xref: /openbmc/linux/kernel/time/time.c (revision e2f1cf25)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46 
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52 
53 EXPORT_SYMBOL(sys_tz);
54 
55 #ifdef __ARCH_WANT_SYS_TIME
56 
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 	time_t i = get_seconds();
66 
67 	if (tloc) {
68 		if (put_user(i,tloc))
69 			return -EFAULT;
70 	}
71 	force_successful_syscall_return();
72 	return i;
73 }
74 
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81 
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 	struct timespec tv;
85 	int err;
86 
87 	if (get_user(tv.tv_sec, tptr))
88 		return -EFAULT;
89 
90 	tv.tv_nsec = 0;
91 
92 	err = security_settime(&tv, NULL);
93 	if (err)
94 		return err;
95 
96 	do_settimeofday(&tv);
97 	return 0;
98 }
99 
100 #endif /* __ARCH_WANT_SYS_TIME */
101 
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 		struct timezone __user *, tz)
104 {
105 	if (likely(tv != NULL)) {
106 		struct timeval ktv;
107 		do_gettimeofday(&ktv);
108 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 			return -EFAULT;
110 	}
111 	if (unlikely(tz != NULL)) {
112 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Indicates if there is an offset between the system clock and the hardware
120  * clock/persistent clock/rtc.
121  */
122 int persistent_clock_is_local;
123 
124 /*
125  * Adjust the time obtained from the CMOS to be UTC time instead of
126  * local time.
127  *
128  * This is ugly, but preferable to the alternatives.  Otherwise we
129  * would either need to write a program to do it in /etc/rc (and risk
130  * confusion if the program gets run more than once; it would also be
131  * hard to make the program warp the clock precisely n hours)  or
132  * compile in the timezone information into the kernel.  Bad, bad....
133  *
134  *						- TYT, 1992-01-01
135  *
136  * The best thing to do is to keep the CMOS clock in universal time (UTC)
137  * as real UNIX machines always do it. This avoids all headaches about
138  * daylight saving times and warping kernel clocks.
139  */
140 static inline void warp_clock(void)
141 {
142 	if (sys_tz.tz_minuteswest != 0) {
143 		struct timespec adjust;
144 
145 		persistent_clock_is_local = 1;
146 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 		adjust.tv_nsec = 0;
148 		timekeeping_inject_offset(&adjust);
149 	}
150 }
151 
152 /*
153  * In case for some reason the CMOS clock has not already been running
154  * in UTC, but in some local time: The first time we set the timezone,
155  * we will warp the clock so that it is ticking UTC time instead of
156  * local time. Presumably, if someone is setting the timezone then we
157  * are running in an environment where the programs understand about
158  * timezones. This should be done at boot time in the /etc/rc script,
159  * as soon as possible, so that the clock can be set right. Otherwise,
160  * various programs will get confused when the clock gets warped.
161  */
162 
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 	static int firsttime = 1;
166 	int error = 0;
167 
168 	if (tv && !timespec_valid(tv))
169 		return -EINVAL;
170 
171 	error = security_settime(tv, tz);
172 	if (error)
173 		return error;
174 
175 	if (tz) {
176 		/* Verify we're witin the +-15 hrs range */
177 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 			return -EINVAL;
179 
180 		sys_tz = *tz;
181 		update_vsyscall_tz();
182 		if (firsttime) {
183 			firsttime = 0;
184 			if (!tv)
185 				warp_clock();
186 		}
187 	}
188 	if (tv)
189 		return do_settimeofday(tv);
190 	return 0;
191 }
192 
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 		struct timezone __user *, tz)
195 {
196 	struct timeval user_tv;
197 	struct timespec	new_ts;
198 	struct timezone new_tz;
199 
200 	if (tv) {
201 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 			return -EFAULT;
203 
204 		if (!timeval_valid(&user_tv))
205 			return -EINVAL;
206 
207 		new_ts.tv_sec = user_tv.tv_sec;
208 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 	}
210 	if (tz) {
211 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 			return -EFAULT;
213 	}
214 
215 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216 }
217 
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219 {
220 	struct timex txc;		/* Local copy of parameter */
221 	int ret;
222 
223 	/* Copy the user data space into the kernel copy
224 	 * structure. But bear in mind that the structures
225 	 * may change
226 	 */
227 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 		return -EFAULT;
229 	ret = do_adjtimex(&txc);
230 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231 }
232 
233 /**
234  * current_fs_time - Return FS time
235  * @sb: Superblock.
236  *
237  * Return the current time truncated to the time granularity supported by
238  * the fs.
239  */
240 struct timespec current_fs_time(struct super_block *sb)
241 {
242 	struct timespec now = current_kernel_time();
243 	return timespec_trunc(now, sb->s_time_gran);
244 }
245 EXPORT_SYMBOL(current_fs_time);
246 
247 /*
248  * Convert jiffies to milliseconds and back.
249  *
250  * Avoid unnecessary multiplications/divisions in the
251  * two most common HZ cases:
252  */
253 unsigned int jiffies_to_msecs(const unsigned long j)
254 {
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 	return (MSEC_PER_SEC / HZ) * j;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259 #else
260 # if BITS_PER_LONG == 32
261 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 # else
263 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264 # endif
265 #endif
266 }
267 EXPORT_SYMBOL(jiffies_to_msecs);
268 
269 unsigned int jiffies_to_usecs(const unsigned long j)
270 {
271 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
272 	return (USEC_PER_SEC / HZ) * j;
273 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
274 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
275 #else
276 # if BITS_PER_LONG == 32
277 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
278 # else
279 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
280 # endif
281 #endif
282 }
283 EXPORT_SYMBOL(jiffies_to_usecs);
284 
285 /**
286  * timespec_trunc - Truncate timespec to a granularity
287  * @t: Timespec
288  * @gran: Granularity in ns.
289  *
290  * Truncate a timespec to a granularity. gran must be smaller than a second.
291  * Always rounds down.
292  *
293  * This function should be only used for timestamps returned by
294  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
295  * it doesn't handle the better resolution of the latter.
296  */
297 struct timespec timespec_trunc(struct timespec t, unsigned gran)
298 {
299 	/*
300 	 * Division is pretty slow so avoid it for common cases.
301 	 * Currently current_kernel_time() never returns better than
302 	 * jiffies resolution. Exploit that.
303 	 */
304 	if (gran <= jiffies_to_usecs(1) * 1000) {
305 		/* nothing */
306 	} else if (gran == 1000000000) {
307 		t.tv_nsec = 0;
308 	} else {
309 		t.tv_nsec -= t.tv_nsec % gran;
310 	}
311 	return t;
312 }
313 EXPORT_SYMBOL(timespec_trunc);
314 
315 /*
316  * mktime64 - Converts date to seconds.
317  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
318  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
319  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
320  *
321  * [For the Julian calendar (which was used in Russia before 1917,
322  * Britain & colonies before 1752, anywhere else before 1582,
323  * and is still in use by some communities) leave out the
324  * -year/100+year/400 terms, and add 10.]
325  *
326  * This algorithm was first published by Gauss (I think).
327  */
328 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
329 		const unsigned int day, const unsigned int hour,
330 		const unsigned int min, const unsigned int sec)
331 {
332 	unsigned int mon = mon0, year = year0;
333 
334 	/* 1..12 -> 11,12,1..10 */
335 	if (0 >= (int) (mon -= 2)) {
336 		mon += 12;	/* Puts Feb last since it has leap day */
337 		year -= 1;
338 	}
339 
340 	return ((((time64_t)
341 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
342 		  year*365 - 719499
343 	    )*24 + hour /* now have hours */
344 	  )*60 + min /* now have minutes */
345 	)*60 + sec; /* finally seconds */
346 }
347 EXPORT_SYMBOL(mktime64);
348 
349 /**
350  * set_normalized_timespec - set timespec sec and nsec parts and normalize
351  *
352  * @ts:		pointer to timespec variable to be set
353  * @sec:	seconds to set
354  * @nsec:	nanoseconds to set
355  *
356  * Set seconds and nanoseconds field of a timespec variable and
357  * normalize to the timespec storage format
358  *
359  * Note: The tv_nsec part is always in the range of
360  *	0 <= tv_nsec < NSEC_PER_SEC
361  * For negative values only the tv_sec field is negative !
362  */
363 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
364 {
365 	while (nsec >= NSEC_PER_SEC) {
366 		/*
367 		 * The following asm() prevents the compiler from
368 		 * optimising this loop into a modulo operation. See
369 		 * also __iter_div_u64_rem() in include/linux/time.h
370 		 */
371 		asm("" : "+rm"(nsec));
372 		nsec -= NSEC_PER_SEC;
373 		++sec;
374 	}
375 	while (nsec < 0) {
376 		asm("" : "+rm"(nsec));
377 		nsec += NSEC_PER_SEC;
378 		--sec;
379 	}
380 	ts->tv_sec = sec;
381 	ts->tv_nsec = nsec;
382 }
383 EXPORT_SYMBOL(set_normalized_timespec);
384 
385 /**
386  * ns_to_timespec - Convert nanoseconds to timespec
387  * @nsec:       the nanoseconds value to be converted
388  *
389  * Returns the timespec representation of the nsec parameter.
390  */
391 struct timespec ns_to_timespec(const s64 nsec)
392 {
393 	struct timespec ts;
394 	s32 rem;
395 
396 	if (!nsec)
397 		return (struct timespec) {0, 0};
398 
399 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
400 	if (unlikely(rem < 0)) {
401 		ts.tv_sec--;
402 		rem += NSEC_PER_SEC;
403 	}
404 	ts.tv_nsec = rem;
405 
406 	return ts;
407 }
408 EXPORT_SYMBOL(ns_to_timespec);
409 
410 /**
411  * ns_to_timeval - Convert nanoseconds to timeval
412  * @nsec:       the nanoseconds value to be converted
413  *
414  * Returns the timeval representation of the nsec parameter.
415  */
416 struct timeval ns_to_timeval(const s64 nsec)
417 {
418 	struct timespec ts = ns_to_timespec(nsec);
419 	struct timeval tv;
420 
421 	tv.tv_sec = ts.tv_sec;
422 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
423 
424 	return tv;
425 }
426 EXPORT_SYMBOL(ns_to_timeval);
427 
428 #if BITS_PER_LONG == 32
429 /**
430  * set_normalized_timespec - set timespec sec and nsec parts and normalize
431  *
432  * @ts:		pointer to timespec variable to be set
433  * @sec:	seconds to set
434  * @nsec:	nanoseconds to set
435  *
436  * Set seconds and nanoseconds field of a timespec variable and
437  * normalize to the timespec storage format
438  *
439  * Note: The tv_nsec part is always in the range of
440  *	0 <= tv_nsec < NSEC_PER_SEC
441  * For negative values only the tv_sec field is negative !
442  */
443 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
444 {
445 	while (nsec >= NSEC_PER_SEC) {
446 		/*
447 		 * The following asm() prevents the compiler from
448 		 * optimising this loop into a modulo operation. See
449 		 * also __iter_div_u64_rem() in include/linux/time.h
450 		 */
451 		asm("" : "+rm"(nsec));
452 		nsec -= NSEC_PER_SEC;
453 		++sec;
454 	}
455 	while (nsec < 0) {
456 		asm("" : "+rm"(nsec));
457 		nsec += NSEC_PER_SEC;
458 		--sec;
459 	}
460 	ts->tv_sec = sec;
461 	ts->tv_nsec = nsec;
462 }
463 EXPORT_SYMBOL(set_normalized_timespec64);
464 
465 /**
466  * ns_to_timespec64 - Convert nanoseconds to timespec64
467  * @nsec:       the nanoseconds value to be converted
468  *
469  * Returns the timespec64 representation of the nsec parameter.
470  */
471 struct timespec64 ns_to_timespec64(const s64 nsec)
472 {
473 	struct timespec64 ts;
474 	s32 rem;
475 
476 	if (!nsec)
477 		return (struct timespec64) {0, 0};
478 
479 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
480 	if (unlikely(rem < 0)) {
481 		ts.tv_sec--;
482 		rem += NSEC_PER_SEC;
483 	}
484 	ts.tv_nsec = rem;
485 
486 	return ts;
487 }
488 EXPORT_SYMBOL(ns_to_timespec64);
489 #endif
490 /**
491  * msecs_to_jiffies: - convert milliseconds to jiffies
492  * @m:	time in milliseconds
493  *
494  * conversion is done as follows:
495  *
496  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
497  *
498  * - 'too large' values [that would result in larger than
499  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
500  *
501  * - all other values are converted to jiffies by either multiplying
502  *   the input value by a factor or dividing it with a factor and
503  *   handling any 32-bit overflows.
504  *   for the details see __msecs_to_jiffies()
505  *
506  * msecs_to_jiffies() checks for the passed in value being a constant
507  * via __builtin_constant_p() allowing gcc to eliminate most of the
508  * code, __msecs_to_jiffies() is called if the value passed does not
509  * allow constant folding and the actual conversion must be done at
510  * runtime.
511  * the _msecs_to_jiffies helpers are the HZ dependent conversion
512  * routines found in include/linux/jiffies.h
513  */
514 unsigned long __msecs_to_jiffies(const unsigned int m)
515 {
516 	/*
517 	 * Negative value, means infinite timeout:
518 	 */
519 	if ((int)m < 0)
520 		return MAX_JIFFY_OFFSET;
521 	return _msecs_to_jiffies(m);
522 }
523 EXPORT_SYMBOL(__msecs_to_jiffies);
524 
525 unsigned long __usecs_to_jiffies(const unsigned int u)
526 {
527 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
528 		return MAX_JIFFY_OFFSET;
529 	return _usecs_to_jiffies(u);
530 }
531 EXPORT_SYMBOL(__usecs_to_jiffies);
532 
533 /*
534  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
535  * that a remainder subtract here would not do the right thing as the
536  * resolution values don't fall on second boundries.  I.e. the line:
537  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
538  * Note that due to the small error in the multiplier here, this
539  * rounding is incorrect for sufficiently large values of tv_nsec, but
540  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
541  * OK.
542  *
543  * Rather, we just shift the bits off the right.
544  *
545  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
546  * value to a scaled second value.
547  */
548 static unsigned long
549 __timespec_to_jiffies(unsigned long sec, long nsec)
550 {
551 	nsec = nsec + TICK_NSEC - 1;
552 
553 	if (sec >= MAX_SEC_IN_JIFFIES){
554 		sec = MAX_SEC_IN_JIFFIES;
555 		nsec = 0;
556 	}
557 	return (((u64)sec * SEC_CONVERSION) +
558 		(((u64)nsec * NSEC_CONVERSION) >>
559 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
560 
561 }
562 
563 unsigned long
564 timespec_to_jiffies(const struct timespec *value)
565 {
566 	return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
567 }
568 
569 EXPORT_SYMBOL(timespec_to_jiffies);
570 
571 void
572 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
573 {
574 	/*
575 	 * Convert jiffies to nanoseconds and separate with
576 	 * one divide.
577 	 */
578 	u32 rem;
579 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
580 				    NSEC_PER_SEC, &rem);
581 	value->tv_nsec = rem;
582 }
583 EXPORT_SYMBOL(jiffies_to_timespec);
584 
585 /*
586  * We could use a similar algorithm to timespec_to_jiffies (with a
587  * different multiplier for usec instead of nsec). But this has a
588  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
589  * usec value, since it's not necessarily integral.
590  *
591  * We could instead round in the intermediate scaled representation
592  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
593  * perilous: the scaling introduces a small positive error, which
594  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
595  * units to the intermediate before shifting) leads to accidental
596  * overflow and overestimates.
597  *
598  * At the cost of one additional multiplication by a constant, just
599  * use the timespec implementation.
600  */
601 unsigned long
602 timeval_to_jiffies(const struct timeval *value)
603 {
604 	return __timespec_to_jiffies(value->tv_sec,
605 				     value->tv_usec * NSEC_PER_USEC);
606 }
607 EXPORT_SYMBOL(timeval_to_jiffies);
608 
609 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
610 {
611 	/*
612 	 * Convert jiffies to nanoseconds and separate with
613 	 * one divide.
614 	 */
615 	u32 rem;
616 
617 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
618 				    NSEC_PER_SEC, &rem);
619 	value->tv_usec = rem / NSEC_PER_USEC;
620 }
621 EXPORT_SYMBOL(jiffies_to_timeval);
622 
623 /*
624  * Convert jiffies/jiffies_64 to clock_t and back.
625  */
626 clock_t jiffies_to_clock_t(unsigned long x)
627 {
628 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
629 # if HZ < USER_HZ
630 	return x * (USER_HZ / HZ);
631 # else
632 	return x / (HZ / USER_HZ);
633 # endif
634 #else
635 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
636 #endif
637 }
638 EXPORT_SYMBOL(jiffies_to_clock_t);
639 
640 unsigned long clock_t_to_jiffies(unsigned long x)
641 {
642 #if (HZ % USER_HZ)==0
643 	if (x >= ~0UL / (HZ / USER_HZ))
644 		return ~0UL;
645 	return x * (HZ / USER_HZ);
646 #else
647 	/* Don't worry about loss of precision here .. */
648 	if (x >= ~0UL / HZ * USER_HZ)
649 		return ~0UL;
650 
651 	/* .. but do try to contain it here */
652 	return div_u64((u64)x * HZ, USER_HZ);
653 #endif
654 }
655 EXPORT_SYMBOL(clock_t_to_jiffies);
656 
657 u64 jiffies_64_to_clock_t(u64 x)
658 {
659 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
660 # if HZ < USER_HZ
661 	x = div_u64(x * USER_HZ, HZ);
662 # elif HZ > USER_HZ
663 	x = div_u64(x, HZ / USER_HZ);
664 # else
665 	/* Nothing to do */
666 # endif
667 #else
668 	/*
669 	 * There are better ways that don't overflow early,
670 	 * but even this doesn't overflow in hundreds of years
671 	 * in 64 bits, so..
672 	 */
673 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
674 #endif
675 	return x;
676 }
677 EXPORT_SYMBOL(jiffies_64_to_clock_t);
678 
679 u64 nsec_to_clock_t(u64 x)
680 {
681 #if (NSEC_PER_SEC % USER_HZ) == 0
682 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
683 #elif (USER_HZ % 512) == 0
684 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
685 #else
686 	/*
687          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
688          * overflow after 64.99 years.
689          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
690          */
691 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
692 #endif
693 }
694 
695 /**
696  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
697  *
698  * @n:	nsecs in u64
699  *
700  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
701  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
702  * for scheduler, not for use in device drivers to calculate timeout value.
703  *
704  * note:
705  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
706  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
707  */
708 u64 nsecs_to_jiffies64(u64 n)
709 {
710 #if (NSEC_PER_SEC % HZ) == 0
711 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
712 	return div_u64(n, NSEC_PER_SEC / HZ);
713 #elif (HZ % 512) == 0
714 	/* overflow after 292 years if HZ = 1024 */
715 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
716 #else
717 	/*
718 	 * Generic case - optimized for cases where HZ is a multiple of 3.
719 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
720 	 */
721 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
722 #endif
723 }
724 EXPORT_SYMBOL(nsecs_to_jiffies64);
725 
726 /**
727  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
728  *
729  * @n:	nsecs in u64
730  *
731  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
732  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
733  * for scheduler, not for use in device drivers to calculate timeout value.
734  *
735  * note:
736  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
737  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
738  */
739 unsigned long nsecs_to_jiffies(u64 n)
740 {
741 	return (unsigned long)nsecs_to_jiffies64(n);
742 }
743 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
744 
745 /*
746  * Add two timespec values and do a safety check for overflow.
747  * It's assumed that both values are valid (>= 0)
748  */
749 struct timespec timespec_add_safe(const struct timespec lhs,
750 				  const struct timespec rhs)
751 {
752 	struct timespec res;
753 
754 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
755 				lhs.tv_nsec + rhs.tv_nsec);
756 
757 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
758 		res.tv_sec = TIME_T_MAX;
759 
760 	return res;
761 }
762