1 /* 2 * linux/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * This file contains the interface functions for the various 7 * time related system calls: time, stime, gettimeofday, settimeofday, 8 * adjtime 9 */ 10 /* 11 * Modification history kernel/time.c 12 * 13 * 1993-09-02 Philip Gladstone 14 * Created file with time related functions from sched/core.c and adjtimex() 15 * 1993-10-08 Torsten Duwe 16 * adjtime interface update and CMOS clock write code 17 * 1995-08-13 Torsten Duwe 18 * kernel PLL updated to 1994-12-13 specs (rfc-1589) 19 * 1999-01-16 Ulrich Windl 20 * Introduced error checking for many cases in adjtimex(). 21 * Updated NTP code according to technical memorandum Jan '96 22 * "A Kernel Model for Precision Timekeeping" by Dave Mills 23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) 24 * (Even though the technical memorandum forbids it) 25 * 2004-07-14 Christoph Lameter 26 * Added getnstimeofday to allow the posix timer functions to return 27 * with nanosecond accuracy 28 */ 29 30 #include <linux/export.h> 31 #include <linux/timex.h> 32 #include <linux/capability.h> 33 #include <linux/timekeeper_internal.h> 34 #include <linux/errno.h> 35 #include <linux/syscalls.h> 36 #include <linux/security.h> 37 #include <linux/fs.h> 38 #include <linux/math64.h> 39 #include <linux/ptrace.h> 40 41 #include <asm/uaccess.h> 42 #include <asm/unistd.h> 43 44 #include <generated/timeconst.h> 45 #include "timekeeping.h" 46 47 /* 48 * The timezone where the local system is located. Used as a default by some 49 * programs who obtain this value by using gettimeofday. 50 */ 51 struct timezone sys_tz; 52 53 EXPORT_SYMBOL(sys_tz); 54 55 #ifdef __ARCH_WANT_SYS_TIME 56 57 /* 58 * sys_time() can be implemented in user-level using 59 * sys_gettimeofday(). Is this for backwards compatibility? If so, 60 * why not move it into the appropriate arch directory (for those 61 * architectures that need it). 62 */ 63 SYSCALL_DEFINE1(time, time_t __user *, tloc) 64 { 65 time_t i = get_seconds(); 66 67 if (tloc) { 68 if (put_user(i,tloc)) 69 return -EFAULT; 70 } 71 force_successful_syscall_return(); 72 return i; 73 } 74 75 /* 76 * sys_stime() can be implemented in user-level using 77 * sys_settimeofday(). Is this for backwards compatibility? If so, 78 * why not move it into the appropriate arch directory (for those 79 * architectures that need it). 80 */ 81 82 SYSCALL_DEFINE1(stime, time_t __user *, tptr) 83 { 84 struct timespec tv; 85 int err; 86 87 if (get_user(tv.tv_sec, tptr)) 88 return -EFAULT; 89 90 tv.tv_nsec = 0; 91 92 err = security_settime(&tv, NULL); 93 if (err) 94 return err; 95 96 do_settimeofday(&tv); 97 return 0; 98 } 99 100 #endif /* __ARCH_WANT_SYS_TIME */ 101 102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, 103 struct timezone __user *, tz) 104 { 105 if (likely(tv != NULL)) { 106 struct timeval ktv; 107 do_gettimeofday(&ktv); 108 if (copy_to_user(tv, &ktv, sizeof(ktv))) 109 return -EFAULT; 110 } 111 if (unlikely(tz != NULL)) { 112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 113 return -EFAULT; 114 } 115 return 0; 116 } 117 118 /* 119 * Indicates if there is an offset between the system clock and the hardware 120 * clock/persistent clock/rtc. 121 */ 122 int persistent_clock_is_local; 123 124 /* 125 * Adjust the time obtained from the CMOS to be UTC time instead of 126 * local time. 127 * 128 * This is ugly, but preferable to the alternatives. Otherwise we 129 * would either need to write a program to do it in /etc/rc (and risk 130 * confusion if the program gets run more than once; it would also be 131 * hard to make the program warp the clock precisely n hours) or 132 * compile in the timezone information into the kernel. Bad, bad.... 133 * 134 * - TYT, 1992-01-01 135 * 136 * The best thing to do is to keep the CMOS clock in universal time (UTC) 137 * as real UNIX machines always do it. This avoids all headaches about 138 * daylight saving times and warping kernel clocks. 139 */ 140 static inline void warp_clock(void) 141 { 142 if (sys_tz.tz_minuteswest != 0) { 143 struct timespec adjust; 144 145 persistent_clock_is_local = 1; 146 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 147 adjust.tv_nsec = 0; 148 timekeeping_inject_offset(&adjust); 149 } 150 } 151 152 /* 153 * In case for some reason the CMOS clock has not already been running 154 * in UTC, but in some local time: The first time we set the timezone, 155 * we will warp the clock so that it is ticking UTC time instead of 156 * local time. Presumably, if someone is setting the timezone then we 157 * are running in an environment where the programs understand about 158 * timezones. This should be done at boot time in the /etc/rc script, 159 * as soon as possible, so that the clock can be set right. Otherwise, 160 * various programs will get confused when the clock gets warped. 161 */ 162 163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz) 164 { 165 static int firsttime = 1; 166 int error = 0; 167 168 if (tv && !timespec_valid(tv)) 169 return -EINVAL; 170 171 error = security_settime(tv, tz); 172 if (error) 173 return error; 174 175 if (tz) { 176 /* Verify we're witin the +-15 hrs range */ 177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60) 178 return -EINVAL; 179 180 sys_tz = *tz; 181 update_vsyscall_tz(); 182 if (firsttime) { 183 firsttime = 0; 184 if (!tv) 185 warp_clock(); 186 } 187 } 188 if (tv) 189 return do_settimeofday(tv); 190 return 0; 191 } 192 193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, 194 struct timezone __user *, tz) 195 { 196 struct timeval user_tv; 197 struct timespec new_ts; 198 struct timezone new_tz; 199 200 if (tv) { 201 if (copy_from_user(&user_tv, tv, sizeof(*tv))) 202 return -EFAULT; 203 204 if (!timeval_valid(&user_tv)) 205 return -EINVAL; 206 207 new_ts.tv_sec = user_tv.tv_sec; 208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 209 } 210 if (tz) { 211 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 212 return -EFAULT; 213 } 214 215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 216 } 217 218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p) 219 { 220 struct timex txc; /* Local copy of parameter */ 221 int ret; 222 223 /* Copy the user data space into the kernel copy 224 * structure. But bear in mind that the structures 225 * may change 226 */ 227 if(copy_from_user(&txc, txc_p, sizeof(struct timex))) 228 return -EFAULT; 229 ret = do_adjtimex(&txc); 230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; 231 } 232 233 /** 234 * current_fs_time - Return FS time 235 * @sb: Superblock. 236 * 237 * Return the current time truncated to the time granularity supported by 238 * the fs. 239 */ 240 struct timespec current_fs_time(struct super_block *sb) 241 { 242 struct timespec now = current_kernel_time(); 243 return timespec_trunc(now, sb->s_time_gran); 244 } 245 EXPORT_SYMBOL(current_fs_time); 246 247 /* 248 * Convert jiffies to milliseconds and back. 249 * 250 * Avoid unnecessary multiplications/divisions in the 251 * two most common HZ cases: 252 */ 253 unsigned int jiffies_to_msecs(const unsigned long j) 254 { 255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 256 return (MSEC_PER_SEC / HZ) * j; 257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); 259 #else 260 # if BITS_PER_LONG == 32 261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; 262 # else 263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; 264 # endif 265 #endif 266 } 267 EXPORT_SYMBOL(jiffies_to_msecs); 268 269 unsigned int jiffies_to_usecs(const unsigned long j) 270 { 271 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) 272 return (USEC_PER_SEC / HZ) * j; 273 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) 274 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); 275 #else 276 # if BITS_PER_LONG == 32 277 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; 278 # else 279 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; 280 # endif 281 #endif 282 } 283 EXPORT_SYMBOL(jiffies_to_usecs); 284 285 /** 286 * timespec_trunc - Truncate timespec to a granularity 287 * @t: Timespec 288 * @gran: Granularity in ns. 289 * 290 * Truncate a timespec to a granularity. gran must be smaller than a second. 291 * Always rounds down. 292 * 293 * This function should be only used for timestamps returned by 294 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because 295 * it doesn't handle the better resolution of the latter. 296 */ 297 struct timespec timespec_trunc(struct timespec t, unsigned gran) 298 { 299 /* 300 * Division is pretty slow so avoid it for common cases. 301 * Currently current_kernel_time() never returns better than 302 * jiffies resolution. Exploit that. 303 */ 304 if (gran <= jiffies_to_usecs(1) * 1000) { 305 /* nothing */ 306 } else if (gran == 1000000000) { 307 t.tv_nsec = 0; 308 } else { 309 t.tv_nsec -= t.tv_nsec % gran; 310 } 311 return t; 312 } 313 EXPORT_SYMBOL(timespec_trunc); 314 315 /* 316 * mktime64 - Converts date to seconds. 317 * Converts Gregorian date to seconds since 1970-01-01 00:00:00. 318 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 319 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. 320 * 321 * [For the Julian calendar (which was used in Russia before 1917, 322 * Britain & colonies before 1752, anywhere else before 1582, 323 * and is still in use by some communities) leave out the 324 * -year/100+year/400 terms, and add 10.] 325 * 326 * This algorithm was first published by Gauss (I think). 327 */ 328 time64_t mktime64(const unsigned int year0, const unsigned int mon0, 329 const unsigned int day, const unsigned int hour, 330 const unsigned int min, const unsigned int sec) 331 { 332 unsigned int mon = mon0, year = year0; 333 334 /* 1..12 -> 11,12,1..10 */ 335 if (0 >= (int) (mon -= 2)) { 336 mon += 12; /* Puts Feb last since it has leap day */ 337 year -= 1; 338 } 339 340 return ((((time64_t) 341 (year/4 - year/100 + year/400 + 367*mon/12 + day) + 342 year*365 - 719499 343 )*24 + hour /* now have hours */ 344 )*60 + min /* now have minutes */ 345 )*60 + sec; /* finally seconds */ 346 } 347 EXPORT_SYMBOL(mktime64); 348 349 /** 350 * set_normalized_timespec - set timespec sec and nsec parts and normalize 351 * 352 * @ts: pointer to timespec variable to be set 353 * @sec: seconds to set 354 * @nsec: nanoseconds to set 355 * 356 * Set seconds and nanoseconds field of a timespec variable and 357 * normalize to the timespec storage format 358 * 359 * Note: The tv_nsec part is always in the range of 360 * 0 <= tv_nsec < NSEC_PER_SEC 361 * For negative values only the tv_sec field is negative ! 362 */ 363 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) 364 { 365 while (nsec >= NSEC_PER_SEC) { 366 /* 367 * The following asm() prevents the compiler from 368 * optimising this loop into a modulo operation. See 369 * also __iter_div_u64_rem() in include/linux/time.h 370 */ 371 asm("" : "+rm"(nsec)); 372 nsec -= NSEC_PER_SEC; 373 ++sec; 374 } 375 while (nsec < 0) { 376 asm("" : "+rm"(nsec)); 377 nsec += NSEC_PER_SEC; 378 --sec; 379 } 380 ts->tv_sec = sec; 381 ts->tv_nsec = nsec; 382 } 383 EXPORT_SYMBOL(set_normalized_timespec); 384 385 /** 386 * ns_to_timespec - Convert nanoseconds to timespec 387 * @nsec: the nanoseconds value to be converted 388 * 389 * Returns the timespec representation of the nsec parameter. 390 */ 391 struct timespec ns_to_timespec(const s64 nsec) 392 { 393 struct timespec ts; 394 s32 rem; 395 396 if (!nsec) 397 return (struct timespec) {0, 0}; 398 399 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 400 if (unlikely(rem < 0)) { 401 ts.tv_sec--; 402 rem += NSEC_PER_SEC; 403 } 404 ts.tv_nsec = rem; 405 406 return ts; 407 } 408 EXPORT_SYMBOL(ns_to_timespec); 409 410 /** 411 * ns_to_timeval - Convert nanoseconds to timeval 412 * @nsec: the nanoseconds value to be converted 413 * 414 * Returns the timeval representation of the nsec parameter. 415 */ 416 struct timeval ns_to_timeval(const s64 nsec) 417 { 418 struct timespec ts = ns_to_timespec(nsec); 419 struct timeval tv; 420 421 tv.tv_sec = ts.tv_sec; 422 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; 423 424 return tv; 425 } 426 EXPORT_SYMBOL(ns_to_timeval); 427 428 #if BITS_PER_LONG == 32 429 /** 430 * set_normalized_timespec - set timespec sec and nsec parts and normalize 431 * 432 * @ts: pointer to timespec variable to be set 433 * @sec: seconds to set 434 * @nsec: nanoseconds to set 435 * 436 * Set seconds and nanoseconds field of a timespec variable and 437 * normalize to the timespec storage format 438 * 439 * Note: The tv_nsec part is always in the range of 440 * 0 <= tv_nsec < NSEC_PER_SEC 441 * For negative values only the tv_sec field is negative ! 442 */ 443 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) 444 { 445 while (nsec >= NSEC_PER_SEC) { 446 /* 447 * The following asm() prevents the compiler from 448 * optimising this loop into a modulo operation. See 449 * also __iter_div_u64_rem() in include/linux/time.h 450 */ 451 asm("" : "+rm"(nsec)); 452 nsec -= NSEC_PER_SEC; 453 ++sec; 454 } 455 while (nsec < 0) { 456 asm("" : "+rm"(nsec)); 457 nsec += NSEC_PER_SEC; 458 --sec; 459 } 460 ts->tv_sec = sec; 461 ts->tv_nsec = nsec; 462 } 463 EXPORT_SYMBOL(set_normalized_timespec64); 464 465 /** 466 * ns_to_timespec64 - Convert nanoseconds to timespec64 467 * @nsec: the nanoseconds value to be converted 468 * 469 * Returns the timespec64 representation of the nsec parameter. 470 */ 471 struct timespec64 ns_to_timespec64(const s64 nsec) 472 { 473 struct timespec64 ts; 474 s32 rem; 475 476 if (!nsec) 477 return (struct timespec64) {0, 0}; 478 479 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 480 if (unlikely(rem < 0)) { 481 ts.tv_sec--; 482 rem += NSEC_PER_SEC; 483 } 484 ts.tv_nsec = rem; 485 486 return ts; 487 } 488 EXPORT_SYMBOL(ns_to_timespec64); 489 #endif 490 /** 491 * msecs_to_jiffies: - convert milliseconds to jiffies 492 * @m: time in milliseconds 493 * 494 * conversion is done as follows: 495 * 496 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 497 * 498 * - 'too large' values [that would result in larger than 499 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 500 * 501 * - all other values are converted to jiffies by either multiplying 502 * the input value by a factor or dividing it with a factor and 503 * handling any 32-bit overflows. 504 * for the details see __msecs_to_jiffies() 505 * 506 * msecs_to_jiffies() checks for the passed in value being a constant 507 * via __builtin_constant_p() allowing gcc to eliminate most of the 508 * code, __msecs_to_jiffies() is called if the value passed does not 509 * allow constant folding and the actual conversion must be done at 510 * runtime. 511 * the _msecs_to_jiffies helpers are the HZ dependent conversion 512 * routines found in include/linux/jiffies.h 513 */ 514 unsigned long __msecs_to_jiffies(const unsigned int m) 515 { 516 /* 517 * Negative value, means infinite timeout: 518 */ 519 if ((int)m < 0) 520 return MAX_JIFFY_OFFSET; 521 return _msecs_to_jiffies(m); 522 } 523 EXPORT_SYMBOL(__msecs_to_jiffies); 524 525 unsigned long __usecs_to_jiffies(const unsigned int u) 526 { 527 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 528 return MAX_JIFFY_OFFSET; 529 return _usecs_to_jiffies(u); 530 } 531 EXPORT_SYMBOL(__usecs_to_jiffies); 532 533 /* 534 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 535 * that a remainder subtract here would not do the right thing as the 536 * resolution values don't fall on second boundries. I.e. the line: 537 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 538 * Note that due to the small error in the multiplier here, this 539 * rounding is incorrect for sufficiently large values of tv_nsec, but 540 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're 541 * OK. 542 * 543 * Rather, we just shift the bits off the right. 544 * 545 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 546 * value to a scaled second value. 547 */ 548 static unsigned long 549 __timespec_to_jiffies(unsigned long sec, long nsec) 550 { 551 nsec = nsec + TICK_NSEC - 1; 552 553 if (sec >= MAX_SEC_IN_JIFFIES){ 554 sec = MAX_SEC_IN_JIFFIES; 555 nsec = 0; 556 } 557 return (((u64)sec * SEC_CONVERSION) + 558 (((u64)nsec * NSEC_CONVERSION) >> 559 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 560 561 } 562 563 unsigned long 564 timespec_to_jiffies(const struct timespec *value) 565 { 566 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec); 567 } 568 569 EXPORT_SYMBOL(timespec_to_jiffies); 570 571 void 572 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) 573 { 574 /* 575 * Convert jiffies to nanoseconds and separate with 576 * one divide. 577 */ 578 u32 rem; 579 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 580 NSEC_PER_SEC, &rem); 581 value->tv_nsec = rem; 582 } 583 EXPORT_SYMBOL(jiffies_to_timespec); 584 585 /* 586 * We could use a similar algorithm to timespec_to_jiffies (with a 587 * different multiplier for usec instead of nsec). But this has a 588 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the 589 * usec value, since it's not necessarily integral. 590 * 591 * We could instead round in the intermediate scaled representation 592 * (i.e. in units of 1/2^(large scale) jiffies) but that's also 593 * perilous: the scaling introduces a small positive error, which 594 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 595 * units to the intermediate before shifting) leads to accidental 596 * overflow and overestimates. 597 * 598 * At the cost of one additional multiplication by a constant, just 599 * use the timespec implementation. 600 */ 601 unsigned long 602 timeval_to_jiffies(const struct timeval *value) 603 { 604 return __timespec_to_jiffies(value->tv_sec, 605 value->tv_usec * NSEC_PER_USEC); 606 } 607 EXPORT_SYMBOL(timeval_to_jiffies); 608 609 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 610 { 611 /* 612 * Convert jiffies to nanoseconds and separate with 613 * one divide. 614 */ 615 u32 rem; 616 617 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 618 NSEC_PER_SEC, &rem); 619 value->tv_usec = rem / NSEC_PER_USEC; 620 } 621 EXPORT_SYMBOL(jiffies_to_timeval); 622 623 /* 624 * Convert jiffies/jiffies_64 to clock_t and back. 625 */ 626 clock_t jiffies_to_clock_t(unsigned long x) 627 { 628 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 629 # if HZ < USER_HZ 630 return x * (USER_HZ / HZ); 631 # else 632 return x / (HZ / USER_HZ); 633 # endif 634 #else 635 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); 636 #endif 637 } 638 EXPORT_SYMBOL(jiffies_to_clock_t); 639 640 unsigned long clock_t_to_jiffies(unsigned long x) 641 { 642 #if (HZ % USER_HZ)==0 643 if (x >= ~0UL / (HZ / USER_HZ)) 644 return ~0UL; 645 return x * (HZ / USER_HZ); 646 #else 647 /* Don't worry about loss of precision here .. */ 648 if (x >= ~0UL / HZ * USER_HZ) 649 return ~0UL; 650 651 /* .. but do try to contain it here */ 652 return div_u64((u64)x * HZ, USER_HZ); 653 #endif 654 } 655 EXPORT_SYMBOL(clock_t_to_jiffies); 656 657 u64 jiffies_64_to_clock_t(u64 x) 658 { 659 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 660 # if HZ < USER_HZ 661 x = div_u64(x * USER_HZ, HZ); 662 # elif HZ > USER_HZ 663 x = div_u64(x, HZ / USER_HZ); 664 # else 665 /* Nothing to do */ 666 # endif 667 #else 668 /* 669 * There are better ways that don't overflow early, 670 * but even this doesn't overflow in hundreds of years 671 * in 64 bits, so.. 672 */ 673 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); 674 #endif 675 return x; 676 } 677 EXPORT_SYMBOL(jiffies_64_to_clock_t); 678 679 u64 nsec_to_clock_t(u64 x) 680 { 681 #if (NSEC_PER_SEC % USER_HZ) == 0 682 return div_u64(x, NSEC_PER_SEC / USER_HZ); 683 #elif (USER_HZ % 512) == 0 684 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); 685 #else 686 /* 687 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 688 * overflow after 64.99 years. 689 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 690 */ 691 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); 692 #endif 693 } 694 695 /** 696 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 697 * 698 * @n: nsecs in u64 699 * 700 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 701 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 702 * for scheduler, not for use in device drivers to calculate timeout value. 703 * 704 * note: 705 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 706 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 707 */ 708 u64 nsecs_to_jiffies64(u64 n) 709 { 710 #if (NSEC_PER_SEC % HZ) == 0 711 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ 712 return div_u64(n, NSEC_PER_SEC / HZ); 713 #elif (HZ % 512) == 0 714 /* overflow after 292 years if HZ = 1024 */ 715 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); 716 #else 717 /* 718 * Generic case - optimized for cases where HZ is a multiple of 3. 719 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. 720 */ 721 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); 722 #endif 723 } 724 EXPORT_SYMBOL(nsecs_to_jiffies64); 725 726 /** 727 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies 728 * 729 * @n: nsecs in u64 730 * 731 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 732 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 733 * for scheduler, not for use in device drivers to calculate timeout value. 734 * 735 * note: 736 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 737 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 738 */ 739 unsigned long nsecs_to_jiffies(u64 n) 740 { 741 return (unsigned long)nsecs_to_jiffies64(n); 742 } 743 EXPORT_SYMBOL_GPL(nsecs_to_jiffies); 744 745 /* 746 * Add two timespec values and do a safety check for overflow. 747 * It's assumed that both values are valid (>= 0) 748 */ 749 struct timespec timespec_add_safe(const struct timespec lhs, 750 const struct timespec rhs) 751 { 752 struct timespec res; 753 754 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec, 755 lhs.tv_nsec + rhs.tv_nsec); 756 757 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec) 758 res.tv_sec = TIME_T_MAX; 759 760 return res; 761 } 762