xref: /openbmc/linux/kernel/time/timeconv.c (revision f5c27da4)
1 // SPDX-License-Identifier: LGPL-2.0+
2 /*
3  * Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
4  * This file is part of the GNU C Library.
5  * Contributed by Paul Eggert (eggert@twinsun.com).
6  *
7  * The GNU C Library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Library General Public License as
9  * published by the Free Software Foundation; either version 2 of the
10  * License, or (at your option) any later version.
11  *
12  * The GNU C Library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Library General Public License for more details.
16  *
17  * You should have received a copy of the GNU Library General Public
18  * License along with the GNU C Library; see the file COPYING.LIB.  If not,
19  * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20  * Boston, MA 02111-1307, USA.
21  */
22 
23 /*
24  * Converts the calendar time to broken-down time representation
25  *
26  * 2009-7-14:
27  *   Moved from glibc-2.6 to kernel by Zhaolei<zhaolei@cn.fujitsu.com>
28  * 2021-06-02:
29  *   Reimplemented by Cassio Neri <cassio.neri@gmail.com>
30  */
31 
32 #include <linux/time.h>
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 
36 #define SECS_PER_HOUR	(60 * 60)
37 #define SECS_PER_DAY	(SECS_PER_HOUR * 24)
38 
39 /**
40  * time64_to_tm - converts the calendar time to local broken-down time
41  *
42  * @totalsecs:	the number of seconds elapsed since 00:00:00 on January 1, 1970,
43  *		Coordinated Universal Time (UTC).
44  * @offset:	offset seconds adding to totalsecs.
45  * @result:	pointer to struct tm variable to receive broken-down time
46  */
47 void time64_to_tm(time64_t totalsecs, int offset, struct tm *result)
48 {
49 	u32 u32tmp, day_of_century, year_of_century, day_of_year, month, day;
50 	u64 u64tmp, udays, century, year;
51 	bool is_Jan_or_Feb, is_leap_year;
52 	long days, rem;
53 	int remainder;
54 
55 	days = div_s64_rem(totalsecs, SECS_PER_DAY, &remainder);
56 	rem = remainder;
57 	rem += offset;
58 	while (rem < 0) {
59 		rem += SECS_PER_DAY;
60 		--days;
61 	}
62 	while (rem >= SECS_PER_DAY) {
63 		rem -= SECS_PER_DAY;
64 		++days;
65 	}
66 
67 	result->tm_hour = rem / SECS_PER_HOUR;
68 	rem %= SECS_PER_HOUR;
69 	result->tm_min = rem / 60;
70 	result->tm_sec = rem % 60;
71 
72 	/* January 1, 1970 was a Thursday. */
73 	result->tm_wday = (4 + days) % 7;
74 	if (result->tm_wday < 0)
75 		result->tm_wday += 7;
76 
77 	/*
78 	 * The following algorithm is, basically, Proposition 6.3 of Neri
79 	 * and Schneider [1]. In a few words: it works on the computational
80 	 * (fictitious) calendar where the year starts in March, month = 2
81 	 * (*), and finishes in February, month = 13. This calendar is
82 	 * mathematically convenient because the day of the year does not
83 	 * depend on whether the year is leap or not. For instance:
84 	 *
85 	 * March 1st		0-th day of the year;
86 	 * ...
87 	 * April 1st		31-st day of the year;
88 	 * ...
89 	 * January 1st		306-th day of the year; (Important!)
90 	 * ...
91 	 * February 28th	364-th day of the year;
92 	 * February 29th	365-th day of the year (if it exists).
93 	 *
94 	 * After having worked out the date in the computational calendar
95 	 * (using just arithmetics) it's easy to convert it to the
96 	 * corresponding date in the Gregorian calendar.
97 	 *
98 	 * [1] "Euclidean Affine Functions and Applications to Calendar
99 	 * Algorithms". https://arxiv.org/abs/2102.06959
100 	 *
101 	 * (*) The numbering of months follows tm more closely and thus,
102 	 * is slightly different from [1].
103 	 */
104 
105 	udays	= ((u64) days) + 2305843009213814918ULL;
106 
107 	u64tmp		= 4 * udays + 3;
108 	century		= div64_u64_rem(u64tmp, 146097, &u64tmp);
109 	day_of_century	= (u32) (u64tmp / 4);
110 
111 	u32tmp		= 4 * day_of_century + 3;
112 	u64tmp		= 2939745ULL * u32tmp;
113 	year_of_century	= upper_32_bits(u64tmp);
114 	day_of_year	= lower_32_bits(u64tmp) / 2939745 / 4;
115 
116 	year		= 100 * century + year_of_century;
117 	is_leap_year	= year_of_century ? !(year_of_century % 4) : !(century % 4);
118 
119 	u32tmp		= 2141 * day_of_year + 132377;
120 	month		= u32tmp >> 16;
121 	day		= ((u16) u32tmp) / 2141;
122 
123 	/*
124 	 * Recall that January 1st is the 306-th day of the year in the
125 	 * computational (not Gregorian) calendar.
126 	 */
127 	is_Jan_or_Feb	= day_of_year >= 306;
128 
129 	/* Convert to the Gregorian calendar and adjust to Unix time. */
130 	year		= year + is_Jan_or_Feb - 6313183731940000ULL;
131 	month		= is_Jan_or_Feb ? month - 12 : month;
132 	day		= day + 1;
133 	day_of_year	+= is_Jan_or_Feb ? -306 : 31 + 28 + is_leap_year;
134 
135 	/* Convert to tm's format. */
136 	result->tm_year = (long) (year - 1900);
137 	result->tm_mon  = (int) month;
138 	result->tm_mday = (int) day;
139 	result->tm_yday = (int) day_of_year;
140 }
141 EXPORT_SYMBOL(time64_to_tm);
142