = timespec_sub(delta, old_delta);
802 	if (abs(delta_delta.tv_sec)  >= 2) {
803 		/*
804 		 * if delta_delta is too large, assume time correction
805 		 * has occured and set old_delta to the current delta.
806 		 */
807 		old_delta = delta;
808 	} else {
809 		/* Otherwise try to adjust old_system to compensate */
810 		timekeeping_suspend_time =
811 			timespec_add(timekeeping_suspend_time, delta_delta);
812 	}
813 	write_sequnlock_irqrestore(&tk->lock, flags);
814 
815 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
816 	clocksource_suspend();
817 	clockevents_suspend();
818 
819 	return 0;
820 }
821 
822 /* sysfs resume/suspend bits for timekeeping */
823 static struct syscore_ops timekeeping_syscore_ops = {
824 	.resume		= timekeeping_resume,
825 	.suspend	= timekeeping_suspend,
826 };
827 
828 static int __init timekeeping_init_ops(void)
829 {
830 	register_syscore_ops(&timekeeping_syscore_ops);
831 	return 0;
832 }
833 
834 device_initcall(timekeeping_init_ops);
835 
836 /*
837  * If the error is already larger, we look ahead even further
838  * to compensate for late or lost adjustments.
839  */
840 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
841 						 s64 error, s64 *interval,
842 						 s64 *offset)
843 {
844 	s64 tick_error, i;
845 	u32 look_ahead, adj;
846 	s32 error2, mult;
847 
848 	/*
849 	 * Use the current error value to determine how much to look ahead.
850 	 * The larger the error the slower we adjust for it to avoid problems
851 	 * with losing too many ticks, otherwise we would overadjust and
852 	 * produce an even larger error.  The smaller the adjustment the
853 	 * faster we try to adjust for it, as lost ticks can do less harm
854 	 * here.  This is tuned so that an error of about 1 msec is adjusted
855 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
856 	 */
857 	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
858 	error2 = abs(error2);
859 	for (look_ahead = 0; error2 > 0; look_ahead++)
860 		error2 >>= 2;
861 
862 	/*
863 	 * Now calculate the error in (1 << look_ahead) ticks, but first
864 	 * remove the single look ahead already included in the error.
865 	 */
866 	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
867 	tick_error -= tk->xtime_interval >> 1;
868 	error = ((error - tick_error) >> look_ahead) + tick_error;
869 
870 	/* Finally calculate the adjustment shift value.  */
871 	i = *interval;
872 	mult = 1;
873 	if (error < 0) {
874 		error = -error;
875 		*interval = -*interval;
876 		*offset = -*offset;
877 		mult = -1;
878 	}
879 	for (adj = 0; error > i; adj++)
880 		error >>= 1;
881 
882 	*interval <<= adj;
883 	*offset <<= adj;
884 	return mult << adj;
885 }
886 
887 /*
888  * Adjust the multiplier to reduce the error value,
889  * this is optimized for the most common adjustments of -1,0,1,
890  * for other values we can do a bit more work.
891  */
892 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
893 {
894 	s64 error, interval = tk->cycle_interval;
895 	int adj;
896 
897 	/*
898 	 * The point of this is to check if the error is greater than half
899 	 * an interval.
900 	 *
901 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
902 	 *
903 	 * Note we subtract one in the shift, so that error is really error*2.
904 	 * This "saves" dividing(shifting) interval twice, but keeps the
905 	 * (error > interval) comparison as still measuring if error is
906 	 * larger than half an interval.
907 	 *
908 	 * Note: It does not "save" on aggravation when reading the code.
909 	 */
910 	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
911 	if (error > interval) {
912 		/*
913 		 * We now divide error by 4(via shift), which checks if
914 		 * the error is greater than twice the interval.
915 		 * If it is greater, we need a bigadjust, if its smaller,
916 		 * we can adjust by 1.
917 		 */
918 		error >>= 2;
919 		/*
920 		 * XXX - In update_wall_time, we round up to the next
921 		 * nanosecond, and store the amount rounded up into
922 		 * the error. This causes the likely below to be unlikely.
923 		 *
924 		 * The proper fix is to avoid rounding up by using
925 		 * the high precision tk->xtime_nsec instead of
926 		 * xtime.tv_nsec everywhere. Fixing this will take some
927 		 * time.
928 		 */
929 		if (likely(error <= interval))
930 			adj = 1;
931 		else
932 			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
933 	} else {
934 		if (error < -interval) {
935 			/* See comment above, this is just switched for the negative */
936 			error >>= 2;
937 			if (likely(error >= -interval)) {
938 				adj = -1;
939 				interval = -interval;
940 				offset = -offset;
941 			} else {
942 				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
943 			}
944 		} else {
945 			goto out_adjust;
946 		}
947 	}
948 
949 	if (unlikely(tk->clock->maxadj &&
950 		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
951 		printk_once(KERN_WARNING
952 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
953 			tk->clock->name, (long)tk->mult + adj,
954 			(long)tk->clock->mult + tk->clock->maxadj);
955 	}
956 	/*
957 	 * So the following can be confusing.
958 	 *
959 	 * To keep things simple, lets assume adj == 1 for now.
960 	 *
961 	 * When adj != 1, remember that the interval and offset values
962 	 * have been appropriately scaled so the math is the same.
963 	 *
964 	 * The basic idea here is that we're increasing the multiplier
965 	 * by one, this causes the xtime_interval to be incremented by
966 	 * one cycle_interval. This is because:
967 	 *	xtime_interval = cycle_interval * mult
968 	 * So if mult is being incremented by one:
969 	 *	xtime_interval = cycle_interval * (mult + 1)
970 	 * Its the same as:
971 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
972 	 * Which can be shortened to:
973 	 *	xtime_interval += cycle_interval
974 	 *
975 	 * So offset stores the non-accumulated cycles. Thus the current
976 	 * time (in shifted nanoseconds) is:
977 	 *	now = (offset * adj) + xtime_nsec
978 	 * Now, even though we're adjusting the clock frequency, we have
979 	 * to keep time consistent. In other words, we can't jump back
980 	 * in time, and we also want to avoid jumping forward in time.
981 	 *
982 	 * So given the same offset value, we need the time to be the same
983 	 * both before and after the freq adjustment.
984 	 *	now = (offset * adj_1) + xtime_nsec_1
985 	 *	now = (offset * adj_2) + xtime_nsec_2
986 	 * So:
987 	 *	(offset * adj_1) + xtime_nsec_1 =
988 	 *		(offset * adj_2) + xtime_nsec_2
989 	 * And we know:
990 	 *	adj_2 = adj_1 + 1
991 	 * So:
992 	 *	(offset * adj_1) + xtime_nsec_1 =
993 	 *		(offset * (adj_1+1)) + xtime_nsec_2
994 	 *	(offset * adj_1) + xtime_nsec_1 =
995 	 *		(offset * adj_1) + offset + xtime_nsec_2
996 	 * Canceling the sides:
997 	 *	xtime_nsec_1 = offset + xtime_nsec_2
998 	 * Which gives us:
999 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1000 	 * Which simplfies to:
1001 	 *	xtime_nsec -= offset
1002 	 *
1003 	 * XXX - TODO: Doc ntp_error calculation.
1004 	 */
1005 	tk->mult += adj;
1006 	tk->xtime_interval += interval;
1007 	tk->xtime_nsec -= offset;
1008 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1009 
1010 out_adjust:
1011 	/*
1012 	 * It may be possible that when we entered this function, xtime_nsec
1013 	 * was very small.  Further, if we're slightly speeding the clocksource
1014 	 * in the code above, its possible the required corrective factor to
1015 	 * xtime_nsec could cause it to underflow.
1016 	 *
1017 	 * Now, since we already accumulated the second, cannot simply roll
1018 	 * the accumulated second back, since the NTP subsystem has been
1019 	 * notified via second_overflow. So instead we push xtime_nsec forward
1020 	 * by the amount we underflowed, and add that amount into the error.
1021 	 *
1022 	 * We'll correct this error next time through this function, when
1023 	 * xtime_nsec is not as small.
1024 	 */
1025 	if (unlikely((s64)tk->xtime_nsec < 0)) {
1026 		s64 neg = -(s64)tk->xtime_nsec;
1027 		tk->xtime_nsec = 0;
1028 		tk->ntp_error += neg << tk->ntp_error_shift;
1029 	}
1030 
1031 }
1032 
1033 /**
1034  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1035  *
1036  * Helper function that accumulates a the nsecs greater then a second
1037  * from the xtime_nsec field to the xtime_secs field.
1038  * It also calls into the NTP code to handle leapsecond processing.
1039  *
1040  */
1041 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1042 {
1043 	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1044 
1045 	while (tk->xtime_nsec >= nsecps) {
1046 		int leap;
1047 
1048 		tk->xtime_nsec -= nsecps;
1049 		tk->xtime_sec++;
1050 
1051 		/* Figure out if its a leap sec and apply if needed */
1052 		leap = second_overflow(tk->xtime_sec);
1053 		if (unlikely(leap)) {
1054 			struct timespec ts;
1055 
1056 			tk->xtime_sec += leap;
1057 
1058 			ts.tv_sec = leap;
1059 			ts.tv_nsec = 0;
1060 			tk_set_wall_to_mono(tk,
1061 				timespec_sub(tk->wall_to_monotonic, ts));
1062 
1063 			clock_was_set_delayed();
1064 		}
1065 	}
1066 }
1067 
1068 /**
1069  * logarithmic_accumulation - shifted accumulation of cycles
1070  *
1071  * This functions accumulates a shifted interval of cycles into
1072  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1073  * loop.
1074  *
1075  * Returns the unconsumed cycles.
1076  */
1077 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1078 						u32 shift)
1079 {
1080 	u64 raw_nsecs;
1081 
1082 	/* If the offset is smaller then a shifted interval, do nothing */
1083 	if (offset < tk->cycle_interval<<shift)
1084 		return offset;
1085 
1086 	/* Accumulate one shifted interval */
1087 	offset -= tk->cycle_interval << shift;
1088 	tk->clock->cycle_last += tk->cycle_interval << shift;
1089 
1090 	tk->xtime_nsec += tk->xtime_interval << shift;
1091 	accumulate_nsecs_to_secs(tk);
1092 
1093 	/* Accumulate raw time */
1094 	raw_nsecs = (u64)tk->raw_interval << shift;
1095 	raw_nsecs += tk->raw_time.tv_nsec;
1096 	if (raw_nsecs >= NSEC_PER_SEC) {
1097 		u64 raw_secs = raw_nsecs;
1098 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1099 		tk->raw_time.tv_sec += raw_secs;
1100 	}
1101 	tk->raw_time.tv_nsec = raw_nsecs;
1102 
1103 	/* Accumulate error between NTP and clock interval */
1104 	tk->ntp_error += ntp_tick_length() << shift;
1105 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1106 						(tk->ntp_error_shift + shift);
1107 
1108 	return offset;
1109 }
1110 
1111 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
1112 static inline void old_vsyscall_fixup(struct timekeeper *tk)
1113 {
1114 	s64 remainder;
1115 
1116 	/*
1117 	* Store only full nanoseconds into xtime_nsec after rounding
1118 	* it up and add the remainder to the error difference.
1119 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
1120 	* by truncating the remainder in vsyscalls. However, it causes
1121 	* additional work to be done in timekeeping_adjust(). Once
1122 	* the vsyscall implementations are converted to use xtime_nsec
1123 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
1124 	* users are removed, this can be killed.
1125 	*/
1126 	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1127 	tk->xtime_nsec -= remainder;
1128 	tk->xtime_nsec += 1ULL << tk->shift;
1129 	tk->ntp_error += remainder << tk->ntp_error_shift;
1130 
1131 }
1132 #else
1133 #define old_vsyscall_fixup(tk)
1134 #endif
1135 
1136 
1137 
1138 /**
1139  * update_wall_time - Uses the current clocksource to increment the wall time
1140  *
1141  */
1142 static void update_wall_time(void)
1143 {
1144 	struct clocksource *clock;
1145 	struct timekeeper *tk = &timekeeper;
1146 	cycle_t offset;
1147 	int shift = 0, maxshift;
1148 	unsigned long flags;
1149 
1150 	write_seqlock_irqsave(&tk->lock, flags);
1151 
1152 	/* Make sure we're fully resumed: */
1153 	if (unlikely(timekeeping_suspended))
1154 		goto out;
1155 
1156 	clock = tk->clock;
1157 
1158 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1159 	offset = tk->cycle_interval;
1160 #else
1161 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1162 #endif
1163 
1164 	/* Check if there's really nothing to do */
1165 	if (offset < tk->cycle_interval)
1166 		goto out;
1167 
1168 	/*
1169 	 * With NO_HZ we may have to accumulate many cycle_intervals
1170 	 * (think "ticks") worth of time at once. To do this efficiently,
1171 	 * we calculate the largest doubling multiple of cycle_intervals
1172 	 * that is smaller than the offset.  We then accumulate that
1173 	 * chunk in one go, and then try to consume the next smaller
1174 	 * doubled multiple.
1175 	 */
1176 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1177 	shift = max(0, shift);
1178 	/* Bound shift to one less than what overflows tick_length */
1179 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1180 	shift = min(shift, maxshift);
1181 	while (offset >= tk->cycle_interval) {
1182 		offset = logarithmic_accumulation(tk, offset, shift);
1183 		if (offset < tk->cycle_interval<<shift)
1184 			shift--;
1185 	}
1186 
1187 	/* correct the clock when NTP error is too big */
1188 	timekeeping_adjust(tk, offset);
1189 
1190 	/*
1191 	 * XXX This can be killed once everyone converts
1192 	 * to the new update_vsyscall.
1193 	 */
1194 	old_vsyscall_fixup(tk);
1195 
1196 	/*
1197 	 * Finally, make sure that after the rounding
1198 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1199 	 */
1200 	accumulate_nsecs_to_secs(tk);
1201 
1202 	timekeeping_update(tk, false);
1203 
1204 out:
1205 	write_sequnlock_irqrestore(&tk->lock, flags);
1206 
1207 }
1208 
1209 /**
1210  * getboottime - Return the real time of system boot.
1211  * @ts:		pointer to the timespec to be set
1212  *
1213  * Returns the wall-time of boot in a timespec.
1214  *
1215  * This is based on the wall_to_monotonic offset and the total suspend
1216  * time. Calls to settimeofday will affect the value returned (which
1217  * basically means that however wrong your real time clock is at boot time,
1218  * you get the right time here).
1219  */
1220 void getboottime(struct timespec *ts)
1221 {
1222 	struct timekeeper *tk = &timekeeper;
1223 	struct timespec boottime = {
1224 		.tv_sec = tk->wall_to_monotonic.tv_sec +
1225 				tk->total_sleep_time.tv_sec,
1226 		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
1227 				tk->total_sleep_time.tv_nsec
1228 	};
1229 
1230 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1231 }
1232 EXPORT_SYMBOL_GPL(getboottime);
1233 
1234 /**
1235  * get_monotonic_boottime - Returns monotonic time since boot
1236  * @ts:		pointer to the timespec to be set
1237  *
1238  * Returns the monotonic time since boot in a timespec.
1239  *
1240  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1241  * includes the time spent in suspend.
1242  */
1243 void get_monotonic_boottime(struct timespec *ts)
1244 {
1245 	struct timekeeper *tk = &timekeeper;
1246 	struct timespec tomono, sleep;
1247 	s64 nsec;
1248 	unsigned int seq;
1249 
1250 	WARN_ON(timekeeping_suspended);
1251 
1252 	do {
1253 		seq = read_seqbegin(&tk->lock);
1254 		ts->tv_sec = tk->xtime_sec;
1255 		nsec = timekeeping_get_ns(tk);
1256 		tomono = tk->wall_to_monotonic;
1257 		sleep = tk->total_sleep_time;
1258 
1259 	} while (read_seqretry(&tk->lock, seq));
1260 
1261 	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1262 	ts->tv_nsec = 0;
1263 	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1264 }
1265 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1266 
1267 /**
1268  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1269  *
1270  * Returns the monotonic time since boot in a ktime
1271  *
1272  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1273  * includes the time spent in suspend.
1274  */
1275 ktime_t ktime_get_boottime(void)
1276 {
1277 	struct timespec ts;
1278 
1279 	get_monotonic_boottime(&ts);
1280 	return timespec_to_ktime(ts);
1281 }
1282 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1283 
1284 /**
1285  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1286  * @ts:		pointer to the timespec to be converted
1287  */
1288 void monotonic_to_bootbased(struct timespec *ts)
1289 {
1290 	struct timekeeper *tk = &timekeeper;
1291 
1292 	*ts = timespec_add(*ts, tk->total_sleep_time);
1293 }
1294 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1295 
1296 unsigned long get_seconds(void)
1297 {
1298 	struct timekeeper *tk = &timekeeper;
1299 
1300 	return tk->xtime_sec;
1301 }
1302 EXPORT_SYMBOL(get_seconds);
1303 
1304 struct timespec __current_kernel_time(void)
1305 {
1306 	struct timekeeper *tk = &timekeeper;
1307 
1308 	return tk_xtime(tk);
1309 }
1310 
1311 struct timespec current_kernel_time(void)
1312 {
1313 	struct timekeeper *tk = &timekeeper;
1314 	struct timespec now;
1315 	unsigned long seq;
1316 
1317 	do {
1318 		seq = read_seqbegin(&tk->lock);
1319 
1320 		now = tk_xtime(tk);
1321 	} while (read_seqretry(&tk->lock, seq));
1322 
1323 	return now;
1324 }
1325 EXPORT_SYMBOL(current_kernel_time);
1326 
1327 struct timespec get_monotonic_coarse(void)
1328 {
1329 	struct timekeeper *tk = &timekeeper;
1330 	struct timespec now, mono;
1331 	unsigned long seq;
1332 
1333 	do {
1334 		seq = read_seqbegin(&tk->lock);
1335 
1336 		now = tk_xtime(tk);
1337 		mono = tk->wall_to_monotonic;
1338 	} while (read_seqretry(&tk->lock, seq));
1339 
1340 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1341 				now.tv_nsec + mono.tv_nsec);
1342 	return now;
1343 }
1344 
1345 /*
1346  * Must hold jiffies_lock
1347  */
1348 void do_timer(unsigned long ticks)
1349 {
1350 	jiffies_64 += ticks;
1351 	update_wall_time();
1352 	calc_global_load(ticks);
1353 }
1354 
1355 /**
1356  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1357  *    and sleep offsets.
1358  * @xtim:	pointer to timespec to be set with xtime
1359  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1360  * @sleep:	pointer to timespec to be set with time in suspend
1361  */
1362 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1363 				struct timespec *wtom, struct timespec *sleep)
1364 {
1365 	struct timekeeper *tk = &timekeeper;
1366 	unsigned long seq;
1367 
1368 	do {
1369 		seq = read_seqbegin(&tk->lock);
1370 		*xtim = tk_xtime(tk);
1371 		*wtom = tk->wall_to_monotonic;
1372 		*sleep = tk->total_sleep_time;
1373 	} while (read_seqretry(&tk->lock, seq));
1374 }
1375 
1376 #ifdef CONFIG_HIGH_RES_TIMERS
1377 /**
1378  * ktime_get_update_offsets - hrtimer helper
1379  * @offs_real:	pointer to storage for monotonic -> realtime offset
1380  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1381  *
1382  * Returns current monotonic time and updates the offsets
1383  * Called from hrtimer_interupt() or retrigger_next_event()
1384  */
1385 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1386 {
1387 	struct timekeeper *tk = &timekeeper;
1388 	ktime_t now;
1389 	unsigned int seq;
1390 	u64 secs, nsecs;
1391 
1392 	do {
1393 		seq = read_seqbegin(&tk->lock);
1394 
1395 		secs = tk->xtime_sec;
1396 		nsecs = timekeeping_get_ns(tk);
1397 
1398 		*offs_real = tk->offs_real;
1399 		*offs_boot = tk->offs_boot;
1400 	} while (read_seqretry(&tk->lock, seq));
1401 
1402 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1403 	now = ktime_sub(now, *offs_real);
1404 	return now;
1405 }
1406 #endif
1407 
1408 /**
1409  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1410  */
1411 ktime_t ktime_get_monotonic_offset(void)
1412 {
1413 	struct timekeeper *tk = &timekeeper;
1414 	unsigned long seq;
1415 	struct timespec wtom;
1416 
1417 	do {
1418 		seq = read_seqbegin(&tk->lock);
1419 		wtom = tk->wall_to_monotonic;
1420 	} while (read_seqretry(&tk->lock, seq));
1421 
1422 	return timespec_to_ktime(wtom);
1423 }
1424 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1425 
1426 /**
1427  * xtime_update() - advances the timekeeping infrastructure
1428  * @ticks:	number of ticks, that have elapsed since the last call.
1429  *
1430  * Must be called with interrupts disabled.
1431  */
1432 void xtime_update(unsigned long ticks)
1433 {
1434 	write_seqlock(&jiffies_lock);
1435 	do_timer(ticks);
1436 	write_sequnlock(&jiffies_lock);
1437 }
1438