1 /* 2 * linux/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * This file contains the interface functions for the various 7 * time related system calls: time, stime, gettimeofday, settimeofday, 8 * adjtime 9 */ 10 /* 11 * Modification history kernel/time.c 12 * 13 * 1993-09-02 Philip Gladstone 14 * Created file with time related functions from sched/core.c and adjtimex() 15 * 1993-10-08 Torsten Duwe 16 * adjtime interface update and CMOS clock write code 17 * 1995-08-13 Torsten Duwe 18 * kernel PLL updated to 1994-12-13 specs (rfc-1589) 19 * 1999-01-16 Ulrich Windl 20 * Introduced error checking for many cases in adjtimex(). 21 * Updated NTP code according to technical memorandum Jan '96 22 * "A Kernel Model for Precision Timekeeping" by Dave Mills 23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) 24 * (Even though the technical memorandum forbids it) 25 * 2004-07-14 Christoph Lameter 26 * Added getnstimeofday to allow the posix timer functions to return 27 * with nanosecond accuracy 28 */ 29 30 #include <linux/export.h> 31 #include <linux/timex.h> 32 #include <linux/capability.h> 33 #include <linux/timekeeper_internal.h> 34 #include <linux/errno.h> 35 #include <linux/syscalls.h> 36 #include <linux/security.h> 37 #include <linux/fs.h> 38 #include <linux/math64.h> 39 #include <linux/ptrace.h> 40 41 #include <asm/uaccess.h> 42 #include <asm/unistd.h> 43 44 #include <generated/timeconst.h> 45 #include "timekeeping.h" 46 47 /* 48 * The timezone where the local system is located. Used as a default by some 49 * programs who obtain this value by using gettimeofday. 50 */ 51 struct timezone sys_tz; 52 53 EXPORT_SYMBOL(sys_tz); 54 55 #ifdef __ARCH_WANT_SYS_TIME 56 57 /* 58 * sys_time() can be implemented in user-level using 59 * sys_gettimeofday(). Is this for backwards compatibility? If so, 60 * why not move it into the appropriate arch directory (for those 61 * architectures that need it). 62 */ 63 SYSCALL_DEFINE1(time, time_t __user *, tloc) 64 { 65 time_t i = get_seconds(); 66 67 if (tloc) { 68 if (put_user(i,tloc)) 69 return -EFAULT; 70 } 71 force_successful_syscall_return(); 72 return i; 73 } 74 75 /* 76 * sys_stime() can be implemented in user-level using 77 * sys_settimeofday(). Is this for backwards compatibility? If so, 78 * why not move it into the appropriate arch directory (for those 79 * architectures that need it). 80 */ 81 82 SYSCALL_DEFINE1(stime, time_t __user *, tptr) 83 { 84 struct timespec tv; 85 int err; 86 87 if (get_user(tv.tv_sec, tptr)) 88 return -EFAULT; 89 90 tv.tv_nsec = 0; 91 92 err = security_settime(&tv, NULL); 93 if (err) 94 return err; 95 96 do_settimeofday(&tv); 97 return 0; 98 } 99 100 #endif /* __ARCH_WANT_SYS_TIME */ 101 102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, 103 struct timezone __user *, tz) 104 { 105 if (likely(tv != NULL)) { 106 struct timeval ktv; 107 do_gettimeofday(&ktv); 108 if (copy_to_user(tv, &ktv, sizeof(ktv))) 109 return -EFAULT; 110 } 111 if (unlikely(tz != NULL)) { 112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 113 return -EFAULT; 114 } 115 return 0; 116 } 117 118 /* 119 * Indicates if there is an offset between the system clock and the hardware 120 * clock/persistent clock/rtc. 121 */ 122 int persistent_clock_is_local; 123 124 /* 125 * Adjust the time obtained from the CMOS to be UTC time instead of 126 * local time. 127 * 128 * This is ugly, but preferable to the alternatives. Otherwise we 129 * would either need to write a program to do it in /etc/rc (and risk 130 * confusion if the program gets run more than once; it would also be 131 * hard to make the program warp the clock precisely n hours) or 132 * compile in the timezone information into the kernel. Bad, bad.... 133 * 134 * - TYT, 1992-01-01 135 * 136 * The best thing to do is to keep the CMOS clock in universal time (UTC) 137 * as real UNIX machines always do it. This avoids all headaches about 138 * daylight saving times and warping kernel clocks. 139 */ 140 static inline void warp_clock(void) 141 { 142 if (sys_tz.tz_minuteswest != 0) { 143 struct timespec adjust; 144 145 persistent_clock_is_local = 1; 146 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 147 adjust.tv_nsec = 0; 148 timekeeping_inject_offset(&adjust); 149 } 150 } 151 152 /* 153 * In case for some reason the CMOS clock has not already been running 154 * in UTC, but in some local time: The first time we set the timezone, 155 * we will warp the clock so that it is ticking UTC time instead of 156 * local time. Presumably, if someone is setting the timezone then we 157 * are running in an environment where the programs understand about 158 * timezones. This should be done at boot time in the /etc/rc script, 159 * as soon as possible, so that the clock can be set right. Otherwise, 160 * various programs will get confused when the clock gets warped. 161 */ 162 163 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz) 164 { 165 static int firsttime = 1; 166 int error = 0; 167 168 if (tv && !timespec64_valid(tv)) 169 return -EINVAL; 170 171 error = security_settime64(tv, tz); 172 if (error) 173 return error; 174 175 if (tz) { 176 /* Verify we're witin the +-15 hrs range */ 177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60) 178 return -EINVAL; 179 180 sys_tz = *tz; 181 update_vsyscall_tz(); 182 if (firsttime) { 183 firsttime = 0; 184 if (!tv) 185 warp_clock(); 186 } 187 } 188 if (tv) 189 return do_settimeofday64(tv); 190 return 0; 191 } 192 193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, 194 struct timezone __user *, tz) 195 { 196 struct timeval user_tv; 197 struct timespec new_ts; 198 struct timezone new_tz; 199 200 if (tv) { 201 if (copy_from_user(&user_tv, tv, sizeof(*tv))) 202 return -EFAULT; 203 204 if (!timeval_valid(&user_tv)) 205 return -EINVAL; 206 207 new_ts.tv_sec = user_tv.tv_sec; 208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 209 } 210 if (tz) { 211 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 212 return -EFAULT; 213 } 214 215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 216 } 217 218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p) 219 { 220 struct timex txc; /* Local copy of parameter */ 221 int ret; 222 223 /* Copy the user data space into the kernel copy 224 * structure. But bear in mind that the structures 225 * may change 226 */ 227 if(copy_from_user(&txc, txc_p, sizeof(struct timex))) 228 return -EFAULT; 229 ret = do_adjtimex(&txc); 230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; 231 } 232 233 /** 234 * current_fs_time - Return FS time 235 * @sb: Superblock. 236 * 237 * Return the current time truncated to the time granularity supported by 238 * the fs. 239 */ 240 struct timespec current_fs_time(struct super_block *sb) 241 { 242 struct timespec now = current_kernel_time(); 243 return timespec_trunc(now, sb->s_time_gran); 244 } 245 EXPORT_SYMBOL(current_fs_time); 246 247 /* 248 * Convert jiffies to milliseconds and back. 249 * 250 * Avoid unnecessary multiplications/divisions in the 251 * two most common HZ cases: 252 */ 253 unsigned int jiffies_to_msecs(const unsigned long j) 254 { 255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 256 return (MSEC_PER_SEC / HZ) * j; 257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); 259 #else 260 # if BITS_PER_LONG == 32 261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; 262 # else 263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; 264 # endif 265 #endif 266 } 267 EXPORT_SYMBOL(jiffies_to_msecs); 268 269 unsigned int jiffies_to_usecs(const unsigned long j) 270 { 271 /* 272 * Hz usually doesn't go much further MSEC_PER_SEC. 273 * jiffies_to_usecs() and usecs_to_jiffies() depend on that. 274 */ 275 BUILD_BUG_ON(HZ > USEC_PER_SEC); 276 277 #if !(USEC_PER_SEC % HZ) 278 return (USEC_PER_SEC / HZ) * j; 279 #else 280 # if BITS_PER_LONG == 32 281 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; 282 # else 283 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; 284 # endif 285 #endif 286 } 287 EXPORT_SYMBOL(jiffies_to_usecs); 288 289 /** 290 * timespec_trunc - Truncate timespec to a granularity 291 * @t: Timespec 292 * @gran: Granularity in ns. 293 * 294 * Truncate a timespec to a granularity. Always rounds down. gran must 295 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 296 */ 297 struct timespec timespec_trunc(struct timespec t, unsigned gran) 298 { 299 /* Avoid division in the common cases 1 ns and 1 s. */ 300 if (gran == 1) { 301 /* nothing */ 302 } else if (gran == NSEC_PER_SEC) { 303 t.tv_nsec = 0; 304 } else if (gran > 1 && gran < NSEC_PER_SEC) { 305 t.tv_nsec -= t.tv_nsec % gran; 306 } else { 307 WARN(1, "illegal file time granularity: %u", gran); 308 } 309 return t; 310 } 311 EXPORT_SYMBOL(timespec_trunc); 312 313 /* 314 * mktime64 - Converts date to seconds. 315 * Converts Gregorian date to seconds since 1970-01-01 00:00:00. 316 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 317 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. 318 * 319 * [For the Julian calendar (which was used in Russia before 1917, 320 * Britain & colonies before 1752, anywhere else before 1582, 321 * and is still in use by some communities) leave out the 322 * -year/100+year/400 terms, and add 10.] 323 * 324 * This algorithm was first published by Gauss (I think). 325 * 326 * A leap second can be indicated by calling this function with sec as 327 * 60 (allowable under ISO 8601). The leap second is treated the same 328 * as the following second since they don't exist in UNIX time. 329 * 330 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight 331 * tomorrow - (allowable under ISO 8601) is supported. 332 */ 333 time64_t mktime64(const unsigned int year0, const unsigned int mon0, 334 const unsigned int day, const unsigned int hour, 335 const unsigned int min, const unsigned int sec) 336 { 337 unsigned int mon = mon0, year = year0; 338 339 /* 1..12 -> 11,12,1..10 */ 340 if (0 >= (int) (mon -= 2)) { 341 mon += 12; /* Puts Feb last since it has leap day */ 342 year -= 1; 343 } 344 345 return ((((time64_t) 346 (year/4 - year/100 + year/400 + 367*mon/12 + day) + 347 year*365 - 719499 348 )*24 + hour /* now have hours - midnight tomorrow handled here */ 349 )*60 + min /* now have minutes */ 350 )*60 + sec; /* finally seconds */ 351 } 352 EXPORT_SYMBOL(mktime64); 353 354 /** 355 * set_normalized_timespec - set timespec sec and nsec parts and normalize 356 * 357 * @ts: pointer to timespec variable to be set 358 * @sec: seconds to set 359 * @nsec: nanoseconds to set 360 * 361 * Set seconds and nanoseconds field of a timespec variable and 362 * normalize to the timespec storage format 363 * 364 * Note: The tv_nsec part is always in the range of 365 * 0 <= tv_nsec < NSEC_PER_SEC 366 * For negative values only the tv_sec field is negative ! 367 */ 368 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) 369 { 370 while (nsec >= NSEC_PER_SEC) { 371 /* 372 * The following asm() prevents the compiler from 373 * optimising this loop into a modulo operation. See 374 * also __iter_div_u64_rem() in include/linux/time.h 375 */ 376 asm("" : "+rm"(nsec)); 377 nsec -= NSEC_PER_SEC; 378 ++sec; 379 } 380 while (nsec < 0) { 381 asm("" : "+rm"(nsec)); 382 nsec += NSEC_PER_SEC; 383 --sec; 384 } 385 ts->tv_sec = sec; 386 ts->tv_nsec = nsec; 387 } 388 EXPORT_SYMBOL(set_normalized_timespec); 389 390 /** 391 * ns_to_timespec - Convert nanoseconds to timespec 392 * @nsec: the nanoseconds value to be converted 393 * 394 * Returns the timespec representation of the nsec parameter. 395 */ 396 struct timespec ns_to_timespec(const s64 nsec) 397 { 398 struct timespec ts; 399 s32 rem; 400 401 if (!nsec) 402 return (struct timespec) {0, 0}; 403 404 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 405 if (unlikely(rem < 0)) { 406 ts.tv_sec--; 407 rem += NSEC_PER_SEC; 408 } 409 ts.tv_nsec = rem; 410 411 return ts; 412 } 413 EXPORT_SYMBOL(ns_to_timespec); 414 415 /** 416 * ns_to_timeval - Convert nanoseconds to timeval 417 * @nsec: the nanoseconds value to be converted 418 * 419 * Returns the timeval representation of the nsec parameter. 420 */ 421 struct timeval ns_to_timeval(const s64 nsec) 422 { 423 struct timespec ts = ns_to_timespec(nsec); 424 struct timeval tv; 425 426 tv.tv_sec = ts.tv_sec; 427 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; 428 429 return tv; 430 } 431 EXPORT_SYMBOL(ns_to_timeval); 432 433 #if BITS_PER_LONG == 32 434 /** 435 * set_normalized_timespec - set timespec sec and nsec parts and normalize 436 * 437 * @ts: pointer to timespec variable to be set 438 * @sec: seconds to set 439 * @nsec: nanoseconds to set 440 * 441 * Set seconds and nanoseconds field of a timespec variable and 442 * normalize to the timespec storage format 443 * 444 * Note: The tv_nsec part is always in the range of 445 * 0 <= tv_nsec < NSEC_PER_SEC 446 * For negative values only the tv_sec field is negative ! 447 */ 448 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) 449 { 450 while (nsec >= NSEC_PER_SEC) { 451 /* 452 * The following asm() prevents the compiler from 453 * optimising this loop into a modulo operation. See 454 * also __iter_div_u64_rem() in include/linux/time.h 455 */ 456 asm("" : "+rm"(nsec)); 457 nsec -= NSEC_PER_SEC; 458 ++sec; 459 } 460 while (nsec < 0) { 461 asm("" : "+rm"(nsec)); 462 nsec += NSEC_PER_SEC; 463 --sec; 464 } 465 ts->tv_sec = sec; 466 ts->tv_nsec = nsec; 467 } 468 EXPORT_SYMBOL(set_normalized_timespec64); 469 470 /** 471 * ns_to_timespec64 - Convert nanoseconds to timespec64 472 * @nsec: the nanoseconds value to be converted 473 * 474 * Returns the timespec64 representation of the nsec parameter. 475 */ 476 struct timespec64 ns_to_timespec64(const s64 nsec) 477 { 478 struct timespec64 ts; 479 s32 rem; 480 481 if (!nsec) 482 return (struct timespec64) {0, 0}; 483 484 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 485 if (unlikely(rem < 0)) { 486 ts.tv_sec--; 487 rem += NSEC_PER_SEC; 488 } 489 ts.tv_nsec = rem; 490 491 return ts; 492 } 493 EXPORT_SYMBOL(ns_to_timespec64); 494 #endif 495 /** 496 * msecs_to_jiffies: - convert milliseconds to jiffies 497 * @m: time in milliseconds 498 * 499 * conversion is done as follows: 500 * 501 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 502 * 503 * - 'too large' values [that would result in larger than 504 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 505 * 506 * - all other values are converted to jiffies by either multiplying 507 * the input value by a factor or dividing it with a factor and 508 * handling any 32-bit overflows. 509 * for the details see __msecs_to_jiffies() 510 * 511 * msecs_to_jiffies() checks for the passed in value being a constant 512 * via __builtin_constant_p() allowing gcc to eliminate most of the 513 * code, __msecs_to_jiffies() is called if the value passed does not 514 * allow constant folding and the actual conversion must be done at 515 * runtime. 516 * the _msecs_to_jiffies helpers are the HZ dependent conversion 517 * routines found in include/linux/jiffies.h 518 */ 519 unsigned long __msecs_to_jiffies(const unsigned int m) 520 { 521 /* 522 * Negative value, means infinite timeout: 523 */ 524 if ((int)m < 0) 525 return MAX_JIFFY_OFFSET; 526 return _msecs_to_jiffies(m); 527 } 528 EXPORT_SYMBOL(__msecs_to_jiffies); 529 530 unsigned long __usecs_to_jiffies(const unsigned int u) 531 { 532 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 533 return MAX_JIFFY_OFFSET; 534 return _usecs_to_jiffies(u); 535 } 536 EXPORT_SYMBOL(__usecs_to_jiffies); 537 538 /* 539 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 540 * that a remainder subtract here would not do the right thing as the 541 * resolution values don't fall on second boundries. I.e. the line: 542 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 543 * Note that due to the small error in the multiplier here, this 544 * rounding is incorrect for sufficiently large values of tv_nsec, but 545 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're 546 * OK. 547 * 548 * Rather, we just shift the bits off the right. 549 * 550 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 551 * value to a scaled second value. 552 */ 553 static unsigned long 554 __timespec64_to_jiffies(u64 sec, long nsec) 555 { 556 nsec = nsec + TICK_NSEC - 1; 557 558 if (sec >= MAX_SEC_IN_JIFFIES){ 559 sec = MAX_SEC_IN_JIFFIES; 560 nsec = 0; 561 } 562 return ((sec * SEC_CONVERSION) + 563 (((u64)nsec * NSEC_CONVERSION) >> 564 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 565 566 } 567 568 static unsigned long 569 __timespec_to_jiffies(unsigned long sec, long nsec) 570 { 571 return __timespec64_to_jiffies((u64)sec, nsec); 572 } 573 574 unsigned long 575 timespec64_to_jiffies(const struct timespec64 *value) 576 { 577 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec); 578 } 579 EXPORT_SYMBOL(timespec64_to_jiffies); 580 581 void 582 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value) 583 { 584 /* 585 * Convert jiffies to nanoseconds and separate with 586 * one divide. 587 */ 588 u32 rem; 589 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 590 NSEC_PER_SEC, &rem); 591 value->tv_nsec = rem; 592 } 593 EXPORT_SYMBOL(jiffies_to_timespec64); 594 595 /* 596 * We could use a similar algorithm to timespec_to_jiffies (with a 597 * different multiplier for usec instead of nsec). But this has a 598 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the 599 * usec value, since it's not necessarily integral. 600 * 601 * We could instead round in the intermediate scaled representation 602 * (i.e. in units of 1/2^(large scale) jiffies) but that's also 603 * perilous: the scaling introduces a small positive error, which 604 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 605 * units to the intermediate before shifting) leads to accidental 606 * overflow and overestimates. 607 * 608 * At the cost of one additional multiplication by a constant, just 609 * use the timespec implementation. 610 */ 611 unsigned long 612 timeval_to_jiffies(const struct timeval *value) 613 { 614 return __timespec_to_jiffies(value->tv_sec, 615 value->tv_usec * NSEC_PER_USEC); 616 } 617 EXPORT_SYMBOL(timeval_to_jiffies); 618 619 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 620 { 621 /* 622 * Convert jiffies to nanoseconds and separate with 623 * one divide. 624 */ 625 u32 rem; 626 627 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 628 NSEC_PER_SEC, &rem); 629 value->tv_usec = rem / NSEC_PER_USEC; 630 } 631 EXPORT_SYMBOL(jiffies_to_timeval); 632 633 /* 634 * Convert jiffies/jiffies_64 to clock_t and back. 635 */ 636 clock_t jiffies_to_clock_t(unsigned long x) 637 { 638 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 639 # if HZ < USER_HZ 640 return x * (USER_HZ / HZ); 641 # else 642 return x / (HZ / USER_HZ); 643 # endif 644 #else 645 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); 646 #endif 647 } 648 EXPORT_SYMBOL(jiffies_to_clock_t); 649 650 unsigned long clock_t_to_jiffies(unsigned long x) 651 { 652 #if (HZ % USER_HZ)==0 653 if (x >= ~0UL / (HZ / USER_HZ)) 654 return ~0UL; 655 return x * (HZ / USER_HZ); 656 #else 657 /* Don't worry about loss of precision here .. */ 658 if (x >= ~0UL / HZ * USER_HZ) 659 return ~0UL; 660 661 /* .. but do try to contain it here */ 662 return div_u64((u64)x * HZ, USER_HZ); 663 #endif 664 } 665 EXPORT_SYMBOL(clock_t_to_jiffies); 666 667 u64 jiffies_64_to_clock_t(u64 x) 668 { 669 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 670 # if HZ < USER_HZ 671 x = div_u64(x * USER_HZ, HZ); 672 # elif HZ > USER_HZ 673 x = div_u64(x, HZ / USER_HZ); 674 # else 675 /* Nothing to do */ 676 # endif 677 #else 678 /* 679 * There are better ways that don't overflow early, 680 * but even this doesn't overflow in hundreds of years 681 * in 64 bits, so.. 682 */ 683 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); 684 #endif 685 return x; 686 } 687 EXPORT_SYMBOL(jiffies_64_to_clock_t); 688 689 u64 nsec_to_clock_t(u64 x) 690 { 691 #if (NSEC_PER_SEC % USER_HZ) == 0 692 return div_u64(x, NSEC_PER_SEC / USER_HZ); 693 #elif (USER_HZ % 512) == 0 694 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); 695 #else 696 /* 697 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 698 * overflow after 64.99 years. 699 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 700 */ 701 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); 702 #endif 703 } 704 705 /** 706 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 707 * 708 * @n: nsecs in u64 709 * 710 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 711 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 712 * for scheduler, not for use in device drivers to calculate timeout value. 713 * 714 * note: 715 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 716 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 717 */ 718 u64 nsecs_to_jiffies64(u64 n) 719 { 720 #if (NSEC_PER_SEC % HZ) == 0 721 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ 722 return div_u64(n, NSEC_PER_SEC / HZ); 723 #elif (HZ % 512) == 0 724 /* overflow after 292 years if HZ = 1024 */ 725 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); 726 #else 727 /* 728 * Generic case - optimized for cases where HZ is a multiple of 3. 729 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. 730 */ 731 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); 732 #endif 733 } 734 EXPORT_SYMBOL(nsecs_to_jiffies64); 735 736 /** 737 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies 738 * 739 * @n: nsecs in u64 740 * 741 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 742 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 743 * for scheduler, not for use in device drivers to calculate timeout value. 744 * 745 * note: 746 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 747 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 748 */ 749 unsigned long nsecs_to_jiffies(u64 n) 750 { 751 return (unsigned long)nsecs_to_jiffies64(n); 752 } 753 EXPORT_SYMBOL_GPL(nsecs_to_jiffies); 754 755 /* 756 * Add two timespec values and do a safety check for overflow. 757 * It's assumed that both values are valid (>= 0) 758 */ 759 struct timespec timespec_add_safe(const struct timespec lhs, 760 const struct timespec rhs) 761 { 762 struct timespec res; 763 764 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec, 765 lhs.tv_nsec + rhs.tv_nsec); 766 767 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec) 768 res.tv_sec = TIME_T_MAX; 769 770 return res; 771 } 772 773 /* 774 * Add two timespec64 values and do a safety check for overflow. 775 * It's assumed that both values are valid (>= 0). 776 * And, each timespec64 is in normalized form. 777 */ 778 struct timespec64 timespec64_add_safe(const struct timespec64 lhs, 779 const struct timespec64 rhs) 780 { 781 struct timespec64 res; 782 783 set_normalized_timespec64(&res, lhs.tv_sec + rhs.tv_sec, 784 lhs.tv_nsec + rhs.tv_nsec); 785 786 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) { 787 res.tv_sec = TIME64_MAX; 788 res.tv_nsec = 0; 789 } 790 791 return res; 792 } 793