xref: /openbmc/linux/kernel/time/time.c (revision 867a0e05)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include "timeconst.h"
45 #include "timekeeping.h"
46 
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52 
53 EXPORT_SYMBOL(sys_tz);
54 
55 #ifdef __ARCH_WANT_SYS_TIME
56 
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 	time_t i = get_seconds();
66 
67 	if (tloc) {
68 		if (put_user(i,tloc))
69 			return -EFAULT;
70 	}
71 	force_successful_syscall_return();
72 	return i;
73 }
74 
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81 
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 	struct timespec tv;
85 	int err;
86 
87 	if (get_user(tv.tv_sec, tptr))
88 		return -EFAULT;
89 
90 	tv.tv_nsec = 0;
91 
92 	err = security_settime(&tv, NULL);
93 	if (err)
94 		return err;
95 
96 	do_settimeofday(&tv);
97 	return 0;
98 }
99 
100 #endif /* __ARCH_WANT_SYS_TIME */
101 
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 		struct timezone __user *, tz)
104 {
105 	if (likely(tv != NULL)) {
106 		struct timeval ktv;
107 		do_gettimeofday(&ktv);
108 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 			return -EFAULT;
110 	}
111 	if (unlikely(tz != NULL)) {
112 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Indicates if there is an offset between the system clock and the hardware
120  * clock/persistent clock/rtc.
121  */
122 int persistent_clock_is_local;
123 
124 /*
125  * Adjust the time obtained from the CMOS to be UTC time instead of
126  * local time.
127  *
128  * This is ugly, but preferable to the alternatives.  Otherwise we
129  * would either need to write a program to do it in /etc/rc (and risk
130  * confusion if the program gets run more than once; it would also be
131  * hard to make the program warp the clock precisely n hours)  or
132  * compile in the timezone information into the kernel.  Bad, bad....
133  *
134  *						- TYT, 1992-01-01
135  *
136  * The best thing to do is to keep the CMOS clock in universal time (UTC)
137  * as real UNIX machines always do it. This avoids all headaches about
138  * daylight saving times and warping kernel clocks.
139  */
140 static inline void warp_clock(void)
141 {
142 	if (sys_tz.tz_minuteswest != 0) {
143 		struct timespec adjust;
144 
145 		persistent_clock_is_local = 1;
146 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 		adjust.tv_nsec = 0;
148 		timekeeping_inject_offset(&adjust);
149 	}
150 }
151 
152 /*
153  * In case for some reason the CMOS clock has not already been running
154  * in UTC, but in some local time: The first time we set the timezone,
155  * we will warp the clock so that it is ticking UTC time instead of
156  * local time. Presumably, if someone is setting the timezone then we
157  * are running in an environment where the programs understand about
158  * timezones. This should be done at boot time in the /etc/rc script,
159  * as soon as possible, so that the clock can be set right. Otherwise,
160  * various programs will get confused when the clock gets warped.
161  */
162 
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 	static int firsttime = 1;
166 	int error = 0;
167 
168 	if (tv && !timespec_valid(tv))
169 		return -EINVAL;
170 
171 	error = security_settime(tv, tz);
172 	if (error)
173 		return error;
174 
175 	if (tz) {
176 		sys_tz = *tz;
177 		update_vsyscall_tz();
178 		if (firsttime) {
179 			firsttime = 0;
180 			if (!tv)
181 				warp_clock();
182 		}
183 	}
184 	if (tv)
185 		return do_settimeofday(tv);
186 	return 0;
187 }
188 
189 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 		struct timezone __user *, tz)
191 {
192 	struct timeval user_tv;
193 	struct timespec	new_ts;
194 	struct timezone new_tz;
195 
196 	if (tv) {
197 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 			return -EFAULT;
199 		new_ts.tv_sec = user_tv.tv_sec;
200 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
201 	}
202 	if (tz) {
203 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
204 			return -EFAULT;
205 	}
206 
207 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
208 }
209 
210 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
211 {
212 	struct timex txc;		/* Local copy of parameter */
213 	int ret;
214 
215 	/* Copy the user data space into the kernel copy
216 	 * structure. But bear in mind that the structures
217 	 * may change
218 	 */
219 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
220 		return -EFAULT;
221 	ret = do_adjtimex(&txc);
222 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
223 }
224 
225 /**
226  * current_fs_time - Return FS time
227  * @sb: Superblock.
228  *
229  * Return the current time truncated to the time granularity supported by
230  * the fs.
231  */
232 struct timespec current_fs_time(struct super_block *sb)
233 {
234 	struct timespec now = current_kernel_time();
235 	return timespec_trunc(now, sb->s_time_gran);
236 }
237 EXPORT_SYMBOL(current_fs_time);
238 
239 /*
240  * Convert jiffies to milliseconds and back.
241  *
242  * Avoid unnecessary multiplications/divisions in the
243  * two most common HZ cases:
244  */
245 unsigned int jiffies_to_msecs(const unsigned long j)
246 {
247 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
248 	return (MSEC_PER_SEC / HZ) * j;
249 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
250 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
251 #else
252 # if BITS_PER_LONG == 32
253 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
254 # else
255 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
256 # endif
257 #endif
258 }
259 EXPORT_SYMBOL(jiffies_to_msecs);
260 
261 unsigned int jiffies_to_usecs(const unsigned long j)
262 {
263 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
264 	return (USEC_PER_SEC / HZ) * j;
265 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
266 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
267 #else
268 # if BITS_PER_LONG == 32
269 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
270 # else
271 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
272 # endif
273 #endif
274 }
275 EXPORT_SYMBOL(jiffies_to_usecs);
276 
277 /**
278  * timespec_trunc - Truncate timespec to a granularity
279  * @t: Timespec
280  * @gran: Granularity in ns.
281  *
282  * Truncate a timespec to a granularity. gran must be smaller than a second.
283  * Always rounds down.
284  *
285  * This function should be only used for timestamps returned by
286  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
287  * it doesn't handle the better resolution of the latter.
288  */
289 struct timespec timespec_trunc(struct timespec t, unsigned gran)
290 {
291 	/*
292 	 * Division is pretty slow so avoid it for common cases.
293 	 * Currently current_kernel_time() never returns better than
294 	 * jiffies resolution. Exploit that.
295 	 */
296 	if (gran <= jiffies_to_usecs(1) * 1000) {
297 		/* nothing */
298 	} else if (gran == 1000000000) {
299 		t.tv_nsec = 0;
300 	} else {
301 		t.tv_nsec -= t.tv_nsec % gran;
302 	}
303 	return t;
304 }
305 EXPORT_SYMBOL(timespec_trunc);
306 
307 /*
308  * mktime64 - Converts date to seconds.
309  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
310  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
311  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
312  *
313  * [For the Julian calendar (which was used in Russia before 1917,
314  * Britain & colonies before 1752, anywhere else before 1582,
315  * and is still in use by some communities) leave out the
316  * -year/100+year/400 terms, and add 10.]
317  *
318  * This algorithm was first published by Gauss (I think).
319  */
320 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
321 		const unsigned int day, const unsigned int hour,
322 		const unsigned int min, const unsigned int sec)
323 {
324 	unsigned int mon = mon0, year = year0;
325 
326 	/* 1..12 -> 11,12,1..10 */
327 	if (0 >= (int) (mon -= 2)) {
328 		mon += 12;	/* Puts Feb last since it has leap day */
329 		year -= 1;
330 	}
331 
332 	return ((((time64_t)
333 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
334 		  year*365 - 719499
335 	    )*24 + hour /* now have hours */
336 	  )*60 + min /* now have minutes */
337 	)*60 + sec; /* finally seconds */
338 }
339 EXPORT_SYMBOL(mktime64);
340 
341 /**
342  * set_normalized_timespec - set timespec sec and nsec parts and normalize
343  *
344  * @ts:		pointer to timespec variable to be set
345  * @sec:	seconds to set
346  * @nsec:	nanoseconds to set
347  *
348  * Set seconds and nanoseconds field of a timespec variable and
349  * normalize to the timespec storage format
350  *
351  * Note: The tv_nsec part is always in the range of
352  *	0 <= tv_nsec < NSEC_PER_SEC
353  * For negative values only the tv_sec field is negative !
354  */
355 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
356 {
357 	while (nsec >= NSEC_PER_SEC) {
358 		/*
359 		 * The following asm() prevents the compiler from
360 		 * optimising this loop into a modulo operation. See
361 		 * also __iter_div_u64_rem() in include/linux/time.h
362 		 */
363 		asm("" : "+rm"(nsec));
364 		nsec -= NSEC_PER_SEC;
365 		++sec;
366 	}
367 	while (nsec < 0) {
368 		asm("" : "+rm"(nsec));
369 		nsec += NSEC_PER_SEC;
370 		--sec;
371 	}
372 	ts->tv_sec = sec;
373 	ts->tv_nsec = nsec;
374 }
375 EXPORT_SYMBOL(set_normalized_timespec);
376 
377 /**
378  * ns_to_timespec - Convert nanoseconds to timespec
379  * @nsec:       the nanoseconds value to be converted
380  *
381  * Returns the timespec representation of the nsec parameter.
382  */
383 struct timespec ns_to_timespec(const s64 nsec)
384 {
385 	struct timespec ts;
386 	s32 rem;
387 
388 	if (!nsec)
389 		return (struct timespec) {0, 0};
390 
391 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
392 	if (unlikely(rem < 0)) {
393 		ts.tv_sec--;
394 		rem += NSEC_PER_SEC;
395 	}
396 	ts.tv_nsec = rem;
397 
398 	return ts;
399 }
400 EXPORT_SYMBOL(ns_to_timespec);
401 
402 /**
403  * ns_to_timeval - Convert nanoseconds to timeval
404  * @nsec:       the nanoseconds value to be converted
405  *
406  * Returns the timeval representation of the nsec parameter.
407  */
408 struct timeval ns_to_timeval(const s64 nsec)
409 {
410 	struct timespec ts = ns_to_timespec(nsec);
411 	struct timeval tv;
412 
413 	tv.tv_sec = ts.tv_sec;
414 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
415 
416 	return tv;
417 }
418 EXPORT_SYMBOL(ns_to_timeval);
419 
420 #if BITS_PER_LONG == 32
421 /**
422  * set_normalized_timespec - set timespec sec and nsec parts and normalize
423  *
424  * @ts:		pointer to timespec variable to be set
425  * @sec:	seconds to set
426  * @nsec:	nanoseconds to set
427  *
428  * Set seconds and nanoseconds field of a timespec variable and
429  * normalize to the timespec storage format
430  *
431  * Note: The tv_nsec part is always in the range of
432  *	0 <= tv_nsec < NSEC_PER_SEC
433  * For negative values only the tv_sec field is negative !
434  */
435 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
436 {
437 	while (nsec >= NSEC_PER_SEC) {
438 		/*
439 		 * The following asm() prevents the compiler from
440 		 * optimising this loop into a modulo operation. See
441 		 * also __iter_div_u64_rem() in include/linux/time.h
442 		 */
443 		asm("" : "+rm"(nsec));
444 		nsec -= NSEC_PER_SEC;
445 		++sec;
446 	}
447 	while (nsec < 0) {
448 		asm("" : "+rm"(nsec));
449 		nsec += NSEC_PER_SEC;
450 		--sec;
451 	}
452 	ts->tv_sec = sec;
453 	ts->tv_nsec = nsec;
454 }
455 EXPORT_SYMBOL(set_normalized_timespec64);
456 
457 /**
458  * ns_to_timespec64 - Convert nanoseconds to timespec64
459  * @nsec:       the nanoseconds value to be converted
460  *
461  * Returns the timespec64 representation of the nsec parameter.
462  */
463 struct timespec64 ns_to_timespec64(const s64 nsec)
464 {
465 	struct timespec64 ts;
466 	s32 rem;
467 
468 	if (!nsec)
469 		return (struct timespec64) {0, 0};
470 
471 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
472 	if (unlikely(rem < 0)) {
473 		ts.tv_sec--;
474 		rem += NSEC_PER_SEC;
475 	}
476 	ts.tv_nsec = rem;
477 
478 	return ts;
479 }
480 EXPORT_SYMBOL(ns_to_timespec64);
481 #endif
482 /*
483  * When we convert to jiffies then we interpret incoming values
484  * the following way:
485  *
486  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
487  *
488  * - 'too large' values [that would result in larger than
489  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
490  *
491  * - all other values are converted to jiffies by either multiplying
492  *   the input value by a factor or dividing it with a factor
493  *
494  * We must also be careful about 32-bit overflows.
495  */
496 unsigned long msecs_to_jiffies(const unsigned int m)
497 {
498 	/*
499 	 * Negative value, means infinite timeout:
500 	 */
501 	if ((int)m < 0)
502 		return MAX_JIFFY_OFFSET;
503 
504 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
505 	/*
506 	 * HZ is equal to or smaller than 1000, and 1000 is a nice
507 	 * round multiple of HZ, divide with the factor between them,
508 	 * but round upwards:
509 	 */
510 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
511 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
512 	/*
513 	 * HZ is larger than 1000, and HZ is a nice round multiple of
514 	 * 1000 - simply multiply with the factor between them.
515 	 *
516 	 * But first make sure the multiplication result cannot
517 	 * overflow:
518 	 */
519 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
520 		return MAX_JIFFY_OFFSET;
521 
522 	return m * (HZ / MSEC_PER_SEC);
523 #else
524 	/*
525 	 * Generic case - multiply, round and divide. But first
526 	 * check that if we are doing a net multiplication, that
527 	 * we wouldn't overflow:
528 	 */
529 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
530 		return MAX_JIFFY_OFFSET;
531 
532 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
533 		>> MSEC_TO_HZ_SHR32;
534 #endif
535 }
536 EXPORT_SYMBOL(msecs_to_jiffies);
537 
538 unsigned long usecs_to_jiffies(const unsigned int u)
539 {
540 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
541 		return MAX_JIFFY_OFFSET;
542 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
543 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
544 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
545 	return u * (HZ / USEC_PER_SEC);
546 #else
547 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
548 		>> USEC_TO_HZ_SHR32;
549 #endif
550 }
551 EXPORT_SYMBOL(usecs_to_jiffies);
552 
553 /*
554  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
555  * that a remainder subtract here would not do the right thing as the
556  * resolution values don't fall on second boundries.  I.e. the line:
557  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
558  * Note that due to the small error in the multiplier here, this
559  * rounding is incorrect for sufficiently large values of tv_nsec, but
560  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
561  * OK.
562  *
563  * Rather, we just shift the bits off the right.
564  *
565  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
566  * value to a scaled second value.
567  */
568 static unsigned long
569 __timespec_to_jiffies(unsigned long sec, long nsec)
570 {
571 	nsec = nsec + TICK_NSEC - 1;
572 
573 	if (sec >= MAX_SEC_IN_JIFFIES){
574 		sec = MAX_SEC_IN_JIFFIES;
575 		nsec = 0;
576 	}
577 	return (((u64)sec * SEC_CONVERSION) +
578 		(((u64)nsec * NSEC_CONVERSION) >>
579 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
580 
581 }
582 
583 unsigned long
584 timespec_to_jiffies(const struct timespec *value)
585 {
586 	return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
587 }
588 
589 EXPORT_SYMBOL(timespec_to_jiffies);
590 
591 void
592 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
593 {
594 	/*
595 	 * Convert jiffies to nanoseconds and separate with
596 	 * one divide.
597 	 */
598 	u32 rem;
599 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
600 				    NSEC_PER_SEC, &rem);
601 	value->tv_nsec = rem;
602 }
603 EXPORT_SYMBOL(jiffies_to_timespec);
604 
605 /*
606  * We could use a similar algorithm to timespec_to_jiffies (with a
607  * different multiplier for usec instead of nsec). But this has a
608  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
609  * usec value, since it's not necessarily integral.
610  *
611  * We could instead round in the intermediate scaled representation
612  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
613  * perilous: the scaling introduces a small positive error, which
614  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
615  * units to the intermediate before shifting) leads to accidental
616  * overflow and overestimates.
617  *
618  * At the cost of one additional multiplication by a constant, just
619  * use the timespec implementation.
620  */
621 unsigned long
622 timeval_to_jiffies(const struct timeval *value)
623 {
624 	return __timespec_to_jiffies(value->tv_sec,
625 				     value->tv_usec * NSEC_PER_USEC);
626 }
627 EXPORT_SYMBOL(timeval_to_jiffies);
628 
629 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
630 {
631 	/*
632 	 * Convert jiffies to nanoseconds and separate with
633 	 * one divide.
634 	 */
635 	u32 rem;
636 
637 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
638 				    NSEC_PER_SEC, &rem);
639 	value->tv_usec = rem / NSEC_PER_USEC;
640 }
641 EXPORT_SYMBOL(jiffies_to_timeval);
642 
643 /*
644  * Convert jiffies/jiffies_64 to clock_t and back.
645  */
646 clock_t jiffies_to_clock_t(unsigned long x)
647 {
648 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
649 # if HZ < USER_HZ
650 	return x * (USER_HZ / HZ);
651 # else
652 	return x / (HZ / USER_HZ);
653 # endif
654 #else
655 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
656 #endif
657 }
658 EXPORT_SYMBOL(jiffies_to_clock_t);
659 
660 unsigned long clock_t_to_jiffies(unsigned long x)
661 {
662 #if (HZ % USER_HZ)==0
663 	if (x >= ~0UL / (HZ / USER_HZ))
664 		return ~0UL;
665 	return x * (HZ / USER_HZ);
666 #else
667 	/* Don't worry about loss of precision here .. */
668 	if (x >= ~0UL / HZ * USER_HZ)
669 		return ~0UL;
670 
671 	/* .. but do try to contain it here */
672 	return div_u64((u64)x * HZ, USER_HZ);
673 #endif
674 }
675 EXPORT_SYMBOL(clock_t_to_jiffies);
676 
677 u64 jiffies_64_to_clock_t(u64 x)
678 {
679 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
680 # if HZ < USER_HZ
681 	x = div_u64(x * USER_HZ, HZ);
682 # elif HZ > USER_HZ
683 	x = div_u64(x, HZ / USER_HZ);
684 # else
685 	/* Nothing to do */
686 # endif
687 #else
688 	/*
689 	 * There are better ways that don't overflow early,
690 	 * but even this doesn't overflow in hundreds of years
691 	 * in 64 bits, so..
692 	 */
693 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
694 #endif
695 	return x;
696 }
697 EXPORT_SYMBOL(jiffies_64_to_clock_t);
698 
699 u64 nsec_to_clock_t(u64 x)
700 {
701 #if (NSEC_PER_SEC % USER_HZ) == 0
702 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
703 #elif (USER_HZ % 512) == 0
704 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
705 #else
706 	/*
707          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
708          * overflow after 64.99 years.
709          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
710          */
711 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
712 #endif
713 }
714 
715 /**
716  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
717  *
718  * @n:	nsecs in u64
719  *
720  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
721  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
722  * for scheduler, not for use in device drivers to calculate timeout value.
723  *
724  * note:
725  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
726  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
727  */
728 u64 nsecs_to_jiffies64(u64 n)
729 {
730 #if (NSEC_PER_SEC % HZ) == 0
731 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
732 	return div_u64(n, NSEC_PER_SEC / HZ);
733 #elif (HZ % 512) == 0
734 	/* overflow after 292 years if HZ = 1024 */
735 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
736 #else
737 	/*
738 	 * Generic case - optimized for cases where HZ is a multiple of 3.
739 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
740 	 */
741 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
742 #endif
743 }
744 EXPORT_SYMBOL(nsecs_to_jiffies64);
745 
746 /**
747  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
748  *
749  * @n:	nsecs in u64
750  *
751  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
752  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
753  * for scheduler, not for use in device drivers to calculate timeout value.
754  *
755  * note:
756  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
757  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
758  */
759 unsigned long nsecs_to_jiffies(u64 n)
760 {
761 	return (unsigned long)nsecs_to_jiffies64(n);
762 }
763 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
764 
765 /*
766  * Add two timespec values and do a safety check for overflow.
767  * It's assumed that both values are valid (>= 0)
768  */
769 struct timespec timespec_add_safe(const struct timespec lhs,
770 				  const struct timespec rhs)
771 {
772 	struct timespec res;
773 
774 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
775 				lhs.tv_nsec + rhs.tv_nsec);
776 
777 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
778 		res.tv_sec = TIME_T_MAX;
779 
780 	return res;
781 }
782