1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 26 #include "tick-internal.h" 27 #include "ntp_internal.h" 28 #include "timekeeping_internal.h" 29 30 #define TK_CLEAR_NTP (1 << 0) 31 #define TK_MIRROR (1 << 1) 32 #define TK_CLOCK_WAS_SET (1 << 2) 33 34 static struct timekeeper timekeeper; 35 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 36 static seqcount_t timekeeper_seq; 37 static struct timekeeper shadow_timekeeper; 38 39 /* flag for if timekeeping is suspended */ 40 int __read_mostly timekeeping_suspended; 41 42 /* Flag for if there is a persistent clock on this platform */ 43 bool __read_mostly persistent_clock_exist = false; 44 45 static inline void tk_normalize_xtime(struct timekeeper *tk) 46 { 47 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) { 48 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift; 49 tk->xtime_sec++; 50 } 51 } 52 53 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts) 54 { 55 tk->xtime_sec = ts->tv_sec; 56 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift; 57 } 58 59 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts) 60 { 61 tk->xtime_sec += ts->tv_sec; 62 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift; 63 tk_normalize_xtime(tk); 64 } 65 66 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm) 67 { 68 struct timespec tmp; 69 70 /* 71 * Verify consistency of: offset_real = -wall_to_monotonic 72 * before modifying anything 73 */ 74 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec, 75 -tk->wall_to_monotonic.tv_nsec); 76 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64); 77 tk->wall_to_monotonic = wtm; 78 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 79 tk->offs_real = timespec_to_ktime(tmp); 80 tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tk->tai_offset, 0)); 81 } 82 83 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t) 84 { 85 /* Verify consistency before modifying */ 86 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64); 87 88 tk->total_sleep_time = t; 89 tk->offs_boot = timespec_to_ktime(t); 90 } 91 92 /** 93 * timekeeper_setup_internals - Set up internals to use clocksource clock. 94 * 95 * @clock: Pointer to clocksource. 96 * 97 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 98 * pair and interval request. 99 * 100 * Unless you're the timekeeping code, you should not be using this! 101 */ 102 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 103 { 104 cycle_t interval; 105 u64 tmp, ntpinterval; 106 struct clocksource *old_clock; 107 108 old_clock = tk->clock; 109 tk->clock = clock; 110 tk->cycle_last = clock->cycle_last = clock->read(clock); 111 112 /* Do the ns -> cycle conversion first, using original mult */ 113 tmp = NTP_INTERVAL_LENGTH; 114 tmp <<= clock->shift; 115 ntpinterval = tmp; 116 tmp += clock->mult/2; 117 do_div(tmp, clock->mult); 118 if (tmp == 0) 119 tmp = 1; 120 121 interval = (cycle_t) tmp; 122 tk->cycle_interval = interval; 123 124 /* Go back from cycles -> shifted ns */ 125 tk->xtime_interval = (u64) interval * clock->mult; 126 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 127 tk->raw_interval = 128 ((u64) interval * clock->mult) >> clock->shift; 129 130 /* if changing clocks, convert xtime_nsec shift units */ 131 if (old_clock) { 132 int shift_change = clock->shift - old_clock->shift; 133 if (shift_change < 0) 134 tk->xtime_nsec >>= -shift_change; 135 else 136 tk->xtime_nsec <<= shift_change; 137 } 138 tk->shift = clock->shift; 139 140 tk->ntp_error = 0; 141 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 142 143 /* 144 * The timekeeper keeps its own mult values for the currently 145 * active clocksource. These value will be adjusted via NTP 146 * to counteract clock drifting. 147 */ 148 tk->mult = clock->mult; 149 } 150 151 /* Timekeeper helper functions. */ 152 153 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 154 u32 (*arch_gettimeoffset)(void); 155 156 u32 get_arch_timeoffset(void) 157 { 158 if (likely(arch_gettimeoffset)) 159 return arch_gettimeoffset(); 160 return 0; 161 } 162 #else 163 static inline u32 get_arch_timeoffset(void) { return 0; } 164 #endif 165 166 static inline s64 timekeeping_get_ns(struct timekeeper *tk) 167 { 168 cycle_t cycle_now, cycle_delta; 169 struct clocksource *clock; 170 s64 nsec; 171 172 /* read clocksource: */ 173 clock = tk->clock; 174 cycle_now = clock->read(clock); 175 176 /* calculate the delta since the last update_wall_time: */ 177 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 178 179 nsec = cycle_delta * tk->mult + tk->xtime_nsec; 180 nsec >>= tk->shift; 181 182 /* If arch requires, add in get_arch_timeoffset() */ 183 return nsec + get_arch_timeoffset(); 184 } 185 186 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 187 { 188 cycle_t cycle_now, cycle_delta; 189 struct clocksource *clock; 190 s64 nsec; 191 192 /* read clocksource: */ 193 clock = tk->clock; 194 cycle_now = clock->read(clock); 195 196 /* calculate the delta since the last update_wall_time: */ 197 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 198 199 /* convert delta to nanoseconds. */ 200 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 201 202 /* If arch requires, add in get_arch_timeoffset() */ 203 return nsec + get_arch_timeoffset(); 204 } 205 206 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 207 208 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 209 { 210 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 211 } 212 213 /** 214 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 215 */ 216 int pvclock_gtod_register_notifier(struct notifier_block *nb) 217 { 218 struct timekeeper *tk = &timekeeper; 219 unsigned long flags; 220 int ret; 221 222 raw_spin_lock_irqsave(&timekeeper_lock, flags); 223 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 224 update_pvclock_gtod(tk, true); 225 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 226 227 return ret; 228 } 229 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 230 231 /** 232 * pvclock_gtod_unregister_notifier - unregister a pvclock 233 * timedata update listener 234 */ 235 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 236 { 237 unsigned long flags; 238 int ret; 239 240 raw_spin_lock_irqsave(&timekeeper_lock, flags); 241 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 242 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 247 248 /* must hold timekeeper_lock */ 249 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 250 { 251 if (action & TK_CLEAR_NTP) { 252 tk->ntp_error = 0; 253 ntp_clear(); 254 } 255 update_vsyscall(tk); 256 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 257 258 if (action & TK_MIRROR) 259 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper)); 260 } 261 262 /** 263 * timekeeping_forward_now - update clock to the current time 264 * 265 * Forward the current clock to update its state since the last call to 266 * update_wall_time(). This is useful before significant clock changes, 267 * as it avoids having to deal with this time offset explicitly. 268 */ 269 static void timekeeping_forward_now(struct timekeeper *tk) 270 { 271 cycle_t cycle_now, cycle_delta; 272 struct clocksource *clock; 273 s64 nsec; 274 275 clock = tk->clock; 276 cycle_now = clock->read(clock); 277 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 278 tk->cycle_last = clock->cycle_last = cycle_now; 279 280 tk->xtime_nsec += cycle_delta * tk->mult; 281 282 /* If arch requires, add in get_arch_timeoffset() */ 283 tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift; 284 285 tk_normalize_xtime(tk); 286 287 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 288 timespec_add_ns(&tk->raw_time, nsec); 289 } 290 291 /** 292 * __getnstimeofday - Returns the time of day in a timespec. 293 * @ts: pointer to the timespec to be set 294 * 295 * Updates the time of day in the timespec. 296 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 297 */ 298 int __getnstimeofday(struct timespec *ts) 299 { 300 struct timekeeper *tk = &timekeeper; 301 unsigned long seq; 302 s64 nsecs = 0; 303 304 do { 305 seq = read_seqcount_begin(&timekeeper_seq); 306 307 ts->tv_sec = tk->xtime_sec; 308 nsecs = timekeeping_get_ns(tk); 309 310 } while (read_seqcount_retry(&timekeeper_seq, seq)); 311 312 ts->tv_nsec = 0; 313 timespec_add_ns(ts, nsecs); 314 315 /* 316 * Do not bail out early, in case there were callers still using 317 * the value, even in the face of the WARN_ON. 318 */ 319 if (unlikely(timekeeping_suspended)) 320 return -EAGAIN; 321 return 0; 322 } 323 EXPORT_SYMBOL(__getnstimeofday); 324 325 /** 326 * getnstimeofday - Returns the time of day in a timespec. 327 * @ts: pointer to the timespec to be set 328 * 329 * Returns the time of day in a timespec (WARN if suspended). 330 */ 331 void getnstimeofday(struct timespec *ts) 332 { 333 WARN_ON(__getnstimeofday(ts)); 334 } 335 EXPORT_SYMBOL(getnstimeofday); 336 337 ktime_t ktime_get(void) 338 { 339 struct timekeeper *tk = &timekeeper; 340 unsigned int seq; 341 s64 secs, nsecs; 342 343 WARN_ON(timekeeping_suspended); 344 345 do { 346 seq = read_seqcount_begin(&timekeeper_seq); 347 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 348 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec; 349 350 } while (read_seqcount_retry(&timekeeper_seq, seq)); 351 /* 352 * Use ktime_set/ktime_add_ns to create a proper ktime on 353 * 32-bit architectures without CONFIG_KTIME_SCALAR. 354 */ 355 return ktime_add_ns(ktime_set(secs, 0), nsecs); 356 } 357 EXPORT_SYMBOL_GPL(ktime_get); 358 359 /** 360 * ktime_get_ts - get the monotonic clock in timespec format 361 * @ts: pointer to timespec variable 362 * 363 * The function calculates the monotonic clock from the realtime 364 * clock and the wall_to_monotonic offset and stores the result 365 * in normalized timespec format in the variable pointed to by @ts. 366 */ 367 void ktime_get_ts(struct timespec *ts) 368 { 369 struct timekeeper *tk = &timekeeper; 370 struct timespec tomono; 371 s64 nsec; 372 unsigned int seq; 373 374 WARN_ON(timekeeping_suspended); 375 376 do { 377 seq = read_seqcount_begin(&timekeeper_seq); 378 ts->tv_sec = tk->xtime_sec; 379 nsec = timekeeping_get_ns(tk); 380 tomono = tk->wall_to_monotonic; 381 382 } while (read_seqcount_retry(&timekeeper_seq, seq)); 383 384 ts->tv_sec += tomono.tv_sec; 385 ts->tv_nsec = 0; 386 timespec_add_ns(ts, nsec + tomono.tv_nsec); 387 } 388 EXPORT_SYMBOL_GPL(ktime_get_ts); 389 390 391 /** 392 * timekeeping_clocktai - Returns the TAI time of day in a timespec 393 * @ts: pointer to the timespec to be set 394 * 395 * Returns the time of day in a timespec. 396 */ 397 void timekeeping_clocktai(struct timespec *ts) 398 { 399 struct timekeeper *tk = &timekeeper; 400 unsigned long seq; 401 u64 nsecs; 402 403 WARN_ON(timekeeping_suspended); 404 405 do { 406 seq = read_seqcount_begin(&timekeeper_seq); 407 408 ts->tv_sec = tk->xtime_sec + tk->tai_offset; 409 nsecs = timekeeping_get_ns(tk); 410 411 } while (read_seqcount_retry(&timekeeper_seq, seq)); 412 413 ts->tv_nsec = 0; 414 timespec_add_ns(ts, nsecs); 415 416 } 417 EXPORT_SYMBOL(timekeeping_clocktai); 418 419 420 /** 421 * ktime_get_clocktai - Returns the TAI time of day in a ktime 422 * 423 * Returns the time of day in a ktime. 424 */ 425 ktime_t ktime_get_clocktai(void) 426 { 427 struct timespec ts; 428 429 timekeeping_clocktai(&ts); 430 return timespec_to_ktime(ts); 431 } 432 EXPORT_SYMBOL(ktime_get_clocktai); 433 434 #ifdef CONFIG_NTP_PPS 435 436 /** 437 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 438 * @ts_raw: pointer to the timespec to be set to raw monotonic time 439 * @ts_real: pointer to the timespec to be set to the time of day 440 * 441 * This function reads both the time of day and raw monotonic time at the 442 * same time atomically and stores the resulting timestamps in timespec 443 * format. 444 */ 445 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 446 { 447 struct timekeeper *tk = &timekeeper; 448 unsigned long seq; 449 s64 nsecs_raw, nsecs_real; 450 451 WARN_ON_ONCE(timekeeping_suspended); 452 453 do { 454 seq = read_seqcount_begin(&timekeeper_seq); 455 456 *ts_raw = tk->raw_time; 457 ts_real->tv_sec = tk->xtime_sec; 458 ts_real->tv_nsec = 0; 459 460 nsecs_raw = timekeeping_get_ns_raw(tk); 461 nsecs_real = timekeeping_get_ns(tk); 462 463 } while (read_seqcount_retry(&timekeeper_seq, seq)); 464 465 timespec_add_ns(ts_raw, nsecs_raw); 466 timespec_add_ns(ts_real, nsecs_real); 467 } 468 EXPORT_SYMBOL(getnstime_raw_and_real); 469 470 #endif /* CONFIG_NTP_PPS */ 471 472 /** 473 * do_gettimeofday - Returns the time of day in a timeval 474 * @tv: pointer to the timeval to be set 475 * 476 * NOTE: Users should be converted to using getnstimeofday() 477 */ 478 void do_gettimeofday(struct timeval *tv) 479 { 480 struct timespec now; 481 482 getnstimeofday(&now); 483 tv->tv_sec = now.tv_sec; 484 tv->tv_usec = now.tv_nsec/1000; 485 } 486 EXPORT_SYMBOL(do_gettimeofday); 487 488 /** 489 * do_settimeofday - Sets the time of day 490 * @tv: pointer to the timespec variable containing the new time 491 * 492 * Sets the time of day to the new time and update NTP and notify hrtimers 493 */ 494 int do_settimeofday(const struct timespec *tv) 495 { 496 struct timekeeper *tk = &timekeeper; 497 struct timespec ts_delta, xt; 498 unsigned long flags; 499 500 if (!timespec_valid_strict(tv)) 501 return -EINVAL; 502 503 raw_spin_lock_irqsave(&timekeeper_lock, flags); 504 write_seqcount_begin(&timekeeper_seq); 505 506 timekeeping_forward_now(tk); 507 508 xt = tk_xtime(tk); 509 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec; 510 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec; 511 512 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta)); 513 514 tk_set_xtime(tk, tv); 515 516 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 517 518 write_seqcount_end(&timekeeper_seq); 519 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 520 521 /* signal hrtimers about time change */ 522 clock_was_set(); 523 524 return 0; 525 } 526 EXPORT_SYMBOL(do_settimeofday); 527 528 /** 529 * timekeeping_inject_offset - Adds or subtracts from the current time. 530 * @tv: pointer to the timespec variable containing the offset 531 * 532 * Adds or subtracts an offset value from the current time. 533 */ 534 int timekeeping_inject_offset(struct timespec *ts) 535 { 536 struct timekeeper *tk = &timekeeper; 537 unsigned long flags; 538 struct timespec tmp; 539 int ret = 0; 540 541 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 542 return -EINVAL; 543 544 raw_spin_lock_irqsave(&timekeeper_lock, flags); 545 write_seqcount_begin(&timekeeper_seq); 546 547 timekeeping_forward_now(tk); 548 549 /* Make sure the proposed value is valid */ 550 tmp = timespec_add(tk_xtime(tk), *ts); 551 if (!timespec_valid_strict(&tmp)) { 552 ret = -EINVAL; 553 goto error; 554 } 555 556 tk_xtime_add(tk, ts); 557 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts)); 558 559 error: /* even if we error out, we forwarded the time, so call update */ 560 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 561 562 write_seqcount_end(&timekeeper_seq); 563 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 564 565 /* signal hrtimers about time change */ 566 clock_was_set(); 567 568 return ret; 569 } 570 EXPORT_SYMBOL(timekeeping_inject_offset); 571 572 573 /** 574 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 575 * 576 */ 577 s32 timekeeping_get_tai_offset(void) 578 { 579 struct timekeeper *tk = &timekeeper; 580 unsigned int seq; 581 s32 ret; 582 583 do { 584 seq = read_seqcount_begin(&timekeeper_seq); 585 ret = tk->tai_offset; 586 } while (read_seqcount_retry(&timekeeper_seq, seq)); 587 588 return ret; 589 } 590 591 /** 592 * __timekeeping_set_tai_offset - Lock free worker function 593 * 594 */ 595 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 596 { 597 tk->tai_offset = tai_offset; 598 tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tai_offset, 0)); 599 } 600 601 /** 602 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 603 * 604 */ 605 void timekeeping_set_tai_offset(s32 tai_offset) 606 { 607 struct timekeeper *tk = &timekeeper; 608 unsigned long flags; 609 610 raw_spin_lock_irqsave(&timekeeper_lock, flags); 611 write_seqcount_begin(&timekeeper_seq); 612 __timekeeping_set_tai_offset(tk, tai_offset); 613 write_seqcount_end(&timekeeper_seq); 614 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 615 clock_was_set(); 616 } 617 618 /** 619 * change_clocksource - Swaps clocksources if a new one is available 620 * 621 * Accumulates current time interval and initializes new clocksource 622 */ 623 static int change_clocksource(void *data) 624 { 625 struct timekeeper *tk = &timekeeper; 626 struct clocksource *new, *old; 627 unsigned long flags; 628 629 new = (struct clocksource *) data; 630 631 raw_spin_lock_irqsave(&timekeeper_lock, flags); 632 write_seqcount_begin(&timekeeper_seq); 633 634 timekeeping_forward_now(tk); 635 /* 636 * If the cs is in module, get a module reference. Succeeds 637 * for built-in code (owner == NULL) as well. 638 */ 639 if (try_module_get(new->owner)) { 640 if (!new->enable || new->enable(new) == 0) { 641 old = tk->clock; 642 tk_setup_internals(tk, new); 643 if (old->disable) 644 old->disable(old); 645 module_put(old->owner); 646 } else { 647 module_put(new->owner); 648 } 649 } 650 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 651 652 write_seqcount_end(&timekeeper_seq); 653 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 654 655 return 0; 656 } 657 658 /** 659 * timekeeping_notify - Install a new clock source 660 * @clock: pointer to the clock source 661 * 662 * This function is called from clocksource.c after a new, better clock 663 * source has been registered. The caller holds the clocksource_mutex. 664 */ 665 int timekeeping_notify(struct clocksource *clock) 666 { 667 struct timekeeper *tk = &timekeeper; 668 669 if (tk->clock == clock) 670 return 0; 671 stop_machine(change_clocksource, clock, NULL); 672 tick_clock_notify(); 673 return tk->clock == clock ? 0 : -1; 674 } 675 676 /** 677 * ktime_get_real - get the real (wall-) time in ktime_t format 678 * 679 * returns the time in ktime_t format 680 */ 681 ktime_t ktime_get_real(void) 682 { 683 struct timespec now; 684 685 getnstimeofday(&now); 686 687 return timespec_to_ktime(now); 688 } 689 EXPORT_SYMBOL_GPL(ktime_get_real); 690 691 /** 692 * getrawmonotonic - Returns the raw monotonic time in a timespec 693 * @ts: pointer to the timespec to be set 694 * 695 * Returns the raw monotonic time (completely un-modified by ntp) 696 */ 697 void getrawmonotonic(struct timespec *ts) 698 { 699 struct timekeeper *tk = &timekeeper; 700 unsigned long seq; 701 s64 nsecs; 702 703 do { 704 seq = read_seqcount_begin(&timekeeper_seq); 705 nsecs = timekeeping_get_ns_raw(tk); 706 *ts = tk->raw_time; 707 708 } while (read_seqcount_retry(&timekeeper_seq, seq)); 709 710 timespec_add_ns(ts, nsecs); 711 } 712 EXPORT_SYMBOL(getrawmonotonic); 713 714 /** 715 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 716 */ 717 int timekeeping_valid_for_hres(void) 718 { 719 struct timekeeper *tk = &timekeeper; 720 unsigned long seq; 721 int ret; 722 723 do { 724 seq = read_seqcount_begin(&timekeeper_seq); 725 726 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 727 728 } while (read_seqcount_retry(&timekeeper_seq, seq)); 729 730 return ret; 731 } 732 733 /** 734 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 735 */ 736 u64 timekeeping_max_deferment(void) 737 { 738 struct timekeeper *tk = &timekeeper; 739 unsigned long seq; 740 u64 ret; 741 742 do { 743 seq = read_seqcount_begin(&timekeeper_seq); 744 745 ret = tk->clock->max_idle_ns; 746 747 } while (read_seqcount_retry(&timekeeper_seq, seq)); 748 749 return ret; 750 } 751 752 /** 753 * read_persistent_clock - Return time from the persistent clock. 754 * 755 * Weak dummy function for arches that do not yet support it. 756 * Reads the time from the battery backed persistent clock. 757 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 758 * 759 * XXX - Do be sure to remove it once all arches implement it. 760 */ 761 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 762 { 763 ts->tv_sec = 0; 764 ts->tv_nsec = 0; 765 } 766 767 /** 768 * read_boot_clock - Return time of the system start. 769 * 770 * Weak dummy function for arches that do not yet support it. 771 * Function to read the exact time the system has been started. 772 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 773 * 774 * XXX - Do be sure to remove it once all arches implement it. 775 */ 776 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 777 { 778 ts->tv_sec = 0; 779 ts->tv_nsec = 0; 780 } 781 782 /* 783 * timekeeping_init - Initializes the clocksource and common timekeeping values 784 */ 785 void __init timekeeping_init(void) 786 { 787 struct timekeeper *tk = &timekeeper; 788 struct clocksource *clock; 789 unsigned long flags; 790 struct timespec now, boot, tmp; 791 792 read_persistent_clock(&now); 793 794 if (!timespec_valid_strict(&now)) { 795 pr_warn("WARNING: Persistent clock returned invalid value!\n" 796 " Check your CMOS/BIOS settings.\n"); 797 now.tv_sec = 0; 798 now.tv_nsec = 0; 799 } else if (now.tv_sec || now.tv_nsec) 800 persistent_clock_exist = true; 801 802 read_boot_clock(&boot); 803 if (!timespec_valid_strict(&boot)) { 804 pr_warn("WARNING: Boot clock returned invalid value!\n" 805 " Check your CMOS/BIOS settings.\n"); 806 boot.tv_sec = 0; 807 boot.tv_nsec = 0; 808 } 809 810 raw_spin_lock_irqsave(&timekeeper_lock, flags); 811 write_seqcount_begin(&timekeeper_seq); 812 ntp_init(); 813 814 clock = clocksource_default_clock(); 815 if (clock->enable) 816 clock->enable(clock); 817 tk_setup_internals(tk, clock); 818 819 tk_set_xtime(tk, &now); 820 tk->raw_time.tv_sec = 0; 821 tk->raw_time.tv_nsec = 0; 822 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 823 boot = tk_xtime(tk); 824 825 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec); 826 tk_set_wall_to_mono(tk, tmp); 827 828 tmp.tv_sec = 0; 829 tmp.tv_nsec = 0; 830 tk_set_sleep_time(tk, tmp); 831 832 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper)); 833 834 write_seqcount_end(&timekeeper_seq); 835 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 836 } 837 838 /* time in seconds when suspend began */ 839 static struct timespec timekeeping_suspend_time; 840 841 /** 842 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 843 * @delta: pointer to a timespec delta value 844 * 845 * Takes a timespec offset measuring a suspend interval and properly 846 * adds the sleep offset to the timekeeping variables. 847 */ 848 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 849 struct timespec *delta) 850 { 851 if (!timespec_valid_strict(delta)) { 852 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 853 "sleep delta value!\n"); 854 return; 855 } 856 tk_xtime_add(tk, delta); 857 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta)); 858 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta)); 859 tk_debug_account_sleep_time(delta); 860 } 861 862 /** 863 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 864 * @delta: pointer to a timespec delta value 865 * 866 * This hook is for architectures that cannot support read_persistent_clock 867 * because their RTC/persistent clock is only accessible when irqs are enabled. 868 * 869 * This function should only be called by rtc_resume(), and allows 870 * a suspend offset to be injected into the timekeeping values. 871 */ 872 void timekeeping_inject_sleeptime(struct timespec *delta) 873 { 874 struct timekeeper *tk = &timekeeper; 875 unsigned long flags; 876 877 /* 878 * Make sure we don't set the clock twice, as timekeeping_resume() 879 * already did it 880 */ 881 if (has_persistent_clock()) 882 return; 883 884 raw_spin_lock_irqsave(&timekeeper_lock, flags); 885 write_seqcount_begin(&timekeeper_seq); 886 887 timekeeping_forward_now(tk); 888 889 __timekeeping_inject_sleeptime(tk, delta); 890 891 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 892 893 write_seqcount_end(&timekeeper_seq); 894 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 895 896 /* signal hrtimers about time change */ 897 clock_was_set(); 898 } 899 900 /** 901 * timekeeping_resume - Resumes the generic timekeeping subsystem. 902 * 903 * This is for the generic clocksource timekeeping. 904 * xtime/wall_to_monotonic/jiffies/etc are 905 * still managed by arch specific suspend/resume code. 906 */ 907 static void timekeeping_resume(void) 908 { 909 struct timekeeper *tk = &timekeeper; 910 struct clocksource *clock = tk->clock; 911 unsigned long flags; 912 struct timespec ts_new, ts_delta; 913 cycle_t cycle_now, cycle_delta; 914 bool suspendtime_found = false; 915 916 read_persistent_clock(&ts_new); 917 918 clockevents_resume(); 919 clocksource_resume(); 920 921 raw_spin_lock_irqsave(&timekeeper_lock, flags); 922 write_seqcount_begin(&timekeeper_seq); 923 924 /* 925 * After system resumes, we need to calculate the suspended time and 926 * compensate it for the OS time. There are 3 sources that could be 927 * used: Nonstop clocksource during suspend, persistent clock and rtc 928 * device. 929 * 930 * One specific platform may have 1 or 2 or all of them, and the 931 * preference will be: 932 * suspend-nonstop clocksource -> persistent clock -> rtc 933 * The less preferred source will only be tried if there is no better 934 * usable source. The rtc part is handled separately in rtc core code. 935 */ 936 cycle_now = clock->read(clock); 937 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 938 cycle_now > clock->cycle_last) { 939 u64 num, max = ULLONG_MAX; 940 u32 mult = clock->mult; 941 u32 shift = clock->shift; 942 s64 nsec = 0; 943 944 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 945 946 /* 947 * "cycle_delta * mutl" may cause 64 bits overflow, if the 948 * suspended time is too long. In that case we need do the 949 * 64 bits math carefully 950 */ 951 do_div(max, mult); 952 if (cycle_delta > max) { 953 num = div64_u64(cycle_delta, max); 954 nsec = (((u64) max * mult) >> shift) * num; 955 cycle_delta -= num * max; 956 } 957 nsec += ((u64) cycle_delta * mult) >> shift; 958 959 ts_delta = ns_to_timespec(nsec); 960 suspendtime_found = true; 961 } else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) { 962 ts_delta = timespec_sub(ts_new, timekeeping_suspend_time); 963 suspendtime_found = true; 964 } 965 966 if (suspendtime_found) 967 __timekeeping_inject_sleeptime(tk, &ts_delta); 968 969 /* Re-base the last cycle value */ 970 tk->cycle_last = clock->cycle_last = cycle_now; 971 tk->ntp_error = 0; 972 timekeeping_suspended = 0; 973 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 974 write_seqcount_end(&timekeeper_seq); 975 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 976 977 touch_softlockup_watchdog(); 978 979 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 980 981 /* Resume hrtimers */ 982 hrtimers_resume(); 983 } 984 985 static int timekeeping_suspend(void) 986 { 987 struct timekeeper *tk = &timekeeper; 988 unsigned long flags; 989 struct timespec delta, delta_delta; 990 static struct timespec old_delta; 991 992 read_persistent_clock(&timekeeping_suspend_time); 993 994 /* 995 * On some systems the persistent_clock can not be detected at 996 * timekeeping_init by its return value, so if we see a valid 997 * value returned, update the persistent_clock_exists flag. 998 */ 999 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1000 persistent_clock_exist = true; 1001 1002 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1003 write_seqcount_begin(&timekeeper_seq); 1004 timekeeping_forward_now(tk); 1005 timekeeping_suspended = 1; 1006 1007 /* 1008 * To avoid drift caused by repeated suspend/resumes, 1009 * which each can add ~1 second drift error, 1010 * try to compensate so the difference in system time 1011 * and persistent_clock time stays close to constant. 1012 */ 1013 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time); 1014 delta_delta = timespec_sub(delta, old_delta); 1015 if (abs(delta_delta.tv_sec) >= 2) { 1016 /* 1017 * if delta_delta is too large, assume time correction 1018 * has occured and set old_delta to the current delta. 1019 */ 1020 old_delta = delta; 1021 } else { 1022 /* Otherwise try to adjust old_system to compensate */ 1023 timekeeping_suspend_time = 1024 timespec_add(timekeeping_suspend_time, delta_delta); 1025 } 1026 write_seqcount_end(&timekeeper_seq); 1027 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1028 1029 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 1030 clocksource_suspend(); 1031 clockevents_suspend(); 1032 1033 return 0; 1034 } 1035 1036 /* sysfs resume/suspend bits for timekeeping */ 1037 static struct syscore_ops timekeeping_syscore_ops = { 1038 .resume = timekeeping_resume, 1039 .suspend = timekeeping_suspend, 1040 }; 1041 1042 static int __init timekeeping_init_ops(void) 1043 { 1044 register_syscore_ops(&timekeeping_syscore_ops); 1045 return 0; 1046 } 1047 1048 device_initcall(timekeeping_init_ops); 1049 1050 /* 1051 * If the error is already larger, we look ahead even further 1052 * to compensate for late or lost adjustments. 1053 */ 1054 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk, 1055 s64 error, s64 *interval, 1056 s64 *offset) 1057 { 1058 s64 tick_error, i; 1059 u32 look_ahead, adj; 1060 s32 error2, mult; 1061 1062 /* 1063 * Use the current error value to determine how much to look ahead. 1064 * The larger the error the slower we adjust for it to avoid problems 1065 * with losing too many ticks, otherwise we would overadjust and 1066 * produce an even larger error. The smaller the adjustment the 1067 * faster we try to adjust for it, as lost ticks can do less harm 1068 * here. This is tuned so that an error of about 1 msec is adjusted 1069 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 1070 */ 1071 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 1072 error2 = abs(error2); 1073 for (look_ahead = 0; error2 > 0; look_ahead++) 1074 error2 >>= 2; 1075 1076 /* 1077 * Now calculate the error in (1 << look_ahead) ticks, but first 1078 * remove the single look ahead already included in the error. 1079 */ 1080 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1); 1081 tick_error -= tk->xtime_interval >> 1; 1082 error = ((error - tick_error) >> look_ahead) + tick_error; 1083 1084 /* Finally calculate the adjustment shift value. */ 1085 i = *interval; 1086 mult = 1; 1087 if (error < 0) { 1088 error = -error; 1089 *interval = -*interval; 1090 *offset = -*offset; 1091 mult = -1; 1092 } 1093 for (adj = 0; error > i; adj++) 1094 error >>= 1; 1095 1096 *interval <<= adj; 1097 *offset <<= adj; 1098 return mult << adj; 1099 } 1100 1101 /* 1102 * Adjust the multiplier to reduce the error value, 1103 * this is optimized for the most common adjustments of -1,0,1, 1104 * for other values we can do a bit more work. 1105 */ 1106 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1107 { 1108 s64 error, interval = tk->cycle_interval; 1109 int adj; 1110 1111 /* 1112 * The point of this is to check if the error is greater than half 1113 * an interval. 1114 * 1115 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 1116 * 1117 * Note we subtract one in the shift, so that error is really error*2. 1118 * This "saves" dividing(shifting) interval twice, but keeps the 1119 * (error > interval) comparison as still measuring if error is 1120 * larger than half an interval. 1121 * 1122 * Note: It does not "save" on aggravation when reading the code. 1123 */ 1124 error = tk->ntp_error >> (tk->ntp_error_shift - 1); 1125 if (error > interval) { 1126 /* 1127 * We now divide error by 4(via shift), which checks if 1128 * the error is greater than twice the interval. 1129 * If it is greater, we need a bigadjust, if its smaller, 1130 * we can adjust by 1. 1131 */ 1132 error >>= 2; 1133 /* 1134 * XXX - In update_wall_time, we round up to the next 1135 * nanosecond, and store the amount rounded up into 1136 * the error. This causes the likely below to be unlikely. 1137 * 1138 * The proper fix is to avoid rounding up by using 1139 * the high precision tk->xtime_nsec instead of 1140 * xtime.tv_nsec everywhere. Fixing this will take some 1141 * time. 1142 */ 1143 if (likely(error <= interval)) 1144 adj = 1; 1145 else 1146 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 1147 } else { 1148 if (error < -interval) { 1149 /* See comment above, this is just switched for the negative */ 1150 error >>= 2; 1151 if (likely(error >= -interval)) { 1152 adj = -1; 1153 interval = -interval; 1154 offset = -offset; 1155 } else { 1156 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 1157 } 1158 } else { 1159 goto out_adjust; 1160 } 1161 } 1162 1163 if (unlikely(tk->clock->maxadj && 1164 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) { 1165 printk_once(KERN_WARNING 1166 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1167 tk->clock->name, (long)tk->mult + adj, 1168 (long)tk->clock->mult + tk->clock->maxadj); 1169 } 1170 /* 1171 * So the following can be confusing. 1172 * 1173 * To keep things simple, lets assume adj == 1 for now. 1174 * 1175 * When adj != 1, remember that the interval and offset values 1176 * have been appropriately scaled so the math is the same. 1177 * 1178 * The basic idea here is that we're increasing the multiplier 1179 * by one, this causes the xtime_interval to be incremented by 1180 * one cycle_interval. This is because: 1181 * xtime_interval = cycle_interval * mult 1182 * So if mult is being incremented by one: 1183 * xtime_interval = cycle_interval * (mult + 1) 1184 * Its the same as: 1185 * xtime_interval = (cycle_interval * mult) + cycle_interval 1186 * Which can be shortened to: 1187 * xtime_interval += cycle_interval 1188 * 1189 * So offset stores the non-accumulated cycles. Thus the current 1190 * time (in shifted nanoseconds) is: 1191 * now = (offset * adj) + xtime_nsec 1192 * Now, even though we're adjusting the clock frequency, we have 1193 * to keep time consistent. In other words, we can't jump back 1194 * in time, and we also want to avoid jumping forward in time. 1195 * 1196 * So given the same offset value, we need the time to be the same 1197 * both before and after the freq adjustment. 1198 * now = (offset * adj_1) + xtime_nsec_1 1199 * now = (offset * adj_2) + xtime_nsec_2 1200 * So: 1201 * (offset * adj_1) + xtime_nsec_1 = 1202 * (offset * adj_2) + xtime_nsec_2 1203 * And we know: 1204 * adj_2 = adj_1 + 1 1205 * So: 1206 * (offset * adj_1) + xtime_nsec_1 = 1207 * (offset * (adj_1+1)) + xtime_nsec_2 1208 * (offset * adj_1) + xtime_nsec_1 = 1209 * (offset * adj_1) + offset + xtime_nsec_2 1210 * Canceling the sides: 1211 * xtime_nsec_1 = offset + xtime_nsec_2 1212 * Which gives us: 1213 * xtime_nsec_2 = xtime_nsec_1 - offset 1214 * Which simplfies to: 1215 * xtime_nsec -= offset 1216 * 1217 * XXX - TODO: Doc ntp_error calculation. 1218 */ 1219 tk->mult += adj; 1220 tk->xtime_interval += interval; 1221 tk->xtime_nsec -= offset; 1222 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1223 1224 out_adjust: 1225 /* 1226 * It may be possible that when we entered this function, xtime_nsec 1227 * was very small. Further, if we're slightly speeding the clocksource 1228 * in the code above, its possible the required corrective factor to 1229 * xtime_nsec could cause it to underflow. 1230 * 1231 * Now, since we already accumulated the second, cannot simply roll 1232 * the accumulated second back, since the NTP subsystem has been 1233 * notified via second_overflow. So instead we push xtime_nsec forward 1234 * by the amount we underflowed, and add that amount into the error. 1235 * 1236 * We'll correct this error next time through this function, when 1237 * xtime_nsec is not as small. 1238 */ 1239 if (unlikely((s64)tk->xtime_nsec < 0)) { 1240 s64 neg = -(s64)tk->xtime_nsec; 1241 tk->xtime_nsec = 0; 1242 tk->ntp_error += neg << tk->ntp_error_shift; 1243 } 1244 1245 } 1246 1247 /** 1248 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1249 * 1250 * Helper function that accumulates a the nsecs greater then a second 1251 * from the xtime_nsec field to the xtime_secs field. 1252 * It also calls into the NTP code to handle leapsecond processing. 1253 * 1254 */ 1255 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1256 { 1257 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift; 1258 unsigned int action = 0; 1259 1260 while (tk->xtime_nsec >= nsecps) { 1261 int leap; 1262 1263 tk->xtime_nsec -= nsecps; 1264 tk->xtime_sec++; 1265 1266 /* Figure out if its a leap sec and apply if needed */ 1267 leap = second_overflow(tk->xtime_sec); 1268 if (unlikely(leap)) { 1269 struct timespec ts; 1270 1271 tk->xtime_sec += leap; 1272 1273 ts.tv_sec = leap; 1274 ts.tv_nsec = 0; 1275 tk_set_wall_to_mono(tk, 1276 timespec_sub(tk->wall_to_monotonic, ts)); 1277 1278 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1279 1280 clock_was_set_delayed(); 1281 action = TK_CLOCK_WAS_SET; 1282 } 1283 } 1284 return action; 1285 } 1286 1287 /** 1288 * logarithmic_accumulation - shifted accumulation of cycles 1289 * 1290 * This functions accumulates a shifted interval of cycles into 1291 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1292 * loop. 1293 * 1294 * Returns the unconsumed cycles. 1295 */ 1296 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1297 u32 shift) 1298 { 1299 cycle_t interval = tk->cycle_interval << shift; 1300 u64 raw_nsecs; 1301 1302 /* If the offset is smaller then a shifted interval, do nothing */ 1303 if (offset < interval) 1304 return offset; 1305 1306 /* Accumulate one shifted interval */ 1307 offset -= interval; 1308 tk->cycle_last += interval; 1309 1310 tk->xtime_nsec += tk->xtime_interval << shift; 1311 accumulate_nsecs_to_secs(tk); 1312 1313 /* Accumulate raw time */ 1314 raw_nsecs = (u64)tk->raw_interval << shift; 1315 raw_nsecs += tk->raw_time.tv_nsec; 1316 if (raw_nsecs >= NSEC_PER_SEC) { 1317 u64 raw_secs = raw_nsecs; 1318 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1319 tk->raw_time.tv_sec += raw_secs; 1320 } 1321 tk->raw_time.tv_nsec = raw_nsecs; 1322 1323 /* Accumulate error between NTP and clock interval */ 1324 tk->ntp_error += ntp_tick_length() << shift; 1325 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1326 (tk->ntp_error_shift + shift); 1327 1328 return offset; 1329 } 1330 1331 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 1332 static inline void old_vsyscall_fixup(struct timekeeper *tk) 1333 { 1334 s64 remainder; 1335 1336 /* 1337 * Store only full nanoseconds into xtime_nsec after rounding 1338 * it up and add the remainder to the error difference. 1339 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 1340 * by truncating the remainder in vsyscalls. However, it causes 1341 * additional work to be done in timekeeping_adjust(). Once 1342 * the vsyscall implementations are converted to use xtime_nsec 1343 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 1344 * users are removed, this can be killed. 1345 */ 1346 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1); 1347 tk->xtime_nsec -= remainder; 1348 tk->xtime_nsec += 1ULL << tk->shift; 1349 tk->ntp_error += remainder << tk->ntp_error_shift; 1350 1351 } 1352 #else 1353 #define old_vsyscall_fixup(tk) 1354 #endif 1355 1356 1357 1358 /** 1359 * update_wall_time - Uses the current clocksource to increment the wall time 1360 * 1361 */ 1362 static void update_wall_time(void) 1363 { 1364 struct clocksource *clock; 1365 struct timekeeper *real_tk = &timekeeper; 1366 struct timekeeper *tk = &shadow_timekeeper; 1367 cycle_t offset; 1368 int shift = 0, maxshift; 1369 unsigned int action; 1370 unsigned long flags; 1371 1372 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1373 1374 /* Make sure we're fully resumed: */ 1375 if (unlikely(timekeeping_suspended)) 1376 goto out; 1377 1378 clock = real_tk->clock; 1379 1380 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1381 offset = real_tk->cycle_interval; 1382 #else 1383 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1384 #endif 1385 1386 /* Check if there's really nothing to do */ 1387 if (offset < real_tk->cycle_interval) 1388 goto out; 1389 1390 /* 1391 * With NO_HZ we may have to accumulate many cycle_intervals 1392 * (think "ticks") worth of time at once. To do this efficiently, 1393 * we calculate the largest doubling multiple of cycle_intervals 1394 * that is smaller than the offset. We then accumulate that 1395 * chunk in one go, and then try to consume the next smaller 1396 * doubled multiple. 1397 */ 1398 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1399 shift = max(0, shift); 1400 /* Bound shift to one less than what overflows tick_length */ 1401 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1402 shift = min(shift, maxshift); 1403 while (offset >= tk->cycle_interval) { 1404 offset = logarithmic_accumulation(tk, offset, shift); 1405 if (offset < tk->cycle_interval<<shift) 1406 shift--; 1407 } 1408 1409 /* correct the clock when NTP error is too big */ 1410 timekeeping_adjust(tk, offset); 1411 1412 /* 1413 * XXX This can be killed once everyone converts 1414 * to the new update_vsyscall. 1415 */ 1416 old_vsyscall_fixup(tk); 1417 1418 /* 1419 * Finally, make sure that after the rounding 1420 * xtime_nsec isn't larger than NSEC_PER_SEC 1421 */ 1422 action = accumulate_nsecs_to_secs(tk); 1423 1424 write_seqcount_begin(&timekeeper_seq); 1425 /* Update clock->cycle_last with the new value */ 1426 clock->cycle_last = tk->cycle_last; 1427 /* 1428 * Update the real timekeeper. 1429 * 1430 * We could avoid this memcpy by switching pointers, but that 1431 * requires changes to all other timekeeper usage sites as 1432 * well, i.e. move the timekeeper pointer getter into the 1433 * spinlocked/seqcount protected sections. And we trade this 1434 * memcpy under the timekeeper_seq against one before we start 1435 * updating. 1436 */ 1437 memcpy(real_tk, tk, sizeof(*tk)); 1438 timekeeping_update(real_tk, action); 1439 write_seqcount_end(&timekeeper_seq); 1440 out: 1441 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1442 } 1443 1444 /** 1445 * getboottime - Return the real time of system boot. 1446 * @ts: pointer to the timespec to be set 1447 * 1448 * Returns the wall-time of boot in a timespec. 1449 * 1450 * This is based on the wall_to_monotonic offset and the total suspend 1451 * time. Calls to settimeofday will affect the value returned (which 1452 * basically means that however wrong your real time clock is at boot time, 1453 * you get the right time here). 1454 */ 1455 void getboottime(struct timespec *ts) 1456 { 1457 struct timekeeper *tk = &timekeeper; 1458 struct timespec boottime = { 1459 .tv_sec = tk->wall_to_monotonic.tv_sec + 1460 tk->total_sleep_time.tv_sec, 1461 .tv_nsec = tk->wall_to_monotonic.tv_nsec + 1462 tk->total_sleep_time.tv_nsec 1463 }; 1464 1465 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1466 } 1467 EXPORT_SYMBOL_GPL(getboottime); 1468 1469 /** 1470 * get_monotonic_boottime - Returns monotonic time since boot 1471 * @ts: pointer to the timespec to be set 1472 * 1473 * Returns the monotonic time since boot in a timespec. 1474 * 1475 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1476 * includes the time spent in suspend. 1477 */ 1478 void get_monotonic_boottime(struct timespec *ts) 1479 { 1480 struct timekeeper *tk = &timekeeper; 1481 struct timespec tomono, sleep; 1482 s64 nsec; 1483 unsigned int seq; 1484 1485 WARN_ON(timekeeping_suspended); 1486 1487 do { 1488 seq = read_seqcount_begin(&timekeeper_seq); 1489 ts->tv_sec = tk->xtime_sec; 1490 nsec = timekeeping_get_ns(tk); 1491 tomono = tk->wall_to_monotonic; 1492 sleep = tk->total_sleep_time; 1493 1494 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1495 1496 ts->tv_sec += tomono.tv_sec + sleep.tv_sec; 1497 ts->tv_nsec = 0; 1498 timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec); 1499 } 1500 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1501 1502 /** 1503 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1504 * 1505 * Returns the monotonic time since boot in a ktime 1506 * 1507 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1508 * includes the time spent in suspend. 1509 */ 1510 ktime_t ktime_get_boottime(void) 1511 { 1512 struct timespec ts; 1513 1514 get_monotonic_boottime(&ts); 1515 return timespec_to_ktime(ts); 1516 } 1517 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1518 1519 /** 1520 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1521 * @ts: pointer to the timespec to be converted 1522 */ 1523 void monotonic_to_bootbased(struct timespec *ts) 1524 { 1525 struct timekeeper *tk = &timekeeper; 1526 1527 *ts = timespec_add(*ts, tk->total_sleep_time); 1528 } 1529 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1530 1531 unsigned long get_seconds(void) 1532 { 1533 struct timekeeper *tk = &timekeeper; 1534 1535 return tk->xtime_sec; 1536 } 1537 EXPORT_SYMBOL(get_seconds); 1538 1539 struct timespec __current_kernel_time(void) 1540 { 1541 struct timekeeper *tk = &timekeeper; 1542 1543 return tk_xtime(tk); 1544 } 1545 1546 struct timespec current_kernel_time(void) 1547 { 1548 struct timekeeper *tk = &timekeeper; 1549 struct timespec now; 1550 unsigned long seq; 1551 1552 do { 1553 seq = read_seqcount_begin(&timekeeper_seq); 1554 1555 now = tk_xtime(tk); 1556 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1557 1558 return now; 1559 } 1560 EXPORT_SYMBOL(current_kernel_time); 1561 1562 struct timespec get_monotonic_coarse(void) 1563 { 1564 struct timekeeper *tk = &timekeeper; 1565 struct timespec now, mono; 1566 unsigned long seq; 1567 1568 do { 1569 seq = read_seqcount_begin(&timekeeper_seq); 1570 1571 now = tk_xtime(tk); 1572 mono = tk->wall_to_monotonic; 1573 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1574 1575 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1576 now.tv_nsec + mono.tv_nsec); 1577 return now; 1578 } 1579 1580 /* 1581 * Must hold jiffies_lock 1582 */ 1583 void do_timer(unsigned long ticks) 1584 { 1585 jiffies_64 += ticks; 1586 update_wall_time(); 1587 calc_global_load(ticks); 1588 } 1589 1590 /** 1591 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1592 * and sleep offsets. 1593 * @xtim: pointer to timespec to be set with xtime 1594 * @wtom: pointer to timespec to be set with wall_to_monotonic 1595 * @sleep: pointer to timespec to be set with time in suspend 1596 */ 1597 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1598 struct timespec *wtom, struct timespec *sleep) 1599 { 1600 struct timekeeper *tk = &timekeeper; 1601 unsigned long seq; 1602 1603 do { 1604 seq = read_seqcount_begin(&timekeeper_seq); 1605 *xtim = tk_xtime(tk); 1606 *wtom = tk->wall_to_monotonic; 1607 *sleep = tk->total_sleep_time; 1608 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1609 } 1610 1611 #ifdef CONFIG_HIGH_RES_TIMERS 1612 /** 1613 * ktime_get_update_offsets - hrtimer helper 1614 * @offs_real: pointer to storage for monotonic -> realtime offset 1615 * @offs_boot: pointer to storage for monotonic -> boottime offset 1616 * 1617 * Returns current monotonic time and updates the offsets 1618 * Called from hrtimer_interupt() or retrigger_next_event() 1619 */ 1620 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot, 1621 ktime_t *offs_tai) 1622 { 1623 struct timekeeper *tk = &timekeeper; 1624 ktime_t now; 1625 unsigned int seq; 1626 u64 secs, nsecs; 1627 1628 do { 1629 seq = read_seqcount_begin(&timekeeper_seq); 1630 1631 secs = tk->xtime_sec; 1632 nsecs = timekeeping_get_ns(tk); 1633 1634 *offs_real = tk->offs_real; 1635 *offs_boot = tk->offs_boot; 1636 *offs_tai = tk->offs_tai; 1637 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1638 1639 now = ktime_add_ns(ktime_set(secs, 0), nsecs); 1640 now = ktime_sub(now, *offs_real); 1641 return now; 1642 } 1643 #endif 1644 1645 /** 1646 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1647 */ 1648 ktime_t ktime_get_monotonic_offset(void) 1649 { 1650 struct timekeeper *tk = &timekeeper; 1651 unsigned long seq; 1652 struct timespec wtom; 1653 1654 do { 1655 seq = read_seqcount_begin(&timekeeper_seq); 1656 wtom = tk->wall_to_monotonic; 1657 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1658 1659 return timespec_to_ktime(wtom); 1660 } 1661 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1662 1663 /** 1664 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1665 */ 1666 int do_adjtimex(struct timex *txc) 1667 { 1668 struct timekeeper *tk = &timekeeper; 1669 unsigned long flags; 1670 struct timespec ts; 1671 s32 orig_tai, tai; 1672 int ret; 1673 1674 /* Validate the data before disabling interrupts */ 1675 ret = ntp_validate_timex(txc); 1676 if (ret) 1677 return ret; 1678 1679 if (txc->modes & ADJ_SETOFFSET) { 1680 struct timespec delta; 1681 delta.tv_sec = txc->time.tv_sec; 1682 delta.tv_nsec = txc->time.tv_usec; 1683 if (!(txc->modes & ADJ_NANO)) 1684 delta.tv_nsec *= 1000; 1685 ret = timekeeping_inject_offset(&delta); 1686 if (ret) 1687 return ret; 1688 } 1689 1690 getnstimeofday(&ts); 1691 1692 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1693 write_seqcount_begin(&timekeeper_seq); 1694 1695 orig_tai = tai = tk->tai_offset; 1696 ret = __do_adjtimex(txc, &ts, &tai); 1697 1698 if (tai != orig_tai) { 1699 __timekeeping_set_tai_offset(tk, tai); 1700 update_pvclock_gtod(tk, true); 1701 clock_was_set_delayed(); 1702 } 1703 write_seqcount_end(&timekeeper_seq); 1704 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1705 1706 ntp_notify_cmos_timer(); 1707 1708 return ret; 1709 } 1710 1711 #ifdef CONFIG_NTP_PPS 1712 /** 1713 * hardpps() - Accessor function to NTP __hardpps function 1714 */ 1715 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 1716 { 1717 unsigned long flags; 1718 1719 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1720 write_seqcount_begin(&timekeeper_seq); 1721 1722 __hardpps(phase_ts, raw_ts); 1723 1724 write_seqcount_end(&timekeeper_seq); 1725 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1726 } 1727 EXPORT_SYMBOL(hardpps); 1728 #endif 1729 1730 /** 1731 * xtime_update() - advances the timekeeping infrastructure 1732 * @ticks: number of ticks, that have elapsed since the last call. 1733 * 1734 * Must be called with interrupts disabled. 1735 */ 1736 void xtime_update(unsigned long ticks) 1737 { 1738 write_seqlock(&jiffies_lock); 1739 do_timer(ticks); 1740 write_sequnlock(&jiffies_lock); 1741 } 1742