xref: /openbmc/linux/kernel/time/time.c (revision 981ab3f1)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <linux/uaccess.h>
42 #include <linux/compat.h>
43 #include <asm/unistd.h>
44 
45 #include <generated/timeconst.h>
46 #include "timekeeping.h"
47 
48 /*
49  * The timezone where the local system is located.  Used as a default by some
50  * programs who obtain this value by using gettimeofday.
51  */
52 struct timezone sys_tz;
53 
54 EXPORT_SYMBOL(sys_tz);
55 
56 #ifdef __ARCH_WANT_SYS_TIME
57 
58 /*
59  * sys_time() can be implemented in user-level using
60  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
61  * why not move it into the appropriate arch directory (for those
62  * architectures that need it).
63  */
64 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 {
66 	time_t i = get_seconds();
67 
68 	if (tloc) {
69 		if (put_user(i,tloc))
70 			return -EFAULT;
71 	}
72 	force_successful_syscall_return();
73 	return i;
74 }
75 
76 /*
77  * sys_stime() can be implemented in user-level using
78  * sys_settimeofday().  Is this for backwards compatibility?  If so,
79  * why not move it into the appropriate arch directory (for those
80  * architectures that need it).
81  */
82 
83 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
84 {
85 	struct timespec tv;
86 	int err;
87 
88 	if (get_user(tv.tv_sec, tptr))
89 		return -EFAULT;
90 
91 	tv.tv_nsec = 0;
92 
93 	err = security_settime(&tv, NULL);
94 	if (err)
95 		return err;
96 
97 	do_settimeofday(&tv);
98 	return 0;
99 }
100 
101 #endif /* __ARCH_WANT_SYS_TIME */
102 
103 #ifdef CONFIG_COMPAT
104 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
105 
106 /* compat_time_t is a 32 bit "long" and needs to get converted. */
107 COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
108 {
109 	struct timeval tv;
110 	compat_time_t i;
111 
112 	do_gettimeofday(&tv);
113 	i = tv.tv_sec;
114 
115 	if (tloc) {
116 		if (put_user(i,tloc))
117 			return -EFAULT;
118 	}
119 	force_successful_syscall_return();
120 	return i;
121 }
122 
123 COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
124 {
125 	struct timespec tv;
126 	int err;
127 
128 	if (get_user(tv.tv_sec, tptr))
129 		return -EFAULT;
130 
131 	tv.tv_nsec = 0;
132 
133 	err = security_settime(&tv, NULL);
134 	if (err)
135 		return err;
136 
137 	do_settimeofday(&tv);
138 	return 0;
139 }
140 
141 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
142 #endif
143 
144 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
145 		struct timezone __user *, tz)
146 {
147 	if (likely(tv != NULL)) {
148 		struct timeval ktv;
149 		do_gettimeofday(&ktv);
150 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
151 			return -EFAULT;
152 	}
153 	if (unlikely(tz != NULL)) {
154 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
155 			return -EFAULT;
156 	}
157 	return 0;
158 }
159 
160 /*
161  * Indicates if there is an offset between the system clock and the hardware
162  * clock/persistent clock/rtc.
163  */
164 int persistent_clock_is_local;
165 
166 /*
167  * Adjust the time obtained from the CMOS to be UTC time instead of
168  * local time.
169  *
170  * This is ugly, but preferable to the alternatives.  Otherwise we
171  * would either need to write a program to do it in /etc/rc (and risk
172  * confusion if the program gets run more than once; it would also be
173  * hard to make the program warp the clock precisely n hours)  or
174  * compile in the timezone information into the kernel.  Bad, bad....
175  *
176  *						- TYT, 1992-01-01
177  *
178  * The best thing to do is to keep the CMOS clock in universal time (UTC)
179  * as real UNIX machines always do it. This avoids all headaches about
180  * daylight saving times and warping kernel clocks.
181  */
182 static inline void warp_clock(void)
183 {
184 	if (sys_tz.tz_minuteswest != 0) {
185 		struct timespec adjust;
186 
187 		persistent_clock_is_local = 1;
188 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
189 		adjust.tv_nsec = 0;
190 		timekeeping_inject_offset(&adjust);
191 	}
192 }
193 
194 /*
195  * In case for some reason the CMOS clock has not already been running
196  * in UTC, but in some local time: The first time we set the timezone,
197  * we will warp the clock so that it is ticking UTC time instead of
198  * local time. Presumably, if someone is setting the timezone then we
199  * are running in an environment where the programs understand about
200  * timezones. This should be done at boot time in the /etc/rc script,
201  * as soon as possible, so that the clock can be set right. Otherwise,
202  * various programs will get confused when the clock gets warped.
203  */
204 
205 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
206 {
207 	static int firsttime = 1;
208 	int error = 0;
209 
210 	if (tv && !timespec64_valid(tv))
211 		return -EINVAL;
212 
213 	error = security_settime64(tv, tz);
214 	if (error)
215 		return error;
216 
217 	if (tz) {
218 		/* Verify we're witin the +-15 hrs range */
219 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
220 			return -EINVAL;
221 
222 		sys_tz = *tz;
223 		update_vsyscall_tz();
224 		if (firsttime) {
225 			firsttime = 0;
226 			if (!tv)
227 				warp_clock();
228 		}
229 	}
230 	if (tv)
231 		return do_settimeofday64(tv);
232 	return 0;
233 }
234 
235 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
236 		struct timezone __user *, tz)
237 {
238 	struct timespec64 new_ts;
239 	struct timeval user_tv;
240 	struct timezone new_tz;
241 
242 	if (tv) {
243 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
244 			return -EFAULT;
245 
246 		if (!timeval_valid(&user_tv))
247 			return -EINVAL;
248 
249 		new_ts.tv_sec = user_tv.tv_sec;
250 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
251 	}
252 	if (tz) {
253 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
254 			return -EFAULT;
255 	}
256 
257 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
258 }
259 
260 #ifdef CONFIG_COMPAT
261 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
262 		       struct timezone __user *, tz)
263 {
264 	if (tv) {
265 		struct timeval ktv;
266 
267 		do_gettimeofday(&ktv);
268 		if (compat_put_timeval(&ktv, tv))
269 			return -EFAULT;
270 	}
271 	if (tz) {
272 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
273 			return -EFAULT;
274 	}
275 
276 	return 0;
277 }
278 
279 COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
280 		       struct timezone __user *, tz)
281 {
282 	struct timespec64 new_ts;
283 	struct timeval user_tv;
284 	struct timezone new_tz;
285 
286 	if (tv) {
287 		if (compat_get_timeval(&user_tv, tv))
288 			return -EFAULT;
289 		new_ts.tv_sec = user_tv.tv_sec;
290 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
291 	}
292 	if (tz) {
293 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
294 			return -EFAULT;
295 	}
296 
297 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
298 }
299 #endif
300 
301 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
302 {
303 	struct timex txc;		/* Local copy of parameter */
304 	int ret;
305 
306 	/* Copy the user data space into the kernel copy
307 	 * structure. But bear in mind that the structures
308 	 * may change
309 	 */
310 	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
311 		return -EFAULT;
312 	ret = do_adjtimex(&txc);
313 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
314 }
315 
316 #ifdef CONFIG_COMPAT
317 
318 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
319 {
320 	struct timex txc;
321 	int err, ret;
322 
323 	err = compat_get_timex(&txc, utp);
324 	if (err)
325 		return err;
326 
327 	ret = do_adjtimex(&txc);
328 
329 	err = compat_put_timex(utp, &txc);
330 	if (err)
331 		return err;
332 
333 	return ret;
334 }
335 #endif
336 
337 /*
338  * Convert jiffies to milliseconds and back.
339  *
340  * Avoid unnecessary multiplications/divisions in the
341  * two most common HZ cases:
342  */
343 unsigned int jiffies_to_msecs(const unsigned long j)
344 {
345 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
346 	return (MSEC_PER_SEC / HZ) * j;
347 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
348 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
349 #else
350 # if BITS_PER_LONG == 32
351 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
352 # else
353 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
354 # endif
355 #endif
356 }
357 EXPORT_SYMBOL(jiffies_to_msecs);
358 
359 unsigned int jiffies_to_usecs(const unsigned long j)
360 {
361 	/*
362 	 * Hz usually doesn't go much further MSEC_PER_SEC.
363 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
364 	 */
365 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
366 
367 #if !(USEC_PER_SEC % HZ)
368 	return (USEC_PER_SEC / HZ) * j;
369 #else
370 # if BITS_PER_LONG == 32
371 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
372 # else
373 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
374 # endif
375 #endif
376 }
377 EXPORT_SYMBOL(jiffies_to_usecs);
378 
379 /**
380  * timespec_trunc - Truncate timespec to a granularity
381  * @t: Timespec
382  * @gran: Granularity in ns.
383  *
384  * Truncate a timespec to a granularity. Always rounds down. gran must
385  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
386  */
387 struct timespec timespec_trunc(struct timespec t, unsigned gran)
388 {
389 	/* Avoid division in the common cases 1 ns and 1 s. */
390 	if (gran == 1) {
391 		/* nothing */
392 	} else if (gran == NSEC_PER_SEC) {
393 		t.tv_nsec = 0;
394 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
395 		t.tv_nsec -= t.tv_nsec % gran;
396 	} else {
397 		WARN(1, "illegal file time granularity: %u", gran);
398 	}
399 	return t;
400 }
401 EXPORT_SYMBOL(timespec_trunc);
402 
403 /*
404  * mktime64 - Converts date to seconds.
405  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
406  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
407  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
408  *
409  * [For the Julian calendar (which was used in Russia before 1917,
410  * Britain & colonies before 1752, anywhere else before 1582,
411  * and is still in use by some communities) leave out the
412  * -year/100+year/400 terms, and add 10.]
413  *
414  * This algorithm was first published by Gauss (I think).
415  *
416  * A leap second can be indicated by calling this function with sec as
417  * 60 (allowable under ISO 8601).  The leap second is treated the same
418  * as the following second since they don't exist in UNIX time.
419  *
420  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
421  * tomorrow - (allowable under ISO 8601) is supported.
422  */
423 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
424 		const unsigned int day, const unsigned int hour,
425 		const unsigned int min, const unsigned int sec)
426 {
427 	unsigned int mon = mon0, year = year0;
428 
429 	/* 1..12 -> 11,12,1..10 */
430 	if (0 >= (int) (mon -= 2)) {
431 		mon += 12;	/* Puts Feb last since it has leap day */
432 		year -= 1;
433 	}
434 
435 	return ((((time64_t)
436 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
437 		  year*365 - 719499
438 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
439 	  )*60 + min /* now have minutes */
440 	)*60 + sec; /* finally seconds */
441 }
442 EXPORT_SYMBOL(mktime64);
443 
444 /**
445  * set_normalized_timespec - set timespec sec and nsec parts and normalize
446  *
447  * @ts:		pointer to timespec variable to be set
448  * @sec:	seconds to set
449  * @nsec:	nanoseconds to set
450  *
451  * Set seconds and nanoseconds field of a timespec variable and
452  * normalize to the timespec storage format
453  *
454  * Note: The tv_nsec part is always in the range of
455  *	0 <= tv_nsec < NSEC_PER_SEC
456  * For negative values only the tv_sec field is negative !
457  */
458 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
459 {
460 	while (nsec >= NSEC_PER_SEC) {
461 		/*
462 		 * The following asm() prevents the compiler from
463 		 * optimising this loop into a modulo operation. See
464 		 * also __iter_div_u64_rem() in include/linux/time.h
465 		 */
466 		asm("" : "+rm"(nsec));
467 		nsec -= NSEC_PER_SEC;
468 		++sec;
469 	}
470 	while (nsec < 0) {
471 		asm("" : "+rm"(nsec));
472 		nsec += NSEC_PER_SEC;
473 		--sec;
474 	}
475 	ts->tv_sec = sec;
476 	ts->tv_nsec = nsec;
477 }
478 EXPORT_SYMBOL(set_normalized_timespec);
479 
480 /**
481  * ns_to_timespec - Convert nanoseconds to timespec
482  * @nsec:       the nanoseconds value to be converted
483  *
484  * Returns the timespec representation of the nsec parameter.
485  */
486 struct timespec ns_to_timespec(const s64 nsec)
487 {
488 	struct timespec ts;
489 	s32 rem;
490 
491 	if (!nsec)
492 		return (struct timespec) {0, 0};
493 
494 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
495 	if (unlikely(rem < 0)) {
496 		ts.tv_sec--;
497 		rem += NSEC_PER_SEC;
498 	}
499 	ts.tv_nsec = rem;
500 
501 	return ts;
502 }
503 EXPORT_SYMBOL(ns_to_timespec);
504 
505 /**
506  * ns_to_timeval - Convert nanoseconds to timeval
507  * @nsec:       the nanoseconds value to be converted
508  *
509  * Returns the timeval representation of the nsec parameter.
510  */
511 struct timeval ns_to_timeval(const s64 nsec)
512 {
513 	struct timespec ts = ns_to_timespec(nsec);
514 	struct timeval tv;
515 
516 	tv.tv_sec = ts.tv_sec;
517 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
518 
519 	return tv;
520 }
521 EXPORT_SYMBOL(ns_to_timeval);
522 
523 #if BITS_PER_LONG == 32
524 /**
525  * set_normalized_timespec - set timespec sec and nsec parts and normalize
526  *
527  * @ts:		pointer to timespec variable to be set
528  * @sec:	seconds to set
529  * @nsec:	nanoseconds to set
530  *
531  * Set seconds and nanoseconds field of a timespec variable and
532  * normalize to the timespec storage format
533  *
534  * Note: The tv_nsec part is always in the range of
535  *	0 <= tv_nsec < NSEC_PER_SEC
536  * For negative values only the tv_sec field is negative !
537  */
538 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
539 {
540 	while (nsec >= NSEC_PER_SEC) {
541 		/*
542 		 * The following asm() prevents the compiler from
543 		 * optimising this loop into a modulo operation. See
544 		 * also __iter_div_u64_rem() in include/linux/time.h
545 		 */
546 		asm("" : "+rm"(nsec));
547 		nsec -= NSEC_PER_SEC;
548 		++sec;
549 	}
550 	while (nsec < 0) {
551 		asm("" : "+rm"(nsec));
552 		nsec += NSEC_PER_SEC;
553 		--sec;
554 	}
555 	ts->tv_sec = sec;
556 	ts->tv_nsec = nsec;
557 }
558 EXPORT_SYMBOL(set_normalized_timespec64);
559 
560 /**
561  * ns_to_timespec64 - Convert nanoseconds to timespec64
562  * @nsec:       the nanoseconds value to be converted
563  *
564  * Returns the timespec64 representation of the nsec parameter.
565  */
566 struct timespec64 ns_to_timespec64(const s64 nsec)
567 {
568 	struct timespec64 ts;
569 	s32 rem;
570 
571 	if (!nsec)
572 		return (struct timespec64) {0, 0};
573 
574 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
575 	if (unlikely(rem < 0)) {
576 		ts.tv_sec--;
577 		rem += NSEC_PER_SEC;
578 	}
579 	ts.tv_nsec = rem;
580 
581 	return ts;
582 }
583 EXPORT_SYMBOL(ns_to_timespec64);
584 #endif
585 /**
586  * msecs_to_jiffies: - convert milliseconds to jiffies
587  * @m:	time in milliseconds
588  *
589  * conversion is done as follows:
590  *
591  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
592  *
593  * - 'too large' values [that would result in larger than
594  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
595  *
596  * - all other values are converted to jiffies by either multiplying
597  *   the input value by a factor or dividing it with a factor and
598  *   handling any 32-bit overflows.
599  *   for the details see __msecs_to_jiffies()
600  *
601  * msecs_to_jiffies() checks for the passed in value being a constant
602  * via __builtin_constant_p() allowing gcc to eliminate most of the
603  * code, __msecs_to_jiffies() is called if the value passed does not
604  * allow constant folding and the actual conversion must be done at
605  * runtime.
606  * the _msecs_to_jiffies helpers are the HZ dependent conversion
607  * routines found in include/linux/jiffies.h
608  */
609 unsigned long __msecs_to_jiffies(const unsigned int m)
610 {
611 	/*
612 	 * Negative value, means infinite timeout:
613 	 */
614 	if ((int)m < 0)
615 		return MAX_JIFFY_OFFSET;
616 	return _msecs_to_jiffies(m);
617 }
618 EXPORT_SYMBOL(__msecs_to_jiffies);
619 
620 unsigned long __usecs_to_jiffies(const unsigned int u)
621 {
622 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
623 		return MAX_JIFFY_OFFSET;
624 	return _usecs_to_jiffies(u);
625 }
626 EXPORT_SYMBOL(__usecs_to_jiffies);
627 
628 /*
629  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
630  * that a remainder subtract here would not do the right thing as the
631  * resolution values don't fall on second boundries.  I.e. the line:
632  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
633  * Note that due to the small error in the multiplier here, this
634  * rounding is incorrect for sufficiently large values of tv_nsec, but
635  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
636  * OK.
637  *
638  * Rather, we just shift the bits off the right.
639  *
640  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
641  * value to a scaled second value.
642  */
643 static unsigned long
644 __timespec64_to_jiffies(u64 sec, long nsec)
645 {
646 	nsec = nsec + TICK_NSEC - 1;
647 
648 	if (sec >= MAX_SEC_IN_JIFFIES){
649 		sec = MAX_SEC_IN_JIFFIES;
650 		nsec = 0;
651 	}
652 	return ((sec * SEC_CONVERSION) +
653 		(((u64)nsec * NSEC_CONVERSION) >>
654 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
655 
656 }
657 
658 static unsigned long
659 __timespec_to_jiffies(unsigned long sec, long nsec)
660 {
661 	return __timespec64_to_jiffies((u64)sec, nsec);
662 }
663 
664 unsigned long
665 timespec64_to_jiffies(const struct timespec64 *value)
666 {
667 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
668 }
669 EXPORT_SYMBOL(timespec64_to_jiffies);
670 
671 void
672 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
673 {
674 	/*
675 	 * Convert jiffies to nanoseconds and separate with
676 	 * one divide.
677 	 */
678 	u32 rem;
679 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
680 				    NSEC_PER_SEC, &rem);
681 	value->tv_nsec = rem;
682 }
683 EXPORT_SYMBOL(jiffies_to_timespec64);
684 
685 /*
686  * We could use a similar algorithm to timespec_to_jiffies (with a
687  * different multiplier for usec instead of nsec). But this has a
688  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
689  * usec value, since it's not necessarily integral.
690  *
691  * We could instead round in the intermediate scaled representation
692  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
693  * perilous: the scaling introduces a small positive error, which
694  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
695  * units to the intermediate before shifting) leads to accidental
696  * overflow and overestimates.
697  *
698  * At the cost of one additional multiplication by a constant, just
699  * use the timespec implementation.
700  */
701 unsigned long
702 timeval_to_jiffies(const struct timeval *value)
703 {
704 	return __timespec_to_jiffies(value->tv_sec,
705 				     value->tv_usec * NSEC_PER_USEC);
706 }
707 EXPORT_SYMBOL(timeval_to_jiffies);
708 
709 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
710 {
711 	/*
712 	 * Convert jiffies to nanoseconds and separate with
713 	 * one divide.
714 	 */
715 	u32 rem;
716 
717 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
718 				    NSEC_PER_SEC, &rem);
719 	value->tv_usec = rem / NSEC_PER_USEC;
720 }
721 EXPORT_SYMBOL(jiffies_to_timeval);
722 
723 /*
724  * Convert jiffies/jiffies_64 to clock_t and back.
725  */
726 clock_t jiffies_to_clock_t(unsigned long x)
727 {
728 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
729 # if HZ < USER_HZ
730 	return x * (USER_HZ / HZ);
731 # else
732 	return x / (HZ / USER_HZ);
733 # endif
734 #else
735 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
736 #endif
737 }
738 EXPORT_SYMBOL(jiffies_to_clock_t);
739 
740 unsigned long clock_t_to_jiffies(unsigned long x)
741 {
742 #if (HZ % USER_HZ)==0
743 	if (x >= ~0UL / (HZ / USER_HZ))
744 		return ~0UL;
745 	return x * (HZ / USER_HZ);
746 #else
747 	/* Don't worry about loss of precision here .. */
748 	if (x >= ~0UL / HZ * USER_HZ)
749 		return ~0UL;
750 
751 	/* .. but do try to contain it here */
752 	return div_u64((u64)x * HZ, USER_HZ);
753 #endif
754 }
755 EXPORT_SYMBOL(clock_t_to_jiffies);
756 
757 u64 jiffies_64_to_clock_t(u64 x)
758 {
759 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
760 # if HZ < USER_HZ
761 	x = div_u64(x * USER_HZ, HZ);
762 # elif HZ > USER_HZ
763 	x = div_u64(x, HZ / USER_HZ);
764 # else
765 	/* Nothing to do */
766 # endif
767 #else
768 	/*
769 	 * There are better ways that don't overflow early,
770 	 * but even this doesn't overflow in hundreds of years
771 	 * in 64 bits, so..
772 	 */
773 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
774 #endif
775 	return x;
776 }
777 EXPORT_SYMBOL(jiffies_64_to_clock_t);
778 
779 u64 nsec_to_clock_t(u64 x)
780 {
781 #if (NSEC_PER_SEC % USER_HZ) == 0
782 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
783 #elif (USER_HZ % 512) == 0
784 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
785 #else
786 	/*
787          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
788          * overflow after 64.99 years.
789          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
790          */
791 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
792 #endif
793 }
794 
795 u64 jiffies64_to_nsecs(u64 j)
796 {
797 #if !(NSEC_PER_SEC % HZ)
798 	return (NSEC_PER_SEC / HZ) * j;
799 # else
800 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
801 #endif
802 }
803 EXPORT_SYMBOL(jiffies64_to_nsecs);
804 
805 /**
806  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
807  *
808  * @n:	nsecs in u64
809  *
810  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
811  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
812  * for scheduler, not for use in device drivers to calculate timeout value.
813  *
814  * note:
815  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
816  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
817  */
818 u64 nsecs_to_jiffies64(u64 n)
819 {
820 #if (NSEC_PER_SEC % HZ) == 0
821 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
822 	return div_u64(n, NSEC_PER_SEC / HZ);
823 #elif (HZ % 512) == 0
824 	/* overflow after 292 years if HZ = 1024 */
825 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
826 #else
827 	/*
828 	 * Generic case - optimized for cases where HZ is a multiple of 3.
829 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
830 	 */
831 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
832 #endif
833 }
834 EXPORT_SYMBOL(nsecs_to_jiffies64);
835 
836 /**
837  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
838  *
839  * @n:	nsecs in u64
840  *
841  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
842  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
843  * for scheduler, not for use in device drivers to calculate timeout value.
844  *
845  * note:
846  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
847  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
848  */
849 unsigned long nsecs_to_jiffies(u64 n)
850 {
851 	return (unsigned long)nsecs_to_jiffies64(n);
852 }
853 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
854 
855 /*
856  * Add two timespec values and do a safety check for overflow.
857  * It's assumed that both values are valid (>= 0)
858  */
859 struct timespec timespec_add_safe(const struct timespec lhs,
860 				  const struct timespec rhs)
861 {
862 	struct timespec res;
863 
864 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
865 				lhs.tv_nsec + rhs.tv_nsec);
866 
867 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
868 		res.tv_sec = TIME_T_MAX;
869 
870 	return res;
871 }
872 
873 /*
874  * Add two timespec64 values and do a safety check for overflow.
875  * It's assumed that both values are valid (>= 0).
876  * And, each timespec64 is in normalized form.
877  */
878 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
879 				const struct timespec64 rhs)
880 {
881 	struct timespec64 res;
882 
883 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
884 			lhs.tv_nsec + rhs.tv_nsec);
885 
886 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
887 		res.tv_sec = TIME64_MAX;
888 		res.tv_nsec = 0;
889 	}
890 
891 	return res;
892 }
893 
894 int get_timespec64(struct timespec64 *ts,
895 		   const struct timespec __user *uts)
896 {
897 	struct timespec kts;
898 	int ret;
899 
900 	ret = copy_from_user(&kts, uts, sizeof(kts));
901 	if (ret)
902 		return -EFAULT;
903 
904 	ts->tv_sec = kts.tv_sec;
905 	ts->tv_nsec = kts.tv_nsec;
906 
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(get_timespec64);
910 
911 int put_timespec64(const struct timespec64 *ts,
912 		   struct timespec __user *uts)
913 {
914 	struct timespec kts = {
915 		.tv_sec = ts->tv_sec,
916 		.tv_nsec = ts->tv_nsec
917 	};
918 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
919 }
920 EXPORT_SYMBOL_GPL(put_timespec64);
921 
922 int get_itimerspec64(struct itimerspec64 *it,
923 			const struct itimerspec __user *uit)
924 {
925 	int ret;
926 
927 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
928 	if (ret)
929 		return ret;
930 
931 	ret = get_timespec64(&it->it_value, &uit->it_value);
932 
933 	return ret;
934 }
935 EXPORT_SYMBOL_GPL(get_itimerspec64);
936 
937 int put_itimerspec64(const struct itimerspec64 *it,
938 			struct itimerspec __user *uit)
939 {
940 	int ret;
941 
942 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
943 	if (ret)
944 		return ret;
945 
946 	ret = put_timespec64(&it->it_value, &uit->it_value);
947 
948 	return ret;
949 }
950 EXPORT_SYMBOL_GPL(put_itimerspec64);
951