xref: /openbmc/linux/kernel/time/time.c (revision ac8b6f14)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
38 #include <linux/fs.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
41 
42 #include <linux/uaccess.h>
43 #include <linux/compat.h>
44 #include <asm/unistd.h>
45 
46 #include <generated/timeconst.h>
47 #include "timekeeping.h"
48 
49 /*
50  * The timezone where the local system is located.  Used as a default by some
51  * programs who obtain this value by using gettimeofday.
52  */
53 struct timezone sys_tz;
54 
55 EXPORT_SYMBOL(sys_tz);
56 
57 #ifdef __ARCH_WANT_SYS_TIME
58 
59 /*
60  * sys_time() can be implemented in user-level using
61  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
62  * why not move it into the appropriate arch directory (for those
63  * architectures that need it).
64  */
65 SYSCALL_DEFINE1(time, time_t __user *, tloc)
66 {
67 	time_t i = (time_t)ktime_get_real_seconds();
68 
69 	if (tloc) {
70 		if (put_user(i,tloc))
71 			return -EFAULT;
72 	}
73 	force_successful_syscall_return();
74 	return i;
75 }
76 
77 /*
78  * sys_stime() can be implemented in user-level using
79  * sys_settimeofday().  Is this for backwards compatibility?  If so,
80  * why not move it into the appropriate arch directory (for those
81  * architectures that need it).
82  */
83 
84 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
85 {
86 	struct timespec64 tv;
87 	int err;
88 
89 	if (get_user(tv.tv_sec, tptr))
90 		return -EFAULT;
91 
92 	tv.tv_nsec = 0;
93 
94 	err = security_settime64(&tv, NULL);
95 	if (err)
96 		return err;
97 
98 	do_settimeofday64(&tv);
99 	return 0;
100 }
101 
102 #endif /* __ARCH_WANT_SYS_TIME */
103 
104 #ifdef CONFIG_COMPAT
105 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
106 
107 /* old_time32_t is a 32 bit "long" and needs to get converted. */
108 COMPAT_SYSCALL_DEFINE1(time, old_time32_t __user *, tloc)
109 {
110 	old_time32_t i;
111 
112 	i = (old_time32_t)ktime_get_real_seconds();
113 
114 	if (tloc) {
115 		if (put_user(i,tloc))
116 			return -EFAULT;
117 	}
118 	force_successful_syscall_return();
119 	return i;
120 }
121 
122 COMPAT_SYSCALL_DEFINE1(stime, old_time32_t __user *, tptr)
123 {
124 	struct timespec64 tv;
125 	int err;
126 
127 	if (get_user(tv.tv_sec, tptr))
128 		return -EFAULT;
129 
130 	tv.tv_nsec = 0;
131 
132 	err = security_settime64(&tv, NULL);
133 	if (err)
134 		return err;
135 
136 	do_settimeofday64(&tv);
137 	return 0;
138 }
139 
140 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
141 #endif
142 
143 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
144 		struct timezone __user *, tz)
145 {
146 	if (likely(tv != NULL)) {
147 		struct timespec64 ts;
148 
149 		ktime_get_real_ts64(&ts);
150 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
151 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
152 			return -EFAULT;
153 	}
154 	if (unlikely(tz != NULL)) {
155 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
156 			return -EFAULT;
157 	}
158 	return 0;
159 }
160 
161 /*
162  * In case for some reason the CMOS clock has not already been running
163  * in UTC, but in some local time: The first time we set the timezone,
164  * we will warp the clock so that it is ticking UTC time instead of
165  * local time. Presumably, if someone is setting the timezone then we
166  * are running in an environment where the programs understand about
167  * timezones. This should be done at boot time in the /etc/rc script,
168  * as soon as possible, so that the clock can be set right. Otherwise,
169  * various programs will get confused when the clock gets warped.
170  */
171 
172 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
173 {
174 	static int firsttime = 1;
175 	int error = 0;
176 
177 	if (tv && !timespec64_valid(tv))
178 		return -EINVAL;
179 
180 	error = security_settime64(tv, tz);
181 	if (error)
182 		return error;
183 
184 	if (tz) {
185 		/* Verify we're witin the +-15 hrs range */
186 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
187 			return -EINVAL;
188 
189 		sys_tz = *tz;
190 		update_vsyscall_tz();
191 		if (firsttime) {
192 			firsttime = 0;
193 			if (!tv)
194 				timekeeping_warp_clock();
195 		}
196 	}
197 	if (tv)
198 		return do_settimeofday64(tv);
199 	return 0;
200 }
201 
202 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
203 		struct timezone __user *, tz)
204 {
205 	struct timespec64 new_ts;
206 	struct timeval user_tv;
207 	struct timezone new_tz;
208 
209 	if (tv) {
210 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
211 			return -EFAULT;
212 
213 		if (!timeval_valid(&user_tv))
214 			return -EINVAL;
215 
216 		new_ts.tv_sec = user_tv.tv_sec;
217 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
218 	}
219 	if (tz) {
220 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
221 			return -EFAULT;
222 	}
223 
224 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
225 }
226 
227 #ifdef CONFIG_COMPAT
228 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
229 		       struct timezone __user *, tz)
230 {
231 	if (tv) {
232 		struct timespec64 ts;
233 
234 		ktime_get_real_ts64(&ts);
235 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
236 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
237 			return -EFAULT;
238 	}
239 	if (tz) {
240 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
241 			return -EFAULT;
242 	}
243 
244 	return 0;
245 }
246 
247 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
248 		       struct timezone __user *, tz)
249 {
250 	struct timespec64 new_ts;
251 	struct timeval user_tv;
252 	struct timezone new_tz;
253 
254 	if (tv) {
255 		if (compat_get_timeval(&user_tv, tv))
256 			return -EFAULT;
257 		new_ts.tv_sec = user_tv.tv_sec;
258 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
259 	}
260 	if (tz) {
261 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
262 			return -EFAULT;
263 	}
264 
265 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
266 }
267 #endif
268 
269 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
270 {
271 	struct timex txc;		/* Local copy of parameter */
272 	int ret;
273 
274 	/* Copy the user data space into the kernel copy
275 	 * structure. But bear in mind that the structures
276 	 * may change
277 	 */
278 	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
279 		return -EFAULT;
280 	ret = do_adjtimex(&txc);
281 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
282 }
283 
284 #ifdef CONFIG_COMPAT
285 
286 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
287 {
288 	struct timex txc;
289 	int err, ret;
290 
291 	err = compat_get_timex(&txc, utp);
292 	if (err)
293 		return err;
294 
295 	ret = do_adjtimex(&txc);
296 
297 	err = compat_put_timex(utp, &txc);
298 	if (err)
299 		return err;
300 
301 	return ret;
302 }
303 #endif
304 
305 /*
306  * Convert jiffies to milliseconds and back.
307  *
308  * Avoid unnecessary multiplications/divisions in the
309  * two most common HZ cases:
310  */
311 unsigned int jiffies_to_msecs(const unsigned long j)
312 {
313 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
314 	return (MSEC_PER_SEC / HZ) * j;
315 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
316 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
317 #else
318 # if BITS_PER_LONG == 32
319 	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
320 	       HZ_TO_MSEC_SHR32;
321 # else
322 	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
323 # endif
324 #endif
325 }
326 EXPORT_SYMBOL(jiffies_to_msecs);
327 
328 unsigned int jiffies_to_usecs(const unsigned long j)
329 {
330 	/*
331 	 * Hz usually doesn't go much further MSEC_PER_SEC.
332 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
333 	 */
334 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
335 
336 #if !(USEC_PER_SEC % HZ)
337 	return (USEC_PER_SEC / HZ) * j;
338 #else
339 # if BITS_PER_LONG == 32
340 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
341 # else
342 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
343 # endif
344 #endif
345 }
346 EXPORT_SYMBOL(jiffies_to_usecs);
347 
348 /*
349  * mktime64 - Converts date to seconds.
350  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
351  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
352  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
353  *
354  * [For the Julian calendar (which was used in Russia before 1917,
355  * Britain & colonies before 1752, anywhere else before 1582,
356  * and is still in use by some communities) leave out the
357  * -year/100+year/400 terms, and add 10.]
358  *
359  * This algorithm was first published by Gauss (I think).
360  *
361  * A leap second can be indicated by calling this function with sec as
362  * 60 (allowable under ISO 8601).  The leap second is treated the same
363  * as the following second since they don't exist in UNIX time.
364  *
365  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
366  * tomorrow - (allowable under ISO 8601) is supported.
367  */
368 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
369 		const unsigned int day, const unsigned int hour,
370 		const unsigned int min, const unsigned int sec)
371 {
372 	unsigned int mon = mon0, year = year0;
373 
374 	/* 1..12 -> 11,12,1..10 */
375 	if (0 >= (int) (mon -= 2)) {
376 		mon += 12;	/* Puts Feb last since it has leap day */
377 		year -= 1;
378 	}
379 
380 	return ((((time64_t)
381 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
382 		  year*365 - 719499
383 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
384 	  )*60 + min /* now have minutes */
385 	)*60 + sec; /* finally seconds */
386 }
387 EXPORT_SYMBOL(mktime64);
388 
389 /**
390  * set_normalized_timespec - set timespec sec and nsec parts and normalize
391  *
392  * @ts:		pointer to timespec variable to be set
393  * @sec:	seconds to set
394  * @nsec:	nanoseconds to set
395  *
396  * Set seconds and nanoseconds field of a timespec variable and
397  * normalize to the timespec storage format
398  *
399  * Note: The tv_nsec part is always in the range of
400  *	0 <= tv_nsec < NSEC_PER_SEC
401  * For negative values only the tv_sec field is negative !
402  */
403 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
404 {
405 	while (nsec >= NSEC_PER_SEC) {
406 		/*
407 		 * The following asm() prevents the compiler from
408 		 * optimising this loop into a modulo operation. See
409 		 * also __iter_div_u64_rem() in include/linux/time.h
410 		 */
411 		asm("" : "+rm"(nsec));
412 		nsec -= NSEC_PER_SEC;
413 		++sec;
414 	}
415 	while (nsec < 0) {
416 		asm("" : "+rm"(nsec));
417 		nsec += NSEC_PER_SEC;
418 		--sec;
419 	}
420 	ts->tv_sec = sec;
421 	ts->tv_nsec = nsec;
422 }
423 EXPORT_SYMBOL(set_normalized_timespec);
424 
425 /**
426  * ns_to_timespec - Convert nanoseconds to timespec
427  * @nsec:       the nanoseconds value to be converted
428  *
429  * Returns the timespec representation of the nsec parameter.
430  */
431 struct timespec ns_to_timespec(const s64 nsec)
432 {
433 	struct timespec ts;
434 	s32 rem;
435 
436 	if (!nsec)
437 		return (struct timespec) {0, 0};
438 
439 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
440 	if (unlikely(rem < 0)) {
441 		ts.tv_sec--;
442 		rem += NSEC_PER_SEC;
443 	}
444 	ts.tv_nsec = rem;
445 
446 	return ts;
447 }
448 EXPORT_SYMBOL(ns_to_timespec);
449 
450 /**
451  * ns_to_timeval - Convert nanoseconds to timeval
452  * @nsec:       the nanoseconds value to be converted
453  *
454  * Returns the timeval representation of the nsec parameter.
455  */
456 struct timeval ns_to_timeval(const s64 nsec)
457 {
458 	struct timespec ts = ns_to_timespec(nsec);
459 	struct timeval tv;
460 
461 	tv.tv_sec = ts.tv_sec;
462 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
463 
464 	return tv;
465 }
466 EXPORT_SYMBOL(ns_to_timeval);
467 
468 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
469 {
470 	struct timespec64 ts = ns_to_timespec64(nsec);
471 	struct __kernel_old_timeval tv;
472 
473 	tv.tv_sec = ts.tv_sec;
474 	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
475 
476 	return tv;
477 }
478 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
479 
480 /**
481  * set_normalized_timespec - set timespec sec and nsec parts and normalize
482  *
483  * @ts:		pointer to timespec variable to be set
484  * @sec:	seconds to set
485  * @nsec:	nanoseconds to set
486  *
487  * Set seconds and nanoseconds field of a timespec variable and
488  * normalize to the timespec storage format
489  *
490  * Note: The tv_nsec part is always in the range of
491  *	0 <= tv_nsec < NSEC_PER_SEC
492  * For negative values only the tv_sec field is negative !
493  */
494 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
495 {
496 	while (nsec >= NSEC_PER_SEC) {
497 		/*
498 		 * The following asm() prevents the compiler from
499 		 * optimising this loop into a modulo operation. See
500 		 * also __iter_div_u64_rem() in include/linux/time.h
501 		 */
502 		asm("" : "+rm"(nsec));
503 		nsec -= NSEC_PER_SEC;
504 		++sec;
505 	}
506 	while (nsec < 0) {
507 		asm("" : "+rm"(nsec));
508 		nsec += NSEC_PER_SEC;
509 		--sec;
510 	}
511 	ts->tv_sec = sec;
512 	ts->tv_nsec = nsec;
513 }
514 EXPORT_SYMBOL(set_normalized_timespec64);
515 
516 /**
517  * ns_to_timespec64 - Convert nanoseconds to timespec64
518  * @nsec:       the nanoseconds value to be converted
519  *
520  * Returns the timespec64 representation of the nsec parameter.
521  */
522 struct timespec64 ns_to_timespec64(const s64 nsec)
523 {
524 	struct timespec64 ts;
525 	s32 rem;
526 
527 	if (!nsec)
528 		return (struct timespec64) {0, 0};
529 
530 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
531 	if (unlikely(rem < 0)) {
532 		ts.tv_sec--;
533 		rem += NSEC_PER_SEC;
534 	}
535 	ts.tv_nsec = rem;
536 
537 	return ts;
538 }
539 EXPORT_SYMBOL(ns_to_timespec64);
540 
541 /**
542  * msecs_to_jiffies: - convert milliseconds to jiffies
543  * @m:	time in milliseconds
544  *
545  * conversion is done as follows:
546  *
547  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
548  *
549  * - 'too large' values [that would result in larger than
550  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
551  *
552  * - all other values are converted to jiffies by either multiplying
553  *   the input value by a factor or dividing it with a factor and
554  *   handling any 32-bit overflows.
555  *   for the details see __msecs_to_jiffies()
556  *
557  * msecs_to_jiffies() checks for the passed in value being a constant
558  * via __builtin_constant_p() allowing gcc to eliminate most of the
559  * code, __msecs_to_jiffies() is called if the value passed does not
560  * allow constant folding and the actual conversion must be done at
561  * runtime.
562  * the _msecs_to_jiffies helpers are the HZ dependent conversion
563  * routines found in include/linux/jiffies.h
564  */
565 unsigned long __msecs_to_jiffies(const unsigned int m)
566 {
567 	/*
568 	 * Negative value, means infinite timeout:
569 	 */
570 	if ((int)m < 0)
571 		return MAX_JIFFY_OFFSET;
572 	return _msecs_to_jiffies(m);
573 }
574 EXPORT_SYMBOL(__msecs_to_jiffies);
575 
576 unsigned long __usecs_to_jiffies(const unsigned int u)
577 {
578 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
579 		return MAX_JIFFY_OFFSET;
580 	return _usecs_to_jiffies(u);
581 }
582 EXPORT_SYMBOL(__usecs_to_jiffies);
583 
584 /*
585  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
586  * that a remainder subtract here would not do the right thing as the
587  * resolution values don't fall on second boundries.  I.e. the line:
588  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
589  * Note that due to the small error in the multiplier here, this
590  * rounding is incorrect for sufficiently large values of tv_nsec, but
591  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
592  * OK.
593  *
594  * Rather, we just shift the bits off the right.
595  *
596  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
597  * value to a scaled second value.
598  */
599 static unsigned long
600 __timespec64_to_jiffies(u64 sec, long nsec)
601 {
602 	nsec = nsec + TICK_NSEC - 1;
603 
604 	if (sec >= MAX_SEC_IN_JIFFIES){
605 		sec = MAX_SEC_IN_JIFFIES;
606 		nsec = 0;
607 	}
608 	return ((sec * SEC_CONVERSION) +
609 		(((u64)nsec * NSEC_CONVERSION) >>
610 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
611 
612 }
613 
614 static unsigned long
615 __timespec_to_jiffies(unsigned long sec, long nsec)
616 {
617 	return __timespec64_to_jiffies((u64)sec, nsec);
618 }
619 
620 unsigned long
621 timespec64_to_jiffies(const struct timespec64 *value)
622 {
623 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
624 }
625 EXPORT_SYMBOL(timespec64_to_jiffies);
626 
627 void
628 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
629 {
630 	/*
631 	 * Convert jiffies to nanoseconds and separate with
632 	 * one divide.
633 	 */
634 	u32 rem;
635 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
636 				    NSEC_PER_SEC, &rem);
637 	value->tv_nsec = rem;
638 }
639 EXPORT_SYMBOL(jiffies_to_timespec64);
640 
641 /*
642  * We could use a similar algorithm to timespec_to_jiffies (with a
643  * different multiplier for usec instead of nsec). But this has a
644  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
645  * usec value, since it's not necessarily integral.
646  *
647  * We could instead round in the intermediate scaled representation
648  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
649  * perilous: the scaling introduces a small positive error, which
650  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
651  * units to the intermediate before shifting) leads to accidental
652  * overflow and overestimates.
653  *
654  * At the cost of one additional multiplication by a constant, just
655  * use the timespec implementation.
656  */
657 unsigned long
658 timeval_to_jiffies(const struct timeval *value)
659 {
660 	return __timespec_to_jiffies(value->tv_sec,
661 				     value->tv_usec * NSEC_PER_USEC);
662 }
663 EXPORT_SYMBOL(timeval_to_jiffies);
664 
665 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
666 {
667 	/*
668 	 * Convert jiffies to nanoseconds and separate with
669 	 * one divide.
670 	 */
671 	u32 rem;
672 
673 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
674 				    NSEC_PER_SEC, &rem);
675 	value->tv_usec = rem / NSEC_PER_USEC;
676 }
677 EXPORT_SYMBOL(jiffies_to_timeval);
678 
679 /*
680  * Convert jiffies/jiffies_64 to clock_t and back.
681  */
682 clock_t jiffies_to_clock_t(unsigned long x)
683 {
684 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
685 # if HZ < USER_HZ
686 	return x * (USER_HZ / HZ);
687 # else
688 	return x / (HZ / USER_HZ);
689 # endif
690 #else
691 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
692 #endif
693 }
694 EXPORT_SYMBOL(jiffies_to_clock_t);
695 
696 unsigned long clock_t_to_jiffies(unsigned long x)
697 {
698 #if (HZ % USER_HZ)==0
699 	if (x >= ~0UL / (HZ / USER_HZ))
700 		return ~0UL;
701 	return x * (HZ / USER_HZ);
702 #else
703 	/* Don't worry about loss of precision here .. */
704 	if (x >= ~0UL / HZ * USER_HZ)
705 		return ~0UL;
706 
707 	/* .. but do try to contain it here */
708 	return div_u64((u64)x * HZ, USER_HZ);
709 #endif
710 }
711 EXPORT_SYMBOL(clock_t_to_jiffies);
712 
713 u64 jiffies_64_to_clock_t(u64 x)
714 {
715 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
716 # if HZ < USER_HZ
717 	x = div_u64(x * USER_HZ, HZ);
718 # elif HZ > USER_HZ
719 	x = div_u64(x, HZ / USER_HZ);
720 # else
721 	/* Nothing to do */
722 # endif
723 #else
724 	/*
725 	 * There are better ways that don't overflow early,
726 	 * but even this doesn't overflow in hundreds of years
727 	 * in 64 bits, so..
728 	 */
729 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
730 #endif
731 	return x;
732 }
733 EXPORT_SYMBOL(jiffies_64_to_clock_t);
734 
735 u64 nsec_to_clock_t(u64 x)
736 {
737 #if (NSEC_PER_SEC % USER_HZ) == 0
738 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
739 #elif (USER_HZ % 512) == 0
740 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
741 #else
742 	/*
743          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
744          * overflow after 64.99 years.
745          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
746          */
747 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
748 #endif
749 }
750 
751 u64 jiffies64_to_nsecs(u64 j)
752 {
753 #if !(NSEC_PER_SEC % HZ)
754 	return (NSEC_PER_SEC / HZ) * j;
755 # else
756 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
757 #endif
758 }
759 EXPORT_SYMBOL(jiffies64_to_nsecs);
760 
761 /**
762  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
763  *
764  * @n:	nsecs in u64
765  *
766  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
767  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
768  * for scheduler, not for use in device drivers to calculate timeout value.
769  *
770  * note:
771  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
772  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
773  */
774 u64 nsecs_to_jiffies64(u64 n)
775 {
776 #if (NSEC_PER_SEC % HZ) == 0
777 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
778 	return div_u64(n, NSEC_PER_SEC / HZ);
779 #elif (HZ % 512) == 0
780 	/* overflow after 292 years if HZ = 1024 */
781 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
782 #else
783 	/*
784 	 * Generic case - optimized for cases where HZ is a multiple of 3.
785 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
786 	 */
787 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
788 #endif
789 }
790 EXPORT_SYMBOL(nsecs_to_jiffies64);
791 
792 /**
793  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
794  *
795  * @n:	nsecs in u64
796  *
797  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
798  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
799  * for scheduler, not for use in device drivers to calculate timeout value.
800  *
801  * note:
802  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
803  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
804  */
805 unsigned long nsecs_to_jiffies(u64 n)
806 {
807 	return (unsigned long)nsecs_to_jiffies64(n);
808 }
809 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
810 
811 /*
812  * Add two timespec64 values and do a safety check for overflow.
813  * It's assumed that both values are valid (>= 0).
814  * And, each timespec64 is in normalized form.
815  */
816 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
817 				const struct timespec64 rhs)
818 {
819 	struct timespec64 res;
820 
821 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
822 			lhs.tv_nsec + rhs.tv_nsec);
823 
824 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
825 		res.tv_sec = TIME64_MAX;
826 		res.tv_nsec = 0;
827 	}
828 
829 	return res;
830 }
831 
832 int get_timespec64(struct timespec64 *ts,
833 		   const struct __kernel_timespec __user *uts)
834 {
835 	struct __kernel_timespec kts;
836 	int ret;
837 
838 	ret = copy_from_user(&kts, uts, sizeof(kts));
839 	if (ret)
840 		return -EFAULT;
841 
842 	ts->tv_sec = kts.tv_sec;
843 
844 	/* Zero out the padding for 32 bit systems or in compat mode */
845 	if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall())
846 		kts.tv_nsec &= 0xFFFFFFFFUL;
847 
848 	ts->tv_nsec = kts.tv_nsec;
849 
850 	return 0;
851 }
852 EXPORT_SYMBOL_GPL(get_timespec64);
853 
854 int put_timespec64(const struct timespec64 *ts,
855 		   struct __kernel_timespec __user *uts)
856 {
857 	struct __kernel_timespec kts = {
858 		.tv_sec = ts->tv_sec,
859 		.tv_nsec = ts->tv_nsec
860 	};
861 
862 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
863 }
864 EXPORT_SYMBOL_GPL(put_timespec64);
865 
866 static int __get_old_timespec32(struct timespec64 *ts64,
867 				   const struct old_timespec32 __user *cts)
868 {
869 	struct old_timespec32 ts;
870 	int ret;
871 
872 	ret = copy_from_user(&ts, cts, sizeof(ts));
873 	if (ret)
874 		return -EFAULT;
875 
876 	ts64->tv_sec = ts.tv_sec;
877 	ts64->tv_nsec = ts.tv_nsec;
878 
879 	return 0;
880 }
881 
882 static int __put_old_timespec32(const struct timespec64 *ts64,
883 				   struct old_timespec32 __user *cts)
884 {
885 	struct old_timespec32 ts = {
886 		.tv_sec = ts64->tv_sec,
887 		.tv_nsec = ts64->tv_nsec
888 	};
889 	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
890 }
891 
892 int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
893 {
894 	if (COMPAT_USE_64BIT_TIME)
895 		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
896 	else
897 		return __get_old_timespec32(ts, uts);
898 }
899 EXPORT_SYMBOL_GPL(get_old_timespec32);
900 
901 int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
902 {
903 	if (COMPAT_USE_64BIT_TIME)
904 		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
905 	else
906 		return __put_old_timespec32(ts, uts);
907 }
908 EXPORT_SYMBOL_GPL(put_old_timespec32);
909 
910 int get_itimerspec64(struct itimerspec64 *it,
911 			const struct __kernel_itimerspec __user *uit)
912 {
913 	int ret;
914 
915 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
916 	if (ret)
917 		return ret;
918 
919 	ret = get_timespec64(&it->it_value, &uit->it_value);
920 
921 	return ret;
922 }
923 EXPORT_SYMBOL_GPL(get_itimerspec64);
924 
925 int put_itimerspec64(const struct itimerspec64 *it,
926 			struct __kernel_itimerspec __user *uit)
927 {
928 	int ret;
929 
930 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
931 	if (ret)
932 		return ret;
933 
934 	ret = put_timespec64(&it->it_value, &uit->it_value);
935 
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(put_itimerspec64);
939 
940 int get_old_itimerspec32(struct itimerspec64 *its,
941 			const struct old_itimerspec32 __user *uits)
942 {
943 
944 	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
945 	    __get_old_timespec32(&its->it_value, &uits->it_value))
946 		return -EFAULT;
947 	return 0;
948 }
949 EXPORT_SYMBOL_GPL(get_old_itimerspec32);
950 
951 int put_old_itimerspec32(const struct itimerspec64 *its,
952 			struct old_itimerspec32 __user *uits)
953 {
954 	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
955 	    __put_old_timespec32(&its->it_value, &uits->it_value))
956 		return -EFAULT;
957 	return 0;
958 }
959 EXPORT_SYMBOL_GPL(put_old_itimerspec32);
960