1 /* 2 * linux/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * This file contains the interface functions for the various 7 * time related system calls: time, stime, gettimeofday, settimeofday, 8 * adjtime 9 */ 10 /* 11 * Modification history kernel/time.c 12 * 13 * 1993-09-02 Philip Gladstone 14 * Created file with time related functions from sched/core.c and adjtimex() 15 * 1993-10-08 Torsten Duwe 16 * adjtime interface update and CMOS clock write code 17 * 1995-08-13 Torsten Duwe 18 * kernel PLL updated to 1994-12-13 specs (rfc-1589) 19 * 1999-01-16 Ulrich Windl 20 * Introduced error checking for many cases in adjtimex(). 21 * Updated NTP code according to technical memorandum Jan '96 22 * "A Kernel Model for Precision Timekeeping" by Dave Mills 23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) 24 * (Even though the technical memorandum forbids it) 25 * 2004-07-14 Christoph Lameter 26 * Added getnstimeofday to allow the posix timer functions to return 27 * with nanosecond accuracy 28 */ 29 30 #include <linux/export.h> 31 #include <linux/kernel.h> 32 #include <linux/timex.h> 33 #include <linux/capability.h> 34 #include <linux/timekeeper_internal.h> 35 #include <linux/errno.h> 36 #include <linux/syscalls.h> 37 #include <linux/security.h> 38 #include <linux/fs.h> 39 #include <linux/math64.h> 40 #include <linux/ptrace.h> 41 42 #include <linux/uaccess.h> 43 #include <linux/compat.h> 44 #include <asm/unistd.h> 45 46 #include <generated/timeconst.h> 47 #include "timekeeping.h" 48 49 /* 50 * The timezone where the local system is located. Used as a default by some 51 * programs who obtain this value by using gettimeofday. 52 */ 53 struct timezone sys_tz; 54 55 EXPORT_SYMBOL(sys_tz); 56 57 #ifdef __ARCH_WANT_SYS_TIME 58 59 /* 60 * sys_time() can be implemented in user-level using 61 * sys_gettimeofday(). Is this for backwards compatibility? If so, 62 * why not move it into the appropriate arch directory (for those 63 * architectures that need it). 64 */ 65 SYSCALL_DEFINE1(time, time_t __user *, tloc) 66 { 67 time_t i = (time_t)ktime_get_real_seconds(); 68 69 if (tloc) { 70 if (put_user(i,tloc)) 71 return -EFAULT; 72 } 73 force_successful_syscall_return(); 74 return i; 75 } 76 77 /* 78 * sys_stime() can be implemented in user-level using 79 * sys_settimeofday(). Is this for backwards compatibility? If so, 80 * why not move it into the appropriate arch directory (for those 81 * architectures that need it). 82 */ 83 84 SYSCALL_DEFINE1(stime, time_t __user *, tptr) 85 { 86 struct timespec64 tv; 87 int err; 88 89 if (get_user(tv.tv_sec, tptr)) 90 return -EFAULT; 91 92 tv.tv_nsec = 0; 93 94 err = security_settime64(&tv, NULL); 95 if (err) 96 return err; 97 98 do_settimeofday64(&tv); 99 return 0; 100 } 101 102 #endif /* __ARCH_WANT_SYS_TIME */ 103 104 #ifdef CONFIG_COMPAT 105 #ifdef __ARCH_WANT_COMPAT_SYS_TIME 106 107 /* old_time32_t is a 32 bit "long" and needs to get converted. */ 108 COMPAT_SYSCALL_DEFINE1(time, old_time32_t __user *, tloc) 109 { 110 old_time32_t i; 111 112 i = (old_time32_t)ktime_get_real_seconds(); 113 114 if (tloc) { 115 if (put_user(i,tloc)) 116 return -EFAULT; 117 } 118 force_successful_syscall_return(); 119 return i; 120 } 121 122 COMPAT_SYSCALL_DEFINE1(stime, old_time32_t __user *, tptr) 123 { 124 struct timespec64 tv; 125 int err; 126 127 if (get_user(tv.tv_sec, tptr)) 128 return -EFAULT; 129 130 tv.tv_nsec = 0; 131 132 err = security_settime64(&tv, NULL); 133 if (err) 134 return err; 135 136 do_settimeofday64(&tv); 137 return 0; 138 } 139 140 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */ 141 #endif 142 143 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, 144 struct timezone __user *, tz) 145 { 146 if (likely(tv != NULL)) { 147 struct timespec64 ts; 148 149 ktime_get_real_ts64(&ts); 150 if (put_user(ts.tv_sec, &tv->tv_sec) || 151 put_user(ts.tv_nsec / 1000, &tv->tv_usec)) 152 return -EFAULT; 153 } 154 if (unlikely(tz != NULL)) { 155 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 156 return -EFAULT; 157 } 158 return 0; 159 } 160 161 /* 162 * In case for some reason the CMOS clock has not already been running 163 * in UTC, but in some local time: The first time we set the timezone, 164 * we will warp the clock so that it is ticking UTC time instead of 165 * local time. Presumably, if someone is setting the timezone then we 166 * are running in an environment where the programs understand about 167 * timezones. This should be done at boot time in the /etc/rc script, 168 * as soon as possible, so that the clock can be set right. Otherwise, 169 * various programs will get confused when the clock gets warped. 170 */ 171 172 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz) 173 { 174 static int firsttime = 1; 175 int error = 0; 176 177 if (tv && !timespec64_valid(tv)) 178 return -EINVAL; 179 180 error = security_settime64(tv, tz); 181 if (error) 182 return error; 183 184 if (tz) { 185 /* Verify we're witin the +-15 hrs range */ 186 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60) 187 return -EINVAL; 188 189 sys_tz = *tz; 190 update_vsyscall_tz(); 191 if (firsttime) { 192 firsttime = 0; 193 if (!tv) 194 timekeeping_warp_clock(); 195 } 196 } 197 if (tv) 198 return do_settimeofday64(tv); 199 return 0; 200 } 201 202 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, 203 struct timezone __user *, tz) 204 { 205 struct timespec64 new_ts; 206 struct timeval user_tv; 207 struct timezone new_tz; 208 209 if (tv) { 210 if (copy_from_user(&user_tv, tv, sizeof(*tv))) 211 return -EFAULT; 212 213 if (!timeval_valid(&user_tv)) 214 return -EINVAL; 215 216 new_ts.tv_sec = user_tv.tv_sec; 217 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 218 } 219 if (tz) { 220 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 221 return -EFAULT; 222 } 223 224 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 225 } 226 227 #ifdef CONFIG_COMPAT 228 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv, 229 struct timezone __user *, tz) 230 { 231 if (tv) { 232 struct timespec64 ts; 233 234 ktime_get_real_ts64(&ts); 235 if (put_user(ts.tv_sec, &tv->tv_sec) || 236 put_user(ts.tv_nsec / 1000, &tv->tv_usec)) 237 return -EFAULT; 238 } 239 if (tz) { 240 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 241 return -EFAULT; 242 } 243 244 return 0; 245 } 246 247 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv, 248 struct timezone __user *, tz) 249 { 250 struct timespec64 new_ts; 251 struct timeval user_tv; 252 struct timezone new_tz; 253 254 if (tv) { 255 if (compat_get_timeval(&user_tv, tv)) 256 return -EFAULT; 257 new_ts.tv_sec = user_tv.tv_sec; 258 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 259 } 260 if (tz) { 261 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 262 return -EFAULT; 263 } 264 265 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 266 } 267 #endif 268 269 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p) 270 { 271 struct timex txc; /* Local copy of parameter */ 272 int ret; 273 274 /* Copy the user data space into the kernel copy 275 * structure. But bear in mind that the structures 276 * may change 277 */ 278 if (copy_from_user(&txc, txc_p, sizeof(struct timex))) 279 return -EFAULT; 280 ret = do_adjtimex(&txc); 281 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; 282 } 283 284 #ifdef CONFIG_COMPAT 285 286 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp) 287 { 288 struct timex txc; 289 int err, ret; 290 291 err = compat_get_timex(&txc, utp); 292 if (err) 293 return err; 294 295 ret = do_adjtimex(&txc); 296 297 err = compat_put_timex(utp, &txc); 298 if (err) 299 return err; 300 301 return ret; 302 } 303 #endif 304 305 /* 306 * Convert jiffies to milliseconds and back. 307 * 308 * Avoid unnecessary multiplications/divisions in the 309 * two most common HZ cases: 310 */ 311 unsigned int jiffies_to_msecs(const unsigned long j) 312 { 313 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 314 return (MSEC_PER_SEC / HZ) * j; 315 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 316 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); 317 #else 318 # if BITS_PER_LONG == 32 319 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >> 320 HZ_TO_MSEC_SHR32; 321 # else 322 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN); 323 # endif 324 #endif 325 } 326 EXPORT_SYMBOL(jiffies_to_msecs); 327 328 unsigned int jiffies_to_usecs(const unsigned long j) 329 { 330 /* 331 * Hz usually doesn't go much further MSEC_PER_SEC. 332 * jiffies_to_usecs() and usecs_to_jiffies() depend on that. 333 */ 334 BUILD_BUG_ON(HZ > USEC_PER_SEC); 335 336 #if !(USEC_PER_SEC % HZ) 337 return (USEC_PER_SEC / HZ) * j; 338 #else 339 # if BITS_PER_LONG == 32 340 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; 341 # else 342 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; 343 # endif 344 #endif 345 } 346 EXPORT_SYMBOL(jiffies_to_usecs); 347 348 /* 349 * mktime64 - Converts date to seconds. 350 * Converts Gregorian date to seconds since 1970-01-01 00:00:00. 351 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 352 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. 353 * 354 * [For the Julian calendar (which was used in Russia before 1917, 355 * Britain & colonies before 1752, anywhere else before 1582, 356 * and is still in use by some communities) leave out the 357 * -year/100+year/400 terms, and add 10.] 358 * 359 * This algorithm was first published by Gauss (I think). 360 * 361 * A leap second can be indicated by calling this function with sec as 362 * 60 (allowable under ISO 8601). The leap second is treated the same 363 * as the following second since they don't exist in UNIX time. 364 * 365 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight 366 * tomorrow - (allowable under ISO 8601) is supported. 367 */ 368 time64_t mktime64(const unsigned int year0, const unsigned int mon0, 369 const unsigned int day, const unsigned int hour, 370 const unsigned int min, const unsigned int sec) 371 { 372 unsigned int mon = mon0, year = year0; 373 374 /* 1..12 -> 11,12,1..10 */ 375 if (0 >= (int) (mon -= 2)) { 376 mon += 12; /* Puts Feb last since it has leap day */ 377 year -= 1; 378 } 379 380 return ((((time64_t) 381 (year/4 - year/100 + year/400 + 367*mon/12 + day) + 382 year*365 - 719499 383 )*24 + hour /* now have hours - midnight tomorrow handled here */ 384 )*60 + min /* now have minutes */ 385 )*60 + sec; /* finally seconds */ 386 } 387 EXPORT_SYMBOL(mktime64); 388 389 /** 390 * set_normalized_timespec - set timespec sec and nsec parts and normalize 391 * 392 * @ts: pointer to timespec variable to be set 393 * @sec: seconds to set 394 * @nsec: nanoseconds to set 395 * 396 * Set seconds and nanoseconds field of a timespec variable and 397 * normalize to the timespec storage format 398 * 399 * Note: The tv_nsec part is always in the range of 400 * 0 <= tv_nsec < NSEC_PER_SEC 401 * For negative values only the tv_sec field is negative ! 402 */ 403 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) 404 { 405 while (nsec >= NSEC_PER_SEC) { 406 /* 407 * The following asm() prevents the compiler from 408 * optimising this loop into a modulo operation. See 409 * also __iter_div_u64_rem() in include/linux/time.h 410 */ 411 asm("" : "+rm"(nsec)); 412 nsec -= NSEC_PER_SEC; 413 ++sec; 414 } 415 while (nsec < 0) { 416 asm("" : "+rm"(nsec)); 417 nsec += NSEC_PER_SEC; 418 --sec; 419 } 420 ts->tv_sec = sec; 421 ts->tv_nsec = nsec; 422 } 423 EXPORT_SYMBOL(set_normalized_timespec); 424 425 /** 426 * ns_to_timespec - Convert nanoseconds to timespec 427 * @nsec: the nanoseconds value to be converted 428 * 429 * Returns the timespec representation of the nsec parameter. 430 */ 431 struct timespec ns_to_timespec(const s64 nsec) 432 { 433 struct timespec ts; 434 s32 rem; 435 436 if (!nsec) 437 return (struct timespec) {0, 0}; 438 439 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 440 if (unlikely(rem < 0)) { 441 ts.tv_sec--; 442 rem += NSEC_PER_SEC; 443 } 444 ts.tv_nsec = rem; 445 446 return ts; 447 } 448 EXPORT_SYMBOL(ns_to_timespec); 449 450 /** 451 * ns_to_timeval - Convert nanoseconds to timeval 452 * @nsec: the nanoseconds value to be converted 453 * 454 * Returns the timeval representation of the nsec parameter. 455 */ 456 struct timeval ns_to_timeval(const s64 nsec) 457 { 458 struct timespec ts = ns_to_timespec(nsec); 459 struct timeval tv; 460 461 tv.tv_sec = ts.tv_sec; 462 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; 463 464 return tv; 465 } 466 EXPORT_SYMBOL(ns_to_timeval); 467 468 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec) 469 { 470 struct timespec64 ts = ns_to_timespec64(nsec); 471 struct __kernel_old_timeval tv; 472 473 tv.tv_sec = ts.tv_sec; 474 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000; 475 476 return tv; 477 } 478 EXPORT_SYMBOL(ns_to_kernel_old_timeval); 479 480 /** 481 * set_normalized_timespec - set timespec sec and nsec parts and normalize 482 * 483 * @ts: pointer to timespec variable to be set 484 * @sec: seconds to set 485 * @nsec: nanoseconds to set 486 * 487 * Set seconds and nanoseconds field of a timespec variable and 488 * normalize to the timespec storage format 489 * 490 * Note: The tv_nsec part is always in the range of 491 * 0 <= tv_nsec < NSEC_PER_SEC 492 * For negative values only the tv_sec field is negative ! 493 */ 494 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) 495 { 496 while (nsec >= NSEC_PER_SEC) { 497 /* 498 * The following asm() prevents the compiler from 499 * optimising this loop into a modulo operation. See 500 * also __iter_div_u64_rem() in include/linux/time.h 501 */ 502 asm("" : "+rm"(nsec)); 503 nsec -= NSEC_PER_SEC; 504 ++sec; 505 } 506 while (nsec < 0) { 507 asm("" : "+rm"(nsec)); 508 nsec += NSEC_PER_SEC; 509 --sec; 510 } 511 ts->tv_sec = sec; 512 ts->tv_nsec = nsec; 513 } 514 EXPORT_SYMBOL(set_normalized_timespec64); 515 516 /** 517 * ns_to_timespec64 - Convert nanoseconds to timespec64 518 * @nsec: the nanoseconds value to be converted 519 * 520 * Returns the timespec64 representation of the nsec parameter. 521 */ 522 struct timespec64 ns_to_timespec64(const s64 nsec) 523 { 524 struct timespec64 ts; 525 s32 rem; 526 527 if (!nsec) 528 return (struct timespec64) {0, 0}; 529 530 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 531 if (unlikely(rem < 0)) { 532 ts.tv_sec--; 533 rem += NSEC_PER_SEC; 534 } 535 ts.tv_nsec = rem; 536 537 return ts; 538 } 539 EXPORT_SYMBOL(ns_to_timespec64); 540 541 /** 542 * msecs_to_jiffies: - convert milliseconds to jiffies 543 * @m: time in milliseconds 544 * 545 * conversion is done as follows: 546 * 547 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 548 * 549 * - 'too large' values [that would result in larger than 550 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 551 * 552 * - all other values are converted to jiffies by either multiplying 553 * the input value by a factor or dividing it with a factor and 554 * handling any 32-bit overflows. 555 * for the details see __msecs_to_jiffies() 556 * 557 * msecs_to_jiffies() checks for the passed in value being a constant 558 * via __builtin_constant_p() allowing gcc to eliminate most of the 559 * code, __msecs_to_jiffies() is called if the value passed does not 560 * allow constant folding and the actual conversion must be done at 561 * runtime. 562 * the _msecs_to_jiffies helpers are the HZ dependent conversion 563 * routines found in include/linux/jiffies.h 564 */ 565 unsigned long __msecs_to_jiffies(const unsigned int m) 566 { 567 /* 568 * Negative value, means infinite timeout: 569 */ 570 if ((int)m < 0) 571 return MAX_JIFFY_OFFSET; 572 return _msecs_to_jiffies(m); 573 } 574 EXPORT_SYMBOL(__msecs_to_jiffies); 575 576 unsigned long __usecs_to_jiffies(const unsigned int u) 577 { 578 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 579 return MAX_JIFFY_OFFSET; 580 return _usecs_to_jiffies(u); 581 } 582 EXPORT_SYMBOL(__usecs_to_jiffies); 583 584 /* 585 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 586 * that a remainder subtract here would not do the right thing as the 587 * resolution values don't fall on second boundries. I.e. the line: 588 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 589 * Note that due to the small error in the multiplier here, this 590 * rounding is incorrect for sufficiently large values of tv_nsec, but 591 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're 592 * OK. 593 * 594 * Rather, we just shift the bits off the right. 595 * 596 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 597 * value to a scaled second value. 598 */ 599 static unsigned long 600 __timespec64_to_jiffies(u64 sec, long nsec) 601 { 602 nsec = nsec + TICK_NSEC - 1; 603 604 if (sec >= MAX_SEC_IN_JIFFIES){ 605 sec = MAX_SEC_IN_JIFFIES; 606 nsec = 0; 607 } 608 return ((sec * SEC_CONVERSION) + 609 (((u64)nsec * NSEC_CONVERSION) >> 610 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 611 612 } 613 614 static unsigned long 615 __timespec_to_jiffies(unsigned long sec, long nsec) 616 { 617 return __timespec64_to_jiffies((u64)sec, nsec); 618 } 619 620 unsigned long 621 timespec64_to_jiffies(const struct timespec64 *value) 622 { 623 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec); 624 } 625 EXPORT_SYMBOL(timespec64_to_jiffies); 626 627 void 628 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value) 629 { 630 /* 631 * Convert jiffies to nanoseconds and separate with 632 * one divide. 633 */ 634 u32 rem; 635 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 636 NSEC_PER_SEC, &rem); 637 value->tv_nsec = rem; 638 } 639 EXPORT_SYMBOL(jiffies_to_timespec64); 640 641 /* 642 * We could use a similar algorithm to timespec_to_jiffies (with a 643 * different multiplier for usec instead of nsec). But this has a 644 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the 645 * usec value, since it's not necessarily integral. 646 * 647 * We could instead round in the intermediate scaled representation 648 * (i.e. in units of 1/2^(large scale) jiffies) but that's also 649 * perilous: the scaling introduces a small positive error, which 650 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 651 * units to the intermediate before shifting) leads to accidental 652 * overflow and overestimates. 653 * 654 * At the cost of one additional multiplication by a constant, just 655 * use the timespec implementation. 656 */ 657 unsigned long 658 timeval_to_jiffies(const struct timeval *value) 659 { 660 return __timespec_to_jiffies(value->tv_sec, 661 value->tv_usec * NSEC_PER_USEC); 662 } 663 EXPORT_SYMBOL(timeval_to_jiffies); 664 665 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 666 { 667 /* 668 * Convert jiffies to nanoseconds and separate with 669 * one divide. 670 */ 671 u32 rem; 672 673 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 674 NSEC_PER_SEC, &rem); 675 value->tv_usec = rem / NSEC_PER_USEC; 676 } 677 EXPORT_SYMBOL(jiffies_to_timeval); 678 679 /* 680 * Convert jiffies/jiffies_64 to clock_t and back. 681 */ 682 clock_t jiffies_to_clock_t(unsigned long x) 683 { 684 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 685 # if HZ < USER_HZ 686 return x * (USER_HZ / HZ); 687 # else 688 return x / (HZ / USER_HZ); 689 # endif 690 #else 691 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); 692 #endif 693 } 694 EXPORT_SYMBOL(jiffies_to_clock_t); 695 696 unsigned long clock_t_to_jiffies(unsigned long x) 697 { 698 #if (HZ % USER_HZ)==0 699 if (x >= ~0UL / (HZ / USER_HZ)) 700 return ~0UL; 701 return x * (HZ / USER_HZ); 702 #else 703 /* Don't worry about loss of precision here .. */ 704 if (x >= ~0UL / HZ * USER_HZ) 705 return ~0UL; 706 707 /* .. but do try to contain it here */ 708 return div_u64((u64)x * HZ, USER_HZ); 709 #endif 710 } 711 EXPORT_SYMBOL(clock_t_to_jiffies); 712 713 u64 jiffies_64_to_clock_t(u64 x) 714 { 715 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 716 # if HZ < USER_HZ 717 x = div_u64(x * USER_HZ, HZ); 718 # elif HZ > USER_HZ 719 x = div_u64(x, HZ / USER_HZ); 720 # else 721 /* Nothing to do */ 722 # endif 723 #else 724 /* 725 * There are better ways that don't overflow early, 726 * but even this doesn't overflow in hundreds of years 727 * in 64 bits, so.. 728 */ 729 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); 730 #endif 731 return x; 732 } 733 EXPORT_SYMBOL(jiffies_64_to_clock_t); 734 735 u64 nsec_to_clock_t(u64 x) 736 { 737 #if (NSEC_PER_SEC % USER_HZ) == 0 738 return div_u64(x, NSEC_PER_SEC / USER_HZ); 739 #elif (USER_HZ % 512) == 0 740 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); 741 #else 742 /* 743 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 744 * overflow after 64.99 years. 745 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 746 */ 747 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); 748 #endif 749 } 750 751 u64 jiffies64_to_nsecs(u64 j) 752 { 753 #if !(NSEC_PER_SEC % HZ) 754 return (NSEC_PER_SEC / HZ) * j; 755 # else 756 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN); 757 #endif 758 } 759 EXPORT_SYMBOL(jiffies64_to_nsecs); 760 761 /** 762 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 763 * 764 * @n: nsecs in u64 765 * 766 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 767 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 768 * for scheduler, not for use in device drivers to calculate timeout value. 769 * 770 * note: 771 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 772 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 773 */ 774 u64 nsecs_to_jiffies64(u64 n) 775 { 776 #if (NSEC_PER_SEC % HZ) == 0 777 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ 778 return div_u64(n, NSEC_PER_SEC / HZ); 779 #elif (HZ % 512) == 0 780 /* overflow after 292 years if HZ = 1024 */ 781 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); 782 #else 783 /* 784 * Generic case - optimized for cases where HZ is a multiple of 3. 785 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. 786 */ 787 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); 788 #endif 789 } 790 EXPORT_SYMBOL(nsecs_to_jiffies64); 791 792 /** 793 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies 794 * 795 * @n: nsecs in u64 796 * 797 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 798 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 799 * for scheduler, not for use in device drivers to calculate timeout value. 800 * 801 * note: 802 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 803 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 804 */ 805 unsigned long nsecs_to_jiffies(u64 n) 806 { 807 return (unsigned long)nsecs_to_jiffies64(n); 808 } 809 EXPORT_SYMBOL_GPL(nsecs_to_jiffies); 810 811 /* 812 * Add two timespec64 values and do a safety check for overflow. 813 * It's assumed that both values are valid (>= 0). 814 * And, each timespec64 is in normalized form. 815 */ 816 struct timespec64 timespec64_add_safe(const struct timespec64 lhs, 817 const struct timespec64 rhs) 818 { 819 struct timespec64 res; 820 821 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec, 822 lhs.tv_nsec + rhs.tv_nsec); 823 824 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) { 825 res.tv_sec = TIME64_MAX; 826 res.tv_nsec = 0; 827 } 828 829 return res; 830 } 831 832 int get_timespec64(struct timespec64 *ts, 833 const struct __kernel_timespec __user *uts) 834 { 835 struct __kernel_timespec kts; 836 int ret; 837 838 ret = copy_from_user(&kts, uts, sizeof(kts)); 839 if (ret) 840 return -EFAULT; 841 842 ts->tv_sec = kts.tv_sec; 843 844 /* Zero out the padding for 32 bit systems or in compat mode */ 845 if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall()) 846 kts.tv_nsec &= 0xFFFFFFFFUL; 847 848 ts->tv_nsec = kts.tv_nsec; 849 850 return 0; 851 } 852 EXPORT_SYMBOL_GPL(get_timespec64); 853 854 int put_timespec64(const struct timespec64 *ts, 855 struct __kernel_timespec __user *uts) 856 { 857 struct __kernel_timespec kts = { 858 .tv_sec = ts->tv_sec, 859 .tv_nsec = ts->tv_nsec 860 }; 861 862 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0; 863 } 864 EXPORT_SYMBOL_GPL(put_timespec64); 865 866 static int __get_old_timespec32(struct timespec64 *ts64, 867 const struct old_timespec32 __user *cts) 868 { 869 struct old_timespec32 ts; 870 int ret; 871 872 ret = copy_from_user(&ts, cts, sizeof(ts)); 873 if (ret) 874 return -EFAULT; 875 876 ts64->tv_sec = ts.tv_sec; 877 ts64->tv_nsec = ts.tv_nsec; 878 879 return 0; 880 } 881 882 static int __put_old_timespec32(const struct timespec64 *ts64, 883 struct old_timespec32 __user *cts) 884 { 885 struct old_timespec32 ts = { 886 .tv_sec = ts64->tv_sec, 887 .tv_nsec = ts64->tv_nsec 888 }; 889 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0; 890 } 891 892 int get_old_timespec32(struct timespec64 *ts, const void __user *uts) 893 { 894 if (COMPAT_USE_64BIT_TIME) 895 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0; 896 else 897 return __get_old_timespec32(ts, uts); 898 } 899 EXPORT_SYMBOL_GPL(get_old_timespec32); 900 901 int put_old_timespec32(const struct timespec64 *ts, void __user *uts) 902 { 903 if (COMPAT_USE_64BIT_TIME) 904 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0; 905 else 906 return __put_old_timespec32(ts, uts); 907 } 908 EXPORT_SYMBOL_GPL(put_old_timespec32); 909 910 int get_itimerspec64(struct itimerspec64 *it, 911 const struct __kernel_itimerspec __user *uit) 912 { 913 int ret; 914 915 ret = get_timespec64(&it->it_interval, &uit->it_interval); 916 if (ret) 917 return ret; 918 919 ret = get_timespec64(&it->it_value, &uit->it_value); 920 921 return ret; 922 } 923 EXPORT_SYMBOL_GPL(get_itimerspec64); 924 925 int put_itimerspec64(const struct itimerspec64 *it, 926 struct __kernel_itimerspec __user *uit) 927 { 928 int ret; 929 930 ret = put_timespec64(&it->it_interval, &uit->it_interval); 931 if (ret) 932 return ret; 933 934 ret = put_timespec64(&it->it_value, &uit->it_value); 935 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(put_itimerspec64); 939 940 int get_old_itimerspec32(struct itimerspec64 *its, 941 const struct old_itimerspec32 __user *uits) 942 { 943 944 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) || 945 __get_old_timespec32(&its->it_value, &uits->it_value)) 946 return -EFAULT; 947 return 0; 948 } 949 EXPORT_SYMBOL_GPL(get_old_itimerspec32); 950 951 int put_old_itimerspec32(const struct itimerspec64 *its, 952 struct old_itimerspec32 __user *uits) 953 { 954 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) || 955 __put_old_timespec32(&its->it_value, &uits->it_value)) 956 return -EFAULT; 957 return 0; 958 } 959 EXPORT_SYMBOL_GPL(put_old_itimerspec32); 960