xref: /openbmc/linux/kernel/time/time.c (revision 5e29a910)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include "timeconst.h"
45 #include "timekeeping.h"
46 
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52 
53 EXPORT_SYMBOL(sys_tz);
54 
55 #ifdef __ARCH_WANT_SYS_TIME
56 
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 	time_t i = get_seconds();
66 
67 	if (tloc) {
68 		if (put_user(i,tloc))
69 			return -EFAULT;
70 	}
71 	force_successful_syscall_return();
72 	return i;
73 }
74 
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81 
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 	struct timespec tv;
85 	int err;
86 
87 	if (get_user(tv.tv_sec, tptr))
88 		return -EFAULT;
89 
90 	tv.tv_nsec = 0;
91 
92 	err = security_settime(&tv, NULL);
93 	if (err)
94 		return err;
95 
96 	do_settimeofday(&tv);
97 	return 0;
98 }
99 
100 #endif /* __ARCH_WANT_SYS_TIME */
101 
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 		struct timezone __user *, tz)
104 {
105 	if (likely(tv != NULL)) {
106 		struct timeval ktv;
107 		do_gettimeofday(&ktv);
108 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 			return -EFAULT;
110 	}
111 	if (unlikely(tz != NULL)) {
112 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Indicates if there is an offset between the system clock and the hardware
120  * clock/persistent clock/rtc.
121  */
122 int persistent_clock_is_local;
123 
124 /*
125  * Adjust the time obtained from the CMOS to be UTC time instead of
126  * local time.
127  *
128  * This is ugly, but preferable to the alternatives.  Otherwise we
129  * would either need to write a program to do it in /etc/rc (and risk
130  * confusion if the program gets run more than once; it would also be
131  * hard to make the program warp the clock precisely n hours)  or
132  * compile in the timezone information into the kernel.  Bad, bad....
133  *
134  *						- TYT, 1992-01-01
135  *
136  * The best thing to do is to keep the CMOS clock in universal time (UTC)
137  * as real UNIX machines always do it. This avoids all headaches about
138  * daylight saving times and warping kernel clocks.
139  */
140 static inline void warp_clock(void)
141 {
142 	if (sys_tz.tz_minuteswest != 0) {
143 		struct timespec adjust;
144 
145 		persistent_clock_is_local = 1;
146 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 		adjust.tv_nsec = 0;
148 		timekeeping_inject_offset(&adjust);
149 	}
150 }
151 
152 /*
153  * In case for some reason the CMOS clock has not already been running
154  * in UTC, but in some local time: The first time we set the timezone,
155  * we will warp the clock so that it is ticking UTC time instead of
156  * local time. Presumably, if someone is setting the timezone then we
157  * are running in an environment where the programs understand about
158  * timezones. This should be done at boot time in the /etc/rc script,
159  * as soon as possible, so that the clock can be set right. Otherwise,
160  * various programs will get confused when the clock gets warped.
161  */
162 
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 	static int firsttime = 1;
166 	int error = 0;
167 
168 	if (tv && !timespec_valid(tv))
169 		return -EINVAL;
170 
171 	error = security_settime(tv, tz);
172 	if (error)
173 		return error;
174 
175 	if (tz) {
176 		sys_tz = *tz;
177 		update_vsyscall_tz();
178 		if (firsttime) {
179 			firsttime = 0;
180 			if (!tv)
181 				warp_clock();
182 		}
183 	}
184 	if (tv)
185 		return do_settimeofday(tv);
186 	return 0;
187 }
188 
189 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 		struct timezone __user *, tz)
191 {
192 	struct timeval user_tv;
193 	struct timespec	new_ts;
194 	struct timezone new_tz;
195 
196 	if (tv) {
197 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 			return -EFAULT;
199 
200 		if (!timeval_valid(&user_tv))
201 			return -EINVAL;
202 
203 		new_ts.tv_sec = user_tv.tv_sec;
204 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
205 	}
206 	if (tz) {
207 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
208 			return -EFAULT;
209 	}
210 
211 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
212 }
213 
214 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
215 {
216 	struct timex txc;		/* Local copy of parameter */
217 	int ret;
218 
219 	/* Copy the user data space into the kernel copy
220 	 * structure. But bear in mind that the structures
221 	 * may change
222 	 */
223 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
224 		return -EFAULT;
225 	ret = do_adjtimex(&txc);
226 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
227 }
228 
229 /**
230  * current_fs_time - Return FS time
231  * @sb: Superblock.
232  *
233  * Return the current time truncated to the time granularity supported by
234  * the fs.
235  */
236 struct timespec current_fs_time(struct super_block *sb)
237 {
238 	struct timespec now = current_kernel_time();
239 	return timespec_trunc(now, sb->s_time_gran);
240 }
241 EXPORT_SYMBOL(current_fs_time);
242 
243 /*
244  * Convert jiffies to milliseconds and back.
245  *
246  * Avoid unnecessary multiplications/divisions in the
247  * two most common HZ cases:
248  */
249 unsigned int jiffies_to_msecs(const unsigned long j)
250 {
251 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
252 	return (MSEC_PER_SEC / HZ) * j;
253 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
254 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
255 #else
256 # if BITS_PER_LONG == 32
257 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
258 # else
259 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
260 # endif
261 #endif
262 }
263 EXPORT_SYMBOL(jiffies_to_msecs);
264 
265 unsigned int jiffies_to_usecs(const unsigned long j)
266 {
267 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
268 	return (USEC_PER_SEC / HZ) * j;
269 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
270 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
271 #else
272 # if BITS_PER_LONG == 32
273 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
274 # else
275 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
276 # endif
277 #endif
278 }
279 EXPORT_SYMBOL(jiffies_to_usecs);
280 
281 /**
282  * timespec_trunc - Truncate timespec to a granularity
283  * @t: Timespec
284  * @gran: Granularity in ns.
285  *
286  * Truncate a timespec to a granularity. gran must be smaller than a second.
287  * Always rounds down.
288  *
289  * This function should be only used for timestamps returned by
290  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
291  * it doesn't handle the better resolution of the latter.
292  */
293 struct timespec timespec_trunc(struct timespec t, unsigned gran)
294 {
295 	/*
296 	 * Division is pretty slow so avoid it for common cases.
297 	 * Currently current_kernel_time() never returns better than
298 	 * jiffies resolution. Exploit that.
299 	 */
300 	if (gran <= jiffies_to_usecs(1) * 1000) {
301 		/* nothing */
302 	} else if (gran == 1000000000) {
303 		t.tv_nsec = 0;
304 	} else {
305 		t.tv_nsec -= t.tv_nsec % gran;
306 	}
307 	return t;
308 }
309 EXPORT_SYMBOL(timespec_trunc);
310 
311 /*
312  * mktime64 - Converts date to seconds.
313  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
314  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
315  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
316  *
317  * [For the Julian calendar (which was used in Russia before 1917,
318  * Britain & colonies before 1752, anywhere else before 1582,
319  * and is still in use by some communities) leave out the
320  * -year/100+year/400 terms, and add 10.]
321  *
322  * This algorithm was first published by Gauss (I think).
323  */
324 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
325 		const unsigned int day, const unsigned int hour,
326 		const unsigned int min, const unsigned int sec)
327 {
328 	unsigned int mon = mon0, year = year0;
329 
330 	/* 1..12 -> 11,12,1..10 */
331 	if (0 >= (int) (mon -= 2)) {
332 		mon += 12;	/* Puts Feb last since it has leap day */
333 		year -= 1;
334 	}
335 
336 	return ((((time64_t)
337 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
338 		  year*365 - 719499
339 	    )*24 + hour /* now have hours */
340 	  )*60 + min /* now have minutes */
341 	)*60 + sec; /* finally seconds */
342 }
343 EXPORT_SYMBOL(mktime64);
344 
345 /**
346  * set_normalized_timespec - set timespec sec and nsec parts and normalize
347  *
348  * @ts:		pointer to timespec variable to be set
349  * @sec:	seconds to set
350  * @nsec:	nanoseconds to set
351  *
352  * Set seconds and nanoseconds field of a timespec variable and
353  * normalize to the timespec storage format
354  *
355  * Note: The tv_nsec part is always in the range of
356  *	0 <= tv_nsec < NSEC_PER_SEC
357  * For negative values only the tv_sec field is negative !
358  */
359 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
360 {
361 	while (nsec >= NSEC_PER_SEC) {
362 		/*
363 		 * The following asm() prevents the compiler from
364 		 * optimising this loop into a modulo operation. See
365 		 * also __iter_div_u64_rem() in include/linux/time.h
366 		 */
367 		asm("" : "+rm"(nsec));
368 		nsec -= NSEC_PER_SEC;
369 		++sec;
370 	}
371 	while (nsec < 0) {
372 		asm("" : "+rm"(nsec));
373 		nsec += NSEC_PER_SEC;
374 		--sec;
375 	}
376 	ts->tv_sec = sec;
377 	ts->tv_nsec = nsec;
378 }
379 EXPORT_SYMBOL(set_normalized_timespec);
380 
381 /**
382  * ns_to_timespec - Convert nanoseconds to timespec
383  * @nsec:       the nanoseconds value to be converted
384  *
385  * Returns the timespec representation of the nsec parameter.
386  */
387 struct timespec ns_to_timespec(const s64 nsec)
388 {
389 	struct timespec ts;
390 	s32 rem;
391 
392 	if (!nsec)
393 		return (struct timespec) {0, 0};
394 
395 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
396 	if (unlikely(rem < 0)) {
397 		ts.tv_sec--;
398 		rem += NSEC_PER_SEC;
399 	}
400 	ts.tv_nsec = rem;
401 
402 	return ts;
403 }
404 EXPORT_SYMBOL(ns_to_timespec);
405 
406 /**
407  * ns_to_timeval - Convert nanoseconds to timeval
408  * @nsec:       the nanoseconds value to be converted
409  *
410  * Returns the timeval representation of the nsec parameter.
411  */
412 struct timeval ns_to_timeval(const s64 nsec)
413 {
414 	struct timespec ts = ns_to_timespec(nsec);
415 	struct timeval tv;
416 
417 	tv.tv_sec = ts.tv_sec;
418 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
419 
420 	return tv;
421 }
422 EXPORT_SYMBOL(ns_to_timeval);
423 
424 #if BITS_PER_LONG == 32
425 /**
426  * set_normalized_timespec - set timespec sec and nsec parts and normalize
427  *
428  * @ts:		pointer to timespec variable to be set
429  * @sec:	seconds to set
430  * @nsec:	nanoseconds to set
431  *
432  * Set seconds and nanoseconds field of a timespec variable and
433  * normalize to the timespec storage format
434  *
435  * Note: The tv_nsec part is always in the range of
436  *	0 <= tv_nsec < NSEC_PER_SEC
437  * For negative values only the tv_sec field is negative !
438  */
439 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
440 {
441 	while (nsec >= NSEC_PER_SEC) {
442 		/*
443 		 * The following asm() prevents the compiler from
444 		 * optimising this loop into a modulo operation. See
445 		 * also __iter_div_u64_rem() in include/linux/time.h
446 		 */
447 		asm("" : "+rm"(nsec));
448 		nsec -= NSEC_PER_SEC;
449 		++sec;
450 	}
451 	while (nsec < 0) {
452 		asm("" : "+rm"(nsec));
453 		nsec += NSEC_PER_SEC;
454 		--sec;
455 	}
456 	ts->tv_sec = sec;
457 	ts->tv_nsec = nsec;
458 }
459 EXPORT_SYMBOL(set_normalized_timespec64);
460 
461 /**
462  * ns_to_timespec64 - Convert nanoseconds to timespec64
463  * @nsec:       the nanoseconds value to be converted
464  *
465  * Returns the timespec64 representation of the nsec parameter.
466  */
467 struct timespec64 ns_to_timespec64(const s64 nsec)
468 {
469 	struct timespec64 ts;
470 	s32 rem;
471 
472 	if (!nsec)
473 		return (struct timespec64) {0, 0};
474 
475 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
476 	if (unlikely(rem < 0)) {
477 		ts.tv_sec--;
478 		rem += NSEC_PER_SEC;
479 	}
480 	ts.tv_nsec = rem;
481 
482 	return ts;
483 }
484 EXPORT_SYMBOL(ns_to_timespec64);
485 #endif
486 /*
487  * When we convert to jiffies then we interpret incoming values
488  * the following way:
489  *
490  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
491  *
492  * - 'too large' values [that would result in larger than
493  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
494  *
495  * - all other values are converted to jiffies by either multiplying
496  *   the input value by a factor or dividing it with a factor
497  *
498  * We must also be careful about 32-bit overflows.
499  */
500 unsigned long msecs_to_jiffies(const unsigned int m)
501 {
502 	/*
503 	 * Negative value, means infinite timeout:
504 	 */
505 	if ((int)m < 0)
506 		return MAX_JIFFY_OFFSET;
507 
508 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
509 	/*
510 	 * HZ is equal to or smaller than 1000, and 1000 is a nice
511 	 * round multiple of HZ, divide with the factor between them,
512 	 * but round upwards:
513 	 */
514 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
515 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
516 	/*
517 	 * HZ is larger than 1000, and HZ is a nice round multiple of
518 	 * 1000 - simply multiply with the factor between them.
519 	 *
520 	 * But first make sure the multiplication result cannot
521 	 * overflow:
522 	 */
523 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
524 		return MAX_JIFFY_OFFSET;
525 
526 	return m * (HZ / MSEC_PER_SEC);
527 #else
528 	/*
529 	 * Generic case - multiply, round and divide. But first
530 	 * check that if we are doing a net multiplication, that
531 	 * we wouldn't overflow:
532 	 */
533 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
534 		return MAX_JIFFY_OFFSET;
535 
536 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
537 		>> MSEC_TO_HZ_SHR32;
538 #endif
539 }
540 EXPORT_SYMBOL(msecs_to_jiffies);
541 
542 unsigned long usecs_to_jiffies(const unsigned int u)
543 {
544 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
545 		return MAX_JIFFY_OFFSET;
546 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
547 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
548 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
549 	return u * (HZ / USEC_PER_SEC);
550 #else
551 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
552 		>> USEC_TO_HZ_SHR32;
553 #endif
554 }
555 EXPORT_SYMBOL(usecs_to_jiffies);
556 
557 /*
558  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
559  * that a remainder subtract here would not do the right thing as the
560  * resolution values don't fall on second boundries.  I.e. the line:
561  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
562  * Note that due to the small error in the multiplier here, this
563  * rounding is incorrect for sufficiently large values of tv_nsec, but
564  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
565  * OK.
566  *
567  * Rather, we just shift the bits off the right.
568  *
569  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
570  * value to a scaled second value.
571  */
572 static unsigned long
573 __timespec_to_jiffies(unsigned long sec, long nsec)
574 {
575 	nsec = nsec + TICK_NSEC - 1;
576 
577 	if (sec >= MAX_SEC_IN_JIFFIES){
578 		sec = MAX_SEC_IN_JIFFIES;
579 		nsec = 0;
580 	}
581 	return (((u64)sec * SEC_CONVERSION) +
582 		(((u64)nsec * NSEC_CONVERSION) >>
583 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
584 
585 }
586 
587 unsigned long
588 timespec_to_jiffies(const struct timespec *value)
589 {
590 	return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
591 }
592 
593 EXPORT_SYMBOL(timespec_to_jiffies);
594 
595 void
596 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
597 {
598 	/*
599 	 * Convert jiffies to nanoseconds and separate with
600 	 * one divide.
601 	 */
602 	u32 rem;
603 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
604 				    NSEC_PER_SEC, &rem);
605 	value->tv_nsec = rem;
606 }
607 EXPORT_SYMBOL(jiffies_to_timespec);
608 
609 /*
610  * We could use a similar algorithm to timespec_to_jiffies (with a
611  * different multiplier for usec instead of nsec). But this has a
612  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
613  * usec value, since it's not necessarily integral.
614  *
615  * We could instead round in the intermediate scaled representation
616  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
617  * perilous: the scaling introduces a small positive error, which
618  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
619  * units to the intermediate before shifting) leads to accidental
620  * overflow and overestimates.
621  *
622  * At the cost of one additional multiplication by a constant, just
623  * use the timespec implementation.
624  */
625 unsigned long
626 timeval_to_jiffies(const struct timeval *value)
627 {
628 	return __timespec_to_jiffies(value->tv_sec,
629 				     value->tv_usec * NSEC_PER_USEC);
630 }
631 EXPORT_SYMBOL(timeval_to_jiffies);
632 
633 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
634 {
635 	/*
636 	 * Convert jiffies to nanoseconds and separate with
637 	 * one divide.
638 	 */
639 	u32 rem;
640 
641 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
642 				    NSEC_PER_SEC, &rem);
643 	value->tv_usec = rem / NSEC_PER_USEC;
644 }
645 EXPORT_SYMBOL(jiffies_to_timeval);
646 
647 /*
648  * Convert jiffies/jiffies_64 to clock_t and back.
649  */
650 clock_t jiffies_to_clock_t(unsigned long x)
651 {
652 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
653 # if HZ < USER_HZ
654 	return x * (USER_HZ / HZ);
655 # else
656 	return x / (HZ / USER_HZ);
657 # endif
658 #else
659 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
660 #endif
661 }
662 EXPORT_SYMBOL(jiffies_to_clock_t);
663 
664 unsigned long clock_t_to_jiffies(unsigned long x)
665 {
666 #if (HZ % USER_HZ)==0
667 	if (x >= ~0UL / (HZ / USER_HZ))
668 		return ~0UL;
669 	return x * (HZ / USER_HZ);
670 #else
671 	/* Don't worry about loss of precision here .. */
672 	if (x >= ~0UL / HZ * USER_HZ)
673 		return ~0UL;
674 
675 	/* .. but do try to contain it here */
676 	return div_u64((u64)x * HZ, USER_HZ);
677 #endif
678 }
679 EXPORT_SYMBOL(clock_t_to_jiffies);
680 
681 u64 jiffies_64_to_clock_t(u64 x)
682 {
683 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
684 # if HZ < USER_HZ
685 	x = div_u64(x * USER_HZ, HZ);
686 # elif HZ > USER_HZ
687 	x = div_u64(x, HZ / USER_HZ);
688 # else
689 	/* Nothing to do */
690 # endif
691 #else
692 	/*
693 	 * There are better ways that don't overflow early,
694 	 * but even this doesn't overflow in hundreds of years
695 	 * in 64 bits, so..
696 	 */
697 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
698 #endif
699 	return x;
700 }
701 EXPORT_SYMBOL(jiffies_64_to_clock_t);
702 
703 u64 nsec_to_clock_t(u64 x)
704 {
705 #if (NSEC_PER_SEC % USER_HZ) == 0
706 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
707 #elif (USER_HZ % 512) == 0
708 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
709 #else
710 	/*
711          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
712          * overflow after 64.99 years.
713          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
714          */
715 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
716 #endif
717 }
718 
719 /**
720  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
721  *
722  * @n:	nsecs in u64
723  *
724  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
725  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
726  * for scheduler, not for use in device drivers to calculate timeout value.
727  *
728  * note:
729  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
730  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
731  */
732 u64 nsecs_to_jiffies64(u64 n)
733 {
734 #if (NSEC_PER_SEC % HZ) == 0
735 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
736 	return div_u64(n, NSEC_PER_SEC / HZ);
737 #elif (HZ % 512) == 0
738 	/* overflow after 292 years if HZ = 1024 */
739 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
740 #else
741 	/*
742 	 * Generic case - optimized for cases where HZ is a multiple of 3.
743 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
744 	 */
745 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
746 #endif
747 }
748 EXPORT_SYMBOL(nsecs_to_jiffies64);
749 
750 /**
751  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
752  *
753  * @n:	nsecs in u64
754  *
755  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
756  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
757  * for scheduler, not for use in device drivers to calculate timeout value.
758  *
759  * note:
760  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
761  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
762  */
763 unsigned long nsecs_to_jiffies(u64 n)
764 {
765 	return (unsigned long)nsecs_to_jiffies64(n);
766 }
767 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
768 
769 /*
770  * Add two timespec values and do a safety check for overflow.
771  * It's assumed that both values are valid (>= 0)
772  */
773 struct timespec timespec_add_safe(const struct timespec lhs,
774 				  const struct timespec rhs)
775 {
776 	struct timespec res;
777 
778 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
779 				lhs.tv_nsec + rhs.tv_nsec);
780 
781 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
782 		res.tv_sec = TIME_T_MAX;
783 
784 	return res;
785 }
786