xref: /openbmc/linux/kernel/time/time.c (revision 565485b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *
5  *  This file contains the interface functions for the various time related
6  *  system calls: time, stime, gettimeofday, settimeofday, adjtime
7  *
8  * Modification history:
9  *
10  * 1993-09-02    Philip Gladstone
11  *      Created file with time related functions from sched/core.c and adjtimex()
12  * 1993-10-08    Torsten Duwe
13  *      adjtime interface update and CMOS clock write code
14  * 1995-08-13    Torsten Duwe
15  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
16  * 1999-01-16    Ulrich Windl
17  *	Introduced error checking for many cases in adjtimex().
18  *	Updated NTP code according to technical memorandum Jan '96
19  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
20  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21  *	(Even though the technical memorandum forbids it)
22  * 2004-07-14	 Christoph Lameter
23  *	Added getnstimeofday to allow the posix timer functions to return
24  *	with nanosecond accuracy
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/timex.h>
30 #include <linux/capability.h>
31 #include <linux/timekeeper_internal.h>
32 #include <linux/errno.h>
33 #include <linux/syscalls.h>
34 #include <linux/security.h>
35 #include <linux/fs.h>
36 #include <linux/math64.h>
37 #include <linux/ptrace.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/compat.h>
41 #include <asm/unistd.h>
42 
43 #include <generated/timeconst.h>
44 #include "timekeeping.h"
45 
46 /*
47  * The timezone where the local system is located.  Used as a default by some
48  * programs who obtain this value by using gettimeofday.
49  */
50 struct timezone sys_tz;
51 
52 EXPORT_SYMBOL(sys_tz);
53 
54 #ifdef __ARCH_WANT_SYS_TIME
55 
56 /*
57  * sys_time() can be implemented in user-level using
58  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
59  * why not move it into the appropriate arch directory (for those
60  * architectures that need it).
61  */
62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
63 {
64 	time_t i = (time_t)ktime_get_real_seconds();
65 
66 	if (tloc) {
67 		if (put_user(i,tloc))
68 			return -EFAULT;
69 	}
70 	force_successful_syscall_return();
71 	return i;
72 }
73 
74 /*
75  * sys_stime() can be implemented in user-level using
76  * sys_settimeofday().  Is this for backwards compatibility?  If so,
77  * why not move it into the appropriate arch directory (for those
78  * architectures that need it).
79  */
80 
81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82 {
83 	struct timespec64 tv;
84 	int err;
85 
86 	if (get_user(tv.tv_sec, tptr))
87 		return -EFAULT;
88 
89 	tv.tv_nsec = 0;
90 
91 	err = security_settime64(&tv, NULL);
92 	if (err)
93 		return err;
94 
95 	do_settimeofday64(&tv);
96 	return 0;
97 }
98 
99 #endif /* __ARCH_WANT_SYS_TIME */
100 
101 #ifdef CONFIG_COMPAT
102 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
103 
104 /* old_time32_t is a 32 bit "long" and needs to get converted. */
105 COMPAT_SYSCALL_DEFINE1(time, old_time32_t __user *, tloc)
106 {
107 	old_time32_t i;
108 
109 	i = (old_time32_t)ktime_get_real_seconds();
110 
111 	if (tloc) {
112 		if (put_user(i,tloc))
113 			return -EFAULT;
114 	}
115 	force_successful_syscall_return();
116 	return i;
117 }
118 
119 COMPAT_SYSCALL_DEFINE1(stime, old_time32_t __user *, tptr)
120 {
121 	struct timespec64 tv;
122 	int err;
123 
124 	if (get_user(tv.tv_sec, tptr))
125 		return -EFAULT;
126 
127 	tv.tv_nsec = 0;
128 
129 	err = security_settime64(&tv, NULL);
130 	if (err)
131 		return err;
132 
133 	do_settimeofday64(&tv);
134 	return 0;
135 }
136 
137 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
138 #endif
139 
140 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
141 		struct timezone __user *, tz)
142 {
143 	if (likely(tv != NULL)) {
144 		struct timespec64 ts;
145 
146 		ktime_get_real_ts64(&ts);
147 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149 			return -EFAULT;
150 	}
151 	if (unlikely(tz != NULL)) {
152 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 			return -EFAULT;
154 	}
155 	return 0;
156 }
157 
158 /*
159  * In case for some reason the CMOS clock has not already been running
160  * in UTC, but in some local time: The first time we set the timezone,
161  * we will warp the clock so that it is ticking UTC time instead of
162  * local time. Presumably, if someone is setting the timezone then we
163  * are running in an environment where the programs understand about
164  * timezones. This should be done at boot time in the /etc/rc script,
165  * as soon as possible, so that the clock can be set right. Otherwise,
166  * various programs will get confused when the clock gets warped.
167  */
168 
169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170 {
171 	static int firsttime = 1;
172 	int error = 0;
173 
174 	if (tv && !timespec64_valid(tv))
175 		return -EINVAL;
176 
177 	error = security_settime64(tv, tz);
178 	if (error)
179 		return error;
180 
181 	if (tz) {
182 		/* Verify we're witin the +-15 hrs range */
183 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 			return -EINVAL;
185 
186 		sys_tz = *tz;
187 		update_vsyscall_tz();
188 		if (firsttime) {
189 			firsttime = 0;
190 			if (!tv)
191 				timekeeping_warp_clock();
192 		}
193 	}
194 	if (tv)
195 		return do_settimeofday64(tv);
196 	return 0;
197 }
198 
199 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
200 		struct timezone __user *, tz)
201 {
202 	struct timespec64 new_ts;
203 	struct timeval user_tv;
204 	struct timezone new_tz;
205 
206 	if (tv) {
207 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
208 			return -EFAULT;
209 
210 		if (!timeval_valid(&user_tv))
211 			return -EINVAL;
212 
213 		new_ts.tv_sec = user_tv.tv_sec;
214 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
215 	}
216 	if (tz) {
217 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
218 			return -EFAULT;
219 	}
220 
221 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
222 }
223 
224 #ifdef CONFIG_COMPAT
225 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
226 		       struct timezone __user *, tz)
227 {
228 	if (tv) {
229 		struct timespec64 ts;
230 
231 		ktime_get_real_ts64(&ts);
232 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
233 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
234 			return -EFAULT;
235 	}
236 	if (tz) {
237 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 			return -EFAULT;
239 	}
240 
241 	return 0;
242 }
243 
244 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
245 		       struct timezone __user *, tz)
246 {
247 	struct timespec64 new_ts;
248 	struct timeval user_tv;
249 	struct timezone new_tz;
250 
251 	if (tv) {
252 		if (compat_get_timeval(&user_tv, tv))
253 			return -EFAULT;
254 		new_ts.tv_sec = user_tv.tv_sec;
255 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
256 	}
257 	if (tz) {
258 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
259 			return -EFAULT;
260 	}
261 
262 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
263 }
264 #endif
265 
266 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
267 {
268 	struct timex txc;		/* Local copy of parameter */
269 	int ret;
270 
271 	/* Copy the user data space into the kernel copy
272 	 * structure. But bear in mind that the structures
273 	 * may change
274 	 */
275 	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
276 		return -EFAULT;
277 	ret = do_adjtimex(&txc);
278 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
279 }
280 
281 #ifdef CONFIG_COMPAT
282 
283 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
284 {
285 	struct timex txc;
286 	int err, ret;
287 
288 	err = compat_get_timex(&txc, utp);
289 	if (err)
290 		return err;
291 
292 	ret = do_adjtimex(&txc);
293 
294 	err = compat_put_timex(utp, &txc);
295 	if (err)
296 		return err;
297 
298 	return ret;
299 }
300 #endif
301 
302 /*
303  * Convert jiffies to milliseconds and back.
304  *
305  * Avoid unnecessary multiplications/divisions in the
306  * two most common HZ cases:
307  */
308 unsigned int jiffies_to_msecs(const unsigned long j)
309 {
310 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
311 	return (MSEC_PER_SEC / HZ) * j;
312 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
313 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
314 #else
315 # if BITS_PER_LONG == 32
316 	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
317 	       HZ_TO_MSEC_SHR32;
318 # else
319 	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
320 # endif
321 #endif
322 }
323 EXPORT_SYMBOL(jiffies_to_msecs);
324 
325 unsigned int jiffies_to_usecs(const unsigned long j)
326 {
327 	/*
328 	 * Hz usually doesn't go much further MSEC_PER_SEC.
329 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
330 	 */
331 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
332 
333 #if !(USEC_PER_SEC % HZ)
334 	return (USEC_PER_SEC / HZ) * j;
335 #else
336 # if BITS_PER_LONG == 32
337 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338 # else
339 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
340 # endif
341 #endif
342 }
343 EXPORT_SYMBOL(jiffies_to_usecs);
344 
345 /*
346  * mktime64 - Converts date to seconds.
347  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
348  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
349  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
350  *
351  * [For the Julian calendar (which was used in Russia before 1917,
352  * Britain & colonies before 1752, anywhere else before 1582,
353  * and is still in use by some communities) leave out the
354  * -year/100+year/400 terms, and add 10.]
355  *
356  * This algorithm was first published by Gauss (I think).
357  *
358  * A leap second can be indicated by calling this function with sec as
359  * 60 (allowable under ISO 8601).  The leap second is treated the same
360  * as the following second since they don't exist in UNIX time.
361  *
362  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
363  * tomorrow - (allowable under ISO 8601) is supported.
364  */
365 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
366 		const unsigned int day, const unsigned int hour,
367 		const unsigned int min, const unsigned int sec)
368 {
369 	unsigned int mon = mon0, year = year0;
370 
371 	/* 1..12 -> 11,12,1..10 */
372 	if (0 >= (int) (mon -= 2)) {
373 		mon += 12;	/* Puts Feb last since it has leap day */
374 		year -= 1;
375 	}
376 
377 	return ((((time64_t)
378 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
379 		  year*365 - 719499
380 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
381 	  )*60 + min /* now have minutes */
382 	)*60 + sec; /* finally seconds */
383 }
384 EXPORT_SYMBOL(mktime64);
385 
386 /**
387  * ns_to_timespec - Convert nanoseconds to timespec
388  * @nsec:       the nanoseconds value to be converted
389  *
390  * Returns the timespec representation of the nsec parameter.
391  */
392 struct timespec ns_to_timespec(const s64 nsec)
393 {
394 	struct timespec ts;
395 	s32 rem;
396 
397 	if (!nsec)
398 		return (struct timespec) {0, 0};
399 
400 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
401 	if (unlikely(rem < 0)) {
402 		ts.tv_sec--;
403 		rem += NSEC_PER_SEC;
404 	}
405 	ts.tv_nsec = rem;
406 
407 	return ts;
408 }
409 EXPORT_SYMBOL(ns_to_timespec);
410 
411 /**
412  * ns_to_timeval - Convert nanoseconds to timeval
413  * @nsec:       the nanoseconds value to be converted
414  *
415  * Returns the timeval representation of the nsec parameter.
416  */
417 struct timeval ns_to_timeval(const s64 nsec)
418 {
419 	struct timespec ts = ns_to_timespec(nsec);
420 	struct timeval tv;
421 
422 	tv.tv_sec = ts.tv_sec;
423 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
424 
425 	return tv;
426 }
427 EXPORT_SYMBOL(ns_to_timeval);
428 
429 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
430 {
431 	struct timespec64 ts = ns_to_timespec64(nsec);
432 	struct __kernel_old_timeval tv;
433 
434 	tv.tv_sec = ts.tv_sec;
435 	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
436 
437 	return tv;
438 }
439 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
440 
441 /**
442  * set_normalized_timespec - set timespec sec and nsec parts and normalize
443  *
444  * @ts:		pointer to timespec variable to be set
445  * @sec:	seconds to set
446  * @nsec:	nanoseconds to set
447  *
448  * Set seconds and nanoseconds field of a timespec variable and
449  * normalize to the timespec storage format
450  *
451  * Note: The tv_nsec part is always in the range of
452  *	0 <= tv_nsec < NSEC_PER_SEC
453  * For negative values only the tv_sec field is negative !
454  */
455 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
456 {
457 	while (nsec >= NSEC_PER_SEC) {
458 		/*
459 		 * The following asm() prevents the compiler from
460 		 * optimising this loop into a modulo operation. See
461 		 * also __iter_div_u64_rem() in include/linux/time.h
462 		 */
463 		asm("" : "+rm"(nsec));
464 		nsec -= NSEC_PER_SEC;
465 		++sec;
466 	}
467 	while (nsec < 0) {
468 		asm("" : "+rm"(nsec));
469 		nsec += NSEC_PER_SEC;
470 		--sec;
471 	}
472 	ts->tv_sec = sec;
473 	ts->tv_nsec = nsec;
474 }
475 EXPORT_SYMBOL(set_normalized_timespec64);
476 
477 /**
478  * ns_to_timespec64 - Convert nanoseconds to timespec64
479  * @nsec:       the nanoseconds value to be converted
480  *
481  * Returns the timespec64 representation of the nsec parameter.
482  */
483 struct timespec64 ns_to_timespec64(const s64 nsec)
484 {
485 	struct timespec64 ts;
486 	s32 rem;
487 
488 	if (!nsec)
489 		return (struct timespec64) {0, 0};
490 
491 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
492 	if (unlikely(rem < 0)) {
493 		ts.tv_sec--;
494 		rem += NSEC_PER_SEC;
495 	}
496 	ts.tv_nsec = rem;
497 
498 	return ts;
499 }
500 EXPORT_SYMBOL(ns_to_timespec64);
501 
502 /**
503  * msecs_to_jiffies: - convert milliseconds to jiffies
504  * @m:	time in milliseconds
505  *
506  * conversion is done as follows:
507  *
508  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
509  *
510  * - 'too large' values [that would result in larger than
511  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
512  *
513  * - all other values are converted to jiffies by either multiplying
514  *   the input value by a factor or dividing it with a factor and
515  *   handling any 32-bit overflows.
516  *   for the details see __msecs_to_jiffies()
517  *
518  * msecs_to_jiffies() checks for the passed in value being a constant
519  * via __builtin_constant_p() allowing gcc to eliminate most of the
520  * code, __msecs_to_jiffies() is called if the value passed does not
521  * allow constant folding and the actual conversion must be done at
522  * runtime.
523  * the _msecs_to_jiffies helpers are the HZ dependent conversion
524  * routines found in include/linux/jiffies.h
525  */
526 unsigned long __msecs_to_jiffies(const unsigned int m)
527 {
528 	/*
529 	 * Negative value, means infinite timeout:
530 	 */
531 	if ((int)m < 0)
532 		return MAX_JIFFY_OFFSET;
533 	return _msecs_to_jiffies(m);
534 }
535 EXPORT_SYMBOL(__msecs_to_jiffies);
536 
537 unsigned long __usecs_to_jiffies(const unsigned int u)
538 {
539 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
540 		return MAX_JIFFY_OFFSET;
541 	return _usecs_to_jiffies(u);
542 }
543 EXPORT_SYMBOL(__usecs_to_jiffies);
544 
545 /*
546  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
547  * that a remainder subtract here would not do the right thing as the
548  * resolution values don't fall on second boundries.  I.e. the line:
549  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
550  * Note that due to the small error in the multiplier here, this
551  * rounding is incorrect for sufficiently large values of tv_nsec, but
552  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
553  * OK.
554  *
555  * Rather, we just shift the bits off the right.
556  *
557  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
558  * value to a scaled second value.
559  */
560 static unsigned long
561 __timespec64_to_jiffies(u64 sec, long nsec)
562 {
563 	nsec = nsec + TICK_NSEC - 1;
564 
565 	if (sec >= MAX_SEC_IN_JIFFIES){
566 		sec = MAX_SEC_IN_JIFFIES;
567 		nsec = 0;
568 	}
569 	return ((sec * SEC_CONVERSION) +
570 		(((u64)nsec * NSEC_CONVERSION) >>
571 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
572 
573 }
574 
575 static unsigned long
576 __timespec_to_jiffies(unsigned long sec, long nsec)
577 {
578 	return __timespec64_to_jiffies((u64)sec, nsec);
579 }
580 
581 unsigned long
582 timespec64_to_jiffies(const struct timespec64 *value)
583 {
584 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
585 }
586 EXPORT_SYMBOL(timespec64_to_jiffies);
587 
588 void
589 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
590 {
591 	/*
592 	 * Convert jiffies to nanoseconds and separate with
593 	 * one divide.
594 	 */
595 	u32 rem;
596 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
597 				    NSEC_PER_SEC, &rem);
598 	value->tv_nsec = rem;
599 }
600 EXPORT_SYMBOL(jiffies_to_timespec64);
601 
602 /*
603  * We could use a similar algorithm to timespec_to_jiffies (with a
604  * different multiplier for usec instead of nsec). But this has a
605  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
606  * usec value, since it's not necessarily integral.
607  *
608  * We could instead round in the intermediate scaled representation
609  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
610  * perilous: the scaling introduces a small positive error, which
611  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
612  * units to the intermediate before shifting) leads to accidental
613  * overflow and overestimates.
614  *
615  * At the cost of one additional multiplication by a constant, just
616  * use the timespec implementation.
617  */
618 unsigned long
619 timeval_to_jiffies(const struct timeval *value)
620 {
621 	return __timespec_to_jiffies(value->tv_sec,
622 				     value->tv_usec * NSEC_PER_USEC);
623 }
624 EXPORT_SYMBOL(timeval_to_jiffies);
625 
626 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
627 {
628 	/*
629 	 * Convert jiffies to nanoseconds and separate with
630 	 * one divide.
631 	 */
632 	u32 rem;
633 
634 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
635 				    NSEC_PER_SEC, &rem);
636 	value->tv_usec = rem / NSEC_PER_USEC;
637 }
638 EXPORT_SYMBOL(jiffies_to_timeval);
639 
640 /*
641  * Convert jiffies/jiffies_64 to clock_t and back.
642  */
643 clock_t jiffies_to_clock_t(unsigned long x)
644 {
645 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
646 # if HZ < USER_HZ
647 	return x * (USER_HZ / HZ);
648 # else
649 	return x / (HZ / USER_HZ);
650 # endif
651 #else
652 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
653 #endif
654 }
655 EXPORT_SYMBOL(jiffies_to_clock_t);
656 
657 unsigned long clock_t_to_jiffies(unsigned long x)
658 {
659 #if (HZ % USER_HZ)==0
660 	if (x >= ~0UL / (HZ / USER_HZ))
661 		return ~0UL;
662 	return x * (HZ / USER_HZ);
663 #else
664 	/* Don't worry about loss of precision here .. */
665 	if (x >= ~0UL / HZ * USER_HZ)
666 		return ~0UL;
667 
668 	/* .. but do try to contain it here */
669 	return div_u64((u64)x * HZ, USER_HZ);
670 #endif
671 }
672 EXPORT_SYMBOL(clock_t_to_jiffies);
673 
674 u64 jiffies_64_to_clock_t(u64 x)
675 {
676 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
677 # if HZ < USER_HZ
678 	x = div_u64(x * USER_HZ, HZ);
679 # elif HZ > USER_HZ
680 	x = div_u64(x, HZ / USER_HZ);
681 # else
682 	/* Nothing to do */
683 # endif
684 #else
685 	/*
686 	 * There are better ways that don't overflow early,
687 	 * but even this doesn't overflow in hundreds of years
688 	 * in 64 bits, so..
689 	 */
690 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
691 #endif
692 	return x;
693 }
694 EXPORT_SYMBOL(jiffies_64_to_clock_t);
695 
696 u64 nsec_to_clock_t(u64 x)
697 {
698 #if (NSEC_PER_SEC % USER_HZ) == 0
699 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
700 #elif (USER_HZ % 512) == 0
701 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
702 #else
703 	/*
704          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
705          * overflow after 64.99 years.
706          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
707          */
708 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
709 #endif
710 }
711 
712 u64 jiffies64_to_nsecs(u64 j)
713 {
714 #if !(NSEC_PER_SEC % HZ)
715 	return (NSEC_PER_SEC / HZ) * j;
716 # else
717 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
718 #endif
719 }
720 EXPORT_SYMBOL(jiffies64_to_nsecs);
721 
722 /**
723  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
724  *
725  * @n:	nsecs in u64
726  *
727  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
728  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
729  * for scheduler, not for use in device drivers to calculate timeout value.
730  *
731  * note:
732  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
733  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
734  */
735 u64 nsecs_to_jiffies64(u64 n)
736 {
737 #if (NSEC_PER_SEC % HZ) == 0
738 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
739 	return div_u64(n, NSEC_PER_SEC / HZ);
740 #elif (HZ % 512) == 0
741 	/* overflow after 292 years if HZ = 1024 */
742 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
743 #else
744 	/*
745 	 * Generic case - optimized for cases where HZ is a multiple of 3.
746 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
747 	 */
748 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
749 #endif
750 }
751 EXPORT_SYMBOL(nsecs_to_jiffies64);
752 
753 /**
754  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
755  *
756  * @n:	nsecs in u64
757  *
758  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
759  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
760  * for scheduler, not for use in device drivers to calculate timeout value.
761  *
762  * note:
763  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
764  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
765  */
766 unsigned long nsecs_to_jiffies(u64 n)
767 {
768 	return (unsigned long)nsecs_to_jiffies64(n);
769 }
770 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
771 
772 /*
773  * Add two timespec64 values and do a safety check for overflow.
774  * It's assumed that both values are valid (>= 0).
775  * And, each timespec64 is in normalized form.
776  */
777 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
778 				const struct timespec64 rhs)
779 {
780 	struct timespec64 res;
781 
782 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
783 			lhs.tv_nsec + rhs.tv_nsec);
784 
785 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
786 		res.tv_sec = TIME64_MAX;
787 		res.tv_nsec = 0;
788 	}
789 
790 	return res;
791 }
792 
793 int get_timespec64(struct timespec64 *ts,
794 		   const struct __kernel_timespec __user *uts)
795 {
796 	struct __kernel_timespec kts;
797 	int ret;
798 
799 	ret = copy_from_user(&kts, uts, sizeof(kts));
800 	if (ret)
801 		return -EFAULT;
802 
803 	ts->tv_sec = kts.tv_sec;
804 
805 	/* Zero out the padding for 32 bit systems or in compat mode */
806 	if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall())
807 		kts.tv_nsec &= 0xFFFFFFFFUL;
808 
809 	ts->tv_nsec = kts.tv_nsec;
810 
811 	return 0;
812 }
813 EXPORT_SYMBOL_GPL(get_timespec64);
814 
815 int put_timespec64(const struct timespec64 *ts,
816 		   struct __kernel_timespec __user *uts)
817 {
818 	struct __kernel_timespec kts = {
819 		.tv_sec = ts->tv_sec,
820 		.tv_nsec = ts->tv_nsec
821 	};
822 
823 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
824 }
825 EXPORT_SYMBOL_GPL(put_timespec64);
826 
827 static int __get_old_timespec32(struct timespec64 *ts64,
828 				   const struct old_timespec32 __user *cts)
829 {
830 	struct old_timespec32 ts;
831 	int ret;
832 
833 	ret = copy_from_user(&ts, cts, sizeof(ts));
834 	if (ret)
835 		return -EFAULT;
836 
837 	ts64->tv_sec = ts.tv_sec;
838 	ts64->tv_nsec = ts.tv_nsec;
839 
840 	return 0;
841 }
842 
843 static int __put_old_timespec32(const struct timespec64 *ts64,
844 				   struct old_timespec32 __user *cts)
845 {
846 	struct old_timespec32 ts = {
847 		.tv_sec = ts64->tv_sec,
848 		.tv_nsec = ts64->tv_nsec
849 	};
850 	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
851 }
852 
853 int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
854 {
855 	if (COMPAT_USE_64BIT_TIME)
856 		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
857 	else
858 		return __get_old_timespec32(ts, uts);
859 }
860 EXPORT_SYMBOL_GPL(get_old_timespec32);
861 
862 int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
863 {
864 	if (COMPAT_USE_64BIT_TIME)
865 		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
866 	else
867 		return __put_old_timespec32(ts, uts);
868 }
869 EXPORT_SYMBOL_GPL(put_old_timespec32);
870 
871 int get_itimerspec64(struct itimerspec64 *it,
872 			const struct __kernel_itimerspec __user *uit)
873 {
874 	int ret;
875 
876 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
877 	if (ret)
878 		return ret;
879 
880 	ret = get_timespec64(&it->it_value, &uit->it_value);
881 
882 	return ret;
883 }
884 EXPORT_SYMBOL_GPL(get_itimerspec64);
885 
886 int put_itimerspec64(const struct itimerspec64 *it,
887 			struct __kernel_itimerspec __user *uit)
888 {
889 	int ret;
890 
891 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
892 	if (ret)
893 		return ret;
894 
895 	ret = put_timespec64(&it->it_value, &uit->it_value);
896 
897 	return ret;
898 }
899 EXPORT_SYMBOL_GPL(put_itimerspec64);
900 
901 int get_old_itimerspec32(struct itimerspec64 *its,
902 			const struct old_itimerspec32 __user *uits)
903 {
904 
905 	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
906 	    __get_old_timespec32(&its->it_value, &uits->it_value))
907 		return -EFAULT;
908 	return 0;
909 }
910 EXPORT_SYMBOL_GPL(get_old_itimerspec32);
911 
912 int put_old_itimerspec32(const struct itimerspec64 *its,
913 			struct old_itimerspec32 __user *uits)
914 {
915 	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
916 	    __put_old_timespec32(&its->it_value, &uits->it_value))
917 		return -EFAULT;
918 	return 0;
919 }
920 EXPORT_SYMBOL_GPL(put_old_itimerspec32);
921