1 /* 2 * linux/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * This file contains the interface functions for the various 7 * time related system calls: time, stime, gettimeofday, settimeofday, 8 * adjtime 9 */ 10 /* 11 * Modification history kernel/time.c 12 * 13 * 1993-09-02 Philip Gladstone 14 * Created file with time related functions from sched/core.c and adjtimex() 15 * 1993-10-08 Torsten Duwe 16 * adjtime interface update and CMOS clock write code 17 * 1995-08-13 Torsten Duwe 18 * kernel PLL updated to 1994-12-13 specs (rfc-1589) 19 * 1999-01-16 Ulrich Windl 20 * Introduced error checking for many cases in adjtimex(). 21 * Updated NTP code according to technical memorandum Jan '96 22 * "A Kernel Model for Precision Timekeeping" by Dave Mills 23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) 24 * (Even though the technical memorandum forbids it) 25 * 2004-07-14 Christoph Lameter 26 * Added getnstimeofday to allow the posix timer functions to return 27 * with nanosecond accuracy 28 */ 29 30 #include <linux/export.h> 31 #include <linux/timex.h> 32 #include <linux/capability.h> 33 #include <linux/timekeeper_internal.h> 34 #include <linux/errno.h> 35 #include <linux/syscalls.h> 36 #include <linux/security.h> 37 #include <linux/fs.h> 38 #include <linux/math64.h> 39 #include <linux/ptrace.h> 40 41 #include <linux/uaccess.h> 42 #include <linux/compat.h> 43 #include <asm/unistd.h> 44 45 #include <generated/timeconst.h> 46 #include "timekeeping.h" 47 48 /* 49 * The timezone where the local system is located. Used as a default by some 50 * programs who obtain this value by using gettimeofday. 51 */ 52 struct timezone sys_tz; 53 54 EXPORT_SYMBOL(sys_tz); 55 56 #ifdef __ARCH_WANT_SYS_TIME 57 58 /* 59 * sys_time() can be implemented in user-level using 60 * sys_gettimeofday(). Is this for backwards compatibility? If so, 61 * why not move it into the appropriate arch directory (for those 62 * architectures that need it). 63 */ 64 SYSCALL_DEFINE1(time, time_t __user *, tloc) 65 { 66 time_t i = get_seconds(); 67 68 if (tloc) { 69 if (put_user(i,tloc)) 70 return -EFAULT; 71 } 72 force_successful_syscall_return(); 73 return i; 74 } 75 76 /* 77 * sys_stime() can be implemented in user-level using 78 * sys_settimeofday(). Is this for backwards compatibility? If so, 79 * why not move it into the appropriate arch directory (for those 80 * architectures that need it). 81 */ 82 83 SYSCALL_DEFINE1(stime, time_t __user *, tptr) 84 { 85 struct timespec tv; 86 int err; 87 88 if (get_user(tv.tv_sec, tptr)) 89 return -EFAULT; 90 91 tv.tv_nsec = 0; 92 93 err = security_settime(&tv, NULL); 94 if (err) 95 return err; 96 97 do_settimeofday(&tv); 98 return 0; 99 } 100 101 #endif /* __ARCH_WANT_SYS_TIME */ 102 103 #ifdef CONFIG_COMPAT 104 #ifdef __ARCH_WANT_COMPAT_SYS_TIME 105 106 /* compat_time_t is a 32 bit "long" and needs to get converted. */ 107 COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc) 108 { 109 struct timeval tv; 110 compat_time_t i; 111 112 do_gettimeofday(&tv); 113 i = tv.tv_sec; 114 115 if (tloc) { 116 if (put_user(i,tloc)) 117 return -EFAULT; 118 } 119 force_successful_syscall_return(); 120 return i; 121 } 122 123 COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr) 124 { 125 struct timespec tv; 126 int err; 127 128 if (get_user(tv.tv_sec, tptr)) 129 return -EFAULT; 130 131 tv.tv_nsec = 0; 132 133 err = security_settime(&tv, NULL); 134 if (err) 135 return err; 136 137 do_settimeofday(&tv); 138 return 0; 139 } 140 141 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */ 142 #endif 143 144 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, 145 struct timezone __user *, tz) 146 { 147 if (likely(tv != NULL)) { 148 struct timeval ktv; 149 do_gettimeofday(&ktv); 150 if (copy_to_user(tv, &ktv, sizeof(ktv))) 151 return -EFAULT; 152 } 153 if (unlikely(tz != NULL)) { 154 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 155 return -EFAULT; 156 } 157 return 0; 158 } 159 160 /* 161 * Indicates if there is an offset between the system clock and the hardware 162 * clock/persistent clock/rtc. 163 */ 164 int persistent_clock_is_local; 165 166 /* 167 * Adjust the time obtained from the CMOS to be UTC time instead of 168 * local time. 169 * 170 * This is ugly, but preferable to the alternatives. Otherwise we 171 * would either need to write a program to do it in /etc/rc (and risk 172 * confusion if the program gets run more than once; it would also be 173 * hard to make the program warp the clock precisely n hours) or 174 * compile in the timezone information into the kernel. Bad, bad.... 175 * 176 * - TYT, 1992-01-01 177 * 178 * The best thing to do is to keep the CMOS clock in universal time (UTC) 179 * as real UNIX machines always do it. This avoids all headaches about 180 * daylight saving times and warping kernel clocks. 181 */ 182 static inline void warp_clock(void) 183 { 184 if (sys_tz.tz_minuteswest != 0) { 185 struct timespec adjust; 186 187 persistent_clock_is_local = 1; 188 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 189 adjust.tv_nsec = 0; 190 timekeeping_inject_offset(&adjust); 191 } 192 } 193 194 /* 195 * In case for some reason the CMOS clock has not already been running 196 * in UTC, but in some local time: The first time we set the timezone, 197 * we will warp the clock so that it is ticking UTC time instead of 198 * local time. Presumably, if someone is setting the timezone then we 199 * are running in an environment where the programs understand about 200 * timezones. This should be done at boot time in the /etc/rc script, 201 * as soon as possible, so that the clock can be set right. Otherwise, 202 * various programs will get confused when the clock gets warped. 203 */ 204 205 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz) 206 { 207 static int firsttime = 1; 208 int error = 0; 209 210 if (tv && !timespec64_valid(tv)) 211 return -EINVAL; 212 213 error = security_settime64(tv, tz); 214 if (error) 215 return error; 216 217 if (tz) { 218 /* Verify we're witin the +-15 hrs range */ 219 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60) 220 return -EINVAL; 221 222 sys_tz = *tz; 223 update_vsyscall_tz(); 224 if (firsttime) { 225 firsttime = 0; 226 if (!tv) 227 warp_clock(); 228 } 229 } 230 if (tv) 231 return do_settimeofday64(tv); 232 return 0; 233 } 234 235 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, 236 struct timezone __user *, tz) 237 { 238 struct timespec64 new_ts; 239 struct timeval user_tv; 240 struct timezone new_tz; 241 242 if (tv) { 243 if (copy_from_user(&user_tv, tv, sizeof(*tv))) 244 return -EFAULT; 245 246 if (!timeval_valid(&user_tv)) 247 return -EINVAL; 248 249 new_ts.tv_sec = user_tv.tv_sec; 250 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 251 } 252 if (tz) { 253 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 254 return -EFAULT; 255 } 256 257 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 258 } 259 260 #ifdef CONFIG_COMPAT 261 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv, 262 struct timezone __user *, tz) 263 { 264 if (tv) { 265 struct timeval ktv; 266 267 do_gettimeofday(&ktv); 268 if (compat_put_timeval(&ktv, tv)) 269 return -EFAULT; 270 } 271 if (tz) { 272 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 273 return -EFAULT; 274 } 275 276 return 0; 277 } 278 279 COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv, 280 struct timezone __user *, tz) 281 { 282 struct timespec64 new_ts; 283 struct timeval user_tv; 284 struct timezone new_tz; 285 286 if (tv) { 287 if (compat_get_timeval(&user_tv, tv)) 288 return -EFAULT; 289 new_ts.tv_sec = user_tv.tv_sec; 290 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 291 } 292 if (tz) { 293 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 294 return -EFAULT; 295 } 296 297 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 298 } 299 #endif 300 301 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p) 302 { 303 struct timex txc; /* Local copy of parameter */ 304 int ret; 305 306 /* Copy the user data space into the kernel copy 307 * structure. But bear in mind that the structures 308 * may change 309 */ 310 if (copy_from_user(&txc, txc_p, sizeof(struct timex))) 311 return -EFAULT; 312 ret = do_adjtimex(&txc); 313 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; 314 } 315 316 #ifdef CONFIG_COMPAT 317 318 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp) 319 { 320 struct timex txc; 321 int err, ret; 322 323 err = compat_get_timex(&txc, utp); 324 if (err) 325 return err; 326 327 ret = do_adjtimex(&txc); 328 329 err = compat_put_timex(utp, &txc); 330 if (err) 331 return err; 332 333 return ret; 334 } 335 #endif 336 337 /* 338 * Convert jiffies to milliseconds and back. 339 * 340 * Avoid unnecessary multiplications/divisions in the 341 * two most common HZ cases: 342 */ 343 unsigned int jiffies_to_msecs(const unsigned long j) 344 { 345 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 346 return (MSEC_PER_SEC / HZ) * j; 347 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 348 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); 349 #else 350 # if BITS_PER_LONG == 32 351 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; 352 # else 353 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; 354 # endif 355 #endif 356 } 357 EXPORT_SYMBOL(jiffies_to_msecs); 358 359 unsigned int jiffies_to_usecs(const unsigned long j) 360 { 361 /* 362 * Hz usually doesn't go much further MSEC_PER_SEC. 363 * jiffies_to_usecs() and usecs_to_jiffies() depend on that. 364 */ 365 BUILD_BUG_ON(HZ > USEC_PER_SEC); 366 367 #if !(USEC_PER_SEC % HZ) 368 return (USEC_PER_SEC / HZ) * j; 369 #else 370 # if BITS_PER_LONG == 32 371 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; 372 # else 373 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; 374 # endif 375 #endif 376 } 377 EXPORT_SYMBOL(jiffies_to_usecs); 378 379 /** 380 * timespec_trunc - Truncate timespec to a granularity 381 * @t: Timespec 382 * @gran: Granularity in ns. 383 * 384 * Truncate a timespec to a granularity. Always rounds down. gran must 385 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 386 */ 387 struct timespec timespec_trunc(struct timespec t, unsigned gran) 388 { 389 /* Avoid division in the common cases 1 ns and 1 s. */ 390 if (gran == 1) { 391 /* nothing */ 392 } else if (gran == NSEC_PER_SEC) { 393 t.tv_nsec = 0; 394 } else if (gran > 1 && gran < NSEC_PER_SEC) { 395 t.tv_nsec -= t.tv_nsec % gran; 396 } else { 397 WARN(1, "illegal file time granularity: %u", gran); 398 } 399 return t; 400 } 401 EXPORT_SYMBOL(timespec_trunc); 402 403 /* 404 * mktime64 - Converts date to seconds. 405 * Converts Gregorian date to seconds since 1970-01-01 00:00:00. 406 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 407 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. 408 * 409 * [For the Julian calendar (which was used in Russia before 1917, 410 * Britain & colonies before 1752, anywhere else before 1582, 411 * and is still in use by some communities) leave out the 412 * -year/100+year/400 terms, and add 10.] 413 * 414 * This algorithm was first published by Gauss (I think). 415 * 416 * A leap second can be indicated by calling this function with sec as 417 * 60 (allowable under ISO 8601). The leap second is treated the same 418 * as the following second since they don't exist in UNIX time. 419 * 420 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight 421 * tomorrow - (allowable under ISO 8601) is supported. 422 */ 423 time64_t mktime64(const unsigned int year0, const unsigned int mon0, 424 const unsigned int day, const unsigned int hour, 425 const unsigned int min, const unsigned int sec) 426 { 427 unsigned int mon = mon0, year = year0; 428 429 /* 1..12 -> 11,12,1..10 */ 430 if (0 >= (int) (mon -= 2)) { 431 mon += 12; /* Puts Feb last since it has leap day */ 432 year -= 1; 433 } 434 435 return ((((time64_t) 436 (year/4 - year/100 + year/400 + 367*mon/12 + day) + 437 year*365 - 719499 438 )*24 + hour /* now have hours - midnight tomorrow handled here */ 439 )*60 + min /* now have minutes */ 440 )*60 + sec; /* finally seconds */ 441 } 442 EXPORT_SYMBOL(mktime64); 443 444 /** 445 * set_normalized_timespec - set timespec sec and nsec parts and normalize 446 * 447 * @ts: pointer to timespec variable to be set 448 * @sec: seconds to set 449 * @nsec: nanoseconds to set 450 * 451 * Set seconds and nanoseconds field of a timespec variable and 452 * normalize to the timespec storage format 453 * 454 * Note: The tv_nsec part is always in the range of 455 * 0 <= tv_nsec < NSEC_PER_SEC 456 * For negative values only the tv_sec field is negative ! 457 */ 458 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) 459 { 460 while (nsec >= NSEC_PER_SEC) { 461 /* 462 * The following asm() prevents the compiler from 463 * optimising this loop into a modulo operation. See 464 * also __iter_div_u64_rem() in include/linux/time.h 465 */ 466 asm("" : "+rm"(nsec)); 467 nsec -= NSEC_PER_SEC; 468 ++sec; 469 } 470 while (nsec < 0) { 471 asm("" : "+rm"(nsec)); 472 nsec += NSEC_PER_SEC; 473 --sec; 474 } 475 ts->tv_sec = sec; 476 ts->tv_nsec = nsec; 477 } 478 EXPORT_SYMBOL(set_normalized_timespec); 479 480 /** 481 * ns_to_timespec - Convert nanoseconds to timespec 482 * @nsec: the nanoseconds value to be converted 483 * 484 * Returns the timespec representation of the nsec parameter. 485 */ 486 struct timespec ns_to_timespec(const s64 nsec) 487 { 488 struct timespec ts; 489 s32 rem; 490 491 if (!nsec) 492 return (struct timespec) {0, 0}; 493 494 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 495 if (unlikely(rem < 0)) { 496 ts.tv_sec--; 497 rem += NSEC_PER_SEC; 498 } 499 ts.tv_nsec = rem; 500 501 return ts; 502 } 503 EXPORT_SYMBOL(ns_to_timespec); 504 505 /** 506 * ns_to_timeval - Convert nanoseconds to timeval 507 * @nsec: the nanoseconds value to be converted 508 * 509 * Returns the timeval representation of the nsec parameter. 510 */ 511 struct timeval ns_to_timeval(const s64 nsec) 512 { 513 struct timespec ts = ns_to_timespec(nsec); 514 struct timeval tv; 515 516 tv.tv_sec = ts.tv_sec; 517 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; 518 519 return tv; 520 } 521 EXPORT_SYMBOL(ns_to_timeval); 522 523 #if BITS_PER_LONG == 32 524 /** 525 * set_normalized_timespec - set timespec sec and nsec parts and normalize 526 * 527 * @ts: pointer to timespec variable to be set 528 * @sec: seconds to set 529 * @nsec: nanoseconds to set 530 * 531 * Set seconds and nanoseconds field of a timespec variable and 532 * normalize to the timespec storage format 533 * 534 * Note: The tv_nsec part is always in the range of 535 * 0 <= tv_nsec < NSEC_PER_SEC 536 * For negative values only the tv_sec field is negative ! 537 */ 538 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) 539 { 540 while (nsec >= NSEC_PER_SEC) { 541 /* 542 * The following asm() prevents the compiler from 543 * optimising this loop into a modulo operation. See 544 * also __iter_div_u64_rem() in include/linux/time.h 545 */ 546 asm("" : "+rm"(nsec)); 547 nsec -= NSEC_PER_SEC; 548 ++sec; 549 } 550 while (nsec < 0) { 551 asm("" : "+rm"(nsec)); 552 nsec += NSEC_PER_SEC; 553 --sec; 554 } 555 ts->tv_sec = sec; 556 ts->tv_nsec = nsec; 557 } 558 EXPORT_SYMBOL(set_normalized_timespec64); 559 560 /** 561 * ns_to_timespec64 - Convert nanoseconds to timespec64 562 * @nsec: the nanoseconds value to be converted 563 * 564 * Returns the timespec64 representation of the nsec parameter. 565 */ 566 struct timespec64 ns_to_timespec64(const s64 nsec) 567 { 568 struct timespec64 ts; 569 s32 rem; 570 571 if (!nsec) 572 return (struct timespec64) {0, 0}; 573 574 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 575 if (unlikely(rem < 0)) { 576 ts.tv_sec--; 577 rem += NSEC_PER_SEC; 578 } 579 ts.tv_nsec = rem; 580 581 return ts; 582 } 583 EXPORT_SYMBOL(ns_to_timespec64); 584 #endif 585 /** 586 * msecs_to_jiffies: - convert milliseconds to jiffies 587 * @m: time in milliseconds 588 * 589 * conversion is done as follows: 590 * 591 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 592 * 593 * - 'too large' values [that would result in larger than 594 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 595 * 596 * - all other values are converted to jiffies by either multiplying 597 * the input value by a factor or dividing it with a factor and 598 * handling any 32-bit overflows. 599 * for the details see __msecs_to_jiffies() 600 * 601 * msecs_to_jiffies() checks for the passed in value being a constant 602 * via __builtin_constant_p() allowing gcc to eliminate most of the 603 * code, __msecs_to_jiffies() is called if the value passed does not 604 * allow constant folding and the actual conversion must be done at 605 * runtime. 606 * the _msecs_to_jiffies helpers are the HZ dependent conversion 607 * routines found in include/linux/jiffies.h 608 */ 609 unsigned long __msecs_to_jiffies(const unsigned int m) 610 { 611 /* 612 * Negative value, means infinite timeout: 613 */ 614 if ((int)m < 0) 615 return MAX_JIFFY_OFFSET; 616 return _msecs_to_jiffies(m); 617 } 618 EXPORT_SYMBOL(__msecs_to_jiffies); 619 620 unsigned long __usecs_to_jiffies(const unsigned int u) 621 { 622 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 623 return MAX_JIFFY_OFFSET; 624 return _usecs_to_jiffies(u); 625 } 626 EXPORT_SYMBOL(__usecs_to_jiffies); 627 628 /* 629 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 630 * that a remainder subtract here would not do the right thing as the 631 * resolution values don't fall on second boundries. I.e. the line: 632 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 633 * Note that due to the small error in the multiplier here, this 634 * rounding is incorrect for sufficiently large values of tv_nsec, but 635 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're 636 * OK. 637 * 638 * Rather, we just shift the bits off the right. 639 * 640 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 641 * value to a scaled second value. 642 */ 643 static unsigned long 644 __timespec64_to_jiffies(u64 sec, long nsec) 645 { 646 nsec = nsec + TICK_NSEC - 1; 647 648 if (sec >= MAX_SEC_IN_JIFFIES){ 649 sec = MAX_SEC_IN_JIFFIES; 650 nsec = 0; 651 } 652 return ((sec * SEC_CONVERSION) + 653 (((u64)nsec * NSEC_CONVERSION) >> 654 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 655 656 } 657 658 static unsigned long 659 __timespec_to_jiffies(unsigned long sec, long nsec) 660 { 661 return __timespec64_to_jiffies((u64)sec, nsec); 662 } 663 664 unsigned long 665 timespec64_to_jiffies(const struct timespec64 *value) 666 { 667 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec); 668 } 669 EXPORT_SYMBOL(timespec64_to_jiffies); 670 671 void 672 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value) 673 { 674 /* 675 * Convert jiffies to nanoseconds and separate with 676 * one divide. 677 */ 678 u32 rem; 679 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 680 NSEC_PER_SEC, &rem); 681 value->tv_nsec = rem; 682 } 683 EXPORT_SYMBOL(jiffies_to_timespec64); 684 685 /* 686 * We could use a similar algorithm to timespec_to_jiffies (with a 687 * different multiplier for usec instead of nsec). But this has a 688 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the 689 * usec value, since it's not necessarily integral. 690 * 691 * We could instead round in the intermediate scaled representation 692 * (i.e. in units of 1/2^(large scale) jiffies) but that's also 693 * perilous: the scaling introduces a small positive error, which 694 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 695 * units to the intermediate before shifting) leads to accidental 696 * overflow and overestimates. 697 * 698 * At the cost of one additional multiplication by a constant, just 699 * use the timespec implementation. 700 */ 701 unsigned long 702 timeval_to_jiffies(const struct timeval *value) 703 { 704 return __timespec_to_jiffies(value->tv_sec, 705 value->tv_usec * NSEC_PER_USEC); 706 } 707 EXPORT_SYMBOL(timeval_to_jiffies); 708 709 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 710 { 711 /* 712 * Convert jiffies to nanoseconds and separate with 713 * one divide. 714 */ 715 u32 rem; 716 717 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 718 NSEC_PER_SEC, &rem); 719 value->tv_usec = rem / NSEC_PER_USEC; 720 } 721 EXPORT_SYMBOL(jiffies_to_timeval); 722 723 /* 724 * Convert jiffies/jiffies_64 to clock_t and back. 725 */ 726 clock_t jiffies_to_clock_t(unsigned long x) 727 { 728 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 729 # if HZ < USER_HZ 730 return x * (USER_HZ / HZ); 731 # else 732 return x / (HZ / USER_HZ); 733 # endif 734 #else 735 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); 736 #endif 737 } 738 EXPORT_SYMBOL(jiffies_to_clock_t); 739 740 unsigned long clock_t_to_jiffies(unsigned long x) 741 { 742 #if (HZ % USER_HZ)==0 743 if (x >= ~0UL / (HZ / USER_HZ)) 744 return ~0UL; 745 return x * (HZ / USER_HZ); 746 #else 747 /* Don't worry about loss of precision here .. */ 748 if (x >= ~0UL / HZ * USER_HZ) 749 return ~0UL; 750 751 /* .. but do try to contain it here */ 752 return div_u64((u64)x * HZ, USER_HZ); 753 #endif 754 } 755 EXPORT_SYMBOL(clock_t_to_jiffies); 756 757 u64 jiffies_64_to_clock_t(u64 x) 758 { 759 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 760 # if HZ < USER_HZ 761 x = div_u64(x * USER_HZ, HZ); 762 # elif HZ > USER_HZ 763 x = div_u64(x, HZ / USER_HZ); 764 # else 765 /* Nothing to do */ 766 # endif 767 #else 768 /* 769 * There are better ways that don't overflow early, 770 * but even this doesn't overflow in hundreds of years 771 * in 64 bits, so.. 772 */ 773 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); 774 #endif 775 return x; 776 } 777 EXPORT_SYMBOL(jiffies_64_to_clock_t); 778 779 u64 nsec_to_clock_t(u64 x) 780 { 781 #if (NSEC_PER_SEC % USER_HZ) == 0 782 return div_u64(x, NSEC_PER_SEC / USER_HZ); 783 #elif (USER_HZ % 512) == 0 784 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); 785 #else 786 /* 787 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 788 * overflow after 64.99 years. 789 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 790 */ 791 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); 792 #endif 793 } 794 795 u64 jiffies64_to_nsecs(u64 j) 796 { 797 #if !(NSEC_PER_SEC % HZ) 798 return (NSEC_PER_SEC / HZ) * j; 799 # else 800 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN); 801 #endif 802 } 803 EXPORT_SYMBOL(jiffies64_to_nsecs); 804 805 /** 806 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 807 * 808 * @n: nsecs in u64 809 * 810 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 811 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 812 * for scheduler, not for use in device drivers to calculate timeout value. 813 * 814 * note: 815 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 816 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 817 */ 818 u64 nsecs_to_jiffies64(u64 n) 819 { 820 #if (NSEC_PER_SEC % HZ) == 0 821 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ 822 return div_u64(n, NSEC_PER_SEC / HZ); 823 #elif (HZ % 512) == 0 824 /* overflow after 292 years if HZ = 1024 */ 825 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); 826 #else 827 /* 828 * Generic case - optimized for cases where HZ is a multiple of 3. 829 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. 830 */ 831 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); 832 #endif 833 } 834 EXPORT_SYMBOL(nsecs_to_jiffies64); 835 836 /** 837 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies 838 * 839 * @n: nsecs in u64 840 * 841 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 842 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 843 * for scheduler, not for use in device drivers to calculate timeout value. 844 * 845 * note: 846 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 847 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 848 */ 849 unsigned long nsecs_to_jiffies(u64 n) 850 { 851 return (unsigned long)nsecs_to_jiffies64(n); 852 } 853 EXPORT_SYMBOL_GPL(nsecs_to_jiffies); 854 855 /* 856 * Add two timespec values and do a safety check for overflow. 857 * It's assumed that both values are valid (>= 0) 858 */ 859 struct timespec timespec_add_safe(const struct timespec lhs, 860 const struct timespec rhs) 861 { 862 struct timespec res; 863 864 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec, 865 lhs.tv_nsec + rhs.tv_nsec); 866 867 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec) 868 res.tv_sec = TIME_T_MAX; 869 870 return res; 871 } 872 873 /* 874 * Add two timespec64 values and do a safety check for overflow. 875 * It's assumed that both values are valid (>= 0). 876 * And, each timespec64 is in normalized form. 877 */ 878 struct timespec64 timespec64_add_safe(const struct timespec64 lhs, 879 const struct timespec64 rhs) 880 { 881 struct timespec64 res; 882 883 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec, 884 lhs.tv_nsec + rhs.tv_nsec); 885 886 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) { 887 res.tv_sec = TIME64_MAX; 888 res.tv_nsec = 0; 889 } 890 891 return res; 892 } 893 894 int get_timespec64(struct timespec64 *ts, 895 const struct timespec __user *uts) 896 { 897 struct timespec kts; 898 int ret; 899 900 ret = copy_from_user(&kts, uts, sizeof(kts)); 901 if (ret) 902 return -EFAULT; 903 904 ts->tv_sec = kts.tv_sec; 905 ts->tv_nsec = kts.tv_nsec; 906 907 return 0; 908 } 909 EXPORT_SYMBOL_GPL(get_timespec64); 910 911 int put_timespec64(const struct timespec64 *ts, 912 struct timespec __user *uts) 913 { 914 struct timespec kts = { 915 .tv_sec = ts->tv_sec, 916 .tv_nsec = ts->tv_nsec 917 }; 918 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0; 919 } 920 EXPORT_SYMBOL_GPL(put_timespec64); 921 922 int get_itimerspec64(struct itimerspec64 *it, 923 const struct itimerspec __user *uit) 924 { 925 int ret; 926 927 ret = get_timespec64(&it->it_interval, &uit->it_interval); 928 if (ret) 929 return ret; 930 931 ret = get_timespec64(&it->it_value, &uit->it_value); 932 933 return ret; 934 } 935 EXPORT_SYMBOL_GPL(get_itimerspec64); 936 937 int put_itimerspec64(const struct itimerspec64 *it, 938 struct itimerspec __user *uit) 939 { 940 int ret; 941 942 ret = put_timespec64(&it->it_interval, &uit->it_interval); 943 if (ret) 944 return ret; 945 946 ret = put_timespec64(&it->it_value, &uit->it_value); 947 948 return ret; 949 } 950 EXPORT_SYMBOL_GPL(put_itimerspec64); 951