xref: /openbmc/linux/kernel/time/timekeeping.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/clock.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/clocksource.h>
23 #include <linux/jiffies.h>
24 #include <linux/time.h>
25 #include <linux/tick.h>
26 #include <linux/stop_machine.h>
27 #include <linux/pvclock_gtod.h>
28 #include <linux/compiler.h>
29 
30 #include "tick-internal.h"
31 #include "ntp_internal.h"
32 #include "timekeeping_internal.h"
33 
34 #define TK_CLEAR_NTP		(1 << 0)
35 #define TK_MIRROR		(1 << 1)
36 #define TK_CLOCK_WAS_SET	(1 << 2)
37 
38 enum timekeeping_adv_mode {
39 	/* Update timekeeper when a tick has passed */
40 	TK_ADV_TICK,
41 
42 	/* Update timekeeper on a direct frequency change */
43 	TK_ADV_FREQ
44 };
45 
46 /*
47  * The most important data for readout fits into a single 64 byte
48  * cache line.
49  */
50 static struct {
51 	seqcount_t		seq;
52 	struct timekeeper	timekeeper;
53 } tk_core ____cacheline_aligned;
54 
55 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
56 static struct timekeeper shadow_timekeeper;
57 
58 /**
59  * struct tk_fast - NMI safe timekeeper
60  * @seq:	Sequence counter for protecting updates. The lowest bit
61  *		is the index for the tk_read_base array
62  * @base:	tk_read_base array. Access is indexed by the lowest bit of
63  *		@seq.
64  *
65  * See @update_fast_timekeeper() below.
66  */
67 struct tk_fast {
68 	seqcount_t		seq;
69 	struct tk_read_base	base[2];
70 };
71 
72 /* Suspend-time cycles value for halted fast timekeeper. */
73 static u64 cycles_at_suspend;
74 
75 static u64 dummy_clock_read(struct clocksource *cs)
76 {
77 	return cycles_at_suspend;
78 }
79 
80 static struct clocksource dummy_clock = {
81 	.read = dummy_clock_read,
82 };
83 
84 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
85 	.base[0] = { .clock = &dummy_clock, },
86 	.base[1] = { .clock = &dummy_clock, },
87 };
88 
89 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
90 	.base[0] = { .clock = &dummy_clock, },
91 	.base[1] = { .clock = &dummy_clock, },
92 };
93 
94 /* flag for if timekeeping is suspended */
95 int __read_mostly timekeeping_suspended;
96 
97 static inline void tk_normalize_xtime(struct timekeeper *tk)
98 {
99 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
100 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
101 		tk->xtime_sec++;
102 	}
103 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
104 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
105 		tk->raw_sec++;
106 	}
107 }
108 
109 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
110 {
111 	struct timespec64 ts;
112 
113 	ts.tv_sec = tk->xtime_sec;
114 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
115 	return ts;
116 }
117 
118 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
119 {
120 	tk->xtime_sec = ts->tv_sec;
121 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
122 }
123 
124 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
125 {
126 	tk->xtime_sec += ts->tv_sec;
127 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
128 	tk_normalize_xtime(tk);
129 }
130 
131 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
132 {
133 	struct timespec64 tmp;
134 
135 	/*
136 	 * Verify consistency of: offset_real = -wall_to_monotonic
137 	 * before modifying anything
138 	 */
139 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
140 					-tk->wall_to_monotonic.tv_nsec);
141 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
142 	tk->wall_to_monotonic = wtm;
143 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
144 	tk->offs_real = timespec64_to_ktime(tmp);
145 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
146 }
147 
148 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
149 {
150 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
151 }
152 
153 /*
154  * tk_clock_read - atomic clocksource read() helper
155  *
156  * This helper is necessary to use in the read paths because, while the
157  * seqlock ensures we don't return a bad value while structures are updated,
158  * it doesn't protect from potential crashes. There is the possibility that
159  * the tkr's clocksource may change between the read reference, and the
160  * clock reference passed to the read function.  This can cause crashes if
161  * the wrong clocksource is passed to the wrong read function.
162  * This isn't necessary to use when holding the timekeeper_lock or doing
163  * a read of the fast-timekeeper tkrs (which is protected by its own locking
164  * and update logic).
165  */
166 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
167 {
168 	struct clocksource *clock = READ_ONCE(tkr->clock);
169 
170 	return clock->read(clock);
171 }
172 
173 #ifdef CONFIG_DEBUG_TIMEKEEPING
174 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
175 
176 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
177 {
178 
179 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
180 	const char *name = tk->tkr_mono.clock->name;
181 
182 	if (offset > max_cycles) {
183 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
184 				offset, name, max_cycles);
185 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
186 	} else {
187 		if (offset > (max_cycles >> 1)) {
188 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
189 					offset, name, max_cycles >> 1);
190 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
191 		}
192 	}
193 
194 	if (tk->underflow_seen) {
195 		if (jiffies - tk->last_warning > WARNING_FREQ) {
196 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
197 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
198 			printk_deferred("         Your kernel is probably still fine.\n");
199 			tk->last_warning = jiffies;
200 		}
201 		tk->underflow_seen = 0;
202 	}
203 
204 	if (tk->overflow_seen) {
205 		if (jiffies - tk->last_warning > WARNING_FREQ) {
206 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
207 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
208 			printk_deferred("         Your kernel is probably still fine.\n");
209 			tk->last_warning = jiffies;
210 		}
211 		tk->overflow_seen = 0;
212 	}
213 }
214 
215 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
216 {
217 	struct timekeeper *tk = &tk_core.timekeeper;
218 	u64 now, last, mask, max, delta;
219 	unsigned int seq;
220 
221 	/*
222 	 * Since we're called holding a seqlock, the data may shift
223 	 * under us while we're doing the calculation. This can cause
224 	 * false positives, since we'd note a problem but throw the
225 	 * results away. So nest another seqlock here to atomically
226 	 * grab the points we are checking with.
227 	 */
228 	do {
229 		seq = read_seqcount_begin(&tk_core.seq);
230 		now = tk_clock_read(tkr);
231 		last = tkr->cycle_last;
232 		mask = tkr->mask;
233 		max = tkr->clock->max_cycles;
234 	} while (read_seqcount_retry(&tk_core.seq, seq));
235 
236 	delta = clocksource_delta(now, last, mask);
237 
238 	/*
239 	 * Try to catch underflows by checking if we are seeing small
240 	 * mask-relative negative values.
241 	 */
242 	if (unlikely((~delta & mask) < (mask >> 3))) {
243 		tk->underflow_seen = 1;
244 		delta = 0;
245 	}
246 
247 	/* Cap delta value to the max_cycles values to avoid mult overflows */
248 	if (unlikely(delta > max)) {
249 		tk->overflow_seen = 1;
250 		delta = tkr->clock->max_cycles;
251 	}
252 
253 	return delta;
254 }
255 #else
256 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
257 {
258 }
259 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
260 {
261 	u64 cycle_now, delta;
262 
263 	/* read clocksource */
264 	cycle_now = tk_clock_read(tkr);
265 
266 	/* calculate the delta since the last update_wall_time */
267 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
268 
269 	return delta;
270 }
271 #endif
272 
273 /**
274  * tk_setup_internals - Set up internals to use clocksource clock.
275  *
276  * @tk:		The target timekeeper to setup.
277  * @clock:		Pointer to clocksource.
278  *
279  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
280  * pair and interval request.
281  *
282  * Unless you're the timekeeping code, you should not be using this!
283  */
284 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
285 {
286 	u64 interval;
287 	u64 tmp, ntpinterval;
288 	struct clocksource *old_clock;
289 
290 	++tk->cs_was_changed_seq;
291 	old_clock = tk->tkr_mono.clock;
292 	tk->tkr_mono.clock = clock;
293 	tk->tkr_mono.mask = clock->mask;
294 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
295 
296 	tk->tkr_raw.clock = clock;
297 	tk->tkr_raw.mask = clock->mask;
298 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
299 
300 	/* Do the ns -> cycle conversion first, using original mult */
301 	tmp = NTP_INTERVAL_LENGTH;
302 	tmp <<= clock->shift;
303 	ntpinterval = tmp;
304 	tmp += clock->mult/2;
305 	do_div(tmp, clock->mult);
306 	if (tmp == 0)
307 		tmp = 1;
308 
309 	interval = (u64) tmp;
310 	tk->cycle_interval = interval;
311 
312 	/* Go back from cycles -> shifted ns */
313 	tk->xtime_interval = interval * clock->mult;
314 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
315 	tk->raw_interval = interval * clock->mult;
316 
317 	 /* if changing clocks, convert xtime_nsec shift units */
318 	if (old_clock) {
319 		int shift_change = clock->shift - old_clock->shift;
320 		if (shift_change < 0) {
321 			tk->tkr_mono.xtime_nsec >>= -shift_change;
322 			tk->tkr_raw.xtime_nsec >>= -shift_change;
323 		} else {
324 			tk->tkr_mono.xtime_nsec <<= shift_change;
325 			tk->tkr_raw.xtime_nsec <<= shift_change;
326 		}
327 	}
328 
329 	tk->tkr_mono.shift = clock->shift;
330 	tk->tkr_raw.shift = clock->shift;
331 
332 	tk->ntp_error = 0;
333 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
334 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
335 
336 	/*
337 	 * The timekeeper keeps its own mult values for the currently
338 	 * active clocksource. These value will be adjusted via NTP
339 	 * to counteract clock drifting.
340 	 */
341 	tk->tkr_mono.mult = clock->mult;
342 	tk->tkr_raw.mult = clock->mult;
343 	tk->ntp_err_mult = 0;
344 	tk->skip_second_overflow = 0;
345 }
346 
347 /* Timekeeper helper functions. */
348 
349 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
350 static u32 default_arch_gettimeoffset(void) { return 0; }
351 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
352 #else
353 static inline u32 arch_gettimeoffset(void) { return 0; }
354 #endif
355 
356 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
357 {
358 	u64 nsec;
359 
360 	nsec = delta * tkr->mult + tkr->xtime_nsec;
361 	nsec >>= tkr->shift;
362 
363 	/* If arch requires, add in get_arch_timeoffset() */
364 	return nsec + arch_gettimeoffset();
365 }
366 
367 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
368 {
369 	u64 delta;
370 
371 	delta = timekeeping_get_delta(tkr);
372 	return timekeeping_delta_to_ns(tkr, delta);
373 }
374 
375 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
376 {
377 	u64 delta;
378 
379 	/* calculate the delta since the last update_wall_time */
380 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
381 	return timekeeping_delta_to_ns(tkr, delta);
382 }
383 
384 /**
385  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
386  * @tkr: Timekeeping readout base from which we take the update
387  *
388  * We want to use this from any context including NMI and tracing /
389  * instrumenting the timekeeping code itself.
390  *
391  * Employ the latch technique; see @raw_write_seqcount_latch.
392  *
393  * So if a NMI hits the update of base[0] then it will use base[1]
394  * which is still consistent. In the worst case this can result is a
395  * slightly wrong timestamp (a few nanoseconds). See
396  * @ktime_get_mono_fast_ns.
397  */
398 static void update_fast_timekeeper(const struct tk_read_base *tkr,
399 				   struct tk_fast *tkf)
400 {
401 	struct tk_read_base *base = tkf->base;
402 
403 	/* Force readers off to base[1] */
404 	raw_write_seqcount_latch(&tkf->seq);
405 
406 	/* Update base[0] */
407 	memcpy(base, tkr, sizeof(*base));
408 
409 	/* Force readers back to base[0] */
410 	raw_write_seqcount_latch(&tkf->seq);
411 
412 	/* Update base[1] */
413 	memcpy(base + 1, base, sizeof(*base));
414 }
415 
416 /**
417  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
418  *
419  * This timestamp is not guaranteed to be monotonic across an update.
420  * The timestamp is calculated by:
421  *
422  *	now = base_mono + clock_delta * slope
423  *
424  * So if the update lowers the slope, readers who are forced to the
425  * not yet updated second array are still using the old steeper slope.
426  *
427  * tmono
428  * ^
429  * |    o  n
430  * |   o n
431  * |  u
432  * | o
433  * |o
434  * |12345678---> reader order
435  *
436  * o = old slope
437  * u = update
438  * n = new slope
439  *
440  * So reader 6 will observe time going backwards versus reader 5.
441  *
442  * While other CPUs are likely to be able observe that, the only way
443  * for a CPU local observation is when an NMI hits in the middle of
444  * the update. Timestamps taken from that NMI context might be ahead
445  * of the following timestamps. Callers need to be aware of that and
446  * deal with it.
447  */
448 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
449 {
450 	struct tk_read_base *tkr;
451 	unsigned int seq;
452 	u64 now;
453 
454 	do {
455 		seq = raw_read_seqcount_latch(&tkf->seq);
456 		tkr = tkf->base + (seq & 0x01);
457 		now = ktime_to_ns(tkr->base);
458 
459 		now += timekeeping_delta_to_ns(tkr,
460 				clocksource_delta(
461 					tk_clock_read(tkr),
462 					tkr->cycle_last,
463 					tkr->mask));
464 	} while (read_seqcount_retry(&tkf->seq, seq));
465 
466 	return now;
467 }
468 
469 u64 ktime_get_mono_fast_ns(void)
470 {
471 	return __ktime_get_fast_ns(&tk_fast_mono);
472 }
473 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
474 
475 u64 ktime_get_raw_fast_ns(void)
476 {
477 	return __ktime_get_fast_ns(&tk_fast_raw);
478 }
479 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
480 
481 /**
482  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
483  *
484  * To keep it NMI safe since we're accessing from tracing, we're not using a
485  * separate timekeeper with updates to monotonic clock and boot offset
486  * protected with seqlocks. This has the following minor side effects:
487  *
488  * (1) Its possible that a timestamp be taken after the boot offset is updated
489  * but before the timekeeper is updated. If this happens, the new boot offset
490  * is added to the old timekeeping making the clock appear to update slightly
491  * earlier:
492  *    CPU 0                                        CPU 1
493  *    timekeeping_inject_sleeptime64()
494  *    __timekeeping_inject_sleeptime(tk, delta);
495  *                                                 timestamp();
496  *    timekeeping_update(tk, TK_CLEAR_NTP...);
497  *
498  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
499  * partially updated.  Since the tk->offs_boot update is a rare event, this
500  * should be a rare occurrence which postprocessing should be able to handle.
501  */
502 u64 notrace ktime_get_boot_fast_ns(void)
503 {
504 	struct timekeeper *tk = &tk_core.timekeeper;
505 
506 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
507 }
508 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
509 
510 
511 /*
512  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
513  */
514 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
515 {
516 	struct tk_read_base *tkr;
517 	unsigned int seq;
518 	u64 now;
519 
520 	do {
521 		seq = raw_read_seqcount_latch(&tkf->seq);
522 		tkr = tkf->base + (seq & 0x01);
523 		now = ktime_to_ns(tkr->base_real);
524 
525 		now += timekeeping_delta_to_ns(tkr,
526 				clocksource_delta(
527 					tk_clock_read(tkr),
528 					tkr->cycle_last,
529 					tkr->mask));
530 	} while (read_seqcount_retry(&tkf->seq, seq));
531 
532 	return now;
533 }
534 
535 /**
536  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
537  */
538 u64 ktime_get_real_fast_ns(void)
539 {
540 	return __ktime_get_real_fast_ns(&tk_fast_mono);
541 }
542 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
543 
544 /**
545  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
546  * @tk: Timekeeper to snapshot.
547  *
548  * It generally is unsafe to access the clocksource after timekeeping has been
549  * suspended, so take a snapshot of the readout base of @tk and use it as the
550  * fast timekeeper's readout base while suspended.  It will return the same
551  * number of cycles every time until timekeeping is resumed at which time the
552  * proper readout base for the fast timekeeper will be restored automatically.
553  */
554 static void halt_fast_timekeeper(const struct timekeeper *tk)
555 {
556 	static struct tk_read_base tkr_dummy;
557 	const struct tk_read_base *tkr = &tk->tkr_mono;
558 
559 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
560 	cycles_at_suspend = tk_clock_read(tkr);
561 	tkr_dummy.clock = &dummy_clock;
562 	tkr_dummy.base_real = tkr->base + tk->offs_real;
563 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
564 
565 	tkr = &tk->tkr_raw;
566 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
567 	tkr_dummy.clock = &dummy_clock;
568 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
569 }
570 
571 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
572 
573 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
574 {
575 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
576 }
577 
578 /**
579  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
580  */
581 int pvclock_gtod_register_notifier(struct notifier_block *nb)
582 {
583 	struct timekeeper *tk = &tk_core.timekeeper;
584 	unsigned long flags;
585 	int ret;
586 
587 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
588 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
589 	update_pvclock_gtod(tk, true);
590 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
591 
592 	return ret;
593 }
594 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
595 
596 /**
597  * pvclock_gtod_unregister_notifier - unregister a pvclock
598  * timedata update listener
599  */
600 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
601 {
602 	unsigned long flags;
603 	int ret;
604 
605 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
606 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
607 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
608 
609 	return ret;
610 }
611 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
612 
613 /*
614  * tk_update_leap_state - helper to update the next_leap_ktime
615  */
616 static inline void tk_update_leap_state(struct timekeeper *tk)
617 {
618 	tk->next_leap_ktime = ntp_get_next_leap();
619 	if (tk->next_leap_ktime != KTIME_MAX)
620 		/* Convert to monotonic time */
621 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
622 }
623 
624 /*
625  * Update the ktime_t based scalar nsec members of the timekeeper
626  */
627 static inline void tk_update_ktime_data(struct timekeeper *tk)
628 {
629 	u64 seconds;
630 	u32 nsec;
631 
632 	/*
633 	 * The xtime based monotonic readout is:
634 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
635 	 * The ktime based monotonic readout is:
636 	 *	nsec = base_mono + now();
637 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
638 	 */
639 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
640 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
641 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
642 
643 	/*
644 	 * The sum of the nanoseconds portions of xtime and
645 	 * wall_to_monotonic can be greater/equal one second. Take
646 	 * this into account before updating tk->ktime_sec.
647 	 */
648 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
649 	if (nsec >= NSEC_PER_SEC)
650 		seconds++;
651 	tk->ktime_sec = seconds;
652 
653 	/* Update the monotonic raw base */
654 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
655 }
656 
657 /* must hold timekeeper_lock */
658 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
659 {
660 	if (action & TK_CLEAR_NTP) {
661 		tk->ntp_error = 0;
662 		ntp_clear();
663 	}
664 
665 	tk_update_leap_state(tk);
666 	tk_update_ktime_data(tk);
667 
668 	update_vsyscall(tk);
669 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
670 
671 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
672 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
673 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
674 
675 	if (action & TK_CLOCK_WAS_SET)
676 		tk->clock_was_set_seq++;
677 	/*
678 	 * The mirroring of the data to the shadow-timekeeper needs
679 	 * to happen last here to ensure we don't over-write the
680 	 * timekeeper structure on the next update with stale data
681 	 */
682 	if (action & TK_MIRROR)
683 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
684 		       sizeof(tk_core.timekeeper));
685 }
686 
687 /**
688  * timekeeping_forward_now - update clock to the current time
689  *
690  * Forward the current clock to update its state since the last call to
691  * update_wall_time(). This is useful before significant clock changes,
692  * as it avoids having to deal with this time offset explicitly.
693  */
694 static void timekeeping_forward_now(struct timekeeper *tk)
695 {
696 	u64 cycle_now, delta;
697 
698 	cycle_now = tk_clock_read(&tk->tkr_mono);
699 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
700 	tk->tkr_mono.cycle_last = cycle_now;
701 	tk->tkr_raw.cycle_last  = cycle_now;
702 
703 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
704 
705 	/* If arch requires, add in get_arch_timeoffset() */
706 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
707 
708 
709 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
710 
711 	/* If arch requires, add in get_arch_timeoffset() */
712 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
713 
714 	tk_normalize_xtime(tk);
715 }
716 
717 /**
718  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
719  * @ts:		pointer to the timespec to be set
720  *
721  * Returns the time of day in a timespec64 (WARN if suspended).
722  */
723 void ktime_get_real_ts64(struct timespec64 *ts)
724 {
725 	struct timekeeper *tk = &tk_core.timekeeper;
726 	unsigned long seq;
727 	u64 nsecs;
728 
729 	WARN_ON(timekeeping_suspended);
730 
731 	do {
732 		seq = read_seqcount_begin(&tk_core.seq);
733 
734 		ts->tv_sec = tk->xtime_sec;
735 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
736 
737 	} while (read_seqcount_retry(&tk_core.seq, seq));
738 
739 	ts->tv_nsec = 0;
740 	timespec64_add_ns(ts, nsecs);
741 }
742 EXPORT_SYMBOL(ktime_get_real_ts64);
743 
744 ktime_t ktime_get(void)
745 {
746 	struct timekeeper *tk = &tk_core.timekeeper;
747 	unsigned int seq;
748 	ktime_t base;
749 	u64 nsecs;
750 
751 	WARN_ON(timekeeping_suspended);
752 
753 	do {
754 		seq = read_seqcount_begin(&tk_core.seq);
755 		base = tk->tkr_mono.base;
756 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
757 
758 	} while (read_seqcount_retry(&tk_core.seq, seq));
759 
760 	return ktime_add_ns(base, nsecs);
761 }
762 EXPORT_SYMBOL_GPL(ktime_get);
763 
764 u32 ktime_get_resolution_ns(void)
765 {
766 	struct timekeeper *tk = &tk_core.timekeeper;
767 	unsigned int seq;
768 	u32 nsecs;
769 
770 	WARN_ON(timekeeping_suspended);
771 
772 	do {
773 		seq = read_seqcount_begin(&tk_core.seq);
774 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
775 	} while (read_seqcount_retry(&tk_core.seq, seq));
776 
777 	return nsecs;
778 }
779 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
780 
781 static ktime_t *offsets[TK_OFFS_MAX] = {
782 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
783 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
784 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
785 };
786 
787 ktime_t ktime_get_with_offset(enum tk_offsets offs)
788 {
789 	struct timekeeper *tk = &tk_core.timekeeper;
790 	unsigned int seq;
791 	ktime_t base, *offset = offsets[offs];
792 	u64 nsecs;
793 
794 	WARN_ON(timekeeping_suspended);
795 
796 	do {
797 		seq = read_seqcount_begin(&tk_core.seq);
798 		base = ktime_add(tk->tkr_mono.base, *offset);
799 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
800 
801 	} while (read_seqcount_retry(&tk_core.seq, seq));
802 
803 	return ktime_add_ns(base, nsecs);
804 
805 }
806 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
807 
808 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
809 {
810 	struct timekeeper *tk = &tk_core.timekeeper;
811 	unsigned int seq;
812 	ktime_t base, *offset = offsets[offs];
813 
814 	WARN_ON(timekeeping_suspended);
815 
816 	do {
817 		seq = read_seqcount_begin(&tk_core.seq);
818 		base = ktime_add(tk->tkr_mono.base, *offset);
819 
820 	} while (read_seqcount_retry(&tk_core.seq, seq));
821 
822 	return base;
823 
824 }
825 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
826 
827 /**
828  * ktime_mono_to_any() - convert mononotic time to any other time
829  * @tmono:	time to convert.
830  * @offs:	which offset to use
831  */
832 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
833 {
834 	ktime_t *offset = offsets[offs];
835 	unsigned long seq;
836 	ktime_t tconv;
837 
838 	do {
839 		seq = read_seqcount_begin(&tk_core.seq);
840 		tconv = ktime_add(tmono, *offset);
841 	} while (read_seqcount_retry(&tk_core.seq, seq));
842 
843 	return tconv;
844 }
845 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
846 
847 /**
848  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
849  */
850 ktime_t ktime_get_raw(void)
851 {
852 	struct timekeeper *tk = &tk_core.timekeeper;
853 	unsigned int seq;
854 	ktime_t base;
855 	u64 nsecs;
856 
857 	do {
858 		seq = read_seqcount_begin(&tk_core.seq);
859 		base = tk->tkr_raw.base;
860 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
861 
862 	} while (read_seqcount_retry(&tk_core.seq, seq));
863 
864 	return ktime_add_ns(base, nsecs);
865 }
866 EXPORT_SYMBOL_GPL(ktime_get_raw);
867 
868 /**
869  * ktime_get_ts64 - get the monotonic clock in timespec64 format
870  * @ts:		pointer to timespec variable
871  *
872  * The function calculates the monotonic clock from the realtime
873  * clock and the wall_to_monotonic offset and stores the result
874  * in normalized timespec64 format in the variable pointed to by @ts.
875  */
876 void ktime_get_ts64(struct timespec64 *ts)
877 {
878 	struct timekeeper *tk = &tk_core.timekeeper;
879 	struct timespec64 tomono;
880 	unsigned int seq;
881 	u64 nsec;
882 
883 	WARN_ON(timekeeping_suspended);
884 
885 	do {
886 		seq = read_seqcount_begin(&tk_core.seq);
887 		ts->tv_sec = tk->xtime_sec;
888 		nsec = timekeeping_get_ns(&tk->tkr_mono);
889 		tomono = tk->wall_to_monotonic;
890 
891 	} while (read_seqcount_retry(&tk_core.seq, seq));
892 
893 	ts->tv_sec += tomono.tv_sec;
894 	ts->tv_nsec = 0;
895 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
896 }
897 EXPORT_SYMBOL_GPL(ktime_get_ts64);
898 
899 /**
900  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
901  *
902  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
903  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
904  * works on both 32 and 64 bit systems. On 32 bit systems the readout
905  * covers ~136 years of uptime which should be enough to prevent
906  * premature wrap arounds.
907  */
908 time64_t ktime_get_seconds(void)
909 {
910 	struct timekeeper *tk = &tk_core.timekeeper;
911 
912 	WARN_ON(timekeeping_suspended);
913 	return tk->ktime_sec;
914 }
915 EXPORT_SYMBOL_GPL(ktime_get_seconds);
916 
917 /**
918  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
919  *
920  * Returns the wall clock seconds since 1970. This replaces the
921  * get_seconds() interface which is not y2038 safe on 32bit systems.
922  *
923  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
924  * 32bit systems the access must be protected with the sequence
925  * counter to provide "atomic" access to the 64bit tk->xtime_sec
926  * value.
927  */
928 time64_t ktime_get_real_seconds(void)
929 {
930 	struct timekeeper *tk = &tk_core.timekeeper;
931 	time64_t seconds;
932 	unsigned int seq;
933 
934 	if (IS_ENABLED(CONFIG_64BIT))
935 		return tk->xtime_sec;
936 
937 	do {
938 		seq = read_seqcount_begin(&tk_core.seq);
939 		seconds = tk->xtime_sec;
940 
941 	} while (read_seqcount_retry(&tk_core.seq, seq));
942 
943 	return seconds;
944 }
945 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
946 
947 /**
948  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
949  * but without the sequence counter protect. This internal function
950  * is called just when timekeeping lock is already held.
951  */
952 time64_t __ktime_get_real_seconds(void)
953 {
954 	struct timekeeper *tk = &tk_core.timekeeper;
955 
956 	return tk->xtime_sec;
957 }
958 
959 /**
960  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
961  * @systime_snapshot:	pointer to struct receiving the system time snapshot
962  */
963 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
964 {
965 	struct timekeeper *tk = &tk_core.timekeeper;
966 	unsigned long seq;
967 	ktime_t base_raw;
968 	ktime_t base_real;
969 	u64 nsec_raw;
970 	u64 nsec_real;
971 	u64 now;
972 
973 	WARN_ON_ONCE(timekeeping_suspended);
974 
975 	do {
976 		seq = read_seqcount_begin(&tk_core.seq);
977 		now = tk_clock_read(&tk->tkr_mono);
978 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
979 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
980 		base_real = ktime_add(tk->tkr_mono.base,
981 				      tk_core.timekeeper.offs_real);
982 		base_raw = tk->tkr_raw.base;
983 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
984 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
985 	} while (read_seqcount_retry(&tk_core.seq, seq));
986 
987 	systime_snapshot->cycles = now;
988 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
989 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
990 }
991 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
992 
993 /* Scale base by mult/div checking for overflow */
994 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
995 {
996 	u64 tmp, rem;
997 
998 	tmp = div64_u64_rem(*base, div, &rem);
999 
1000 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1001 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1002 		return -EOVERFLOW;
1003 	tmp *= mult;
1004 	rem *= mult;
1005 
1006 	do_div(rem, div);
1007 	*base = tmp + rem;
1008 	return 0;
1009 }
1010 
1011 /**
1012  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1013  * @history:			Snapshot representing start of history
1014  * @partial_history_cycles:	Cycle offset into history (fractional part)
1015  * @total_history_cycles:	Total history length in cycles
1016  * @discontinuity:		True indicates clock was set on history period
1017  * @ts:				Cross timestamp that should be adjusted using
1018  *	partial/total ratio
1019  *
1020  * Helper function used by get_device_system_crosststamp() to correct the
1021  * crosstimestamp corresponding to the start of the current interval to the
1022  * system counter value (timestamp point) provided by the driver. The
1023  * total_history_* quantities are the total history starting at the provided
1024  * reference point and ending at the start of the current interval. The cycle
1025  * count between the driver timestamp point and the start of the current
1026  * interval is partial_history_cycles.
1027  */
1028 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1029 					 u64 partial_history_cycles,
1030 					 u64 total_history_cycles,
1031 					 bool discontinuity,
1032 					 struct system_device_crosststamp *ts)
1033 {
1034 	struct timekeeper *tk = &tk_core.timekeeper;
1035 	u64 corr_raw, corr_real;
1036 	bool interp_forward;
1037 	int ret;
1038 
1039 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1040 		return 0;
1041 
1042 	/* Interpolate shortest distance from beginning or end of history */
1043 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1044 	partial_history_cycles = interp_forward ?
1045 		total_history_cycles - partial_history_cycles :
1046 		partial_history_cycles;
1047 
1048 	/*
1049 	 * Scale the monotonic raw time delta by:
1050 	 *	partial_history_cycles / total_history_cycles
1051 	 */
1052 	corr_raw = (u64)ktime_to_ns(
1053 		ktime_sub(ts->sys_monoraw, history->raw));
1054 	ret = scale64_check_overflow(partial_history_cycles,
1055 				     total_history_cycles, &corr_raw);
1056 	if (ret)
1057 		return ret;
1058 
1059 	/*
1060 	 * If there is a discontinuity in the history, scale monotonic raw
1061 	 *	correction by:
1062 	 *	mult(real)/mult(raw) yielding the realtime correction
1063 	 * Otherwise, calculate the realtime correction similar to monotonic
1064 	 *	raw calculation
1065 	 */
1066 	if (discontinuity) {
1067 		corr_real = mul_u64_u32_div
1068 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1069 	} else {
1070 		corr_real = (u64)ktime_to_ns(
1071 			ktime_sub(ts->sys_realtime, history->real));
1072 		ret = scale64_check_overflow(partial_history_cycles,
1073 					     total_history_cycles, &corr_real);
1074 		if (ret)
1075 			return ret;
1076 	}
1077 
1078 	/* Fixup monotonic raw and real time time values */
1079 	if (interp_forward) {
1080 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1081 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1082 	} else {
1083 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1084 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 /*
1091  * cycle_between - true if test occurs chronologically between before and after
1092  */
1093 static bool cycle_between(u64 before, u64 test, u64 after)
1094 {
1095 	if (test > before && test < after)
1096 		return true;
1097 	if (test < before && before > after)
1098 		return true;
1099 	return false;
1100 }
1101 
1102 /**
1103  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1104  * @get_time_fn:	Callback to get simultaneous device time and
1105  *	system counter from the device driver
1106  * @ctx:		Context passed to get_time_fn()
1107  * @history_begin:	Historical reference point used to interpolate system
1108  *	time when counter provided by the driver is before the current interval
1109  * @xtstamp:		Receives simultaneously captured system and device time
1110  *
1111  * Reads a timestamp from a device and correlates it to system time
1112  */
1113 int get_device_system_crosststamp(int (*get_time_fn)
1114 				  (ktime_t *device_time,
1115 				   struct system_counterval_t *sys_counterval,
1116 				   void *ctx),
1117 				  void *ctx,
1118 				  struct system_time_snapshot *history_begin,
1119 				  struct system_device_crosststamp *xtstamp)
1120 {
1121 	struct system_counterval_t system_counterval;
1122 	struct timekeeper *tk = &tk_core.timekeeper;
1123 	u64 cycles, now, interval_start;
1124 	unsigned int clock_was_set_seq = 0;
1125 	ktime_t base_real, base_raw;
1126 	u64 nsec_real, nsec_raw;
1127 	u8 cs_was_changed_seq;
1128 	unsigned long seq;
1129 	bool do_interp;
1130 	int ret;
1131 
1132 	do {
1133 		seq = read_seqcount_begin(&tk_core.seq);
1134 		/*
1135 		 * Try to synchronously capture device time and a system
1136 		 * counter value calling back into the device driver
1137 		 */
1138 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1139 		if (ret)
1140 			return ret;
1141 
1142 		/*
1143 		 * Verify that the clocksource associated with the captured
1144 		 * system counter value is the same as the currently installed
1145 		 * timekeeper clocksource
1146 		 */
1147 		if (tk->tkr_mono.clock != system_counterval.cs)
1148 			return -ENODEV;
1149 		cycles = system_counterval.cycles;
1150 
1151 		/*
1152 		 * Check whether the system counter value provided by the
1153 		 * device driver is on the current timekeeping interval.
1154 		 */
1155 		now = tk_clock_read(&tk->tkr_mono);
1156 		interval_start = tk->tkr_mono.cycle_last;
1157 		if (!cycle_between(interval_start, cycles, now)) {
1158 			clock_was_set_seq = tk->clock_was_set_seq;
1159 			cs_was_changed_seq = tk->cs_was_changed_seq;
1160 			cycles = interval_start;
1161 			do_interp = true;
1162 		} else {
1163 			do_interp = false;
1164 		}
1165 
1166 		base_real = ktime_add(tk->tkr_mono.base,
1167 				      tk_core.timekeeper.offs_real);
1168 		base_raw = tk->tkr_raw.base;
1169 
1170 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1171 						     system_counterval.cycles);
1172 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1173 						    system_counterval.cycles);
1174 	} while (read_seqcount_retry(&tk_core.seq, seq));
1175 
1176 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1177 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1178 
1179 	/*
1180 	 * Interpolate if necessary, adjusting back from the start of the
1181 	 * current interval
1182 	 */
1183 	if (do_interp) {
1184 		u64 partial_history_cycles, total_history_cycles;
1185 		bool discontinuity;
1186 
1187 		/*
1188 		 * Check that the counter value occurs after the provided
1189 		 * history reference and that the history doesn't cross a
1190 		 * clocksource change
1191 		 */
1192 		if (!history_begin ||
1193 		    !cycle_between(history_begin->cycles,
1194 				   system_counterval.cycles, cycles) ||
1195 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1196 			return -EINVAL;
1197 		partial_history_cycles = cycles - system_counterval.cycles;
1198 		total_history_cycles = cycles - history_begin->cycles;
1199 		discontinuity =
1200 			history_begin->clock_was_set_seq != clock_was_set_seq;
1201 
1202 		ret = adjust_historical_crosststamp(history_begin,
1203 						    partial_history_cycles,
1204 						    total_history_cycles,
1205 						    discontinuity, xtstamp);
1206 		if (ret)
1207 			return ret;
1208 	}
1209 
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1213 
1214 /**
1215  * do_settimeofday64 - Sets the time of day.
1216  * @ts:     pointer to the timespec64 variable containing the new time
1217  *
1218  * Sets the time of day to the new time and update NTP and notify hrtimers
1219  */
1220 int do_settimeofday64(const struct timespec64 *ts)
1221 {
1222 	struct timekeeper *tk = &tk_core.timekeeper;
1223 	struct timespec64 ts_delta, xt;
1224 	unsigned long flags;
1225 	int ret = 0;
1226 
1227 	if (!timespec64_valid_strict(ts))
1228 		return -EINVAL;
1229 
1230 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1231 	write_seqcount_begin(&tk_core.seq);
1232 
1233 	timekeeping_forward_now(tk);
1234 
1235 	xt = tk_xtime(tk);
1236 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1237 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1238 
1239 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1240 		ret = -EINVAL;
1241 		goto out;
1242 	}
1243 
1244 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1245 
1246 	tk_set_xtime(tk, ts);
1247 out:
1248 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1249 
1250 	write_seqcount_end(&tk_core.seq);
1251 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1252 
1253 	/* signal hrtimers about time change */
1254 	clock_was_set();
1255 
1256 	return ret;
1257 }
1258 EXPORT_SYMBOL(do_settimeofday64);
1259 
1260 /**
1261  * timekeeping_inject_offset - Adds or subtracts from the current time.
1262  * @tv:		pointer to the timespec variable containing the offset
1263  *
1264  * Adds or subtracts an offset value from the current time.
1265  */
1266 static int timekeeping_inject_offset(const struct timespec64 *ts)
1267 {
1268 	struct timekeeper *tk = &tk_core.timekeeper;
1269 	unsigned long flags;
1270 	struct timespec64 tmp;
1271 	int ret = 0;
1272 
1273 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1274 		return -EINVAL;
1275 
1276 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1277 	write_seqcount_begin(&tk_core.seq);
1278 
1279 	timekeeping_forward_now(tk);
1280 
1281 	/* Make sure the proposed value is valid */
1282 	tmp = timespec64_add(tk_xtime(tk), *ts);
1283 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1284 	    !timespec64_valid_strict(&tmp)) {
1285 		ret = -EINVAL;
1286 		goto error;
1287 	}
1288 
1289 	tk_xtime_add(tk, ts);
1290 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1291 
1292 error: /* even if we error out, we forwarded the time, so call update */
1293 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1294 
1295 	write_seqcount_end(&tk_core.seq);
1296 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1297 
1298 	/* signal hrtimers about time change */
1299 	clock_was_set();
1300 
1301 	return ret;
1302 }
1303 
1304 /*
1305  * Indicates if there is an offset between the system clock and the hardware
1306  * clock/persistent clock/rtc.
1307  */
1308 int persistent_clock_is_local;
1309 
1310 /*
1311  * Adjust the time obtained from the CMOS to be UTC time instead of
1312  * local time.
1313  *
1314  * This is ugly, but preferable to the alternatives.  Otherwise we
1315  * would either need to write a program to do it in /etc/rc (and risk
1316  * confusion if the program gets run more than once; it would also be
1317  * hard to make the program warp the clock precisely n hours)  or
1318  * compile in the timezone information into the kernel.  Bad, bad....
1319  *
1320  *						- TYT, 1992-01-01
1321  *
1322  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1323  * as real UNIX machines always do it. This avoids all headaches about
1324  * daylight saving times and warping kernel clocks.
1325  */
1326 void timekeeping_warp_clock(void)
1327 {
1328 	if (sys_tz.tz_minuteswest != 0) {
1329 		struct timespec64 adjust;
1330 
1331 		persistent_clock_is_local = 1;
1332 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1333 		adjust.tv_nsec = 0;
1334 		timekeeping_inject_offset(&adjust);
1335 	}
1336 }
1337 
1338 /**
1339  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1340  *
1341  */
1342 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1343 {
1344 	tk->tai_offset = tai_offset;
1345 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1346 }
1347 
1348 /**
1349  * change_clocksource - Swaps clocksources if a new one is available
1350  *
1351  * Accumulates current time interval and initializes new clocksource
1352  */
1353 static int change_clocksource(void *data)
1354 {
1355 	struct timekeeper *tk = &tk_core.timekeeper;
1356 	struct clocksource *new, *old;
1357 	unsigned long flags;
1358 
1359 	new = (struct clocksource *) data;
1360 
1361 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1362 	write_seqcount_begin(&tk_core.seq);
1363 
1364 	timekeeping_forward_now(tk);
1365 	/*
1366 	 * If the cs is in module, get a module reference. Succeeds
1367 	 * for built-in code (owner == NULL) as well.
1368 	 */
1369 	if (try_module_get(new->owner)) {
1370 		if (!new->enable || new->enable(new) == 0) {
1371 			old = tk->tkr_mono.clock;
1372 			tk_setup_internals(tk, new);
1373 			if (old->disable)
1374 				old->disable(old);
1375 			module_put(old->owner);
1376 		} else {
1377 			module_put(new->owner);
1378 		}
1379 	}
1380 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1381 
1382 	write_seqcount_end(&tk_core.seq);
1383 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1384 
1385 	return 0;
1386 }
1387 
1388 /**
1389  * timekeeping_notify - Install a new clock source
1390  * @clock:		pointer to the clock source
1391  *
1392  * This function is called from clocksource.c after a new, better clock
1393  * source has been registered. The caller holds the clocksource_mutex.
1394  */
1395 int timekeeping_notify(struct clocksource *clock)
1396 {
1397 	struct timekeeper *tk = &tk_core.timekeeper;
1398 
1399 	if (tk->tkr_mono.clock == clock)
1400 		return 0;
1401 	stop_machine(change_clocksource, clock, NULL);
1402 	tick_clock_notify();
1403 	return tk->tkr_mono.clock == clock ? 0 : -1;
1404 }
1405 
1406 /**
1407  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1408  * @ts:		pointer to the timespec64 to be set
1409  *
1410  * Returns the raw monotonic time (completely un-modified by ntp)
1411  */
1412 void ktime_get_raw_ts64(struct timespec64 *ts)
1413 {
1414 	struct timekeeper *tk = &tk_core.timekeeper;
1415 	unsigned long seq;
1416 	u64 nsecs;
1417 
1418 	do {
1419 		seq = read_seqcount_begin(&tk_core.seq);
1420 		ts->tv_sec = tk->raw_sec;
1421 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1422 
1423 	} while (read_seqcount_retry(&tk_core.seq, seq));
1424 
1425 	ts->tv_nsec = 0;
1426 	timespec64_add_ns(ts, nsecs);
1427 }
1428 EXPORT_SYMBOL(ktime_get_raw_ts64);
1429 
1430 
1431 /**
1432  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1433  */
1434 int timekeeping_valid_for_hres(void)
1435 {
1436 	struct timekeeper *tk = &tk_core.timekeeper;
1437 	unsigned long seq;
1438 	int ret;
1439 
1440 	do {
1441 		seq = read_seqcount_begin(&tk_core.seq);
1442 
1443 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1444 
1445 	} while (read_seqcount_retry(&tk_core.seq, seq));
1446 
1447 	return ret;
1448 }
1449 
1450 /**
1451  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1452  */
1453 u64 timekeeping_max_deferment(void)
1454 {
1455 	struct timekeeper *tk = &tk_core.timekeeper;
1456 	unsigned long seq;
1457 	u64 ret;
1458 
1459 	do {
1460 		seq = read_seqcount_begin(&tk_core.seq);
1461 
1462 		ret = tk->tkr_mono.clock->max_idle_ns;
1463 
1464 	} while (read_seqcount_retry(&tk_core.seq, seq));
1465 
1466 	return ret;
1467 }
1468 
1469 /**
1470  * read_persistent_clock -  Return time from the persistent clock.
1471  *
1472  * Weak dummy function for arches that do not yet support it.
1473  * Reads the time from the battery backed persistent clock.
1474  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1475  *
1476  *  XXX - Do be sure to remove it once all arches implement it.
1477  */
1478 void __weak read_persistent_clock(struct timespec *ts)
1479 {
1480 	ts->tv_sec = 0;
1481 	ts->tv_nsec = 0;
1482 }
1483 
1484 void __weak read_persistent_clock64(struct timespec64 *ts64)
1485 {
1486 	struct timespec ts;
1487 
1488 	read_persistent_clock(&ts);
1489 	*ts64 = timespec_to_timespec64(ts);
1490 }
1491 
1492 /**
1493  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1494  *                                        from the boot.
1495  *
1496  * Weak dummy function for arches that do not yet support it.
1497  * wall_time	- current time as returned by persistent clock
1498  * boot_offset	- offset that is defined as wall_time - boot_time
1499  * The default function calculates offset based on the current value of
1500  * local_clock(). This way architectures that support sched_clock() but don't
1501  * support dedicated boot time clock will provide the best estimate of the
1502  * boot time.
1503  */
1504 void __weak __init
1505 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1506 				     struct timespec64 *boot_offset)
1507 {
1508 	read_persistent_clock64(wall_time);
1509 	*boot_offset = ns_to_timespec64(local_clock());
1510 }
1511 
1512 /*
1513  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1514  *
1515  * The flag starts of false and is only set when a suspend reaches
1516  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1517  * timekeeper clocksource is not stopping across suspend and has been
1518  * used to update sleep time. If the timekeeper clocksource has stopped
1519  * then the flag stays true and is used by the RTC resume code to decide
1520  * whether sleeptime must be injected and if so the flag gets false then.
1521  *
1522  * If a suspend fails before reaching timekeeping_resume() then the flag
1523  * stays false and prevents erroneous sleeptime injection.
1524  */
1525 static bool suspend_timing_needed;
1526 
1527 /* Flag for if there is a persistent clock on this platform */
1528 static bool persistent_clock_exists;
1529 
1530 /*
1531  * timekeeping_init - Initializes the clocksource and common timekeeping values
1532  */
1533 void __init timekeeping_init(void)
1534 {
1535 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1536 	struct timekeeper *tk = &tk_core.timekeeper;
1537 	struct clocksource *clock;
1538 	unsigned long flags;
1539 
1540 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1541 	if (timespec64_valid_strict(&wall_time) &&
1542 	    timespec64_to_ns(&wall_time) > 0) {
1543 		persistent_clock_exists = true;
1544 	} else if (timespec64_to_ns(&wall_time) != 0) {
1545 		pr_warn("Persistent clock returned invalid value");
1546 		wall_time = (struct timespec64){0};
1547 	}
1548 
1549 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1550 		boot_offset = (struct timespec64){0};
1551 
1552 	/*
1553 	 * We want set wall_to_mono, so the following is true:
1554 	 * wall time + wall_to_mono = boot time
1555 	 */
1556 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1557 
1558 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1559 	write_seqcount_begin(&tk_core.seq);
1560 	ntp_init();
1561 
1562 	clock = clocksource_default_clock();
1563 	if (clock->enable)
1564 		clock->enable(clock);
1565 	tk_setup_internals(tk, clock);
1566 
1567 	tk_set_xtime(tk, &wall_time);
1568 	tk->raw_sec = 0;
1569 
1570 	tk_set_wall_to_mono(tk, wall_to_mono);
1571 
1572 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1573 
1574 	write_seqcount_end(&tk_core.seq);
1575 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1576 }
1577 
1578 /* time in seconds when suspend began for persistent clock */
1579 static struct timespec64 timekeeping_suspend_time;
1580 
1581 /**
1582  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1583  * @delta: pointer to a timespec delta value
1584  *
1585  * Takes a timespec offset measuring a suspend interval and properly
1586  * adds the sleep offset to the timekeeping variables.
1587  */
1588 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1589 					   const struct timespec64 *delta)
1590 {
1591 	if (!timespec64_valid_strict(delta)) {
1592 		printk_deferred(KERN_WARNING
1593 				"__timekeeping_inject_sleeptime: Invalid "
1594 				"sleep delta value!\n");
1595 		return;
1596 	}
1597 	tk_xtime_add(tk, delta);
1598 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1599 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1600 	tk_debug_account_sleep_time(delta);
1601 }
1602 
1603 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1604 /**
1605  * We have three kinds of time sources to use for sleep time
1606  * injection, the preference order is:
1607  * 1) non-stop clocksource
1608  * 2) persistent clock (ie: RTC accessible when irqs are off)
1609  * 3) RTC
1610  *
1611  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1612  * If system has neither 1) nor 2), 3) will be used finally.
1613  *
1614  *
1615  * If timekeeping has injected sleeptime via either 1) or 2),
1616  * 3) becomes needless, so in this case we don't need to call
1617  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1618  * means.
1619  */
1620 bool timekeeping_rtc_skipresume(void)
1621 {
1622 	return !suspend_timing_needed;
1623 }
1624 
1625 /**
1626  * 1) can be determined whether to use or not only when doing
1627  * timekeeping_resume() which is invoked after rtc_suspend(),
1628  * so we can't skip rtc_suspend() surely if system has 1).
1629  *
1630  * But if system has 2), 2) will definitely be used, so in this
1631  * case we don't need to call rtc_suspend(), and this is what
1632  * timekeeping_rtc_skipsuspend() means.
1633  */
1634 bool timekeeping_rtc_skipsuspend(void)
1635 {
1636 	return persistent_clock_exists;
1637 }
1638 
1639 /**
1640  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1641  * @delta: pointer to a timespec64 delta value
1642  *
1643  * This hook is for architectures that cannot support read_persistent_clock64
1644  * because their RTC/persistent clock is only accessible when irqs are enabled.
1645  * and also don't have an effective nonstop clocksource.
1646  *
1647  * This function should only be called by rtc_resume(), and allows
1648  * a suspend offset to be injected into the timekeeping values.
1649  */
1650 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1651 {
1652 	struct timekeeper *tk = &tk_core.timekeeper;
1653 	unsigned long flags;
1654 
1655 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1656 	write_seqcount_begin(&tk_core.seq);
1657 
1658 	suspend_timing_needed = false;
1659 
1660 	timekeeping_forward_now(tk);
1661 
1662 	__timekeeping_inject_sleeptime(tk, delta);
1663 
1664 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1665 
1666 	write_seqcount_end(&tk_core.seq);
1667 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1668 
1669 	/* signal hrtimers about time change */
1670 	clock_was_set();
1671 }
1672 #endif
1673 
1674 /**
1675  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1676  */
1677 void timekeeping_resume(void)
1678 {
1679 	struct timekeeper *tk = &tk_core.timekeeper;
1680 	struct clocksource *clock = tk->tkr_mono.clock;
1681 	unsigned long flags;
1682 	struct timespec64 ts_new, ts_delta;
1683 	u64 cycle_now, nsec;
1684 	bool inject_sleeptime = false;
1685 
1686 	read_persistent_clock64(&ts_new);
1687 
1688 	clockevents_resume();
1689 	clocksource_resume();
1690 
1691 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1692 	write_seqcount_begin(&tk_core.seq);
1693 
1694 	/*
1695 	 * After system resumes, we need to calculate the suspended time and
1696 	 * compensate it for the OS time. There are 3 sources that could be
1697 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1698 	 * device.
1699 	 *
1700 	 * One specific platform may have 1 or 2 or all of them, and the
1701 	 * preference will be:
1702 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1703 	 * The less preferred source will only be tried if there is no better
1704 	 * usable source. The rtc part is handled separately in rtc core code.
1705 	 */
1706 	cycle_now = tk_clock_read(&tk->tkr_mono);
1707 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1708 	if (nsec > 0) {
1709 		ts_delta = ns_to_timespec64(nsec);
1710 		inject_sleeptime = true;
1711 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1712 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1713 		inject_sleeptime = true;
1714 	}
1715 
1716 	if (inject_sleeptime) {
1717 		suspend_timing_needed = false;
1718 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1719 	}
1720 
1721 	/* Re-base the last cycle value */
1722 	tk->tkr_mono.cycle_last = cycle_now;
1723 	tk->tkr_raw.cycle_last  = cycle_now;
1724 
1725 	tk->ntp_error = 0;
1726 	timekeeping_suspended = 0;
1727 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1728 	write_seqcount_end(&tk_core.seq);
1729 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1730 
1731 	touch_softlockup_watchdog();
1732 
1733 	tick_resume();
1734 	hrtimers_resume();
1735 }
1736 
1737 int timekeeping_suspend(void)
1738 {
1739 	struct timekeeper *tk = &tk_core.timekeeper;
1740 	unsigned long flags;
1741 	struct timespec64		delta, delta_delta;
1742 	static struct timespec64	old_delta;
1743 	struct clocksource *curr_clock;
1744 	u64 cycle_now;
1745 
1746 	read_persistent_clock64(&timekeeping_suspend_time);
1747 
1748 	/*
1749 	 * On some systems the persistent_clock can not be detected at
1750 	 * timekeeping_init by its return value, so if we see a valid
1751 	 * value returned, update the persistent_clock_exists flag.
1752 	 */
1753 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1754 		persistent_clock_exists = true;
1755 
1756 	suspend_timing_needed = true;
1757 
1758 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1759 	write_seqcount_begin(&tk_core.seq);
1760 	timekeeping_forward_now(tk);
1761 	timekeeping_suspended = 1;
1762 
1763 	/*
1764 	 * Since we've called forward_now, cycle_last stores the value
1765 	 * just read from the current clocksource. Save this to potentially
1766 	 * use in suspend timing.
1767 	 */
1768 	curr_clock = tk->tkr_mono.clock;
1769 	cycle_now = tk->tkr_mono.cycle_last;
1770 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1771 
1772 	if (persistent_clock_exists) {
1773 		/*
1774 		 * To avoid drift caused by repeated suspend/resumes,
1775 		 * which each can add ~1 second drift error,
1776 		 * try to compensate so the difference in system time
1777 		 * and persistent_clock time stays close to constant.
1778 		 */
1779 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1780 		delta_delta = timespec64_sub(delta, old_delta);
1781 		if (abs(delta_delta.tv_sec) >= 2) {
1782 			/*
1783 			 * if delta_delta is too large, assume time correction
1784 			 * has occurred and set old_delta to the current delta.
1785 			 */
1786 			old_delta = delta;
1787 		} else {
1788 			/* Otherwise try to adjust old_system to compensate */
1789 			timekeeping_suspend_time =
1790 				timespec64_add(timekeeping_suspend_time, delta_delta);
1791 		}
1792 	}
1793 
1794 	timekeeping_update(tk, TK_MIRROR);
1795 	halt_fast_timekeeper(tk);
1796 	write_seqcount_end(&tk_core.seq);
1797 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1798 
1799 	tick_suspend();
1800 	clocksource_suspend();
1801 	clockevents_suspend();
1802 
1803 	return 0;
1804 }
1805 
1806 /* sysfs resume/suspend bits for timekeeping */
1807 static struct syscore_ops timekeeping_syscore_ops = {
1808 	.resume		= timekeeping_resume,
1809 	.suspend	= timekeeping_suspend,
1810 };
1811 
1812 static int __init timekeeping_init_ops(void)
1813 {
1814 	register_syscore_ops(&timekeeping_syscore_ops);
1815 	return 0;
1816 }
1817 device_initcall(timekeeping_init_ops);
1818 
1819 /*
1820  * Apply a multiplier adjustment to the timekeeper
1821  */
1822 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1823 							 s64 offset,
1824 							 s32 mult_adj)
1825 {
1826 	s64 interval = tk->cycle_interval;
1827 
1828 	if (mult_adj == 0) {
1829 		return;
1830 	} else if (mult_adj == -1) {
1831 		interval = -interval;
1832 		offset = -offset;
1833 	} else if (mult_adj != 1) {
1834 		interval *= mult_adj;
1835 		offset *= mult_adj;
1836 	}
1837 
1838 	/*
1839 	 * So the following can be confusing.
1840 	 *
1841 	 * To keep things simple, lets assume mult_adj == 1 for now.
1842 	 *
1843 	 * When mult_adj != 1, remember that the interval and offset values
1844 	 * have been appropriately scaled so the math is the same.
1845 	 *
1846 	 * The basic idea here is that we're increasing the multiplier
1847 	 * by one, this causes the xtime_interval to be incremented by
1848 	 * one cycle_interval. This is because:
1849 	 *	xtime_interval = cycle_interval * mult
1850 	 * So if mult is being incremented by one:
1851 	 *	xtime_interval = cycle_interval * (mult + 1)
1852 	 * Its the same as:
1853 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1854 	 * Which can be shortened to:
1855 	 *	xtime_interval += cycle_interval
1856 	 *
1857 	 * So offset stores the non-accumulated cycles. Thus the current
1858 	 * time (in shifted nanoseconds) is:
1859 	 *	now = (offset * adj) + xtime_nsec
1860 	 * Now, even though we're adjusting the clock frequency, we have
1861 	 * to keep time consistent. In other words, we can't jump back
1862 	 * in time, and we also want to avoid jumping forward in time.
1863 	 *
1864 	 * So given the same offset value, we need the time to be the same
1865 	 * both before and after the freq adjustment.
1866 	 *	now = (offset * adj_1) + xtime_nsec_1
1867 	 *	now = (offset * adj_2) + xtime_nsec_2
1868 	 * So:
1869 	 *	(offset * adj_1) + xtime_nsec_1 =
1870 	 *		(offset * adj_2) + xtime_nsec_2
1871 	 * And we know:
1872 	 *	adj_2 = adj_1 + 1
1873 	 * So:
1874 	 *	(offset * adj_1) + xtime_nsec_1 =
1875 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1876 	 *	(offset * adj_1) + xtime_nsec_1 =
1877 	 *		(offset * adj_1) + offset + xtime_nsec_2
1878 	 * Canceling the sides:
1879 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1880 	 * Which gives us:
1881 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1882 	 * Which simplfies to:
1883 	 *	xtime_nsec -= offset
1884 	 */
1885 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1886 		/* NTP adjustment caused clocksource mult overflow */
1887 		WARN_ON_ONCE(1);
1888 		return;
1889 	}
1890 
1891 	tk->tkr_mono.mult += mult_adj;
1892 	tk->xtime_interval += interval;
1893 	tk->tkr_mono.xtime_nsec -= offset;
1894 }
1895 
1896 /*
1897  * Adjust the timekeeper's multiplier to the correct frequency
1898  * and also to reduce the accumulated error value.
1899  */
1900 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1901 {
1902 	u32 mult;
1903 
1904 	/*
1905 	 * Determine the multiplier from the current NTP tick length.
1906 	 * Avoid expensive division when the tick length doesn't change.
1907 	 */
1908 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1909 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1910 	} else {
1911 		tk->ntp_tick = ntp_tick_length();
1912 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1913 				 tk->xtime_remainder, tk->cycle_interval);
1914 	}
1915 
1916 	/*
1917 	 * If the clock is behind the NTP time, increase the multiplier by 1
1918 	 * to catch up with it. If it's ahead and there was a remainder in the
1919 	 * tick division, the clock will slow down. Otherwise it will stay
1920 	 * ahead until the tick length changes to a non-divisible value.
1921 	 */
1922 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1923 	mult += tk->ntp_err_mult;
1924 
1925 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1926 
1927 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1928 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1929 			> tk->tkr_mono.clock->maxadj))) {
1930 		printk_once(KERN_WARNING
1931 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1932 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1933 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1934 	}
1935 
1936 	/*
1937 	 * It may be possible that when we entered this function, xtime_nsec
1938 	 * was very small.  Further, if we're slightly speeding the clocksource
1939 	 * in the code above, its possible the required corrective factor to
1940 	 * xtime_nsec could cause it to underflow.
1941 	 *
1942 	 * Now, since we have already accumulated the second and the NTP
1943 	 * subsystem has been notified via second_overflow(), we need to skip
1944 	 * the next update.
1945 	 */
1946 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1947 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1948 							tk->tkr_mono.shift;
1949 		tk->xtime_sec--;
1950 		tk->skip_second_overflow = 1;
1951 	}
1952 }
1953 
1954 /**
1955  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1956  *
1957  * Helper function that accumulates the nsecs greater than a second
1958  * from the xtime_nsec field to the xtime_secs field.
1959  * It also calls into the NTP code to handle leapsecond processing.
1960  *
1961  */
1962 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1963 {
1964 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1965 	unsigned int clock_set = 0;
1966 
1967 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1968 		int leap;
1969 
1970 		tk->tkr_mono.xtime_nsec -= nsecps;
1971 		tk->xtime_sec++;
1972 
1973 		/*
1974 		 * Skip NTP update if this second was accumulated before,
1975 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1976 		 */
1977 		if (unlikely(tk->skip_second_overflow)) {
1978 			tk->skip_second_overflow = 0;
1979 			continue;
1980 		}
1981 
1982 		/* Figure out if its a leap sec and apply if needed */
1983 		leap = second_overflow(tk->xtime_sec);
1984 		if (unlikely(leap)) {
1985 			struct timespec64 ts;
1986 
1987 			tk->xtime_sec += leap;
1988 
1989 			ts.tv_sec = leap;
1990 			ts.tv_nsec = 0;
1991 			tk_set_wall_to_mono(tk,
1992 				timespec64_sub(tk->wall_to_monotonic, ts));
1993 
1994 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1995 
1996 			clock_set = TK_CLOCK_WAS_SET;
1997 		}
1998 	}
1999 	return clock_set;
2000 }
2001 
2002 /**
2003  * logarithmic_accumulation - shifted accumulation of cycles
2004  *
2005  * This functions accumulates a shifted interval of cycles into
2006  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2007  * loop.
2008  *
2009  * Returns the unconsumed cycles.
2010  */
2011 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2012 				    u32 shift, unsigned int *clock_set)
2013 {
2014 	u64 interval = tk->cycle_interval << shift;
2015 	u64 snsec_per_sec;
2016 
2017 	/* If the offset is smaller than a shifted interval, do nothing */
2018 	if (offset < interval)
2019 		return offset;
2020 
2021 	/* Accumulate one shifted interval */
2022 	offset -= interval;
2023 	tk->tkr_mono.cycle_last += interval;
2024 	tk->tkr_raw.cycle_last  += interval;
2025 
2026 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2027 	*clock_set |= accumulate_nsecs_to_secs(tk);
2028 
2029 	/* Accumulate raw time */
2030 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2031 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2032 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2033 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2034 		tk->raw_sec++;
2035 	}
2036 
2037 	/* Accumulate error between NTP and clock interval */
2038 	tk->ntp_error += tk->ntp_tick << shift;
2039 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2040 						(tk->ntp_error_shift + shift);
2041 
2042 	return offset;
2043 }
2044 
2045 /*
2046  * timekeeping_advance - Updates the timekeeper to the current time and
2047  * current NTP tick length
2048  */
2049 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2050 {
2051 	struct timekeeper *real_tk = &tk_core.timekeeper;
2052 	struct timekeeper *tk = &shadow_timekeeper;
2053 	u64 offset;
2054 	int shift = 0, maxshift;
2055 	unsigned int clock_set = 0;
2056 	unsigned long flags;
2057 
2058 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2059 
2060 	/* Make sure we're fully resumed: */
2061 	if (unlikely(timekeeping_suspended))
2062 		goto out;
2063 
2064 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2065 	offset = real_tk->cycle_interval;
2066 
2067 	if (mode != TK_ADV_TICK)
2068 		goto out;
2069 #else
2070 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2071 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2072 
2073 	/* Check if there's really nothing to do */
2074 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2075 		goto out;
2076 #endif
2077 
2078 	/* Do some additional sanity checking */
2079 	timekeeping_check_update(tk, offset);
2080 
2081 	/*
2082 	 * With NO_HZ we may have to accumulate many cycle_intervals
2083 	 * (think "ticks") worth of time at once. To do this efficiently,
2084 	 * we calculate the largest doubling multiple of cycle_intervals
2085 	 * that is smaller than the offset.  We then accumulate that
2086 	 * chunk in one go, and then try to consume the next smaller
2087 	 * doubled multiple.
2088 	 */
2089 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2090 	shift = max(0, shift);
2091 	/* Bound shift to one less than what overflows tick_length */
2092 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2093 	shift = min(shift, maxshift);
2094 	while (offset >= tk->cycle_interval) {
2095 		offset = logarithmic_accumulation(tk, offset, shift,
2096 							&clock_set);
2097 		if (offset < tk->cycle_interval<<shift)
2098 			shift--;
2099 	}
2100 
2101 	/* Adjust the multiplier to correct NTP error */
2102 	timekeeping_adjust(tk, offset);
2103 
2104 	/*
2105 	 * Finally, make sure that after the rounding
2106 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2107 	 */
2108 	clock_set |= accumulate_nsecs_to_secs(tk);
2109 
2110 	write_seqcount_begin(&tk_core.seq);
2111 	/*
2112 	 * Update the real timekeeper.
2113 	 *
2114 	 * We could avoid this memcpy by switching pointers, but that
2115 	 * requires changes to all other timekeeper usage sites as
2116 	 * well, i.e. move the timekeeper pointer getter into the
2117 	 * spinlocked/seqcount protected sections. And we trade this
2118 	 * memcpy under the tk_core.seq against one before we start
2119 	 * updating.
2120 	 */
2121 	timekeeping_update(tk, clock_set);
2122 	memcpy(real_tk, tk, sizeof(*tk));
2123 	/* The memcpy must come last. Do not put anything here! */
2124 	write_seqcount_end(&tk_core.seq);
2125 out:
2126 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2127 	if (clock_set)
2128 		/* Have to call _delayed version, since in irq context*/
2129 		clock_was_set_delayed();
2130 }
2131 
2132 /**
2133  * update_wall_time - Uses the current clocksource to increment the wall time
2134  *
2135  */
2136 void update_wall_time(void)
2137 {
2138 	timekeeping_advance(TK_ADV_TICK);
2139 }
2140 
2141 /**
2142  * getboottime64 - Return the real time of system boot.
2143  * @ts:		pointer to the timespec64 to be set
2144  *
2145  * Returns the wall-time of boot in a timespec64.
2146  *
2147  * This is based on the wall_to_monotonic offset and the total suspend
2148  * time. Calls to settimeofday will affect the value returned (which
2149  * basically means that however wrong your real time clock is at boot time,
2150  * you get the right time here).
2151  */
2152 void getboottime64(struct timespec64 *ts)
2153 {
2154 	struct timekeeper *tk = &tk_core.timekeeper;
2155 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2156 
2157 	*ts = ktime_to_timespec64(t);
2158 }
2159 EXPORT_SYMBOL_GPL(getboottime64);
2160 
2161 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2162 {
2163 	struct timekeeper *tk = &tk_core.timekeeper;
2164 	unsigned long seq;
2165 
2166 	do {
2167 		seq = read_seqcount_begin(&tk_core.seq);
2168 
2169 		*ts = tk_xtime(tk);
2170 	} while (read_seqcount_retry(&tk_core.seq, seq));
2171 }
2172 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2173 
2174 void ktime_get_coarse_ts64(struct timespec64 *ts)
2175 {
2176 	struct timekeeper *tk = &tk_core.timekeeper;
2177 	struct timespec64 now, mono;
2178 	unsigned long seq;
2179 
2180 	do {
2181 		seq = read_seqcount_begin(&tk_core.seq);
2182 
2183 		now = tk_xtime(tk);
2184 		mono = tk->wall_to_monotonic;
2185 	} while (read_seqcount_retry(&tk_core.seq, seq));
2186 
2187 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2188 				now.tv_nsec + mono.tv_nsec);
2189 }
2190 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2191 
2192 /*
2193  * Must hold jiffies_lock
2194  */
2195 void do_timer(unsigned long ticks)
2196 {
2197 	jiffies_64 += ticks;
2198 	calc_global_load(ticks);
2199 }
2200 
2201 /**
2202  * ktime_get_update_offsets_now - hrtimer helper
2203  * @cwsseq:	pointer to check and store the clock was set sequence number
2204  * @offs_real:	pointer to storage for monotonic -> realtime offset
2205  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2206  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2207  *
2208  * Returns current monotonic time and updates the offsets if the
2209  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2210  * different.
2211  *
2212  * Called from hrtimer_interrupt() or retrigger_next_event()
2213  */
2214 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2215 				     ktime_t *offs_boot, ktime_t *offs_tai)
2216 {
2217 	struct timekeeper *tk = &tk_core.timekeeper;
2218 	unsigned int seq;
2219 	ktime_t base;
2220 	u64 nsecs;
2221 
2222 	do {
2223 		seq = read_seqcount_begin(&tk_core.seq);
2224 
2225 		base = tk->tkr_mono.base;
2226 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2227 		base = ktime_add_ns(base, nsecs);
2228 
2229 		if (*cwsseq != tk->clock_was_set_seq) {
2230 			*cwsseq = tk->clock_was_set_seq;
2231 			*offs_real = tk->offs_real;
2232 			*offs_boot = tk->offs_boot;
2233 			*offs_tai = tk->offs_tai;
2234 		}
2235 
2236 		/* Handle leapsecond insertion adjustments */
2237 		if (unlikely(base >= tk->next_leap_ktime))
2238 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2239 
2240 	} while (read_seqcount_retry(&tk_core.seq, seq));
2241 
2242 	return base;
2243 }
2244 
2245 /**
2246  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2247  */
2248 static int timekeeping_validate_timex(const struct timex *txc)
2249 {
2250 	if (txc->modes & ADJ_ADJTIME) {
2251 		/* singleshot must not be used with any other mode bits */
2252 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2253 			return -EINVAL;
2254 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2255 		    !capable(CAP_SYS_TIME))
2256 			return -EPERM;
2257 	} else {
2258 		/* In order to modify anything, you gotta be super-user! */
2259 		if (txc->modes && !capable(CAP_SYS_TIME))
2260 			return -EPERM;
2261 		/*
2262 		 * if the quartz is off by more than 10% then
2263 		 * something is VERY wrong!
2264 		 */
2265 		if (txc->modes & ADJ_TICK &&
2266 		    (txc->tick <  900000/USER_HZ ||
2267 		     txc->tick > 1100000/USER_HZ))
2268 			return -EINVAL;
2269 	}
2270 
2271 	if (txc->modes & ADJ_SETOFFSET) {
2272 		/* In order to inject time, you gotta be super-user! */
2273 		if (!capable(CAP_SYS_TIME))
2274 			return -EPERM;
2275 
2276 		/*
2277 		 * Validate if a timespec/timeval used to inject a time
2278 		 * offset is valid.  Offsets can be postive or negative, so
2279 		 * we don't check tv_sec. The value of the timeval/timespec
2280 		 * is the sum of its fields,but *NOTE*:
2281 		 * The field tv_usec/tv_nsec must always be non-negative and
2282 		 * we can't have more nanoseconds/microseconds than a second.
2283 		 */
2284 		if (txc->time.tv_usec < 0)
2285 			return -EINVAL;
2286 
2287 		if (txc->modes & ADJ_NANO) {
2288 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2289 				return -EINVAL;
2290 		} else {
2291 			if (txc->time.tv_usec >= USEC_PER_SEC)
2292 				return -EINVAL;
2293 		}
2294 	}
2295 
2296 	/*
2297 	 * Check for potential multiplication overflows that can
2298 	 * only happen on 64-bit systems:
2299 	 */
2300 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2301 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2302 			return -EINVAL;
2303 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2304 			return -EINVAL;
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 
2311 /**
2312  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2313  */
2314 int do_adjtimex(struct timex *txc)
2315 {
2316 	struct timekeeper *tk = &tk_core.timekeeper;
2317 	unsigned long flags;
2318 	struct timespec64 ts;
2319 	s32 orig_tai, tai;
2320 	int ret;
2321 
2322 	/* Validate the data before disabling interrupts */
2323 	ret = timekeeping_validate_timex(txc);
2324 	if (ret)
2325 		return ret;
2326 
2327 	if (txc->modes & ADJ_SETOFFSET) {
2328 		struct timespec64 delta;
2329 		delta.tv_sec  = txc->time.tv_sec;
2330 		delta.tv_nsec = txc->time.tv_usec;
2331 		if (!(txc->modes & ADJ_NANO))
2332 			delta.tv_nsec *= 1000;
2333 		ret = timekeeping_inject_offset(&delta);
2334 		if (ret)
2335 			return ret;
2336 	}
2337 
2338 	ktime_get_real_ts64(&ts);
2339 
2340 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2341 	write_seqcount_begin(&tk_core.seq);
2342 
2343 	orig_tai = tai = tk->tai_offset;
2344 	ret = __do_adjtimex(txc, &ts, &tai);
2345 
2346 	if (tai != orig_tai) {
2347 		__timekeeping_set_tai_offset(tk, tai);
2348 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2349 	}
2350 	tk_update_leap_state(tk);
2351 
2352 	write_seqcount_end(&tk_core.seq);
2353 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2354 
2355 	/* Update the multiplier immediately if frequency was set directly */
2356 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2357 		timekeeping_advance(TK_ADV_FREQ);
2358 
2359 	if (tai != orig_tai)
2360 		clock_was_set();
2361 
2362 	ntp_notify_cmos_timer();
2363 
2364 	return ret;
2365 }
2366 
2367 #ifdef CONFIG_NTP_PPS
2368 /**
2369  * hardpps() - Accessor function to NTP __hardpps function
2370  */
2371 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2372 {
2373 	unsigned long flags;
2374 
2375 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2376 	write_seqcount_begin(&tk_core.seq);
2377 
2378 	__hardpps(phase_ts, raw_ts);
2379 
2380 	write_seqcount_end(&tk_core.seq);
2381 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2382 }
2383 EXPORT_SYMBOL(hardpps);
2384 #endif /* CONFIG_NTP_PPS */
2385 
2386 /**
2387  * xtime_update() - advances the timekeeping infrastructure
2388  * @ticks:	number of ticks, that have elapsed since the last call.
2389  *
2390  * Must be called with interrupts disabled.
2391  */
2392 void xtime_update(unsigned long ticks)
2393 {
2394 	write_seqlock(&jiffies_lock);
2395 	do_timer(ticks);
2396 	write_sequnlock(&jiffies_lock);
2397 	update_wall_time();
2398 }
2399