xref: /openbmc/linux/kernel/time/time.c (revision 4cff79e9)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <linux/uaccess.h>
42 #include <linux/compat.h>
43 #include <asm/unistd.h>
44 
45 #include <generated/timeconst.h>
46 #include "timekeeping.h"
47 
48 /*
49  * The timezone where the local system is located.  Used as a default by some
50  * programs who obtain this value by using gettimeofday.
51  */
52 struct timezone sys_tz;
53 
54 EXPORT_SYMBOL(sys_tz);
55 
56 #ifdef __ARCH_WANT_SYS_TIME
57 
58 /*
59  * sys_time() can be implemented in user-level using
60  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
61  * why not move it into the appropriate arch directory (for those
62  * architectures that need it).
63  */
64 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 {
66 	time_t i = get_seconds();
67 
68 	if (tloc) {
69 		if (put_user(i,tloc))
70 			return -EFAULT;
71 	}
72 	force_successful_syscall_return();
73 	return i;
74 }
75 
76 /*
77  * sys_stime() can be implemented in user-level using
78  * sys_settimeofday().  Is this for backwards compatibility?  If so,
79  * why not move it into the appropriate arch directory (for those
80  * architectures that need it).
81  */
82 
83 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
84 {
85 	struct timespec64 tv;
86 	int err;
87 
88 	if (get_user(tv.tv_sec, tptr))
89 		return -EFAULT;
90 
91 	tv.tv_nsec = 0;
92 
93 	err = security_settime64(&tv, NULL);
94 	if (err)
95 		return err;
96 
97 	do_settimeofday64(&tv);
98 	return 0;
99 }
100 
101 #endif /* __ARCH_WANT_SYS_TIME */
102 
103 #ifdef CONFIG_COMPAT
104 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
105 
106 /* compat_time_t is a 32 bit "long" and needs to get converted. */
107 COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
108 {
109 	struct timeval tv;
110 	compat_time_t i;
111 
112 	do_gettimeofday(&tv);
113 	i = tv.tv_sec;
114 
115 	if (tloc) {
116 		if (put_user(i,tloc))
117 			return -EFAULT;
118 	}
119 	force_successful_syscall_return();
120 	return i;
121 }
122 
123 COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
124 {
125 	struct timespec64 tv;
126 	int err;
127 
128 	if (get_user(tv.tv_sec, tptr))
129 		return -EFAULT;
130 
131 	tv.tv_nsec = 0;
132 
133 	err = security_settime64(&tv, NULL);
134 	if (err)
135 		return err;
136 
137 	do_settimeofday64(&tv);
138 	return 0;
139 }
140 
141 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
142 #endif
143 
144 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
145 		struct timezone __user *, tz)
146 {
147 	if (likely(tv != NULL)) {
148 		struct timeval ktv;
149 		do_gettimeofday(&ktv);
150 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
151 			return -EFAULT;
152 	}
153 	if (unlikely(tz != NULL)) {
154 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
155 			return -EFAULT;
156 	}
157 	return 0;
158 }
159 
160 /*
161  * In case for some reason the CMOS clock has not already been running
162  * in UTC, but in some local time: The first time we set the timezone,
163  * we will warp the clock so that it is ticking UTC time instead of
164  * local time. Presumably, if someone is setting the timezone then we
165  * are running in an environment where the programs understand about
166  * timezones. This should be done at boot time in the /etc/rc script,
167  * as soon as possible, so that the clock can be set right. Otherwise,
168  * various programs will get confused when the clock gets warped.
169  */
170 
171 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
172 {
173 	static int firsttime = 1;
174 	int error = 0;
175 
176 	if (tv && !timespec64_valid(tv))
177 		return -EINVAL;
178 
179 	error = security_settime64(tv, tz);
180 	if (error)
181 		return error;
182 
183 	if (tz) {
184 		/* Verify we're witin the +-15 hrs range */
185 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
186 			return -EINVAL;
187 
188 		sys_tz = *tz;
189 		update_vsyscall_tz();
190 		if (firsttime) {
191 			firsttime = 0;
192 			if (!tv)
193 				timekeeping_warp_clock();
194 		}
195 	}
196 	if (tv)
197 		return do_settimeofday64(tv);
198 	return 0;
199 }
200 
201 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
202 		struct timezone __user *, tz)
203 {
204 	struct timespec64 new_ts;
205 	struct timeval user_tv;
206 	struct timezone new_tz;
207 
208 	if (tv) {
209 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
210 			return -EFAULT;
211 
212 		if (!timeval_valid(&user_tv))
213 			return -EINVAL;
214 
215 		new_ts.tv_sec = user_tv.tv_sec;
216 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
217 	}
218 	if (tz) {
219 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
220 			return -EFAULT;
221 	}
222 
223 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
224 }
225 
226 #ifdef CONFIG_COMPAT
227 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
228 		       struct timezone __user *, tz)
229 {
230 	if (tv) {
231 		struct timeval ktv;
232 
233 		do_gettimeofday(&ktv);
234 		if (compat_put_timeval(&ktv, tv))
235 			return -EFAULT;
236 	}
237 	if (tz) {
238 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
239 			return -EFAULT;
240 	}
241 
242 	return 0;
243 }
244 
245 COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
246 		       struct timezone __user *, tz)
247 {
248 	struct timespec64 new_ts;
249 	struct timeval user_tv;
250 	struct timezone new_tz;
251 
252 	if (tv) {
253 		if (compat_get_timeval(&user_tv, tv))
254 			return -EFAULT;
255 		new_ts.tv_sec = user_tv.tv_sec;
256 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
257 	}
258 	if (tz) {
259 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
260 			return -EFAULT;
261 	}
262 
263 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
264 }
265 #endif
266 
267 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
268 {
269 	struct timex txc;		/* Local copy of parameter */
270 	int ret;
271 
272 	/* Copy the user data space into the kernel copy
273 	 * structure. But bear in mind that the structures
274 	 * may change
275 	 */
276 	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
277 		return -EFAULT;
278 	ret = do_adjtimex(&txc);
279 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
280 }
281 
282 #ifdef CONFIG_COMPAT
283 
284 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
285 {
286 	struct timex txc;
287 	int err, ret;
288 
289 	err = compat_get_timex(&txc, utp);
290 	if (err)
291 		return err;
292 
293 	ret = do_adjtimex(&txc);
294 
295 	err = compat_put_timex(utp, &txc);
296 	if (err)
297 		return err;
298 
299 	return ret;
300 }
301 #endif
302 
303 /*
304  * Convert jiffies to milliseconds and back.
305  *
306  * Avoid unnecessary multiplications/divisions in the
307  * two most common HZ cases:
308  */
309 unsigned int jiffies_to_msecs(const unsigned long j)
310 {
311 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
312 	return (MSEC_PER_SEC / HZ) * j;
313 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
314 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
315 #else
316 # if BITS_PER_LONG == 32
317 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
318 # else
319 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
320 # endif
321 #endif
322 }
323 EXPORT_SYMBOL(jiffies_to_msecs);
324 
325 unsigned int jiffies_to_usecs(const unsigned long j)
326 {
327 	/*
328 	 * Hz usually doesn't go much further MSEC_PER_SEC.
329 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
330 	 */
331 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
332 
333 #if !(USEC_PER_SEC % HZ)
334 	return (USEC_PER_SEC / HZ) * j;
335 #else
336 # if BITS_PER_LONG == 32
337 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338 # else
339 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
340 # endif
341 #endif
342 }
343 EXPORT_SYMBOL(jiffies_to_usecs);
344 
345 /**
346  * timespec_trunc - Truncate timespec to a granularity
347  * @t: Timespec
348  * @gran: Granularity in ns.
349  *
350  * Truncate a timespec to a granularity. Always rounds down. gran must
351  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
352  */
353 struct timespec timespec_trunc(struct timespec t, unsigned gran)
354 {
355 	/* Avoid division in the common cases 1 ns and 1 s. */
356 	if (gran == 1) {
357 		/* nothing */
358 	} else if (gran == NSEC_PER_SEC) {
359 		t.tv_nsec = 0;
360 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
361 		t.tv_nsec -= t.tv_nsec % gran;
362 	} else {
363 		WARN(1, "illegal file time granularity: %u", gran);
364 	}
365 	return t;
366 }
367 EXPORT_SYMBOL(timespec_trunc);
368 
369 /*
370  * mktime64 - Converts date to seconds.
371  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
372  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
373  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
374  *
375  * [For the Julian calendar (which was used in Russia before 1917,
376  * Britain & colonies before 1752, anywhere else before 1582,
377  * and is still in use by some communities) leave out the
378  * -year/100+year/400 terms, and add 10.]
379  *
380  * This algorithm was first published by Gauss (I think).
381  *
382  * A leap second can be indicated by calling this function with sec as
383  * 60 (allowable under ISO 8601).  The leap second is treated the same
384  * as the following second since they don't exist in UNIX time.
385  *
386  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
387  * tomorrow - (allowable under ISO 8601) is supported.
388  */
389 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
390 		const unsigned int day, const unsigned int hour,
391 		const unsigned int min, const unsigned int sec)
392 {
393 	unsigned int mon = mon0, year = year0;
394 
395 	/* 1..12 -> 11,12,1..10 */
396 	if (0 >= (int) (mon -= 2)) {
397 		mon += 12;	/* Puts Feb last since it has leap day */
398 		year -= 1;
399 	}
400 
401 	return ((((time64_t)
402 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
403 		  year*365 - 719499
404 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
405 	  )*60 + min /* now have minutes */
406 	)*60 + sec; /* finally seconds */
407 }
408 EXPORT_SYMBOL(mktime64);
409 
410 #if __BITS_PER_LONG == 32
411 /**
412  * set_normalized_timespec - set timespec sec and nsec parts and normalize
413  *
414  * @ts:		pointer to timespec variable to be set
415  * @sec:	seconds to set
416  * @nsec:	nanoseconds to set
417  *
418  * Set seconds and nanoseconds field of a timespec variable and
419  * normalize to the timespec storage format
420  *
421  * Note: The tv_nsec part is always in the range of
422  *	0 <= tv_nsec < NSEC_PER_SEC
423  * For negative values only the tv_sec field is negative !
424  */
425 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
426 {
427 	while (nsec >= NSEC_PER_SEC) {
428 		/*
429 		 * The following asm() prevents the compiler from
430 		 * optimising this loop into a modulo operation. See
431 		 * also __iter_div_u64_rem() in include/linux/time.h
432 		 */
433 		asm("" : "+rm"(nsec));
434 		nsec -= NSEC_PER_SEC;
435 		++sec;
436 	}
437 	while (nsec < 0) {
438 		asm("" : "+rm"(nsec));
439 		nsec += NSEC_PER_SEC;
440 		--sec;
441 	}
442 	ts->tv_sec = sec;
443 	ts->tv_nsec = nsec;
444 }
445 EXPORT_SYMBOL(set_normalized_timespec);
446 
447 /**
448  * ns_to_timespec - Convert nanoseconds to timespec
449  * @nsec:       the nanoseconds value to be converted
450  *
451  * Returns the timespec representation of the nsec parameter.
452  */
453 struct timespec ns_to_timespec(const s64 nsec)
454 {
455 	struct timespec ts;
456 	s32 rem;
457 
458 	if (!nsec)
459 		return (struct timespec) {0, 0};
460 
461 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
462 	if (unlikely(rem < 0)) {
463 		ts.tv_sec--;
464 		rem += NSEC_PER_SEC;
465 	}
466 	ts.tv_nsec = rem;
467 
468 	return ts;
469 }
470 EXPORT_SYMBOL(ns_to_timespec);
471 #endif
472 
473 /**
474  * ns_to_timeval - Convert nanoseconds to timeval
475  * @nsec:       the nanoseconds value to be converted
476  *
477  * Returns the timeval representation of the nsec parameter.
478  */
479 struct timeval ns_to_timeval(const s64 nsec)
480 {
481 	struct timespec ts = ns_to_timespec(nsec);
482 	struct timeval tv;
483 
484 	tv.tv_sec = ts.tv_sec;
485 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
486 
487 	return tv;
488 }
489 EXPORT_SYMBOL(ns_to_timeval);
490 
491 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
492 {
493 	struct timespec64 ts = ns_to_timespec64(nsec);
494 	struct __kernel_old_timeval tv;
495 
496 	tv.tv_sec = ts.tv_sec;
497 	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
498 
499 	return tv;
500 }
501 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
502 
503 /**
504  * set_normalized_timespec - set timespec sec and nsec parts and normalize
505  *
506  * @ts:		pointer to timespec variable to be set
507  * @sec:	seconds to set
508  * @nsec:	nanoseconds to set
509  *
510  * Set seconds and nanoseconds field of a timespec variable and
511  * normalize to the timespec storage format
512  *
513  * Note: The tv_nsec part is always in the range of
514  *	0 <= tv_nsec < NSEC_PER_SEC
515  * For negative values only the tv_sec field is negative !
516  */
517 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
518 {
519 	while (nsec >= NSEC_PER_SEC) {
520 		/*
521 		 * The following asm() prevents the compiler from
522 		 * optimising this loop into a modulo operation. See
523 		 * also __iter_div_u64_rem() in include/linux/time.h
524 		 */
525 		asm("" : "+rm"(nsec));
526 		nsec -= NSEC_PER_SEC;
527 		++sec;
528 	}
529 	while (nsec < 0) {
530 		asm("" : "+rm"(nsec));
531 		nsec += NSEC_PER_SEC;
532 		--sec;
533 	}
534 	ts->tv_sec = sec;
535 	ts->tv_nsec = nsec;
536 }
537 EXPORT_SYMBOL(set_normalized_timespec64);
538 
539 /**
540  * ns_to_timespec64 - Convert nanoseconds to timespec64
541  * @nsec:       the nanoseconds value to be converted
542  *
543  * Returns the timespec64 representation of the nsec parameter.
544  */
545 struct timespec64 ns_to_timespec64(const s64 nsec)
546 {
547 	struct timespec64 ts;
548 	s32 rem;
549 
550 	if (!nsec)
551 		return (struct timespec64) {0, 0};
552 
553 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
554 	if (unlikely(rem < 0)) {
555 		ts.tv_sec--;
556 		rem += NSEC_PER_SEC;
557 	}
558 	ts.tv_nsec = rem;
559 
560 	return ts;
561 }
562 EXPORT_SYMBOL(ns_to_timespec64);
563 
564 /**
565  * msecs_to_jiffies: - convert milliseconds to jiffies
566  * @m:	time in milliseconds
567  *
568  * conversion is done as follows:
569  *
570  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
571  *
572  * - 'too large' values [that would result in larger than
573  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
574  *
575  * - all other values are converted to jiffies by either multiplying
576  *   the input value by a factor or dividing it with a factor and
577  *   handling any 32-bit overflows.
578  *   for the details see __msecs_to_jiffies()
579  *
580  * msecs_to_jiffies() checks for the passed in value being a constant
581  * via __builtin_constant_p() allowing gcc to eliminate most of the
582  * code, __msecs_to_jiffies() is called if the value passed does not
583  * allow constant folding and the actual conversion must be done at
584  * runtime.
585  * the _msecs_to_jiffies helpers are the HZ dependent conversion
586  * routines found in include/linux/jiffies.h
587  */
588 unsigned long __msecs_to_jiffies(const unsigned int m)
589 {
590 	/*
591 	 * Negative value, means infinite timeout:
592 	 */
593 	if ((int)m < 0)
594 		return MAX_JIFFY_OFFSET;
595 	return _msecs_to_jiffies(m);
596 }
597 EXPORT_SYMBOL(__msecs_to_jiffies);
598 
599 unsigned long __usecs_to_jiffies(const unsigned int u)
600 {
601 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
602 		return MAX_JIFFY_OFFSET;
603 	return _usecs_to_jiffies(u);
604 }
605 EXPORT_SYMBOL(__usecs_to_jiffies);
606 
607 /*
608  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
609  * that a remainder subtract here would not do the right thing as the
610  * resolution values don't fall on second boundries.  I.e. the line:
611  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
612  * Note that due to the small error in the multiplier here, this
613  * rounding is incorrect for sufficiently large values of tv_nsec, but
614  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
615  * OK.
616  *
617  * Rather, we just shift the bits off the right.
618  *
619  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
620  * value to a scaled second value.
621  */
622 static unsigned long
623 __timespec64_to_jiffies(u64 sec, long nsec)
624 {
625 	nsec = nsec + TICK_NSEC - 1;
626 
627 	if (sec >= MAX_SEC_IN_JIFFIES){
628 		sec = MAX_SEC_IN_JIFFIES;
629 		nsec = 0;
630 	}
631 	return ((sec * SEC_CONVERSION) +
632 		(((u64)nsec * NSEC_CONVERSION) >>
633 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
634 
635 }
636 
637 static unsigned long
638 __timespec_to_jiffies(unsigned long sec, long nsec)
639 {
640 	return __timespec64_to_jiffies((u64)sec, nsec);
641 }
642 
643 unsigned long
644 timespec64_to_jiffies(const struct timespec64 *value)
645 {
646 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
647 }
648 EXPORT_SYMBOL(timespec64_to_jiffies);
649 
650 void
651 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
652 {
653 	/*
654 	 * Convert jiffies to nanoseconds and separate with
655 	 * one divide.
656 	 */
657 	u32 rem;
658 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
659 				    NSEC_PER_SEC, &rem);
660 	value->tv_nsec = rem;
661 }
662 EXPORT_SYMBOL(jiffies_to_timespec64);
663 
664 /*
665  * We could use a similar algorithm to timespec_to_jiffies (with a
666  * different multiplier for usec instead of nsec). But this has a
667  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
668  * usec value, since it's not necessarily integral.
669  *
670  * We could instead round in the intermediate scaled representation
671  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
672  * perilous: the scaling introduces a small positive error, which
673  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
674  * units to the intermediate before shifting) leads to accidental
675  * overflow and overestimates.
676  *
677  * At the cost of one additional multiplication by a constant, just
678  * use the timespec implementation.
679  */
680 unsigned long
681 timeval_to_jiffies(const struct timeval *value)
682 {
683 	return __timespec_to_jiffies(value->tv_sec,
684 				     value->tv_usec * NSEC_PER_USEC);
685 }
686 EXPORT_SYMBOL(timeval_to_jiffies);
687 
688 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
689 {
690 	/*
691 	 * Convert jiffies to nanoseconds and separate with
692 	 * one divide.
693 	 */
694 	u32 rem;
695 
696 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
697 				    NSEC_PER_SEC, &rem);
698 	value->tv_usec = rem / NSEC_PER_USEC;
699 }
700 EXPORT_SYMBOL(jiffies_to_timeval);
701 
702 /*
703  * Convert jiffies/jiffies_64 to clock_t and back.
704  */
705 clock_t jiffies_to_clock_t(unsigned long x)
706 {
707 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708 # if HZ < USER_HZ
709 	return x * (USER_HZ / HZ);
710 # else
711 	return x / (HZ / USER_HZ);
712 # endif
713 #else
714 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
715 #endif
716 }
717 EXPORT_SYMBOL(jiffies_to_clock_t);
718 
719 unsigned long clock_t_to_jiffies(unsigned long x)
720 {
721 #if (HZ % USER_HZ)==0
722 	if (x >= ~0UL / (HZ / USER_HZ))
723 		return ~0UL;
724 	return x * (HZ / USER_HZ);
725 #else
726 	/* Don't worry about loss of precision here .. */
727 	if (x >= ~0UL / HZ * USER_HZ)
728 		return ~0UL;
729 
730 	/* .. but do try to contain it here */
731 	return div_u64((u64)x * HZ, USER_HZ);
732 #endif
733 }
734 EXPORT_SYMBOL(clock_t_to_jiffies);
735 
736 u64 jiffies_64_to_clock_t(u64 x)
737 {
738 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
739 # if HZ < USER_HZ
740 	x = div_u64(x * USER_HZ, HZ);
741 # elif HZ > USER_HZ
742 	x = div_u64(x, HZ / USER_HZ);
743 # else
744 	/* Nothing to do */
745 # endif
746 #else
747 	/*
748 	 * There are better ways that don't overflow early,
749 	 * but even this doesn't overflow in hundreds of years
750 	 * in 64 bits, so..
751 	 */
752 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
753 #endif
754 	return x;
755 }
756 EXPORT_SYMBOL(jiffies_64_to_clock_t);
757 
758 u64 nsec_to_clock_t(u64 x)
759 {
760 #if (NSEC_PER_SEC % USER_HZ) == 0
761 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
762 #elif (USER_HZ % 512) == 0
763 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
764 #else
765 	/*
766          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
767          * overflow after 64.99 years.
768          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
769          */
770 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
771 #endif
772 }
773 
774 u64 jiffies64_to_nsecs(u64 j)
775 {
776 #if !(NSEC_PER_SEC % HZ)
777 	return (NSEC_PER_SEC / HZ) * j;
778 # else
779 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
780 #endif
781 }
782 EXPORT_SYMBOL(jiffies64_to_nsecs);
783 
784 /**
785  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
786  *
787  * @n:	nsecs in u64
788  *
789  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
790  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
791  * for scheduler, not for use in device drivers to calculate timeout value.
792  *
793  * note:
794  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
795  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
796  */
797 u64 nsecs_to_jiffies64(u64 n)
798 {
799 #if (NSEC_PER_SEC % HZ) == 0
800 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
801 	return div_u64(n, NSEC_PER_SEC / HZ);
802 #elif (HZ % 512) == 0
803 	/* overflow after 292 years if HZ = 1024 */
804 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
805 #else
806 	/*
807 	 * Generic case - optimized for cases where HZ is a multiple of 3.
808 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
809 	 */
810 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
811 #endif
812 }
813 EXPORT_SYMBOL(nsecs_to_jiffies64);
814 
815 /**
816  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
817  *
818  * @n:	nsecs in u64
819  *
820  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
821  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
822  * for scheduler, not for use in device drivers to calculate timeout value.
823  *
824  * note:
825  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
826  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
827  */
828 unsigned long nsecs_to_jiffies(u64 n)
829 {
830 	return (unsigned long)nsecs_to_jiffies64(n);
831 }
832 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
833 
834 /*
835  * Add two timespec64 values and do a safety check for overflow.
836  * It's assumed that both values are valid (>= 0).
837  * And, each timespec64 is in normalized form.
838  */
839 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
840 				const struct timespec64 rhs)
841 {
842 	struct timespec64 res;
843 
844 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
845 			lhs.tv_nsec + rhs.tv_nsec);
846 
847 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
848 		res.tv_sec = TIME64_MAX;
849 		res.tv_nsec = 0;
850 	}
851 
852 	return res;
853 }
854 
855 int get_timespec64(struct timespec64 *ts,
856 		   const struct timespec __user *uts)
857 {
858 	struct timespec kts;
859 	int ret;
860 
861 	ret = copy_from_user(&kts, uts, sizeof(kts));
862 	if (ret)
863 		return -EFAULT;
864 
865 	ts->tv_sec = kts.tv_sec;
866 	ts->tv_nsec = kts.tv_nsec;
867 
868 	return 0;
869 }
870 EXPORT_SYMBOL_GPL(get_timespec64);
871 
872 int put_timespec64(const struct timespec64 *ts,
873 		   struct timespec __user *uts)
874 {
875 	struct timespec kts = {
876 		.tv_sec = ts->tv_sec,
877 		.tv_nsec = ts->tv_nsec
878 	};
879 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
880 }
881 EXPORT_SYMBOL_GPL(put_timespec64);
882 
883 int get_itimerspec64(struct itimerspec64 *it,
884 			const struct itimerspec __user *uit)
885 {
886 	int ret;
887 
888 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
889 	if (ret)
890 		return ret;
891 
892 	ret = get_timespec64(&it->it_value, &uit->it_value);
893 
894 	return ret;
895 }
896 EXPORT_SYMBOL_GPL(get_itimerspec64);
897 
898 int put_itimerspec64(const struct itimerspec64 *it,
899 			struct itimerspec __user *uit)
900 {
901 	int ret;
902 
903 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
904 	if (ret)
905 		return ret;
906 
907 	ret = put_timespec64(&it->it_value, &uit->it_value);
908 
909 	return ret;
910 }
911 EXPORT_SYMBOL_GPL(put_itimerspec64);
912