xref: /openbmc/linux/kernel/time/time.c (revision 9bd5910d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *
5  *  This file contains the interface functions for the various time related
6  *  system calls: time, stime, gettimeofday, settimeofday, adjtime
7  *
8  * Modification history:
9  *
10  * 1993-09-02    Philip Gladstone
11  *      Created file with time related functions from sched/core.c and adjtimex()
12  * 1993-10-08    Torsten Duwe
13  *      adjtime interface update and CMOS clock write code
14  * 1995-08-13    Torsten Duwe
15  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
16  * 1999-01-16    Ulrich Windl
17  *	Introduced error checking for many cases in adjtimex().
18  *	Updated NTP code according to technical memorandum Jan '96
19  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
20  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21  *	(Even though the technical memorandum forbids it)
22  * 2004-07-14	 Christoph Lameter
23  *	Added getnstimeofday to allow the posix timer functions to return
24  *	with nanosecond accuracy
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/timex.h>
30 #include <linux/capability.h>
31 #include <linux/timekeeper_internal.h>
32 #include <linux/errno.h>
33 #include <linux/syscalls.h>
34 #include <linux/security.h>
35 #include <linux/fs.h>
36 #include <linux/math64.h>
37 #include <linux/ptrace.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/compat.h>
41 #include <asm/unistd.h>
42 
43 #include <generated/timeconst.h>
44 #include "timekeeping.h"
45 
46 /*
47  * The timezone where the local system is located.  Used as a default by some
48  * programs who obtain this value by using gettimeofday.
49  */
50 struct timezone sys_tz;
51 
52 EXPORT_SYMBOL(sys_tz);
53 
54 #ifdef __ARCH_WANT_SYS_TIME
55 
56 /*
57  * sys_time() can be implemented in user-level using
58  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
59  * why not move it into the appropriate arch directory (for those
60  * architectures that need it).
61  */
62 SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
63 {
64 	__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
65 
66 	if (tloc) {
67 		if (put_user(i,tloc))
68 			return -EFAULT;
69 	}
70 	force_successful_syscall_return();
71 	return i;
72 }
73 
74 /*
75  * sys_stime() can be implemented in user-level using
76  * sys_settimeofday().  Is this for backwards compatibility?  If so,
77  * why not move it into the appropriate arch directory (for those
78  * architectures that need it).
79  */
80 
81 SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
82 {
83 	struct timespec64 tv;
84 	int err;
85 
86 	if (get_user(tv.tv_sec, tptr))
87 		return -EFAULT;
88 
89 	tv.tv_nsec = 0;
90 
91 	err = security_settime64(&tv, NULL);
92 	if (err)
93 		return err;
94 
95 	do_settimeofday64(&tv);
96 	return 0;
97 }
98 
99 #endif /* __ARCH_WANT_SYS_TIME */
100 
101 #ifdef CONFIG_COMPAT_32BIT_TIME
102 #ifdef __ARCH_WANT_SYS_TIME32
103 
104 /* old_time32_t is a 32 bit "long" and needs to get converted. */
105 SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106 {
107 	old_time32_t i;
108 
109 	i = (old_time32_t)ktime_get_real_seconds();
110 
111 	if (tloc) {
112 		if (put_user(i,tloc))
113 			return -EFAULT;
114 	}
115 	force_successful_syscall_return();
116 	return i;
117 }
118 
119 SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120 {
121 	struct timespec64 tv;
122 	int err;
123 
124 	if (get_user(tv.tv_sec, tptr))
125 		return -EFAULT;
126 
127 	tv.tv_nsec = 0;
128 
129 	err = security_settime64(&tv, NULL);
130 	if (err)
131 		return err;
132 
133 	do_settimeofday64(&tv);
134 	return 0;
135 }
136 
137 #endif /* __ARCH_WANT_SYS_TIME32 */
138 #endif
139 
140 SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141 		struct timezone __user *, tz)
142 {
143 	if (likely(tv != NULL)) {
144 		struct timespec64 ts;
145 
146 		ktime_get_real_ts64(&ts);
147 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149 			return -EFAULT;
150 	}
151 	if (unlikely(tz != NULL)) {
152 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 			return -EFAULT;
154 	}
155 	return 0;
156 }
157 
158 /*
159  * In case for some reason the CMOS clock has not already been running
160  * in UTC, but in some local time: The first time we set the timezone,
161  * we will warp the clock so that it is ticking UTC time instead of
162  * local time. Presumably, if someone is setting the timezone then we
163  * are running in an environment where the programs understand about
164  * timezones. This should be done at boot time in the /etc/rc script,
165  * as soon as possible, so that the clock can be set right. Otherwise,
166  * various programs will get confused when the clock gets warped.
167  */
168 
169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170 {
171 	static int firsttime = 1;
172 	int error = 0;
173 
174 	if (tv && !timespec64_valid_settod(tv))
175 		return -EINVAL;
176 
177 	error = security_settime64(tv, tz);
178 	if (error)
179 		return error;
180 
181 	if (tz) {
182 		/* Verify we're within the +-15 hrs range */
183 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 			return -EINVAL;
185 
186 		sys_tz = *tz;
187 		update_vsyscall_tz();
188 		if (firsttime) {
189 			firsttime = 0;
190 			if (!tv)
191 				timekeeping_warp_clock();
192 		}
193 	}
194 	if (tv)
195 		return do_settimeofday64(tv);
196 	return 0;
197 }
198 
199 SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
200 		struct timezone __user *, tz)
201 {
202 	struct timespec64 new_ts;
203 	struct timezone new_tz;
204 
205 	if (tv) {
206 		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207 		    get_user(new_ts.tv_nsec, &tv->tv_usec))
208 			return -EFAULT;
209 
210 		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
211 			return -EINVAL;
212 
213 		new_ts.tv_nsec *= NSEC_PER_USEC;
214 	}
215 	if (tz) {
216 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217 			return -EFAULT;
218 	}
219 
220 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
221 }
222 
223 #ifdef CONFIG_COMPAT
224 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
225 		       struct timezone __user *, tz)
226 {
227 	if (tv) {
228 		struct timespec64 ts;
229 
230 		ktime_get_real_ts64(&ts);
231 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
232 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
233 			return -EFAULT;
234 	}
235 	if (tz) {
236 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237 			return -EFAULT;
238 	}
239 
240 	return 0;
241 }
242 
243 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
244 		       struct timezone __user *, tz)
245 {
246 	struct timespec64 new_ts;
247 	struct timezone new_tz;
248 
249 	if (tv) {
250 		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251 		    get_user(new_ts.tv_nsec, &tv->tv_usec))
252 			return -EFAULT;
253 
254 		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
255 			return -EINVAL;
256 
257 		new_ts.tv_nsec *= NSEC_PER_USEC;
258 	}
259 	if (tz) {
260 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261 			return -EFAULT;
262 	}
263 
264 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265 }
266 #endif
267 
268 #ifdef CONFIG_64BIT
269 SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
270 {
271 	struct __kernel_timex txc;		/* Local copy of parameter */
272 	int ret;
273 
274 	/* Copy the user data space into the kernel copy
275 	 * structure. But bear in mind that the structures
276 	 * may change
277 	 */
278 	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
279 		return -EFAULT;
280 	ret = do_adjtimex(&txc);
281 	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
282 }
283 #endif
284 
285 #ifdef CONFIG_COMPAT_32BIT_TIME
286 int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
287 {
288 	struct old_timex32 tx32;
289 
290 	memset(txc, 0, sizeof(struct __kernel_timex));
291 	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292 		return -EFAULT;
293 
294 	txc->modes = tx32.modes;
295 	txc->offset = tx32.offset;
296 	txc->freq = tx32.freq;
297 	txc->maxerror = tx32.maxerror;
298 	txc->esterror = tx32.esterror;
299 	txc->status = tx32.status;
300 	txc->constant = tx32.constant;
301 	txc->precision = tx32.precision;
302 	txc->tolerance = tx32.tolerance;
303 	txc->time.tv_sec = tx32.time.tv_sec;
304 	txc->time.tv_usec = tx32.time.tv_usec;
305 	txc->tick = tx32.tick;
306 	txc->ppsfreq = tx32.ppsfreq;
307 	txc->jitter = tx32.jitter;
308 	txc->shift = tx32.shift;
309 	txc->stabil = tx32.stabil;
310 	txc->jitcnt = tx32.jitcnt;
311 	txc->calcnt = tx32.calcnt;
312 	txc->errcnt = tx32.errcnt;
313 	txc->stbcnt = tx32.stbcnt;
314 
315 	return 0;
316 }
317 
318 int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
319 {
320 	struct old_timex32 tx32;
321 
322 	memset(&tx32, 0, sizeof(struct old_timex32));
323 	tx32.modes = txc->modes;
324 	tx32.offset = txc->offset;
325 	tx32.freq = txc->freq;
326 	tx32.maxerror = txc->maxerror;
327 	tx32.esterror = txc->esterror;
328 	tx32.status = txc->status;
329 	tx32.constant = txc->constant;
330 	tx32.precision = txc->precision;
331 	tx32.tolerance = txc->tolerance;
332 	tx32.time.tv_sec = txc->time.tv_sec;
333 	tx32.time.tv_usec = txc->time.tv_usec;
334 	tx32.tick = txc->tick;
335 	tx32.ppsfreq = txc->ppsfreq;
336 	tx32.jitter = txc->jitter;
337 	tx32.shift = txc->shift;
338 	tx32.stabil = txc->stabil;
339 	tx32.jitcnt = txc->jitcnt;
340 	tx32.calcnt = txc->calcnt;
341 	tx32.errcnt = txc->errcnt;
342 	tx32.stbcnt = txc->stbcnt;
343 	tx32.tai = txc->tai;
344 	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345 		return -EFAULT;
346 	return 0;
347 }
348 
349 SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
350 {
351 	struct __kernel_timex txc;
352 	int err, ret;
353 
354 	err = get_old_timex32(&txc, utp);
355 	if (err)
356 		return err;
357 
358 	ret = do_adjtimex(&txc);
359 
360 	err = put_old_timex32(utp, &txc);
361 	if (err)
362 		return err;
363 
364 	return ret;
365 }
366 #endif
367 
368 /*
369  * Convert jiffies to milliseconds and back.
370  *
371  * Avoid unnecessary multiplications/divisions in the
372  * two most common HZ cases:
373  */
374 unsigned int jiffies_to_msecs(const unsigned long j)
375 {
376 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
377 	return (MSEC_PER_SEC / HZ) * j;
378 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
379 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
380 #else
381 # if BITS_PER_LONG == 32
382 	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
383 	       HZ_TO_MSEC_SHR32;
384 # else
385 	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
386 # endif
387 #endif
388 }
389 EXPORT_SYMBOL(jiffies_to_msecs);
390 
391 unsigned int jiffies_to_usecs(const unsigned long j)
392 {
393 	/*
394 	 * Hz usually doesn't go much further MSEC_PER_SEC.
395 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
396 	 */
397 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
398 
399 #if !(USEC_PER_SEC % HZ)
400 	return (USEC_PER_SEC / HZ) * j;
401 #else
402 # if BITS_PER_LONG == 32
403 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
404 # else
405 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
406 # endif
407 #endif
408 }
409 EXPORT_SYMBOL(jiffies_to_usecs);
410 
411 /*
412  * mktime64 - Converts date to seconds.
413  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
414  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
415  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
416  *
417  * [For the Julian calendar (which was used in Russia before 1917,
418  * Britain & colonies before 1752, anywhere else before 1582,
419  * and is still in use by some communities) leave out the
420  * -year/100+year/400 terms, and add 10.]
421  *
422  * This algorithm was first published by Gauss (I think).
423  *
424  * A leap second can be indicated by calling this function with sec as
425  * 60 (allowable under ISO 8601).  The leap second is treated the same
426  * as the following second since they don't exist in UNIX time.
427  *
428  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
429  * tomorrow - (allowable under ISO 8601) is supported.
430  */
431 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
432 		const unsigned int day, const unsigned int hour,
433 		const unsigned int min, const unsigned int sec)
434 {
435 	unsigned int mon = mon0, year = year0;
436 
437 	/* 1..12 -> 11,12,1..10 */
438 	if (0 >= (int) (mon -= 2)) {
439 		mon += 12;	/* Puts Feb last since it has leap day */
440 		year -= 1;
441 	}
442 
443 	return ((((time64_t)
444 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
445 		  year*365 - 719499
446 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
447 	  )*60 + min /* now have minutes */
448 	)*60 + sec; /* finally seconds */
449 }
450 EXPORT_SYMBOL(mktime64);
451 
452 /**
453  * ns_to_timespec - Convert nanoseconds to timespec
454  * @nsec:       the nanoseconds value to be converted
455  *
456  * Returns the timespec representation of the nsec parameter.
457  */
458 struct timespec ns_to_timespec(const s64 nsec)
459 {
460 	struct timespec ts;
461 	s32 rem;
462 
463 	if (!nsec)
464 		return (struct timespec) {0, 0};
465 
466 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
467 	if (unlikely(rem < 0)) {
468 		ts.tv_sec--;
469 		rem += NSEC_PER_SEC;
470 	}
471 	ts.tv_nsec = rem;
472 
473 	return ts;
474 }
475 EXPORT_SYMBOL(ns_to_timespec);
476 
477 /**
478  * ns_to_timeval - Convert nanoseconds to timeval
479  * @nsec:       the nanoseconds value to be converted
480  *
481  * Returns the timeval representation of the nsec parameter.
482  */
483 struct timeval ns_to_timeval(const s64 nsec)
484 {
485 	struct timespec ts = ns_to_timespec(nsec);
486 	struct timeval tv;
487 
488 	tv.tv_sec = ts.tv_sec;
489 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
490 
491 	return tv;
492 }
493 EXPORT_SYMBOL(ns_to_timeval);
494 
495 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
496 {
497 	struct timespec64 ts = ns_to_timespec64(nsec);
498 	struct __kernel_old_timeval tv;
499 
500 	tv.tv_sec = ts.tv_sec;
501 	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
502 
503 	return tv;
504 }
505 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
506 
507 /**
508  * set_normalized_timespec - set timespec sec and nsec parts and normalize
509  *
510  * @ts:		pointer to timespec variable to be set
511  * @sec:	seconds to set
512  * @nsec:	nanoseconds to set
513  *
514  * Set seconds and nanoseconds field of a timespec variable and
515  * normalize to the timespec storage format
516  *
517  * Note: The tv_nsec part is always in the range of
518  *	0 <= tv_nsec < NSEC_PER_SEC
519  * For negative values only the tv_sec field is negative !
520  */
521 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
522 {
523 	while (nsec >= NSEC_PER_SEC) {
524 		/*
525 		 * The following asm() prevents the compiler from
526 		 * optimising this loop into a modulo operation. See
527 		 * also __iter_div_u64_rem() in include/linux/time.h
528 		 */
529 		asm("" : "+rm"(nsec));
530 		nsec -= NSEC_PER_SEC;
531 		++sec;
532 	}
533 	while (nsec < 0) {
534 		asm("" : "+rm"(nsec));
535 		nsec += NSEC_PER_SEC;
536 		--sec;
537 	}
538 	ts->tv_sec = sec;
539 	ts->tv_nsec = nsec;
540 }
541 EXPORT_SYMBOL(set_normalized_timespec64);
542 
543 /**
544  * ns_to_timespec64 - Convert nanoseconds to timespec64
545  * @nsec:       the nanoseconds value to be converted
546  *
547  * Returns the timespec64 representation of the nsec parameter.
548  */
549 struct timespec64 ns_to_timespec64(const s64 nsec)
550 {
551 	struct timespec64 ts = { 0, 0 };
552 	s32 rem;
553 
554 	if (likely(nsec > 0)) {
555 		ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
556 		ts.tv_nsec = rem;
557 	} else if (nsec < 0) {
558 		/*
559 		 * With negative times, tv_sec points to the earlier
560 		 * second, and tv_nsec counts the nanoseconds since
561 		 * then, so tv_nsec is always a positive number.
562 		 */
563 		ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
564 		ts.tv_nsec = NSEC_PER_SEC - rem - 1;
565 	}
566 
567 	return ts;
568 }
569 EXPORT_SYMBOL(ns_to_timespec64);
570 
571 /**
572  * msecs_to_jiffies: - convert milliseconds to jiffies
573  * @m:	time in milliseconds
574  *
575  * conversion is done as follows:
576  *
577  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
578  *
579  * - 'too large' values [that would result in larger than
580  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
581  *
582  * - all other values are converted to jiffies by either multiplying
583  *   the input value by a factor or dividing it with a factor and
584  *   handling any 32-bit overflows.
585  *   for the details see __msecs_to_jiffies()
586  *
587  * msecs_to_jiffies() checks for the passed in value being a constant
588  * via __builtin_constant_p() allowing gcc to eliminate most of the
589  * code, __msecs_to_jiffies() is called if the value passed does not
590  * allow constant folding and the actual conversion must be done at
591  * runtime.
592  * the _msecs_to_jiffies helpers are the HZ dependent conversion
593  * routines found in include/linux/jiffies.h
594  */
595 unsigned long __msecs_to_jiffies(const unsigned int m)
596 {
597 	/*
598 	 * Negative value, means infinite timeout:
599 	 */
600 	if ((int)m < 0)
601 		return MAX_JIFFY_OFFSET;
602 	return _msecs_to_jiffies(m);
603 }
604 EXPORT_SYMBOL(__msecs_to_jiffies);
605 
606 unsigned long __usecs_to_jiffies(const unsigned int u)
607 {
608 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
609 		return MAX_JIFFY_OFFSET;
610 	return _usecs_to_jiffies(u);
611 }
612 EXPORT_SYMBOL(__usecs_to_jiffies);
613 
614 /*
615  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
616  * that a remainder subtract here would not do the right thing as the
617  * resolution values don't fall on second boundries.  I.e. the line:
618  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
619  * Note that due to the small error in the multiplier here, this
620  * rounding is incorrect for sufficiently large values of tv_nsec, but
621  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
622  * OK.
623  *
624  * Rather, we just shift the bits off the right.
625  *
626  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
627  * value to a scaled second value.
628  */
629 
630 unsigned long
631 timespec64_to_jiffies(const struct timespec64 *value)
632 {
633 	u64 sec = value->tv_sec;
634 	long nsec = value->tv_nsec + TICK_NSEC - 1;
635 
636 	if (sec >= MAX_SEC_IN_JIFFIES){
637 		sec = MAX_SEC_IN_JIFFIES;
638 		nsec = 0;
639 	}
640 	return ((sec * SEC_CONVERSION) +
641 		(((u64)nsec * NSEC_CONVERSION) >>
642 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
643 
644 }
645 EXPORT_SYMBOL(timespec64_to_jiffies);
646 
647 void
648 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
649 {
650 	/*
651 	 * Convert jiffies to nanoseconds and separate with
652 	 * one divide.
653 	 */
654 	u32 rem;
655 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
656 				    NSEC_PER_SEC, &rem);
657 	value->tv_nsec = rem;
658 }
659 EXPORT_SYMBOL(jiffies_to_timespec64);
660 
661 /*
662  * Convert jiffies/jiffies_64 to clock_t and back.
663  */
664 clock_t jiffies_to_clock_t(unsigned long x)
665 {
666 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
667 # if HZ < USER_HZ
668 	return x * (USER_HZ / HZ);
669 # else
670 	return x / (HZ / USER_HZ);
671 # endif
672 #else
673 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
674 #endif
675 }
676 EXPORT_SYMBOL(jiffies_to_clock_t);
677 
678 unsigned long clock_t_to_jiffies(unsigned long x)
679 {
680 #if (HZ % USER_HZ)==0
681 	if (x >= ~0UL / (HZ / USER_HZ))
682 		return ~0UL;
683 	return x * (HZ / USER_HZ);
684 #else
685 	/* Don't worry about loss of precision here .. */
686 	if (x >= ~0UL / HZ * USER_HZ)
687 		return ~0UL;
688 
689 	/* .. but do try to contain it here */
690 	return div_u64((u64)x * HZ, USER_HZ);
691 #endif
692 }
693 EXPORT_SYMBOL(clock_t_to_jiffies);
694 
695 u64 jiffies_64_to_clock_t(u64 x)
696 {
697 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
698 # if HZ < USER_HZ
699 	x = div_u64(x * USER_HZ, HZ);
700 # elif HZ > USER_HZ
701 	x = div_u64(x, HZ / USER_HZ);
702 # else
703 	/* Nothing to do */
704 # endif
705 #else
706 	/*
707 	 * There are better ways that don't overflow early,
708 	 * but even this doesn't overflow in hundreds of years
709 	 * in 64 bits, so..
710 	 */
711 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
712 #endif
713 	return x;
714 }
715 EXPORT_SYMBOL(jiffies_64_to_clock_t);
716 
717 u64 nsec_to_clock_t(u64 x)
718 {
719 #if (NSEC_PER_SEC % USER_HZ) == 0
720 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
721 #elif (USER_HZ % 512) == 0
722 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
723 #else
724 	/*
725          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
726          * overflow after 64.99 years.
727          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
728          */
729 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
730 #endif
731 }
732 
733 u64 jiffies64_to_nsecs(u64 j)
734 {
735 #if !(NSEC_PER_SEC % HZ)
736 	return (NSEC_PER_SEC / HZ) * j;
737 # else
738 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
739 #endif
740 }
741 EXPORT_SYMBOL(jiffies64_to_nsecs);
742 
743 u64 jiffies64_to_msecs(const u64 j)
744 {
745 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
746 	return (MSEC_PER_SEC / HZ) * j;
747 #else
748 	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
749 #endif
750 }
751 EXPORT_SYMBOL(jiffies64_to_msecs);
752 
753 /**
754  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
755  *
756  * @n:	nsecs in u64
757  *
758  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
759  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
760  * for scheduler, not for use in device drivers to calculate timeout value.
761  *
762  * note:
763  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
764  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
765  */
766 u64 nsecs_to_jiffies64(u64 n)
767 {
768 #if (NSEC_PER_SEC % HZ) == 0
769 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
770 	return div_u64(n, NSEC_PER_SEC / HZ);
771 #elif (HZ % 512) == 0
772 	/* overflow after 292 years if HZ = 1024 */
773 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
774 #else
775 	/*
776 	 * Generic case - optimized for cases where HZ is a multiple of 3.
777 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
778 	 */
779 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
780 #endif
781 }
782 EXPORT_SYMBOL(nsecs_to_jiffies64);
783 
784 /**
785  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
786  *
787  * @n:	nsecs in u64
788  *
789  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
790  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
791  * for scheduler, not for use in device drivers to calculate timeout value.
792  *
793  * note:
794  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
795  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
796  */
797 unsigned long nsecs_to_jiffies(u64 n)
798 {
799 	return (unsigned long)nsecs_to_jiffies64(n);
800 }
801 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
802 
803 /*
804  * Add two timespec64 values and do a safety check for overflow.
805  * It's assumed that both values are valid (>= 0).
806  * And, each timespec64 is in normalized form.
807  */
808 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
809 				const struct timespec64 rhs)
810 {
811 	struct timespec64 res;
812 
813 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
814 			lhs.tv_nsec + rhs.tv_nsec);
815 
816 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
817 		res.tv_sec = TIME64_MAX;
818 		res.tv_nsec = 0;
819 	}
820 
821 	return res;
822 }
823 
824 int get_timespec64(struct timespec64 *ts,
825 		   const struct __kernel_timespec __user *uts)
826 {
827 	struct __kernel_timespec kts;
828 	int ret;
829 
830 	ret = copy_from_user(&kts, uts, sizeof(kts));
831 	if (ret)
832 		return -EFAULT;
833 
834 	ts->tv_sec = kts.tv_sec;
835 
836 	/* Zero out the padding in compat mode */
837 	if (in_compat_syscall())
838 		kts.tv_nsec &= 0xFFFFFFFFUL;
839 
840 	/* In 32-bit mode, this drops the padding */
841 	ts->tv_nsec = kts.tv_nsec;
842 
843 	return 0;
844 }
845 EXPORT_SYMBOL_GPL(get_timespec64);
846 
847 int put_timespec64(const struct timespec64 *ts,
848 		   struct __kernel_timespec __user *uts)
849 {
850 	struct __kernel_timespec kts = {
851 		.tv_sec = ts->tv_sec,
852 		.tv_nsec = ts->tv_nsec
853 	};
854 
855 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
856 }
857 EXPORT_SYMBOL_GPL(put_timespec64);
858 
859 static int __get_old_timespec32(struct timespec64 *ts64,
860 				   const struct old_timespec32 __user *cts)
861 {
862 	struct old_timespec32 ts;
863 	int ret;
864 
865 	ret = copy_from_user(&ts, cts, sizeof(ts));
866 	if (ret)
867 		return -EFAULT;
868 
869 	ts64->tv_sec = ts.tv_sec;
870 	ts64->tv_nsec = ts.tv_nsec;
871 
872 	return 0;
873 }
874 
875 static int __put_old_timespec32(const struct timespec64 *ts64,
876 				   struct old_timespec32 __user *cts)
877 {
878 	struct old_timespec32 ts = {
879 		.tv_sec = ts64->tv_sec,
880 		.tv_nsec = ts64->tv_nsec
881 	};
882 	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
883 }
884 
885 int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
886 {
887 	if (COMPAT_USE_64BIT_TIME)
888 		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
889 	else
890 		return __get_old_timespec32(ts, uts);
891 }
892 EXPORT_SYMBOL_GPL(get_old_timespec32);
893 
894 int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
895 {
896 	if (COMPAT_USE_64BIT_TIME)
897 		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
898 	else
899 		return __put_old_timespec32(ts, uts);
900 }
901 EXPORT_SYMBOL_GPL(put_old_timespec32);
902 
903 int get_itimerspec64(struct itimerspec64 *it,
904 			const struct __kernel_itimerspec __user *uit)
905 {
906 	int ret;
907 
908 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
909 	if (ret)
910 		return ret;
911 
912 	ret = get_timespec64(&it->it_value, &uit->it_value);
913 
914 	return ret;
915 }
916 EXPORT_SYMBOL_GPL(get_itimerspec64);
917 
918 int put_itimerspec64(const struct itimerspec64 *it,
919 			struct __kernel_itimerspec __user *uit)
920 {
921 	int ret;
922 
923 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
924 	if (ret)
925 		return ret;
926 
927 	ret = put_timespec64(&it->it_value, &uit->it_value);
928 
929 	return ret;
930 }
931 EXPORT_SYMBOL_GPL(put_itimerspec64);
932 
933 int get_old_itimerspec32(struct itimerspec64 *its,
934 			const struct old_itimerspec32 __user *uits)
935 {
936 
937 	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
938 	    __get_old_timespec32(&its->it_value, &uits->it_value))
939 		return -EFAULT;
940 	return 0;
941 }
942 EXPORT_SYMBOL_GPL(get_old_itimerspec32);
943 
944 int put_old_itimerspec32(const struct itimerspec64 *its,
945 			struct old_itimerspec32 __user *uits)
946 {
947 	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
948 	    __put_old_timespec32(&its->it_value, &uits->it_value))
949 		return -EFAULT;
950 	return 0;
951 }
952 EXPORT_SYMBOL_GPL(put_old_itimerspec32);
953