xref: /openbmc/linux/kernel/time/timekeeping.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25 
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29 
30 #define TK_CLEAR_NTP		(1 << 0)
31 #define TK_MIRROR		(1 << 1)
32 #define TK_CLOCK_WAS_SET	(1 << 2)
33 
34 enum timekeeping_adv_mode {
35 	/* Update timekeeper when a tick has passed */
36 	TK_ADV_TICK,
37 
38 	/* Update timekeeper on a direct frequency change */
39 	TK_ADV_FREQ
40 };
41 
42 DEFINE_RAW_SPINLOCK(timekeeper_lock);
43 
44 /*
45  * The most important data for readout fits into a single 64 byte
46  * cache line.
47  */
48 static struct {
49 	seqcount_raw_spinlock_t	seq;
50 	struct timekeeper	timekeeper;
51 } tk_core ____cacheline_aligned = {
52 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
53 };
54 
55 static struct timekeeper shadow_timekeeper;
56 
57 /* flag for if timekeeping is suspended */
58 int __read_mostly timekeeping_suspended;
59 
60 /**
61  * struct tk_fast - NMI safe timekeeper
62  * @seq:	Sequence counter for protecting updates. The lowest bit
63  *		is the index for the tk_read_base array
64  * @base:	tk_read_base array. Access is indexed by the lowest bit of
65  *		@seq.
66  *
67  * See @update_fast_timekeeper() below.
68  */
69 struct tk_fast {
70 	seqcount_latch_t	seq;
71 	struct tk_read_base	base[2];
72 };
73 
74 /* Suspend-time cycles value for halted fast timekeeper. */
75 static u64 cycles_at_suspend;
76 
77 static u64 dummy_clock_read(struct clocksource *cs)
78 {
79 	if (timekeeping_suspended)
80 		return cycles_at_suspend;
81 	return local_clock();
82 }
83 
84 static struct clocksource dummy_clock = {
85 	.read = dummy_clock_read,
86 };
87 
88 /*
89  * Boot time initialization which allows local_clock() to be utilized
90  * during early boot when clocksources are not available. local_clock()
91  * returns nanoseconds already so no conversion is required, hence mult=1
92  * and shift=0. When the first proper clocksource is installed then
93  * the fast time keepers are updated with the correct values.
94  */
95 #define FAST_TK_INIT						\
96 	{							\
97 		.clock		= &dummy_clock,			\
98 		.mask		= CLOCKSOURCE_MASK(64),		\
99 		.mult		= 1,				\
100 		.shift		= 0,				\
101 	}
102 
103 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
104 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
105 	.base[0] = FAST_TK_INIT,
106 	.base[1] = FAST_TK_INIT,
107 };
108 
109 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
110 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
111 	.base[0] = FAST_TK_INIT,
112 	.base[1] = FAST_TK_INIT,
113 };
114 
115 static inline void tk_normalize_xtime(struct timekeeper *tk)
116 {
117 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
118 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
119 		tk->xtime_sec++;
120 	}
121 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
122 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
123 		tk->raw_sec++;
124 	}
125 }
126 
127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
128 {
129 	struct timespec64 ts;
130 
131 	ts.tv_sec = tk->xtime_sec;
132 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
133 	return ts;
134 }
135 
136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
137 {
138 	tk->xtime_sec = ts->tv_sec;
139 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
140 }
141 
142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
143 {
144 	tk->xtime_sec += ts->tv_sec;
145 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
146 	tk_normalize_xtime(tk);
147 }
148 
149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
150 {
151 	struct timespec64 tmp;
152 
153 	/*
154 	 * Verify consistency of: offset_real = -wall_to_monotonic
155 	 * before modifying anything
156 	 */
157 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
158 					-tk->wall_to_monotonic.tv_nsec);
159 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
160 	tk->wall_to_monotonic = wtm;
161 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
162 	tk->offs_real = timespec64_to_ktime(tmp);
163 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
164 }
165 
166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
167 {
168 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
169 	/*
170 	 * Timespec representation for VDSO update to avoid 64bit division
171 	 * on every update.
172 	 */
173 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
174 }
175 
176 /*
177  * tk_clock_read - atomic clocksource read() helper
178  *
179  * This helper is necessary to use in the read paths because, while the
180  * seqcount ensures we don't return a bad value while structures are updated,
181  * it doesn't protect from potential crashes. There is the possibility that
182  * the tkr's clocksource may change between the read reference, and the
183  * clock reference passed to the read function.  This can cause crashes if
184  * the wrong clocksource is passed to the wrong read function.
185  * This isn't necessary to use when holding the timekeeper_lock or doing
186  * a read of the fast-timekeeper tkrs (which is protected by its own locking
187  * and update logic).
188  */
189 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
190 {
191 	struct clocksource *clock = READ_ONCE(tkr->clock);
192 
193 	return clock->read(clock);
194 }
195 
196 #ifdef CONFIG_DEBUG_TIMEKEEPING
197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
198 
199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
200 {
201 
202 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
203 	const char *name = tk->tkr_mono.clock->name;
204 
205 	if (offset > max_cycles) {
206 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
207 				offset, name, max_cycles);
208 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
209 	} else {
210 		if (offset > (max_cycles >> 1)) {
211 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
212 					offset, name, max_cycles >> 1);
213 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
214 		}
215 	}
216 
217 	if (tk->underflow_seen) {
218 		if (jiffies - tk->last_warning > WARNING_FREQ) {
219 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
220 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
221 			printk_deferred("         Your kernel is probably still fine.\n");
222 			tk->last_warning = jiffies;
223 		}
224 		tk->underflow_seen = 0;
225 	}
226 
227 	if (tk->overflow_seen) {
228 		if (jiffies - tk->last_warning > WARNING_FREQ) {
229 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
230 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
231 			printk_deferred("         Your kernel is probably still fine.\n");
232 			tk->last_warning = jiffies;
233 		}
234 		tk->overflow_seen = 0;
235 	}
236 }
237 
238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
239 {
240 	struct timekeeper *tk = &tk_core.timekeeper;
241 	u64 now, last, mask, max, delta;
242 	unsigned int seq;
243 
244 	/*
245 	 * Since we're called holding a seqcount, the data may shift
246 	 * under us while we're doing the calculation. This can cause
247 	 * false positives, since we'd note a problem but throw the
248 	 * results away. So nest another seqcount here to atomically
249 	 * grab the points we are checking with.
250 	 */
251 	do {
252 		seq = read_seqcount_begin(&tk_core.seq);
253 		now = tk_clock_read(tkr);
254 		last = tkr->cycle_last;
255 		mask = tkr->mask;
256 		max = tkr->clock->max_cycles;
257 	} while (read_seqcount_retry(&tk_core.seq, seq));
258 
259 	delta = clocksource_delta(now, last, mask);
260 
261 	/*
262 	 * Try to catch underflows by checking if we are seeing small
263 	 * mask-relative negative values.
264 	 */
265 	if (unlikely((~delta & mask) < (mask >> 3))) {
266 		tk->underflow_seen = 1;
267 		delta = 0;
268 	}
269 
270 	/* Cap delta value to the max_cycles values to avoid mult overflows */
271 	if (unlikely(delta > max)) {
272 		tk->overflow_seen = 1;
273 		delta = tkr->clock->max_cycles;
274 	}
275 
276 	return delta;
277 }
278 #else
279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
280 {
281 }
282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
283 {
284 	u64 cycle_now, delta;
285 
286 	/* read clocksource */
287 	cycle_now = tk_clock_read(tkr);
288 
289 	/* calculate the delta since the last update_wall_time */
290 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
291 
292 	return delta;
293 }
294 #endif
295 
296 /**
297  * tk_setup_internals - Set up internals to use clocksource clock.
298  *
299  * @tk:		The target timekeeper to setup.
300  * @clock:		Pointer to clocksource.
301  *
302  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
303  * pair and interval request.
304  *
305  * Unless you're the timekeeping code, you should not be using this!
306  */
307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
308 {
309 	u64 interval;
310 	u64 tmp, ntpinterval;
311 	struct clocksource *old_clock;
312 
313 	++tk->cs_was_changed_seq;
314 	old_clock = tk->tkr_mono.clock;
315 	tk->tkr_mono.clock = clock;
316 	tk->tkr_mono.mask = clock->mask;
317 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
318 
319 	tk->tkr_raw.clock = clock;
320 	tk->tkr_raw.mask = clock->mask;
321 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
322 
323 	/* Do the ns -> cycle conversion first, using original mult */
324 	tmp = NTP_INTERVAL_LENGTH;
325 	tmp <<= clock->shift;
326 	ntpinterval = tmp;
327 	tmp += clock->mult/2;
328 	do_div(tmp, clock->mult);
329 	if (tmp == 0)
330 		tmp = 1;
331 
332 	interval = (u64) tmp;
333 	tk->cycle_interval = interval;
334 
335 	/* Go back from cycles -> shifted ns */
336 	tk->xtime_interval = interval * clock->mult;
337 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
338 	tk->raw_interval = interval * clock->mult;
339 
340 	 /* if changing clocks, convert xtime_nsec shift units */
341 	if (old_clock) {
342 		int shift_change = clock->shift - old_clock->shift;
343 		if (shift_change < 0) {
344 			tk->tkr_mono.xtime_nsec >>= -shift_change;
345 			tk->tkr_raw.xtime_nsec >>= -shift_change;
346 		} else {
347 			tk->tkr_mono.xtime_nsec <<= shift_change;
348 			tk->tkr_raw.xtime_nsec <<= shift_change;
349 		}
350 	}
351 
352 	tk->tkr_mono.shift = clock->shift;
353 	tk->tkr_raw.shift = clock->shift;
354 
355 	tk->ntp_error = 0;
356 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
357 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
358 
359 	/*
360 	 * The timekeeper keeps its own mult values for the currently
361 	 * active clocksource. These value will be adjusted via NTP
362 	 * to counteract clock drifting.
363 	 */
364 	tk->tkr_mono.mult = clock->mult;
365 	tk->tkr_raw.mult = clock->mult;
366 	tk->ntp_err_mult = 0;
367 	tk->skip_second_overflow = 0;
368 }
369 
370 /* Timekeeper helper functions. */
371 
372 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
373 {
374 	u64 nsec;
375 
376 	nsec = delta * tkr->mult + tkr->xtime_nsec;
377 	nsec >>= tkr->shift;
378 
379 	return nsec;
380 }
381 
382 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
383 {
384 	u64 delta;
385 
386 	delta = timekeeping_get_delta(tkr);
387 	return timekeeping_delta_to_ns(tkr, delta);
388 }
389 
390 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
391 {
392 	u64 delta;
393 
394 	/* calculate the delta since the last update_wall_time */
395 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
396 	return timekeeping_delta_to_ns(tkr, delta);
397 }
398 
399 /**
400  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
401  * @tkr: Timekeeping readout base from which we take the update
402  * @tkf: Pointer to NMI safe timekeeper
403  *
404  * We want to use this from any context including NMI and tracing /
405  * instrumenting the timekeeping code itself.
406  *
407  * Employ the latch technique; see @raw_write_seqcount_latch.
408  *
409  * So if a NMI hits the update of base[0] then it will use base[1]
410  * which is still consistent. In the worst case this can result is a
411  * slightly wrong timestamp (a few nanoseconds). See
412  * @ktime_get_mono_fast_ns.
413  */
414 static void update_fast_timekeeper(const struct tk_read_base *tkr,
415 				   struct tk_fast *tkf)
416 {
417 	struct tk_read_base *base = tkf->base;
418 
419 	/* Force readers off to base[1] */
420 	raw_write_seqcount_latch(&tkf->seq);
421 
422 	/* Update base[0] */
423 	memcpy(base, tkr, sizeof(*base));
424 
425 	/* Force readers back to base[0] */
426 	raw_write_seqcount_latch(&tkf->seq);
427 
428 	/* Update base[1] */
429 	memcpy(base + 1, base, sizeof(*base));
430 }
431 
432 static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
433 {
434 	u64 delta, cycles = tk_clock_read(tkr);
435 
436 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
437 	return timekeeping_delta_to_ns(tkr, delta);
438 }
439 
440 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
441 {
442 	struct tk_read_base *tkr;
443 	unsigned int seq;
444 	u64 now;
445 
446 	do {
447 		seq = raw_read_seqcount_latch(&tkf->seq);
448 		tkr = tkf->base + (seq & 0x01);
449 		now = ktime_to_ns(tkr->base);
450 		now += fast_tk_get_delta_ns(tkr);
451 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
452 
453 	return now;
454 }
455 
456 /**
457  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
458  *
459  * This timestamp is not guaranteed to be monotonic across an update.
460  * The timestamp is calculated by:
461  *
462  *	now = base_mono + clock_delta * slope
463  *
464  * So if the update lowers the slope, readers who are forced to the
465  * not yet updated second array are still using the old steeper slope.
466  *
467  * tmono
468  * ^
469  * |    o  n
470  * |   o n
471  * |  u
472  * | o
473  * |o
474  * |12345678---> reader order
475  *
476  * o = old slope
477  * u = update
478  * n = new slope
479  *
480  * So reader 6 will observe time going backwards versus reader 5.
481  *
482  * While other CPUs are likely to be able to observe that, the only way
483  * for a CPU local observation is when an NMI hits in the middle of
484  * the update. Timestamps taken from that NMI context might be ahead
485  * of the following timestamps. Callers need to be aware of that and
486  * deal with it.
487  */
488 u64 notrace ktime_get_mono_fast_ns(void)
489 {
490 	return __ktime_get_fast_ns(&tk_fast_mono);
491 }
492 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
493 
494 /**
495  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
496  *
497  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
498  * conversion factor is not affected by NTP/PTP correction.
499  */
500 u64 notrace ktime_get_raw_fast_ns(void)
501 {
502 	return __ktime_get_fast_ns(&tk_fast_raw);
503 }
504 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
505 
506 /**
507  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
508  *
509  * To keep it NMI safe since we're accessing from tracing, we're not using a
510  * separate timekeeper with updates to monotonic clock and boot offset
511  * protected with seqcounts. This has the following minor side effects:
512  *
513  * (1) Its possible that a timestamp be taken after the boot offset is updated
514  * but before the timekeeper is updated. If this happens, the new boot offset
515  * is added to the old timekeeping making the clock appear to update slightly
516  * earlier:
517  *    CPU 0                                        CPU 1
518  *    timekeeping_inject_sleeptime64()
519  *    __timekeeping_inject_sleeptime(tk, delta);
520  *                                                 timestamp();
521  *    timekeeping_update(tk, TK_CLEAR_NTP...);
522  *
523  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
524  * partially updated.  Since the tk->offs_boot update is a rare event, this
525  * should be a rare occurrence which postprocessing should be able to handle.
526  *
527  * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
528  * apply as well.
529  */
530 u64 notrace ktime_get_boot_fast_ns(void)
531 {
532 	struct timekeeper *tk = &tk_core.timekeeper;
533 
534 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
535 }
536 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
537 
538 /**
539  * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
540  *
541  * The same limitations as described for ktime_get_boot_fast_ns() apply. The
542  * mono time and the TAI offset are not read atomically which may yield wrong
543  * readouts. However, an update of the TAI offset is an rare event e.g., caused
544  * by settime or adjtimex with an offset. The user of this function has to deal
545  * with the possibility of wrong timestamps in post processing.
546  */
547 u64 notrace ktime_get_tai_fast_ns(void)
548 {
549 	struct timekeeper *tk = &tk_core.timekeeper;
550 
551 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
552 }
553 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
554 
555 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
556 {
557 	struct tk_read_base *tkr;
558 	u64 basem, baser, delta;
559 	unsigned int seq;
560 
561 	do {
562 		seq = raw_read_seqcount_latch(&tkf->seq);
563 		tkr = tkf->base + (seq & 0x01);
564 		basem = ktime_to_ns(tkr->base);
565 		baser = ktime_to_ns(tkr->base_real);
566 		delta = fast_tk_get_delta_ns(tkr);
567 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
568 
569 	if (mono)
570 		*mono = basem + delta;
571 	return baser + delta;
572 }
573 
574 /**
575  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
576  *
577  * See ktime_get_fast_ns() for documentation of the time stamp ordering.
578  */
579 u64 ktime_get_real_fast_ns(void)
580 {
581 	return __ktime_get_real_fast(&tk_fast_mono, NULL);
582 }
583 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
584 
585 /**
586  * ktime_get_fast_timestamps: - NMI safe timestamps
587  * @snapshot:	Pointer to timestamp storage
588  *
589  * Stores clock monotonic, boottime and realtime timestamps.
590  *
591  * Boot time is a racy access on 32bit systems if the sleep time injection
592  * happens late during resume and not in timekeeping_resume(). That could
593  * be avoided by expanding struct tk_read_base with boot offset for 32bit
594  * and adding more overhead to the update. As this is a hard to observe
595  * once per resume event which can be filtered with reasonable effort using
596  * the accurate mono/real timestamps, it's probably not worth the trouble.
597  *
598  * Aside of that it might be possible on 32 and 64 bit to observe the
599  * following when the sleep time injection happens late:
600  *
601  * CPU 0				CPU 1
602  * timekeeping_resume()
603  * ktime_get_fast_timestamps()
604  *	mono, real = __ktime_get_real_fast()
605  *					inject_sleep_time()
606  *					   update boot offset
607  *	boot = mono + bootoffset;
608  *
609  * That means that boot time already has the sleep time adjustment, but
610  * real time does not. On the next readout both are in sync again.
611  *
612  * Preventing this for 64bit is not really feasible without destroying the
613  * careful cache layout of the timekeeper because the sequence count and
614  * struct tk_read_base would then need two cache lines instead of one.
615  *
616  * Access to the time keeper clock source is disabled across the innermost
617  * steps of suspend/resume. The accessors still work, but the timestamps
618  * are frozen until time keeping is resumed which happens very early.
619  *
620  * For regular suspend/resume there is no observable difference vs. sched
621  * clock, but it might affect some of the nasty low level debug printks.
622  *
623  * OTOH, access to sched clock is not guaranteed across suspend/resume on
624  * all systems either so it depends on the hardware in use.
625  *
626  * If that turns out to be a real problem then this could be mitigated by
627  * using sched clock in a similar way as during early boot. But it's not as
628  * trivial as on early boot because it needs some careful protection
629  * against the clock monotonic timestamp jumping backwards on resume.
630  */
631 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
632 {
633 	struct timekeeper *tk = &tk_core.timekeeper;
634 
635 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
636 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
637 }
638 
639 /**
640  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
641  * @tk: Timekeeper to snapshot.
642  *
643  * It generally is unsafe to access the clocksource after timekeeping has been
644  * suspended, so take a snapshot of the readout base of @tk and use it as the
645  * fast timekeeper's readout base while suspended.  It will return the same
646  * number of cycles every time until timekeeping is resumed at which time the
647  * proper readout base for the fast timekeeper will be restored automatically.
648  */
649 static void halt_fast_timekeeper(const struct timekeeper *tk)
650 {
651 	static struct tk_read_base tkr_dummy;
652 	const struct tk_read_base *tkr = &tk->tkr_mono;
653 
654 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
655 	cycles_at_suspend = tk_clock_read(tkr);
656 	tkr_dummy.clock = &dummy_clock;
657 	tkr_dummy.base_real = tkr->base + tk->offs_real;
658 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
659 
660 	tkr = &tk->tkr_raw;
661 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
662 	tkr_dummy.clock = &dummy_clock;
663 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
664 }
665 
666 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
667 
668 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
669 {
670 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
671 }
672 
673 /**
674  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
675  * @nb: Pointer to the notifier block to register
676  */
677 int pvclock_gtod_register_notifier(struct notifier_block *nb)
678 {
679 	struct timekeeper *tk = &tk_core.timekeeper;
680 	unsigned long flags;
681 	int ret;
682 
683 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
684 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
685 	update_pvclock_gtod(tk, true);
686 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
687 
688 	return ret;
689 }
690 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
691 
692 /**
693  * pvclock_gtod_unregister_notifier - unregister a pvclock
694  * timedata update listener
695  * @nb: Pointer to the notifier block to unregister
696  */
697 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
698 {
699 	unsigned long flags;
700 	int ret;
701 
702 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
703 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
704 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
705 
706 	return ret;
707 }
708 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
709 
710 /*
711  * tk_update_leap_state - helper to update the next_leap_ktime
712  */
713 static inline void tk_update_leap_state(struct timekeeper *tk)
714 {
715 	tk->next_leap_ktime = ntp_get_next_leap();
716 	if (tk->next_leap_ktime != KTIME_MAX)
717 		/* Convert to monotonic time */
718 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
719 }
720 
721 /*
722  * Update the ktime_t based scalar nsec members of the timekeeper
723  */
724 static inline void tk_update_ktime_data(struct timekeeper *tk)
725 {
726 	u64 seconds;
727 	u32 nsec;
728 
729 	/*
730 	 * The xtime based monotonic readout is:
731 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
732 	 * The ktime based monotonic readout is:
733 	 *	nsec = base_mono + now();
734 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
735 	 */
736 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
737 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
738 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
739 
740 	/*
741 	 * The sum of the nanoseconds portions of xtime and
742 	 * wall_to_monotonic can be greater/equal one second. Take
743 	 * this into account before updating tk->ktime_sec.
744 	 */
745 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
746 	if (nsec >= NSEC_PER_SEC)
747 		seconds++;
748 	tk->ktime_sec = seconds;
749 
750 	/* Update the monotonic raw base */
751 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
752 }
753 
754 /* must hold timekeeper_lock */
755 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
756 {
757 	if (action & TK_CLEAR_NTP) {
758 		tk->ntp_error = 0;
759 		ntp_clear();
760 	}
761 
762 	tk_update_leap_state(tk);
763 	tk_update_ktime_data(tk);
764 
765 	update_vsyscall(tk);
766 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
767 
768 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
769 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
770 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
771 
772 	if (action & TK_CLOCK_WAS_SET)
773 		tk->clock_was_set_seq++;
774 	/*
775 	 * The mirroring of the data to the shadow-timekeeper needs
776 	 * to happen last here to ensure we don't over-write the
777 	 * timekeeper structure on the next update with stale data
778 	 */
779 	if (action & TK_MIRROR)
780 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
781 		       sizeof(tk_core.timekeeper));
782 }
783 
784 /**
785  * timekeeping_forward_now - update clock to the current time
786  * @tk:		Pointer to the timekeeper to update
787  *
788  * Forward the current clock to update its state since the last call to
789  * update_wall_time(). This is useful before significant clock changes,
790  * as it avoids having to deal with this time offset explicitly.
791  */
792 static void timekeeping_forward_now(struct timekeeper *tk)
793 {
794 	u64 cycle_now, delta;
795 
796 	cycle_now = tk_clock_read(&tk->tkr_mono);
797 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
798 	tk->tkr_mono.cycle_last = cycle_now;
799 	tk->tkr_raw.cycle_last  = cycle_now;
800 
801 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
802 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
803 
804 	tk_normalize_xtime(tk);
805 }
806 
807 /**
808  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
809  * @ts:		pointer to the timespec to be set
810  *
811  * Returns the time of day in a timespec64 (WARN if suspended).
812  */
813 void ktime_get_real_ts64(struct timespec64 *ts)
814 {
815 	struct timekeeper *tk = &tk_core.timekeeper;
816 	unsigned int seq;
817 	u64 nsecs;
818 
819 	WARN_ON(timekeeping_suspended);
820 
821 	do {
822 		seq = read_seqcount_begin(&tk_core.seq);
823 
824 		ts->tv_sec = tk->xtime_sec;
825 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
826 
827 	} while (read_seqcount_retry(&tk_core.seq, seq));
828 
829 	ts->tv_nsec = 0;
830 	timespec64_add_ns(ts, nsecs);
831 }
832 EXPORT_SYMBOL(ktime_get_real_ts64);
833 
834 ktime_t ktime_get(void)
835 {
836 	struct timekeeper *tk = &tk_core.timekeeper;
837 	unsigned int seq;
838 	ktime_t base;
839 	u64 nsecs;
840 
841 	WARN_ON(timekeeping_suspended);
842 
843 	do {
844 		seq = read_seqcount_begin(&tk_core.seq);
845 		base = tk->tkr_mono.base;
846 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
847 
848 	} while (read_seqcount_retry(&tk_core.seq, seq));
849 
850 	return ktime_add_ns(base, nsecs);
851 }
852 EXPORT_SYMBOL_GPL(ktime_get);
853 
854 u32 ktime_get_resolution_ns(void)
855 {
856 	struct timekeeper *tk = &tk_core.timekeeper;
857 	unsigned int seq;
858 	u32 nsecs;
859 
860 	WARN_ON(timekeeping_suspended);
861 
862 	do {
863 		seq = read_seqcount_begin(&tk_core.seq);
864 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
865 	} while (read_seqcount_retry(&tk_core.seq, seq));
866 
867 	return nsecs;
868 }
869 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
870 
871 static ktime_t *offsets[TK_OFFS_MAX] = {
872 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
873 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
874 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
875 };
876 
877 ktime_t ktime_get_with_offset(enum tk_offsets offs)
878 {
879 	struct timekeeper *tk = &tk_core.timekeeper;
880 	unsigned int seq;
881 	ktime_t base, *offset = offsets[offs];
882 	u64 nsecs;
883 
884 	WARN_ON(timekeeping_suspended);
885 
886 	do {
887 		seq = read_seqcount_begin(&tk_core.seq);
888 		base = ktime_add(tk->tkr_mono.base, *offset);
889 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
890 
891 	} while (read_seqcount_retry(&tk_core.seq, seq));
892 
893 	return ktime_add_ns(base, nsecs);
894 
895 }
896 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
897 
898 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
899 {
900 	struct timekeeper *tk = &tk_core.timekeeper;
901 	unsigned int seq;
902 	ktime_t base, *offset = offsets[offs];
903 	u64 nsecs;
904 
905 	WARN_ON(timekeeping_suspended);
906 
907 	do {
908 		seq = read_seqcount_begin(&tk_core.seq);
909 		base = ktime_add(tk->tkr_mono.base, *offset);
910 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
911 
912 	} while (read_seqcount_retry(&tk_core.seq, seq));
913 
914 	return ktime_add_ns(base, nsecs);
915 }
916 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
917 
918 /**
919  * ktime_mono_to_any() - convert monotonic time to any other time
920  * @tmono:	time to convert.
921  * @offs:	which offset to use
922  */
923 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
924 {
925 	ktime_t *offset = offsets[offs];
926 	unsigned int seq;
927 	ktime_t tconv;
928 
929 	do {
930 		seq = read_seqcount_begin(&tk_core.seq);
931 		tconv = ktime_add(tmono, *offset);
932 	} while (read_seqcount_retry(&tk_core.seq, seq));
933 
934 	return tconv;
935 }
936 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
937 
938 /**
939  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
940  */
941 ktime_t ktime_get_raw(void)
942 {
943 	struct timekeeper *tk = &tk_core.timekeeper;
944 	unsigned int seq;
945 	ktime_t base;
946 	u64 nsecs;
947 
948 	do {
949 		seq = read_seqcount_begin(&tk_core.seq);
950 		base = tk->tkr_raw.base;
951 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
952 
953 	} while (read_seqcount_retry(&tk_core.seq, seq));
954 
955 	return ktime_add_ns(base, nsecs);
956 }
957 EXPORT_SYMBOL_GPL(ktime_get_raw);
958 
959 /**
960  * ktime_get_ts64 - get the monotonic clock in timespec64 format
961  * @ts:		pointer to timespec variable
962  *
963  * The function calculates the monotonic clock from the realtime
964  * clock and the wall_to_monotonic offset and stores the result
965  * in normalized timespec64 format in the variable pointed to by @ts.
966  */
967 void ktime_get_ts64(struct timespec64 *ts)
968 {
969 	struct timekeeper *tk = &tk_core.timekeeper;
970 	struct timespec64 tomono;
971 	unsigned int seq;
972 	u64 nsec;
973 
974 	WARN_ON(timekeeping_suspended);
975 
976 	do {
977 		seq = read_seqcount_begin(&tk_core.seq);
978 		ts->tv_sec = tk->xtime_sec;
979 		nsec = timekeeping_get_ns(&tk->tkr_mono);
980 		tomono = tk->wall_to_monotonic;
981 
982 	} while (read_seqcount_retry(&tk_core.seq, seq));
983 
984 	ts->tv_sec += tomono.tv_sec;
985 	ts->tv_nsec = 0;
986 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
987 }
988 EXPORT_SYMBOL_GPL(ktime_get_ts64);
989 
990 /**
991  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
992  *
993  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
994  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
995  * works on both 32 and 64 bit systems. On 32 bit systems the readout
996  * covers ~136 years of uptime which should be enough to prevent
997  * premature wrap arounds.
998  */
999 time64_t ktime_get_seconds(void)
1000 {
1001 	struct timekeeper *tk = &tk_core.timekeeper;
1002 
1003 	WARN_ON(timekeeping_suspended);
1004 	return tk->ktime_sec;
1005 }
1006 EXPORT_SYMBOL_GPL(ktime_get_seconds);
1007 
1008 /**
1009  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1010  *
1011  * Returns the wall clock seconds since 1970.
1012  *
1013  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1014  * 32bit systems the access must be protected with the sequence
1015  * counter to provide "atomic" access to the 64bit tk->xtime_sec
1016  * value.
1017  */
1018 time64_t ktime_get_real_seconds(void)
1019 {
1020 	struct timekeeper *tk = &tk_core.timekeeper;
1021 	time64_t seconds;
1022 	unsigned int seq;
1023 
1024 	if (IS_ENABLED(CONFIG_64BIT))
1025 		return tk->xtime_sec;
1026 
1027 	do {
1028 		seq = read_seqcount_begin(&tk_core.seq);
1029 		seconds = tk->xtime_sec;
1030 
1031 	} while (read_seqcount_retry(&tk_core.seq, seq));
1032 
1033 	return seconds;
1034 }
1035 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1036 
1037 /**
1038  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1039  * but without the sequence counter protect. This internal function
1040  * is called just when timekeeping lock is already held.
1041  */
1042 noinstr time64_t __ktime_get_real_seconds(void)
1043 {
1044 	struct timekeeper *tk = &tk_core.timekeeper;
1045 
1046 	return tk->xtime_sec;
1047 }
1048 
1049 /**
1050  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1051  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1052  */
1053 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1054 {
1055 	struct timekeeper *tk = &tk_core.timekeeper;
1056 	unsigned int seq;
1057 	ktime_t base_raw;
1058 	ktime_t base_real;
1059 	u64 nsec_raw;
1060 	u64 nsec_real;
1061 	u64 now;
1062 
1063 	WARN_ON_ONCE(timekeeping_suspended);
1064 
1065 	do {
1066 		seq = read_seqcount_begin(&tk_core.seq);
1067 		now = tk_clock_read(&tk->tkr_mono);
1068 		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1069 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1070 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1071 		base_real = ktime_add(tk->tkr_mono.base,
1072 				      tk_core.timekeeper.offs_real);
1073 		base_raw = tk->tkr_raw.base;
1074 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1075 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1076 	} while (read_seqcount_retry(&tk_core.seq, seq));
1077 
1078 	systime_snapshot->cycles = now;
1079 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1080 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1081 }
1082 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1083 
1084 /* Scale base by mult/div checking for overflow */
1085 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1086 {
1087 	u64 tmp, rem;
1088 
1089 	tmp = div64_u64_rem(*base, div, &rem);
1090 
1091 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1092 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1093 		return -EOVERFLOW;
1094 	tmp *= mult;
1095 
1096 	rem = div64_u64(rem * mult, div);
1097 	*base = tmp + rem;
1098 	return 0;
1099 }
1100 
1101 /**
1102  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1103  * @history:			Snapshot representing start of history
1104  * @partial_history_cycles:	Cycle offset into history (fractional part)
1105  * @total_history_cycles:	Total history length in cycles
1106  * @discontinuity:		True indicates clock was set on history period
1107  * @ts:				Cross timestamp that should be adjusted using
1108  *	partial/total ratio
1109  *
1110  * Helper function used by get_device_system_crosststamp() to correct the
1111  * crosstimestamp corresponding to the start of the current interval to the
1112  * system counter value (timestamp point) provided by the driver. The
1113  * total_history_* quantities are the total history starting at the provided
1114  * reference point and ending at the start of the current interval. The cycle
1115  * count between the driver timestamp point and the start of the current
1116  * interval is partial_history_cycles.
1117  */
1118 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1119 					 u64 partial_history_cycles,
1120 					 u64 total_history_cycles,
1121 					 bool discontinuity,
1122 					 struct system_device_crosststamp *ts)
1123 {
1124 	struct timekeeper *tk = &tk_core.timekeeper;
1125 	u64 corr_raw, corr_real;
1126 	bool interp_forward;
1127 	int ret;
1128 
1129 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1130 		return 0;
1131 
1132 	/* Interpolate shortest distance from beginning or end of history */
1133 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1134 	partial_history_cycles = interp_forward ?
1135 		total_history_cycles - partial_history_cycles :
1136 		partial_history_cycles;
1137 
1138 	/*
1139 	 * Scale the monotonic raw time delta by:
1140 	 *	partial_history_cycles / total_history_cycles
1141 	 */
1142 	corr_raw = (u64)ktime_to_ns(
1143 		ktime_sub(ts->sys_monoraw, history->raw));
1144 	ret = scale64_check_overflow(partial_history_cycles,
1145 				     total_history_cycles, &corr_raw);
1146 	if (ret)
1147 		return ret;
1148 
1149 	/*
1150 	 * If there is a discontinuity in the history, scale monotonic raw
1151 	 *	correction by:
1152 	 *	mult(real)/mult(raw) yielding the realtime correction
1153 	 * Otherwise, calculate the realtime correction similar to monotonic
1154 	 *	raw calculation
1155 	 */
1156 	if (discontinuity) {
1157 		corr_real = mul_u64_u32_div
1158 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1159 	} else {
1160 		corr_real = (u64)ktime_to_ns(
1161 			ktime_sub(ts->sys_realtime, history->real));
1162 		ret = scale64_check_overflow(partial_history_cycles,
1163 					     total_history_cycles, &corr_real);
1164 		if (ret)
1165 			return ret;
1166 	}
1167 
1168 	/* Fixup monotonic raw and real time time values */
1169 	if (interp_forward) {
1170 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1171 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1172 	} else {
1173 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1174 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 /*
1181  * cycle_between - true if test occurs chronologically between before and after
1182  */
1183 static bool cycle_between(u64 before, u64 test, u64 after)
1184 {
1185 	if (test > before && test < after)
1186 		return true;
1187 	if (test < before && before > after)
1188 		return true;
1189 	return false;
1190 }
1191 
1192 /**
1193  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1194  * @get_time_fn:	Callback to get simultaneous device time and
1195  *	system counter from the device driver
1196  * @ctx:		Context passed to get_time_fn()
1197  * @history_begin:	Historical reference point used to interpolate system
1198  *	time when counter provided by the driver is before the current interval
1199  * @xtstamp:		Receives simultaneously captured system and device time
1200  *
1201  * Reads a timestamp from a device and correlates it to system time
1202  */
1203 int get_device_system_crosststamp(int (*get_time_fn)
1204 				  (ktime_t *device_time,
1205 				   struct system_counterval_t *sys_counterval,
1206 				   void *ctx),
1207 				  void *ctx,
1208 				  struct system_time_snapshot *history_begin,
1209 				  struct system_device_crosststamp *xtstamp)
1210 {
1211 	struct system_counterval_t system_counterval;
1212 	struct timekeeper *tk = &tk_core.timekeeper;
1213 	u64 cycles, now, interval_start;
1214 	unsigned int clock_was_set_seq = 0;
1215 	ktime_t base_real, base_raw;
1216 	u64 nsec_real, nsec_raw;
1217 	u8 cs_was_changed_seq;
1218 	unsigned int seq;
1219 	bool do_interp;
1220 	int ret;
1221 
1222 	do {
1223 		seq = read_seqcount_begin(&tk_core.seq);
1224 		/*
1225 		 * Try to synchronously capture device time and a system
1226 		 * counter value calling back into the device driver
1227 		 */
1228 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1229 		if (ret)
1230 			return ret;
1231 
1232 		/*
1233 		 * Verify that the clocksource associated with the captured
1234 		 * system counter value is the same as the currently installed
1235 		 * timekeeper clocksource
1236 		 */
1237 		if (tk->tkr_mono.clock != system_counterval.cs)
1238 			return -ENODEV;
1239 		cycles = system_counterval.cycles;
1240 
1241 		/*
1242 		 * Check whether the system counter value provided by the
1243 		 * device driver is on the current timekeeping interval.
1244 		 */
1245 		now = tk_clock_read(&tk->tkr_mono);
1246 		interval_start = tk->tkr_mono.cycle_last;
1247 		if (!cycle_between(interval_start, cycles, now)) {
1248 			clock_was_set_seq = tk->clock_was_set_seq;
1249 			cs_was_changed_seq = tk->cs_was_changed_seq;
1250 			cycles = interval_start;
1251 			do_interp = true;
1252 		} else {
1253 			do_interp = false;
1254 		}
1255 
1256 		base_real = ktime_add(tk->tkr_mono.base,
1257 				      tk_core.timekeeper.offs_real);
1258 		base_raw = tk->tkr_raw.base;
1259 
1260 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1261 						     system_counterval.cycles);
1262 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1263 						    system_counterval.cycles);
1264 	} while (read_seqcount_retry(&tk_core.seq, seq));
1265 
1266 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1267 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1268 
1269 	/*
1270 	 * Interpolate if necessary, adjusting back from the start of the
1271 	 * current interval
1272 	 */
1273 	if (do_interp) {
1274 		u64 partial_history_cycles, total_history_cycles;
1275 		bool discontinuity;
1276 
1277 		/*
1278 		 * Check that the counter value occurs after the provided
1279 		 * history reference and that the history doesn't cross a
1280 		 * clocksource change
1281 		 */
1282 		if (!history_begin ||
1283 		    !cycle_between(history_begin->cycles,
1284 				   system_counterval.cycles, cycles) ||
1285 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1286 			return -EINVAL;
1287 		partial_history_cycles = cycles - system_counterval.cycles;
1288 		total_history_cycles = cycles - history_begin->cycles;
1289 		discontinuity =
1290 			history_begin->clock_was_set_seq != clock_was_set_seq;
1291 
1292 		ret = adjust_historical_crosststamp(history_begin,
1293 						    partial_history_cycles,
1294 						    total_history_cycles,
1295 						    discontinuity, xtstamp);
1296 		if (ret)
1297 			return ret;
1298 	}
1299 
1300 	return 0;
1301 }
1302 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1303 
1304 /**
1305  * do_settimeofday64 - Sets the time of day.
1306  * @ts:     pointer to the timespec64 variable containing the new time
1307  *
1308  * Sets the time of day to the new time and update NTP and notify hrtimers
1309  */
1310 int do_settimeofday64(const struct timespec64 *ts)
1311 {
1312 	struct timekeeper *tk = &tk_core.timekeeper;
1313 	struct timespec64 ts_delta, xt;
1314 	unsigned long flags;
1315 	int ret = 0;
1316 
1317 	if (!timespec64_valid_settod(ts))
1318 		return -EINVAL;
1319 
1320 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1321 	write_seqcount_begin(&tk_core.seq);
1322 
1323 	timekeeping_forward_now(tk);
1324 
1325 	xt = tk_xtime(tk);
1326 	ts_delta = timespec64_sub(*ts, xt);
1327 
1328 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1329 		ret = -EINVAL;
1330 		goto out;
1331 	}
1332 
1333 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1334 
1335 	tk_set_xtime(tk, ts);
1336 out:
1337 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1338 
1339 	write_seqcount_end(&tk_core.seq);
1340 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1341 
1342 	/* Signal hrtimers about time change */
1343 	clock_was_set(CLOCK_SET_WALL);
1344 
1345 	if (!ret)
1346 		audit_tk_injoffset(ts_delta);
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(do_settimeofday64);
1351 
1352 /**
1353  * timekeeping_inject_offset - Adds or subtracts from the current time.
1354  * @ts:		Pointer to the timespec variable containing the offset
1355  *
1356  * Adds or subtracts an offset value from the current time.
1357  */
1358 static int timekeeping_inject_offset(const struct timespec64 *ts)
1359 {
1360 	struct timekeeper *tk = &tk_core.timekeeper;
1361 	unsigned long flags;
1362 	struct timespec64 tmp;
1363 	int ret = 0;
1364 
1365 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1366 		return -EINVAL;
1367 
1368 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369 	write_seqcount_begin(&tk_core.seq);
1370 
1371 	timekeeping_forward_now(tk);
1372 
1373 	/* Make sure the proposed value is valid */
1374 	tmp = timespec64_add(tk_xtime(tk), *ts);
1375 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1376 	    !timespec64_valid_settod(&tmp)) {
1377 		ret = -EINVAL;
1378 		goto error;
1379 	}
1380 
1381 	tk_xtime_add(tk, ts);
1382 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1383 
1384 error: /* even if we error out, we forwarded the time, so call update */
1385 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1386 
1387 	write_seqcount_end(&tk_core.seq);
1388 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1389 
1390 	/* Signal hrtimers about time change */
1391 	clock_was_set(CLOCK_SET_WALL);
1392 
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Indicates if there is an offset between the system clock and the hardware
1398  * clock/persistent clock/rtc.
1399  */
1400 int persistent_clock_is_local;
1401 
1402 /*
1403  * Adjust the time obtained from the CMOS to be UTC time instead of
1404  * local time.
1405  *
1406  * This is ugly, but preferable to the alternatives.  Otherwise we
1407  * would either need to write a program to do it in /etc/rc (and risk
1408  * confusion if the program gets run more than once; it would also be
1409  * hard to make the program warp the clock precisely n hours)  or
1410  * compile in the timezone information into the kernel.  Bad, bad....
1411  *
1412  *						- TYT, 1992-01-01
1413  *
1414  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1415  * as real UNIX machines always do it. This avoids all headaches about
1416  * daylight saving times and warping kernel clocks.
1417  */
1418 void timekeeping_warp_clock(void)
1419 {
1420 	if (sys_tz.tz_minuteswest != 0) {
1421 		struct timespec64 adjust;
1422 
1423 		persistent_clock_is_local = 1;
1424 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1425 		adjust.tv_nsec = 0;
1426 		timekeeping_inject_offset(&adjust);
1427 	}
1428 }
1429 
1430 /*
1431  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1432  */
1433 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1434 {
1435 	tk->tai_offset = tai_offset;
1436 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1437 }
1438 
1439 /*
1440  * change_clocksource - Swaps clocksources if a new one is available
1441  *
1442  * Accumulates current time interval and initializes new clocksource
1443  */
1444 static int change_clocksource(void *data)
1445 {
1446 	struct timekeeper *tk = &tk_core.timekeeper;
1447 	struct clocksource *new, *old = NULL;
1448 	unsigned long flags;
1449 	bool change = false;
1450 
1451 	new = (struct clocksource *) data;
1452 
1453 	/*
1454 	 * If the cs is in module, get a module reference. Succeeds
1455 	 * for built-in code (owner == NULL) as well.
1456 	 */
1457 	if (try_module_get(new->owner)) {
1458 		if (!new->enable || new->enable(new) == 0)
1459 			change = true;
1460 		else
1461 			module_put(new->owner);
1462 	}
1463 
1464 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1465 	write_seqcount_begin(&tk_core.seq);
1466 
1467 	timekeeping_forward_now(tk);
1468 
1469 	if (change) {
1470 		old = tk->tkr_mono.clock;
1471 		tk_setup_internals(tk, new);
1472 	}
1473 
1474 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1475 
1476 	write_seqcount_end(&tk_core.seq);
1477 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1478 
1479 	if (old) {
1480 		if (old->disable)
1481 			old->disable(old);
1482 
1483 		module_put(old->owner);
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 /**
1490  * timekeeping_notify - Install a new clock source
1491  * @clock:		pointer to the clock source
1492  *
1493  * This function is called from clocksource.c after a new, better clock
1494  * source has been registered. The caller holds the clocksource_mutex.
1495  */
1496 int timekeeping_notify(struct clocksource *clock)
1497 {
1498 	struct timekeeper *tk = &tk_core.timekeeper;
1499 
1500 	if (tk->tkr_mono.clock == clock)
1501 		return 0;
1502 	stop_machine(change_clocksource, clock, NULL);
1503 	tick_clock_notify();
1504 	return tk->tkr_mono.clock == clock ? 0 : -1;
1505 }
1506 
1507 /**
1508  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1509  * @ts:		pointer to the timespec64 to be set
1510  *
1511  * Returns the raw monotonic time (completely un-modified by ntp)
1512  */
1513 void ktime_get_raw_ts64(struct timespec64 *ts)
1514 {
1515 	struct timekeeper *tk = &tk_core.timekeeper;
1516 	unsigned int seq;
1517 	u64 nsecs;
1518 
1519 	do {
1520 		seq = read_seqcount_begin(&tk_core.seq);
1521 		ts->tv_sec = tk->raw_sec;
1522 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1523 
1524 	} while (read_seqcount_retry(&tk_core.seq, seq));
1525 
1526 	ts->tv_nsec = 0;
1527 	timespec64_add_ns(ts, nsecs);
1528 }
1529 EXPORT_SYMBOL(ktime_get_raw_ts64);
1530 
1531 
1532 /**
1533  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1534  */
1535 int timekeeping_valid_for_hres(void)
1536 {
1537 	struct timekeeper *tk = &tk_core.timekeeper;
1538 	unsigned int seq;
1539 	int ret;
1540 
1541 	do {
1542 		seq = read_seqcount_begin(&tk_core.seq);
1543 
1544 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1545 
1546 	} while (read_seqcount_retry(&tk_core.seq, seq));
1547 
1548 	return ret;
1549 }
1550 
1551 /**
1552  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1553  */
1554 u64 timekeeping_max_deferment(void)
1555 {
1556 	struct timekeeper *tk = &tk_core.timekeeper;
1557 	unsigned int seq;
1558 	u64 ret;
1559 
1560 	do {
1561 		seq = read_seqcount_begin(&tk_core.seq);
1562 
1563 		ret = tk->tkr_mono.clock->max_idle_ns;
1564 
1565 	} while (read_seqcount_retry(&tk_core.seq, seq));
1566 
1567 	return ret;
1568 }
1569 
1570 /**
1571  * read_persistent_clock64 -  Return time from the persistent clock.
1572  * @ts: Pointer to the storage for the readout value
1573  *
1574  * Weak dummy function for arches that do not yet support it.
1575  * Reads the time from the battery backed persistent clock.
1576  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1577  *
1578  *  XXX - Do be sure to remove it once all arches implement it.
1579  */
1580 void __weak read_persistent_clock64(struct timespec64 *ts)
1581 {
1582 	ts->tv_sec = 0;
1583 	ts->tv_nsec = 0;
1584 }
1585 
1586 /**
1587  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1588  *                                        from the boot.
1589  *
1590  * Weak dummy function for arches that do not yet support it.
1591  * @wall_time:	- current time as returned by persistent clock
1592  * @boot_offset: - offset that is defined as wall_time - boot_time
1593  *
1594  * The default function calculates offset based on the current value of
1595  * local_clock(). This way architectures that support sched_clock() but don't
1596  * support dedicated boot time clock will provide the best estimate of the
1597  * boot time.
1598  */
1599 void __weak __init
1600 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1601 				     struct timespec64 *boot_offset)
1602 {
1603 	read_persistent_clock64(wall_time);
1604 	*boot_offset = ns_to_timespec64(local_clock());
1605 }
1606 
1607 /*
1608  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1609  *
1610  * The flag starts of false and is only set when a suspend reaches
1611  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1612  * timekeeper clocksource is not stopping across suspend and has been
1613  * used to update sleep time. If the timekeeper clocksource has stopped
1614  * then the flag stays true and is used by the RTC resume code to decide
1615  * whether sleeptime must be injected and if so the flag gets false then.
1616  *
1617  * If a suspend fails before reaching timekeeping_resume() then the flag
1618  * stays false and prevents erroneous sleeptime injection.
1619  */
1620 static bool suspend_timing_needed;
1621 
1622 /* Flag for if there is a persistent clock on this platform */
1623 static bool persistent_clock_exists;
1624 
1625 /*
1626  * timekeeping_init - Initializes the clocksource and common timekeeping values
1627  */
1628 void __init timekeeping_init(void)
1629 {
1630 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1631 	struct timekeeper *tk = &tk_core.timekeeper;
1632 	struct clocksource *clock;
1633 	unsigned long flags;
1634 
1635 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1636 	if (timespec64_valid_settod(&wall_time) &&
1637 	    timespec64_to_ns(&wall_time) > 0) {
1638 		persistent_clock_exists = true;
1639 	} else if (timespec64_to_ns(&wall_time) != 0) {
1640 		pr_warn("Persistent clock returned invalid value");
1641 		wall_time = (struct timespec64){0};
1642 	}
1643 
1644 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1645 		boot_offset = (struct timespec64){0};
1646 
1647 	/*
1648 	 * We want set wall_to_mono, so the following is true:
1649 	 * wall time + wall_to_mono = boot time
1650 	 */
1651 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1652 
1653 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1654 	write_seqcount_begin(&tk_core.seq);
1655 	ntp_init();
1656 
1657 	clock = clocksource_default_clock();
1658 	if (clock->enable)
1659 		clock->enable(clock);
1660 	tk_setup_internals(tk, clock);
1661 
1662 	tk_set_xtime(tk, &wall_time);
1663 	tk->raw_sec = 0;
1664 
1665 	tk_set_wall_to_mono(tk, wall_to_mono);
1666 
1667 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1668 
1669 	write_seqcount_end(&tk_core.seq);
1670 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1671 }
1672 
1673 /* time in seconds when suspend began for persistent clock */
1674 static struct timespec64 timekeeping_suspend_time;
1675 
1676 /**
1677  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1678  * @tk:		Pointer to the timekeeper to be updated
1679  * @delta:	Pointer to the delta value in timespec64 format
1680  *
1681  * Takes a timespec offset measuring a suspend interval and properly
1682  * adds the sleep offset to the timekeeping variables.
1683  */
1684 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1685 					   const struct timespec64 *delta)
1686 {
1687 	if (!timespec64_valid_strict(delta)) {
1688 		printk_deferred(KERN_WARNING
1689 				"__timekeeping_inject_sleeptime: Invalid "
1690 				"sleep delta value!\n");
1691 		return;
1692 	}
1693 	tk_xtime_add(tk, delta);
1694 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1695 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1696 	tk_debug_account_sleep_time(delta);
1697 }
1698 
1699 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1700 /**
1701  * We have three kinds of time sources to use for sleep time
1702  * injection, the preference order is:
1703  * 1) non-stop clocksource
1704  * 2) persistent clock (ie: RTC accessible when irqs are off)
1705  * 3) RTC
1706  *
1707  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1708  * If system has neither 1) nor 2), 3) will be used finally.
1709  *
1710  *
1711  * If timekeeping has injected sleeptime via either 1) or 2),
1712  * 3) becomes needless, so in this case we don't need to call
1713  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1714  * means.
1715  */
1716 bool timekeeping_rtc_skipresume(void)
1717 {
1718 	return !suspend_timing_needed;
1719 }
1720 
1721 /**
1722  * 1) can be determined whether to use or not only when doing
1723  * timekeeping_resume() which is invoked after rtc_suspend(),
1724  * so we can't skip rtc_suspend() surely if system has 1).
1725  *
1726  * But if system has 2), 2) will definitely be used, so in this
1727  * case we don't need to call rtc_suspend(), and this is what
1728  * timekeeping_rtc_skipsuspend() means.
1729  */
1730 bool timekeeping_rtc_skipsuspend(void)
1731 {
1732 	return persistent_clock_exists;
1733 }
1734 
1735 /**
1736  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1737  * @delta: pointer to a timespec64 delta value
1738  *
1739  * This hook is for architectures that cannot support read_persistent_clock64
1740  * because their RTC/persistent clock is only accessible when irqs are enabled.
1741  * and also don't have an effective nonstop clocksource.
1742  *
1743  * This function should only be called by rtc_resume(), and allows
1744  * a suspend offset to be injected into the timekeeping values.
1745  */
1746 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1747 {
1748 	struct timekeeper *tk = &tk_core.timekeeper;
1749 	unsigned long flags;
1750 
1751 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1752 	write_seqcount_begin(&tk_core.seq);
1753 
1754 	suspend_timing_needed = false;
1755 
1756 	timekeeping_forward_now(tk);
1757 
1758 	__timekeeping_inject_sleeptime(tk, delta);
1759 
1760 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1761 
1762 	write_seqcount_end(&tk_core.seq);
1763 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1764 
1765 	/* Signal hrtimers about time change */
1766 	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1767 }
1768 #endif
1769 
1770 /**
1771  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1772  */
1773 void timekeeping_resume(void)
1774 {
1775 	struct timekeeper *tk = &tk_core.timekeeper;
1776 	struct clocksource *clock = tk->tkr_mono.clock;
1777 	unsigned long flags;
1778 	struct timespec64 ts_new, ts_delta;
1779 	u64 cycle_now, nsec;
1780 	bool inject_sleeptime = false;
1781 
1782 	read_persistent_clock64(&ts_new);
1783 
1784 	clockevents_resume();
1785 	clocksource_resume();
1786 
1787 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1788 	write_seqcount_begin(&tk_core.seq);
1789 
1790 	/*
1791 	 * After system resumes, we need to calculate the suspended time and
1792 	 * compensate it for the OS time. There are 3 sources that could be
1793 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1794 	 * device.
1795 	 *
1796 	 * One specific platform may have 1 or 2 or all of them, and the
1797 	 * preference will be:
1798 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1799 	 * The less preferred source will only be tried if there is no better
1800 	 * usable source. The rtc part is handled separately in rtc core code.
1801 	 */
1802 	cycle_now = tk_clock_read(&tk->tkr_mono);
1803 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1804 	if (nsec > 0) {
1805 		ts_delta = ns_to_timespec64(nsec);
1806 		inject_sleeptime = true;
1807 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1808 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1809 		inject_sleeptime = true;
1810 	}
1811 
1812 	if (inject_sleeptime) {
1813 		suspend_timing_needed = false;
1814 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1815 	}
1816 
1817 	/* Re-base the last cycle value */
1818 	tk->tkr_mono.cycle_last = cycle_now;
1819 	tk->tkr_raw.cycle_last  = cycle_now;
1820 
1821 	tk->ntp_error = 0;
1822 	timekeeping_suspended = 0;
1823 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1824 	write_seqcount_end(&tk_core.seq);
1825 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1826 
1827 	touch_softlockup_watchdog();
1828 
1829 	/* Resume the clockevent device(s) and hrtimers */
1830 	tick_resume();
1831 	/* Notify timerfd as resume is equivalent to clock_was_set() */
1832 	timerfd_resume();
1833 }
1834 
1835 int timekeeping_suspend(void)
1836 {
1837 	struct timekeeper *tk = &tk_core.timekeeper;
1838 	unsigned long flags;
1839 	struct timespec64		delta, delta_delta;
1840 	static struct timespec64	old_delta;
1841 	struct clocksource *curr_clock;
1842 	u64 cycle_now;
1843 
1844 	read_persistent_clock64(&timekeeping_suspend_time);
1845 
1846 	/*
1847 	 * On some systems the persistent_clock can not be detected at
1848 	 * timekeeping_init by its return value, so if we see a valid
1849 	 * value returned, update the persistent_clock_exists flag.
1850 	 */
1851 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1852 		persistent_clock_exists = true;
1853 
1854 	suspend_timing_needed = true;
1855 
1856 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1857 	write_seqcount_begin(&tk_core.seq);
1858 	timekeeping_forward_now(tk);
1859 	timekeeping_suspended = 1;
1860 
1861 	/*
1862 	 * Since we've called forward_now, cycle_last stores the value
1863 	 * just read from the current clocksource. Save this to potentially
1864 	 * use in suspend timing.
1865 	 */
1866 	curr_clock = tk->tkr_mono.clock;
1867 	cycle_now = tk->tkr_mono.cycle_last;
1868 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1869 
1870 	if (persistent_clock_exists) {
1871 		/*
1872 		 * To avoid drift caused by repeated suspend/resumes,
1873 		 * which each can add ~1 second drift error,
1874 		 * try to compensate so the difference in system time
1875 		 * and persistent_clock time stays close to constant.
1876 		 */
1877 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1878 		delta_delta = timespec64_sub(delta, old_delta);
1879 		if (abs(delta_delta.tv_sec) >= 2) {
1880 			/*
1881 			 * if delta_delta is too large, assume time correction
1882 			 * has occurred and set old_delta to the current delta.
1883 			 */
1884 			old_delta = delta;
1885 		} else {
1886 			/* Otherwise try to adjust old_system to compensate */
1887 			timekeeping_suspend_time =
1888 				timespec64_add(timekeeping_suspend_time, delta_delta);
1889 		}
1890 	}
1891 
1892 	timekeeping_update(tk, TK_MIRROR);
1893 	halt_fast_timekeeper(tk);
1894 	write_seqcount_end(&tk_core.seq);
1895 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1896 
1897 	tick_suspend();
1898 	clocksource_suspend();
1899 	clockevents_suspend();
1900 
1901 	return 0;
1902 }
1903 
1904 /* sysfs resume/suspend bits for timekeeping */
1905 static struct syscore_ops timekeeping_syscore_ops = {
1906 	.resume		= timekeeping_resume,
1907 	.suspend	= timekeeping_suspend,
1908 };
1909 
1910 static int __init timekeeping_init_ops(void)
1911 {
1912 	register_syscore_ops(&timekeeping_syscore_ops);
1913 	return 0;
1914 }
1915 device_initcall(timekeeping_init_ops);
1916 
1917 /*
1918  * Apply a multiplier adjustment to the timekeeper
1919  */
1920 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1921 							 s64 offset,
1922 							 s32 mult_adj)
1923 {
1924 	s64 interval = tk->cycle_interval;
1925 
1926 	if (mult_adj == 0) {
1927 		return;
1928 	} else if (mult_adj == -1) {
1929 		interval = -interval;
1930 		offset = -offset;
1931 	} else if (mult_adj != 1) {
1932 		interval *= mult_adj;
1933 		offset *= mult_adj;
1934 	}
1935 
1936 	/*
1937 	 * So the following can be confusing.
1938 	 *
1939 	 * To keep things simple, lets assume mult_adj == 1 for now.
1940 	 *
1941 	 * When mult_adj != 1, remember that the interval and offset values
1942 	 * have been appropriately scaled so the math is the same.
1943 	 *
1944 	 * The basic idea here is that we're increasing the multiplier
1945 	 * by one, this causes the xtime_interval to be incremented by
1946 	 * one cycle_interval. This is because:
1947 	 *	xtime_interval = cycle_interval * mult
1948 	 * So if mult is being incremented by one:
1949 	 *	xtime_interval = cycle_interval * (mult + 1)
1950 	 * Its the same as:
1951 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1952 	 * Which can be shortened to:
1953 	 *	xtime_interval += cycle_interval
1954 	 *
1955 	 * So offset stores the non-accumulated cycles. Thus the current
1956 	 * time (in shifted nanoseconds) is:
1957 	 *	now = (offset * adj) + xtime_nsec
1958 	 * Now, even though we're adjusting the clock frequency, we have
1959 	 * to keep time consistent. In other words, we can't jump back
1960 	 * in time, and we also want to avoid jumping forward in time.
1961 	 *
1962 	 * So given the same offset value, we need the time to be the same
1963 	 * both before and after the freq adjustment.
1964 	 *	now = (offset * adj_1) + xtime_nsec_1
1965 	 *	now = (offset * adj_2) + xtime_nsec_2
1966 	 * So:
1967 	 *	(offset * adj_1) + xtime_nsec_1 =
1968 	 *		(offset * adj_2) + xtime_nsec_2
1969 	 * And we know:
1970 	 *	adj_2 = adj_1 + 1
1971 	 * So:
1972 	 *	(offset * adj_1) + xtime_nsec_1 =
1973 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1974 	 *	(offset * adj_1) + xtime_nsec_1 =
1975 	 *		(offset * adj_1) + offset + xtime_nsec_2
1976 	 * Canceling the sides:
1977 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1978 	 * Which gives us:
1979 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1980 	 * Which simplifies to:
1981 	 *	xtime_nsec -= offset
1982 	 */
1983 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1984 		/* NTP adjustment caused clocksource mult overflow */
1985 		WARN_ON_ONCE(1);
1986 		return;
1987 	}
1988 
1989 	tk->tkr_mono.mult += mult_adj;
1990 	tk->xtime_interval += interval;
1991 	tk->tkr_mono.xtime_nsec -= offset;
1992 }
1993 
1994 /*
1995  * Adjust the timekeeper's multiplier to the correct frequency
1996  * and also to reduce the accumulated error value.
1997  */
1998 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1999 {
2000 	u32 mult;
2001 
2002 	/*
2003 	 * Determine the multiplier from the current NTP tick length.
2004 	 * Avoid expensive division when the tick length doesn't change.
2005 	 */
2006 	if (likely(tk->ntp_tick == ntp_tick_length())) {
2007 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2008 	} else {
2009 		tk->ntp_tick = ntp_tick_length();
2010 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2011 				 tk->xtime_remainder, tk->cycle_interval);
2012 	}
2013 
2014 	/*
2015 	 * If the clock is behind the NTP time, increase the multiplier by 1
2016 	 * to catch up with it. If it's ahead and there was a remainder in the
2017 	 * tick division, the clock will slow down. Otherwise it will stay
2018 	 * ahead until the tick length changes to a non-divisible value.
2019 	 */
2020 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2021 	mult += tk->ntp_err_mult;
2022 
2023 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2024 
2025 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2026 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2027 			> tk->tkr_mono.clock->maxadj))) {
2028 		printk_once(KERN_WARNING
2029 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2030 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2031 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2032 	}
2033 
2034 	/*
2035 	 * It may be possible that when we entered this function, xtime_nsec
2036 	 * was very small.  Further, if we're slightly speeding the clocksource
2037 	 * in the code above, its possible the required corrective factor to
2038 	 * xtime_nsec could cause it to underflow.
2039 	 *
2040 	 * Now, since we have already accumulated the second and the NTP
2041 	 * subsystem has been notified via second_overflow(), we need to skip
2042 	 * the next update.
2043 	 */
2044 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2045 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2046 							tk->tkr_mono.shift;
2047 		tk->xtime_sec--;
2048 		tk->skip_second_overflow = 1;
2049 	}
2050 }
2051 
2052 /*
2053  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2054  *
2055  * Helper function that accumulates the nsecs greater than a second
2056  * from the xtime_nsec field to the xtime_secs field.
2057  * It also calls into the NTP code to handle leapsecond processing.
2058  */
2059 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2060 {
2061 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2062 	unsigned int clock_set = 0;
2063 
2064 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2065 		int leap;
2066 
2067 		tk->tkr_mono.xtime_nsec -= nsecps;
2068 		tk->xtime_sec++;
2069 
2070 		/*
2071 		 * Skip NTP update if this second was accumulated before,
2072 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2073 		 */
2074 		if (unlikely(tk->skip_second_overflow)) {
2075 			tk->skip_second_overflow = 0;
2076 			continue;
2077 		}
2078 
2079 		/* Figure out if its a leap sec and apply if needed */
2080 		leap = second_overflow(tk->xtime_sec);
2081 		if (unlikely(leap)) {
2082 			struct timespec64 ts;
2083 
2084 			tk->xtime_sec += leap;
2085 
2086 			ts.tv_sec = leap;
2087 			ts.tv_nsec = 0;
2088 			tk_set_wall_to_mono(tk,
2089 				timespec64_sub(tk->wall_to_monotonic, ts));
2090 
2091 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2092 
2093 			clock_set = TK_CLOCK_WAS_SET;
2094 		}
2095 	}
2096 	return clock_set;
2097 }
2098 
2099 /*
2100  * logarithmic_accumulation - shifted accumulation of cycles
2101  *
2102  * This functions accumulates a shifted interval of cycles into
2103  * a shifted interval nanoseconds. Allows for O(log) accumulation
2104  * loop.
2105  *
2106  * Returns the unconsumed cycles.
2107  */
2108 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2109 				    u32 shift, unsigned int *clock_set)
2110 {
2111 	u64 interval = tk->cycle_interval << shift;
2112 	u64 snsec_per_sec;
2113 
2114 	/* If the offset is smaller than a shifted interval, do nothing */
2115 	if (offset < interval)
2116 		return offset;
2117 
2118 	/* Accumulate one shifted interval */
2119 	offset -= interval;
2120 	tk->tkr_mono.cycle_last += interval;
2121 	tk->tkr_raw.cycle_last  += interval;
2122 
2123 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2124 	*clock_set |= accumulate_nsecs_to_secs(tk);
2125 
2126 	/* Accumulate raw time */
2127 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2128 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2129 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2130 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2131 		tk->raw_sec++;
2132 	}
2133 
2134 	/* Accumulate error between NTP and clock interval */
2135 	tk->ntp_error += tk->ntp_tick << shift;
2136 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2137 						(tk->ntp_error_shift + shift);
2138 
2139 	return offset;
2140 }
2141 
2142 /*
2143  * timekeeping_advance - Updates the timekeeper to the current time and
2144  * current NTP tick length
2145  */
2146 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2147 {
2148 	struct timekeeper *real_tk = &tk_core.timekeeper;
2149 	struct timekeeper *tk = &shadow_timekeeper;
2150 	u64 offset;
2151 	int shift = 0, maxshift;
2152 	unsigned int clock_set = 0;
2153 	unsigned long flags;
2154 
2155 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2156 
2157 	/* Make sure we're fully resumed: */
2158 	if (unlikely(timekeeping_suspended))
2159 		goto out;
2160 
2161 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2162 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2163 
2164 	/* Check if there's really nothing to do */
2165 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2166 		goto out;
2167 
2168 	/* Do some additional sanity checking */
2169 	timekeeping_check_update(tk, offset);
2170 
2171 	/*
2172 	 * With NO_HZ we may have to accumulate many cycle_intervals
2173 	 * (think "ticks") worth of time at once. To do this efficiently,
2174 	 * we calculate the largest doubling multiple of cycle_intervals
2175 	 * that is smaller than the offset.  We then accumulate that
2176 	 * chunk in one go, and then try to consume the next smaller
2177 	 * doubled multiple.
2178 	 */
2179 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2180 	shift = max(0, shift);
2181 	/* Bound shift to one less than what overflows tick_length */
2182 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2183 	shift = min(shift, maxshift);
2184 	while (offset >= tk->cycle_interval) {
2185 		offset = logarithmic_accumulation(tk, offset, shift,
2186 							&clock_set);
2187 		if (offset < tk->cycle_interval<<shift)
2188 			shift--;
2189 	}
2190 
2191 	/* Adjust the multiplier to correct NTP error */
2192 	timekeeping_adjust(tk, offset);
2193 
2194 	/*
2195 	 * Finally, make sure that after the rounding
2196 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2197 	 */
2198 	clock_set |= accumulate_nsecs_to_secs(tk);
2199 
2200 	write_seqcount_begin(&tk_core.seq);
2201 	/*
2202 	 * Update the real timekeeper.
2203 	 *
2204 	 * We could avoid this memcpy by switching pointers, but that
2205 	 * requires changes to all other timekeeper usage sites as
2206 	 * well, i.e. move the timekeeper pointer getter into the
2207 	 * spinlocked/seqcount protected sections. And we trade this
2208 	 * memcpy under the tk_core.seq against one before we start
2209 	 * updating.
2210 	 */
2211 	timekeeping_update(tk, clock_set);
2212 	memcpy(real_tk, tk, sizeof(*tk));
2213 	/* The memcpy must come last. Do not put anything here! */
2214 	write_seqcount_end(&tk_core.seq);
2215 out:
2216 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2217 
2218 	return !!clock_set;
2219 }
2220 
2221 /**
2222  * update_wall_time - Uses the current clocksource to increment the wall time
2223  *
2224  */
2225 void update_wall_time(void)
2226 {
2227 	if (timekeeping_advance(TK_ADV_TICK))
2228 		clock_was_set_delayed();
2229 }
2230 
2231 /**
2232  * getboottime64 - Return the real time of system boot.
2233  * @ts:		pointer to the timespec64 to be set
2234  *
2235  * Returns the wall-time of boot in a timespec64.
2236  *
2237  * This is based on the wall_to_monotonic offset and the total suspend
2238  * time. Calls to settimeofday will affect the value returned (which
2239  * basically means that however wrong your real time clock is at boot time,
2240  * you get the right time here).
2241  */
2242 void getboottime64(struct timespec64 *ts)
2243 {
2244 	struct timekeeper *tk = &tk_core.timekeeper;
2245 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2246 
2247 	*ts = ktime_to_timespec64(t);
2248 }
2249 EXPORT_SYMBOL_GPL(getboottime64);
2250 
2251 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2252 {
2253 	struct timekeeper *tk = &tk_core.timekeeper;
2254 	unsigned int seq;
2255 
2256 	do {
2257 		seq = read_seqcount_begin(&tk_core.seq);
2258 
2259 		*ts = tk_xtime(tk);
2260 	} while (read_seqcount_retry(&tk_core.seq, seq));
2261 }
2262 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2263 
2264 void ktime_get_coarse_ts64(struct timespec64 *ts)
2265 {
2266 	struct timekeeper *tk = &tk_core.timekeeper;
2267 	struct timespec64 now, mono;
2268 	unsigned int seq;
2269 
2270 	do {
2271 		seq = read_seqcount_begin(&tk_core.seq);
2272 
2273 		now = tk_xtime(tk);
2274 		mono = tk->wall_to_monotonic;
2275 	} while (read_seqcount_retry(&tk_core.seq, seq));
2276 
2277 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2278 				now.tv_nsec + mono.tv_nsec);
2279 }
2280 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2281 
2282 /*
2283  * Must hold jiffies_lock
2284  */
2285 void do_timer(unsigned long ticks)
2286 {
2287 	jiffies_64 += ticks;
2288 	calc_global_load();
2289 }
2290 
2291 /**
2292  * ktime_get_update_offsets_now - hrtimer helper
2293  * @cwsseq:	pointer to check and store the clock was set sequence number
2294  * @offs_real:	pointer to storage for monotonic -> realtime offset
2295  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2296  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2297  *
2298  * Returns current monotonic time and updates the offsets if the
2299  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2300  * different.
2301  *
2302  * Called from hrtimer_interrupt() or retrigger_next_event()
2303  */
2304 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2305 				     ktime_t *offs_boot, ktime_t *offs_tai)
2306 {
2307 	struct timekeeper *tk = &tk_core.timekeeper;
2308 	unsigned int seq;
2309 	ktime_t base;
2310 	u64 nsecs;
2311 
2312 	do {
2313 		seq = read_seqcount_begin(&tk_core.seq);
2314 
2315 		base = tk->tkr_mono.base;
2316 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2317 		base = ktime_add_ns(base, nsecs);
2318 
2319 		if (*cwsseq != tk->clock_was_set_seq) {
2320 			*cwsseq = tk->clock_was_set_seq;
2321 			*offs_real = tk->offs_real;
2322 			*offs_boot = tk->offs_boot;
2323 			*offs_tai = tk->offs_tai;
2324 		}
2325 
2326 		/* Handle leapsecond insertion adjustments */
2327 		if (unlikely(base >= tk->next_leap_ktime))
2328 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2329 
2330 	} while (read_seqcount_retry(&tk_core.seq, seq));
2331 
2332 	return base;
2333 }
2334 
2335 /*
2336  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2337  */
2338 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2339 {
2340 	if (txc->modes & ADJ_ADJTIME) {
2341 		/* singleshot must not be used with any other mode bits */
2342 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2343 			return -EINVAL;
2344 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2345 		    !capable(CAP_SYS_TIME))
2346 			return -EPERM;
2347 	} else {
2348 		/* In order to modify anything, you gotta be super-user! */
2349 		if (txc->modes && !capable(CAP_SYS_TIME))
2350 			return -EPERM;
2351 		/*
2352 		 * if the quartz is off by more than 10% then
2353 		 * something is VERY wrong!
2354 		 */
2355 		if (txc->modes & ADJ_TICK &&
2356 		    (txc->tick <  900000/USER_HZ ||
2357 		     txc->tick > 1100000/USER_HZ))
2358 			return -EINVAL;
2359 	}
2360 
2361 	if (txc->modes & ADJ_SETOFFSET) {
2362 		/* In order to inject time, you gotta be super-user! */
2363 		if (!capable(CAP_SYS_TIME))
2364 			return -EPERM;
2365 
2366 		/*
2367 		 * Validate if a timespec/timeval used to inject a time
2368 		 * offset is valid.  Offsets can be positive or negative, so
2369 		 * we don't check tv_sec. The value of the timeval/timespec
2370 		 * is the sum of its fields,but *NOTE*:
2371 		 * The field tv_usec/tv_nsec must always be non-negative and
2372 		 * we can't have more nanoseconds/microseconds than a second.
2373 		 */
2374 		if (txc->time.tv_usec < 0)
2375 			return -EINVAL;
2376 
2377 		if (txc->modes & ADJ_NANO) {
2378 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2379 				return -EINVAL;
2380 		} else {
2381 			if (txc->time.tv_usec >= USEC_PER_SEC)
2382 				return -EINVAL;
2383 		}
2384 	}
2385 
2386 	/*
2387 	 * Check for potential multiplication overflows that can
2388 	 * only happen on 64-bit systems:
2389 	 */
2390 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2391 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2392 			return -EINVAL;
2393 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2394 			return -EINVAL;
2395 	}
2396 
2397 	return 0;
2398 }
2399 
2400 
2401 /**
2402  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2403  */
2404 int do_adjtimex(struct __kernel_timex *txc)
2405 {
2406 	struct timekeeper *tk = &tk_core.timekeeper;
2407 	struct audit_ntp_data ad;
2408 	bool clock_set = false;
2409 	struct timespec64 ts;
2410 	unsigned long flags;
2411 	s32 orig_tai, tai;
2412 	int ret;
2413 
2414 	/* Validate the data before disabling interrupts */
2415 	ret = timekeeping_validate_timex(txc);
2416 	if (ret)
2417 		return ret;
2418 
2419 	if (txc->modes & ADJ_SETOFFSET) {
2420 		struct timespec64 delta;
2421 		delta.tv_sec  = txc->time.tv_sec;
2422 		delta.tv_nsec = txc->time.tv_usec;
2423 		if (!(txc->modes & ADJ_NANO))
2424 			delta.tv_nsec *= 1000;
2425 		ret = timekeeping_inject_offset(&delta);
2426 		if (ret)
2427 			return ret;
2428 
2429 		audit_tk_injoffset(delta);
2430 	}
2431 
2432 	audit_ntp_init(&ad);
2433 
2434 	ktime_get_real_ts64(&ts);
2435 
2436 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2437 	write_seqcount_begin(&tk_core.seq);
2438 
2439 	orig_tai = tai = tk->tai_offset;
2440 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2441 
2442 	if (tai != orig_tai) {
2443 		__timekeeping_set_tai_offset(tk, tai);
2444 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2445 		clock_set = true;
2446 	}
2447 	tk_update_leap_state(tk);
2448 
2449 	write_seqcount_end(&tk_core.seq);
2450 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2451 
2452 	audit_ntp_log(&ad);
2453 
2454 	/* Update the multiplier immediately if frequency was set directly */
2455 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2456 		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2457 
2458 	if (clock_set)
2459 		clock_was_set(CLOCK_REALTIME);
2460 
2461 	ntp_notify_cmos_timer();
2462 
2463 	return ret;
2464 }
2465 
2466 #ifdef CONFIG_NTP_PPS
2467 /**
2468  * hardpps() - Accessor function to NTP __hardpps function
2469  */
2470 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2471 {
2472 	unsigned long flags;
2473 
2474 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2475 	write_seqcount_begin(&tk_core.seq);
2476 
2477 	__hardpps(phase_ts, raw_ts);
2478 
2479 	write_seqcount_end(&tk_core.seq);
2480 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2481 }
2482 EXPORT_SYMBOL(hardpps);
2483 #endif /* CONFIG_NTP_PPS */
2484