xref: /openbmc/linux/kernel/time/time.c (revision f9a82c48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *
5  *  This file contains the interface functions for the various time related
6  *  system calls: time, stime, gettimeofday, settimeofday, adjtime
7  *
8  * Modification history:
9  *
10  * 1993-09-02    Philip Gladstone
11  *      Created file with time related functions from sched/core.c and adjtimex()
12  * 1993-10-08    Torsten Duwe
13  *      adjtime interface update and CMOS clock write code
14  * 1995-08-13    Torsten Duwe
15  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
16  * 1999-01-16    Ulrich Windl
17  *	Introduced error checking for many cases in adjtimex().
18  *	Updated NTP code according to technical memorandum Jan '96
19  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
20  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21  *	(Even though the technical memorandum forbids it)
22  * 2004-07-14	 Christoph Lameter
23  *	Added getnstimeofday to allow the posix timer functions to return
24  *	with nanosecond accuracy
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/timex.h>
30 #include <linux/capability.h>
31 #include <linux/timekeeper_internal.h>
32 #include <linux/errno.h>
33 #include <linux/syscalls.h>
34 #include <linux/security.h>
35 #include <linux/fs.h>
36 #include <linux/math64.h>
37 #include <linux/ptrace.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/compat.h>
41 #include <asm/unistd.h>
42 
43 #include <generated/timeconst.h>
44 #include "timekeeping.h"
45 
46 /*
47  * The timezone where the local system is located.  Used as a default by some
48  * programs who obtain this value by using gettimeofday.
49  */
50 struct timezone sys_tz;
51 
52 EXPORT_SYMBOL(sys_tz);
53 
54 #ifdef __ARCH_WANT_SYS_TIME
55 
56 /*
57  * sys_time() can be implemented in user-level using
58  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
59  * why not move it into the appropriate arch directory (for those
60  * architectures that need it).
61  */
62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
63 {
64 	time_t i = (time_t)ktime_get_real_seconds();
65 
66 	if (tloc) {
67 		if (put_user(i,tloc))
68 			return -EFAULT;
69 	}
70 	force_successful_syscall_return();
71 	return i;
72 }
73 
74 /*
75  * sys_stime() can be implemented in user-level using
76  * sys_settimeofday().  Is this for backwards compatibility?  If so,
77  * why not move it into the appropriate arch directory (for those
78  * architectures that need it).
79  */
80 
81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82 {
83 	struct timespec64 tv;
84 	int err;
85 
86 	if (get_user(tv.tv_sec, tptr))
87 		return -EFAULT;
88 
89 	tv.tv_nsec = 0;
90 
91 	err = security_settime64(&tv, NULL);
92 	if (err)
93 		return err;
94 
95 	do_settimeofday64(&tv);
96 	return 0;
97 }
98 
99 #endif /* __ARCH_WANT_SYS_TIME */
100 
101 #ifdef CONFIG_COMPAT_32BIT_TIME
102 #ifdef __ARCH_WANT_SYS_TIME32
103 
104 /* old_time32_t is a 32 bit "long" and needs to get converted. */
105 SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106 {
107 	old_time32_t i;
108 
109 	i = (old_time32_t)ktime_get_real_seconds();
110 
111 	if (tloc) {
112 		if (put_user(i,tloc))
113 			return -EFAULT;
114 	}
115 	force_successful_syscall_return();
116 	return i;
117 }
118 
119 SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120 {
121 	struct timespec64 tv;
122 	int err;
123 
124 	if (get_user(tv.tv_sec, tptr))
125 		return -EFAULT;
126 
127 	tv.tv_nsec = 0;
128 
129 	err = security_settime64(&tv, NULL);
130 	if (err)
131 		return err;
132 
133 	do_settimeofday64(&tv);
134 	return 0;
135 }
136 
137 #endif /* __ARCH_WANT_SYS_TIME32 */
138 #endif
139 
140 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
141 		struct timezone __user *, tz)
142 {
143 	if (likely(tv != NULL)) {
144 		struct timespec64 ts;
145 
146 		ktime_get_real_ts64(&ts);
147 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149 			return -EFAULT;
150 	}
151 	if (unlikely(tz != NULL)) {
152 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 			return -EFAULT;
154 	}
155 	return 0;
156 }
157 
158 /*
159  * In case for some reason the CMOS clock has not already been running
160  * in UTC, but in some local time: The first time we set the timezone,
161  * we will warp the clock so that it is ticking UTC time instead of
162  * local time. Presumably, if someone is setting the timezone then we
163  * are running in an environment where the programs understand about
164  * timezones. This should be done at boot time in the /etc/rc script,
165  * as soon as possible, so that the clock can be set right. Otherwise,
166  * various programs will get confused when the clock gets warped.
167  */
168 
169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170 {
171 	static int firsttime = 1;
172 	int error = 0;
173 
174 	if (tv && !timespec64_valid(tv))
175 		return -EINVAL;
176 
177 	error = security_settime64(tv, tz);
178 	if (error)
179 		return error;
180 
181 	if (tz) {
182 		/* Verify we're witin the +-15 hrs range */
183 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 			return -EINVAL;
185 
186 		sys_tz = *tz;
187 		update_vsyscall_tz();
188 		if (firsttime) {
189 			firsttime = 0;
190 			if (!tv)
191 				timekeeping_warp_clock();
192 		}
193 	}
194 	if (tv)
195 		return do_settimeofday64(tv);
196 	return 0;
197 }
198 
199 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
200 		struct timezone __user *, tz)
201 {
202 	struct timespec64 new_ts;
203 	struct timeval user_tv;
204 	struct timezone new_tz;
205 
206 	if (tv) {
207 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
208 			return -EFAULT;
209 
210 		if (!timeval_valid(&user_tv))
211 			return -EINVAL;
212 
213 		new_ts.tv_sec = user_tv.tv_sec;
214 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
215 	}
216 	if (tz) {
217 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
218 			return -EFAULT;
219 	}
220 
221 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
222 }
223 
224 #ifdef CONFIG_COMPAT
225 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
226 		       struct timezone __user *, tz)
227 {
228 	if (tv) {
229 		struct timespec64 ts;
230 
231 		ktime_get_real_ts64(&ts);
232 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
233 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
234 			return -EFAULT;
235 	}
236 	if (tz) {
237 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 			return -EFAULT;
239 	}
240 
241 	return 0;
242 }
243 
244 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
245 		       struct timezone __user *, tz)
246 {
247 	struct timespec64 new_ts;
248 	struct timeval user_tv;
249 	struct timezone new_tz;
250 
251 	if (tv) {
252 		if (compat_get_timeval(&user_tv, tv))
253 			return -EFAULT;
254 		new_ts.tv_sec = user_tv.tv_sec;
255 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
256 	}
257 	if (tz) {
258 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
259 			return -EFAULT;
260 	}
261 
262 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
263 }
264 #endif
265 
266 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
267 SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
268 {
269 	struct __kernel_timex txc;		/* Local copy of parameter */
270 	int ret;
271 
272 	/* Copy the user data space into the kernel copy
273 	 * structure. But bear in mind that the structures
274 	 * may change
275 	 */
276 	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
277 		return -EFAULT;
278 	ret = do_adjtimex(&txc);
279 	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
280 }
281 #endif
282 
283 #ifdef CONFIG_COMPAT_32BIT_TIME
284 int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
285 {
286 	struct old_timex32 tx32;
287 
288 	memset(txc, 0, sizeof(struct __kernel_timex));
289 	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
290 		return -EFAULT;
291 
292 	txc->modes = tx32.modes;
293 	txc->offset = tx32.offset;
294 	txc->freq = tx32.freq;
295 	txc->maxerror = tx32.maxerror;
296 	txc->esterror = tx32.esterror;
297 	txc->status = tx32.status;
298 	txc->constant = tx32.constant;
299 	txc->precision = tx32.precision;
300 	txc->tolerance = tx32.tolerance;
301 	txc->time.tv_sec = tx32.time.tv_sec;
302 	txc->time.tv_usec = tx32.time.tv_usec;
303 	txc->tick = tx32.tick;
304 	txc->ppsfreq = tx32.ppsfreq;
305 	txc->jitter = tx32.jitter;
306 	txc->shift = tx32.shift;
307 	txc->stabil = tx32.stabil;
308 	txc->jitcnt = tx32.jitcnt;
309 	txc->calcnt = tx32.calcnt;
310 	txc->errcnt = tx32.errcnt;
311 	txc->stbcnt = tx32.stbcnt;
312 
313 	return 0;
314 }
315 
316 int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
317 {
318 	struct old_timex32 tx32;
319 
320 	memset(&tx32, 0, sizeof(struct old_timex32));
321 	tx32.modes = txc->modes;
322 	tx32.offset = txc->offset;
323 	tx32.freq = txc->freq;
324 	tx32.maxerror = txc->maxerror;
325 	tx32.esterror = txc->esterror;
326 	tx32.status = txc->status;
327 	tx32.constant = txc->constant;
328 	tx32.precision = txc->precision;
329 	tx32.tolerance = txc->tolerance;
330 	tx32.time.tv_sec = txc->time.tv_sec;
331 	tx32.time.tv_usec = txc->time.tv_usec;
332 	tx32.tick = txc->tick;
333 	tx32.ppsfreq = txc->ppsfreq;
334 	tx32.jitter = txc->jitter;
335 	tx32.shift = txc->shift;
336 	tx32.stabil = txc->stabil;
337 	tx32.jitcnt = txc->jitcnt;
338 	tx32.calcnt = txc->calcnt;
339 	tx32.errcnt = txc->errcnt;
340 	tx32.stbcnt = txc->stbcnt;
341 	tx32.tai = txc->tai;
342 	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
343 		return -EFAULT;
344 	return 0;
345 }
346 
347 SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
348 {
349 	struct __kernel_timex txc;
350 	int err, ret;
351 
352 	err = get_old_timex32(&txc, utp);
353 	if (err)
354 		return err;
355 
356 	ret = do_adjtimex(&txc);
357 
358 	err = put_old_timex32(utp, &txc);
359 	if (err)
360 		return err;
361 
362 	return ret;
363 }
364 #endif
365 
366 /*
367  * Convert jiffies to milliseconds and back.
368  *
369  * Avoid unnecessary multiplications/divisions in the
370  * two most common HZ cases:
371  */
372 unsigned int jiffies_to_msecs(const unsigned long j)
373 {
374 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
375 	return (MSEC_PER_SEC / HZ) * j;
376 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
377 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
378 #else
379 # if BITS_PER_LONG == 32
380 	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
381 	       HZ_TO_MSEC_SHR32;
382 # else
383 	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
384 # endif
385 #endif
386 }
387 EXPORT_SYMBOL(jiffies_to_msecs);
388 
389 unsigned int jiffies_to_usecs(const unsigned long j)
390 {
391 	/*
392 	 * Hz usually doesn't go much further MSEC_PER_SEC.
393 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
394 	 */
395 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
396 
397 #if !(USEC_PER_SEC % HZ)
398 	return (USEC_PER_SEC / HZ) * j;
399 #else
400 # if BITS_PER_LONG == 32
401 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
402 # else
403 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
404 # endif
405 #endif
406 }
407 EXPORT_SYMBOL(jiffies_to_usecs);
408 
409 /*
410  * mktime64 - Converts date to seconds.
411  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
412  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
413  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
414  *
415  * [For the Julian calendar (which was used in Russia before 1917,
416  * Britain & colonies before 1752, anywhere else before 1582,
417  * and is still in use by some communities) leave out the
418  * -year/100+year/400 terms, and add 10.]
419  *
420  * This algorithm was first published by Gauss (I think).
421  *
422  * A leap second can be indicated by calling this function with sec as
423  * 60 (allowable under ISO 8601).  The leap second is treated the same
424  * as the following second since they don't exist in UNIX time.
425  *
426  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
427  * tomorrow - (allowable under ISO 8601) is supported.
428  */
429 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
430 		const unsigned int day, const unsigned int hour,
431 		const unsigned int min, const unsigned int sec)
432 {
433 	unsigned int mon = mon0, year = year0;
434 
435 	/* 1..12 -> 11,12,1..10 */
436 	if (0 >= (int) (mon -= 2)) {
437 		mon += 12;	/* Puts Feb last since it has leap day */
438 		year -= 1;
439 	}
440 
441 	return ((((time64_t)
442 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
443 		  year*365 - 719499
444 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
445 	  )*60 + min /* now have minutes */
446 	)*60 + sec; /* finally seconds */
447 }
448 EXPORT_SYMBOL(mktime64);
449 
450 /**
451  * ns_to_timespec - Convert nanoseconds to timespec
452  * @nsec:       the nanoseconds value to be converted
453  *
454  * Returns the timespec representation of the nsec parameter.
455  */
456 struct timespec ns_to_timespec(const s64 nsec)
457 {
458 	struct timespec ts;
459 	s32 rem;
460 
461 	if (!nsec)
462 		return (struct timespec) {0, 0};
463 
464 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
465 	if (unlikely(rem < 0)) {
466 		ts.tv_sec--;
467 		rem += NSEC_PER_SEC;
468 	}
469 	ts.tv_nsec = rem;
470 
471 	return ts;
472 }
473 EXPORT_SYMBOL(ns_to_timespec);
474 
475 /**
476  * ns_to_timeval - Convert nanoseconds to timeval
477  * @nsec:       the nanoseconds value to be converted
478  *
479  * Returns the timeval representation of the nsec parameter.
480  */
481 struct timeval ns_to_timeval(const s64 nsec)
482 {
483 	struct timespec ts = ns_to_timespec(nsec);
484 	struct timeval tv;
485 
486 	tv.tv_sec = ts.tv_sec;
487 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
488 
489 	return tv;
490 }
491 EXPORT_SYMBOL(ns_to_timeval);
492 
493 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
494 {
495 	struct timespec64 ts = ns_to_timespec64(nsec);
496 	struct __kernel_old_timeval tv;
497 
498 	tv.tv_sec = ts.tv_sec;
499 	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
500 
501 	return tv;
502 }
503 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
504 
505 /**
506  * set_normalized_timespec - set timespec sec and nsec parts and normalize
507  *
508  * @ts:		pointer to timespec variable to be set
509  * @sec:	seconds to set
510  * @nsec:	nanoseconds to set
511  *
512  * Set seconds and nanoseconds field of a timespec variable and
513  * normalize to the timespec storage format
514  *
515  * Note: The tv_nsec part is always in the range of
516  *	0 <= tv_nsec < NSEC_PER_SEC
517  * For negative values only the tv_sec field is negative !
518  */
519 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
520 {
521 	while (nsec >= NSEC_PER_SEC) {
522 		/*
523 		 * The following asm() prevents the compiler from
524 		 * optimising this loop into a modulo operation. See
525 		 * also __iter_div_u64_rem() in include/linux/time.h
526 		 */
527 		asm("" : "+rm"(nsec));
528 		nsec -= NSEC_PER_SEC;
529 		++sec;
530 	}
531 	while (nsec < 0) {
532 		asm("" : "+rm"(nsec));
533 		nsec += NSEC_PER_SEC;
534 		--sec;
535 	}
536 	ts->tv_sec = sec;
537 	ts->tv_nsec = nsec;
538 }
539 EXPORT_SYMBOL(set_normalized_timespec64);
540 
541 /**
542  * ns_to_timespec64 - Convert nanoseconds to timespec64
543  * @nsec:       the nanoseconds value to be converted
544  *
545  * Returns the timespec64 representation of the nsec parameter.
546  */
547 struct timespec64 ns_to_timespec64(const s64 nsec)
548 {
549 	struct timespec64 ts;
550 	s32 rem;
551 
552 	if (!nsec)
553 		return (struct timespec64) {0, 0};
554 
555 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
556 	if (unlikely(rem < 0)) {
557 		ts.tv_sec--;
558 		rem += NSEC_PER_SEC;
559 	}
560 	ts.tv_nsec = rem;
561 
562 	return ts;
563 }
564 EXPORT_SYMBOL(ns_to_timespec64);
565 
566 /**
567  * msecs_to_jiffies: - convert milliseconds to jiffies
568  * @m:	time in milliseconds
569  *
570  * conversion is done as follows:
571  *
572  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
573  *
574  * - 'too large' values [that would result in larger than
575  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
576  *
577  * - all other values are converted to jiffies by either multiplying
578  *   the input value by a factor or dividing it with a factor and
579  *   handling any 32-bit overflows.
580  *   for the details see __msecs_to_jiffies()
581  *
582  * msecs_to_jiffies() checks for the passed in value being a constant
583  * via __builtin_constant_p() allowing gcc to eliminate most of the
584  * code, __msecs_to_jiffies() is called if the value passed does not
585  * allow constant folding and the actual conversion must be done at
586  * runtime.
587  * the _msecs_to_jiffies helpers are the HZ dependent conversion
588  * routines found in include/linux/jiffies.h
589  */
590 unsigned long __msecs_to_jiffies(const unsigned int m)
591 {
592 	/*
593 	 * Negative value, means infinite timeout:
594 	 */
595 	if ((int)m < 0)
596 		return MAX_JIFFY_OFFSET;
597 	return _msecs_to_jiffies(m);
598 }
599 EXPORT_SYMBOL(__msecs_to_jiffies);
600 
601 unsigned long __usecs_to_jiffies(const unsigned int u)
602 {
603 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
604 		return MAX_JIFFY_OFFSET;
605 	return _usecs_to_jiffies(u);
606 }
607 EXPORT_SYMBOL(__usecs_to_jiffies);
608 
609 /*
610  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
611  * that a remainder subtract here would not do the right thing as the
612  * resolution values don't fall on second boundries.  I.e. the line:
613  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
614  * Note that due to the small error in the multiplier here, this
615  * rounding is incorrect for sufficiently large values of tv_nsec, but
616  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
617  * OK.
618  *
619  * Rather, we just shift the bits off the right.
620  *
621  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
622  * value to a scaled second value.
623  */
624 static unsigned long
625 __timespec64_to_jiffies(u64 sec, long nsec)
626 {
627 	nsec = nsec + TICK_NSEC - 1;
628 
629 	if (sec >= MAX_SEC_IN_JIFFIES){
630 		sec = MAX_SEC_IN_JIFFIES;
631 		nsec = 0;
632 	}
633 	return ((sec * SEC_CONVERSION) +
634 		(((u64)nsec * NSEC_CONVERSION) >>
635 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
636 
637 }
638 
639 static unsigned long
640 __timespec_to_jiffies(unsigned long sec, long nsec)
641 {
642 	return __timespec64_to_jiffies((u64)sec, nsec);
643 }
644 
645 unsigned long
646 timespec64_to_jiffies(const struct timespec64 *value)
647 {
648 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
649 }
650 EXPORT_SYMBOL(timespec64_to_jiffies);
651 
652 void
653 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
654 {
655 	/*
656 	 * Convert jiffies to nanoseconds and separate with
657 	 * one divide.
658 	 */
659 	u32 rem;
660 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
661 				    NSEC_PER_SEC, &rem);
662 	value->tv_nsec = rem;
663 }
664 EXPORT_SYMBOL(jiffies_to_timespec64);
665 
666 /*
667  * We could use a similar algorithm to timespec_to_jiffies (with a
668  * different multiplier for usec instead of nsec). But this has a
669  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
670  * usec value, since it's not necessarily integral.
671  *
672  * We could instead round in the intermediate scaled representation
673  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
674  * perilous: the scaling introduces a small positive error, which
675  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
676  * units to the intermediate before shifting) leads to accidental
677  * overflow and overestimates.
678  *
679  * At the cost of one additional multiplication by a constant, just
680  * use the timespec implementation.
681  */
682 unsigned long
683 timeval_to_jiffies(const struct timeval *value)
684 {
685 	return __timespec_to_jiffies(value->tv_sec,
686 				     value->tv_usec * NSEC_PER_USEC);
687 }
688 EXPORT_SYMBOL(timeval_to_jiffies);
689 
690 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
691 {
692 	/*
693 	 * Convert jiffies to nanoseconds and separate with
694 	 * one divide.
695 	 */
696 	u32 rem;
697 
698 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
699 				    NSEC_PER_SEC, &rem);
700 	value->tv_usec = rem / NSEC_PER_USEC;
701 }
702 EXPORT_SYMBOL(jiffies_to_timeval);
703 
704 /*
705  * Convert jiffies/jiffies_64 to clock_t and back.
706  */
707 clock_t jiffies_to_clock_t(unsigned long x)
708 {
709 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
710 # if HZ < USER_HZ
711 	return x * (USER_HZ / HZ);
712 # else
713 	return x / (HZ / USER_HZ);
714 # endif
715 #else
716 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
717 #endif
718 }
719 EXPORT_SYMBOL(jiffies_to_clock_t);
720 
721 unsigned long clock_t_to_jiffies(unsigned long x)
722 {
723 #if (HZ % USER_HZ)==0
724 	if (x >= ~0UL / (HZ / USER_HZ))
725 		return ~0UL;
726 	return x * (HZ / USER_HZ);
727 #else
728 	/* Don't worry about loss of precision here .. */
729 	if (x >= ~0UL / HZ * USER_HZ)
730 		return ~0UL;
731 
732 	/* .. but do try to contain it here */
733 	return div_u64((u64)x * HZ, USER_HZ);
734 #endif
735 }
736 EXPORT_SYMBOL(clock_t_to_jiffies);
737 
738 u64 jiffies_64_to_clock_t(u64 x)
739 {
740 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
741 # if HZ < USER_HZ
742 	x = div_u64(x * USER_HZ, HZ);
743 # elif HZ > USER_HZ
744 	x = div_u64(x, HZ / USER_HZ);
745 # else
746 	/* Nothing to do */
747 # endif
748 #else
749 	/*
750 	 * There are better ways that don't overflow early,
751 	 * but even this doesn't overflow in hundreds of years
752 	 * in 64 bits, so..
753 	 */
754 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
755 #endif
756 	return x;
757 }
758 EXPORT_SYMBOL(jiffies_64_to_clock_t);
759 
760 u64 nsec_to_clock_t(u64 x)
761 {
762 #if (NSEC_PER_SEC % USER_HZ) == 0
763 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
764 #elif (USER_HZ % 512) == 0
765 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
766 #else
767 	/*
768          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
769          * overflow after 64.99 years.
770          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
771          */
772 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
773 #endif
774 }
775 
776 u64 jiffies64_to_nsecs(u64 j)
777 {
778 #if !(NSEC_PER_SEC % HZ)
779 	return (NSEC_PER_SEC / HZ) * j;
780 # else
781 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
782 #endif
783 }
784 EXPORT_SYMBOL(jiffies64_to_nsecs);
785 
786 /**
787  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
788  *
789  * @n:	nsecs in u64
790  *
791  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
792  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
793  * for scheduler, not for use in device drivers to calculate timeout value.
794  *
795  * note:
796  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
797  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
798  */
799 u64 nsecs_to_jiffies64(u64 n)
800 {
801 #if (NSEC_PER_SEC % HZ) == 0
802 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
803 	return div_u64(n, NSEC_PER_SEC / HZ);
804 #elif (HZ % 512) == 0
805 	/* overflow after 292 years if HZ = 1024 */
806 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
807 #else
808 	/*
809 	 * Generic case - optimized for cases where HZ is a multiple of 3.
810 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
811 	 */
812 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
813 #endif
814 }
815 EXPORT_SYMBOL(nsecs_to_jiffies64);
816 
817 /**
818  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
819  *
820  * @n:	nsecs in u64
821  *
822  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
823  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
824  * for scheduler, not for use in device drivers to calculate timeout value.
825  *
826  * note:
827  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
828  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
829  */
830 unsigned long nsecs_to_jiffies(u64 n)
831 {
832 	return (unsigned long)nsecs_to_jiffies64(n);
833 }
834 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
835 
836 /*
837  * Add two timespec64 values and do a safety check for overflow.
838  * It's assumed that both values are valid (>= 0).
839  * And, each timespec64 is in normalized form.
840  */
841 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
842 				const struct timespec64 rhs)
843 {
844 	struct timespec64 res;
845 
846 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
847 			lhs.tv_nsec + rhs.tv_nsec);
848 
849 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
850 		res.tv_sec = TIME64_MAX;
851 		res.tv_nsec = 0;
852 	}
853 
854 	return res;
855 }
856 
857 int get_timespec64(struct timespec64 *ts,
858 		   const struct __kernel_timespec __user *uts)
859 {
860 	struct __kernel_timespec kts;
861 	int ret;
862 
863 	ret = copy_from_user(&kts, uts, sizeof(kts));
864 	if (ret)
865 		return -EFAULT;
866 
867 	ts->tv_sec = kts.tv_sec;
868 
869 	/* Zero out the padding for 32 bit systems or in compat mode */
870 	if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall())
871 		kts.tv_nsec &= 0xFFFFFFFFUL;
872 
873 	ts->tv_nsec = kts.tv_nsec;
874 
875 	return 0;
876 }
877 EXPORT_SYMBOL_GPL(get_timespec64);
878 
879 int put_timespec64(const struct timespec64 *ts,
880 		   struct __kernel_timespec __user *uts)
881 {
882 	struct __kernel_timespec kts = {
883 		.tv_sec = ts->tv_sec,
884 		.tv_nsec = ts->tv_nsec
885 	};
886 
887 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
888 }
889 EXPORT_SYMBOL_GPL(put_timespec64);
890 
891 static int __get_old_timespec32(struct timespec64 *ts64,
892 				   const struct old_timespec32 __user *cts)
893 {
894 	struct old_timespec32 ts;
895 	int ret;
896 
897 	ret = copy_from_user(&ts, cts, sizeof(ts));
898 	if (ret)
899 		return -EFAULT;
900 
901 	ts64->tv_sec = ts.tv_sec;
902 	ts64->tv_nsec = ts.tv_nsec;
903 
904 	return 0;
905 }
906 
907 static int __put_old_timespec32(const struct timespec64 *ts64,
908 				   struct old_timespec32 __user *cts)
909 {
910 	struct old_timespec32 ts = {
911 		.tv_sec = ts64->tv_sec,
912 		.tv_nsec = ts64->tv_nsec
913 	};
914 	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
915 }
916 
917 int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
918 {
919 	if (COMPAT_USE_64BIT_TIME)
920 		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
921 	else
922 		return __get_old_timespec32(ts, uts);
923 }
924 EXPORT_SYMBOL_GPL(get_old_timespec32);
925 
926 int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
927 {
928 	if (COMPAT_USE_64BIT_TIME)
929 		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
930 	else
931 		return __put_old_timespec32(ts, uts);
932 }
933 EXPORT_SYMBOL_GPL(put_old_timespec32);
934 
935 int get_itimerspec64(struct itimerspec64 *it,
936 			const struct __kernel_itimerspec __user *uit)
937 {
938 	int ret;
939 
940 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
941 	if (ret)
942 		return ret;
943 
944 	ret = get_timespec64(&it->it_value, &uit->it_value);
945 
946 	return ret;
947 }
948 EXPORT_SYMBOL_GPL(get_itimerspec64);
949 
950 int put_itimerspec64(const struct itimerspec64 *it,
951 			struct __kernel_itimerspec __user *uit)
952 {
953 	int ret;
954 
955 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
956 	if (ret)
957 		return ret;
958 
959 	ret = put_timespec64(&it->it_value, &uit->it_value);
960 
961 	return ret;
962 }
963 EXPORT_SYMBOL_GPL(put_itimerspec64);
964 
965 int get_old_itimerspec32(struct itimerspec64 *its,
966 			const struct old_itimerspec32 __user *uits)
967 {
968 
969 	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
970 	    __get_old_timespec32(&its->it_value, &uits->it_value))
971 		return -EFAULT;
972 	return 0;
973 }
974 EXPORT_SYMBOL_GPL(get_old_itimerspec32);
975 
976 int put_old_itimerspec32(const struct itimerspec64 *its,
977 			struct old_itimerspec32 __user *uits)
978 {
979 	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
980 	    __put_old_timespec32(&its->it_value, &uits->it_value))
981 		return -EFAULT;
982 	return 0;
983 }
984 EXPORT_SYMBOL_GPL(put_old_itimerspec32);
985