xref: /openbmc/linux/kernel/time/time.c (revision 33ac9dba)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include "timeconst.h"
45 #include "timekeeping.h"
46 
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52 
53 EXPORT_SYMBOL(sys_tz);
54 
55 #ifdef __ARCH_WANT_SYS_TIME
56 
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 	time_t i = get_seconds();
66 
67 	if (tloc) {
68 		if (put_user(i,tloc))
69 			return -EFAULT;
70 	}
71 	force_successful_syscall_return();
72 	return i;
73 }
74 
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81 
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 	struct timespec tv;
85 	int err;
86 
87 	if (get_user(tv.tv_sec, tptr))
88 		return -EFAULT;
89 
90 	tv.tv_nsec = 0;
91 
92 	err = security_settime(&tv, NULL);
93 	if (err)
94 		return err;
95 
96 	do_settimeofday(&tv);
97 	return 0;
98 }
99 
100 #endif /* __ARCH_WANT_SYS_TIME */
101 
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 		struct timezone __user *, tz)
104 {
105 	if (likely(tv != NULL)) {
106 		struct timeval ktv;
107 		do_gettimeofday(&ktv);
108 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 			return -EFAULT;
110 	}
111 	if (unlikely(tz != NULL)) {
112 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Indicates if there is an offset between the system clock and the hardware
120  * clock/persistent clock/rtc.
121  */
122 int persistent_clock_is_local;
123 
124 /*
125  * Adjust the time obtained from the CMOS to be UTC time instead of
126  * local time.
127  *
128  * This is ugly, but preferable to the alternatives.  Otherwise we
129  * would either need to write a program to do it in /etc/rc (and risk
130  * confusion if the program gets run more than once; it would also be
131  * hard to make the program warp the clock precisely n hours)  or
132  * compile in the timezone information into the kernel.  Bad, bad....
133  *
134  *						- TYT, 1992-01-01
135  *
136  * The best thing to do is to keep the CMOS clock in universal time (UTC)
137  * as real UNIX machines always do it. This avoids all headaches about
138  * daylight saving times and warping kernel clocks.
139  */
140 static inline void warp_clock(void)
141 {
142 	if (sys_tz.tz_minuteswest != 0) {
143 		struct timespec adjust;
144 
145 		persistent_clock_is_local = 1;
146 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 		adjust.tv_nsec = 0;
148 		timekeeping_inject_offset(&adjust);
149 	}
150 }
151 
152 /*
153  * In case for some reason the CMOS clock has not already been running
154  * in UTC, but in some local time: The first time we set the timezone,
155  * we will warp the clock so that it is ticking UTC time instead of
156  * local time. Presumably, if someone is setting the timezone then we
157  * are running in an environment where the programs understand about
158  * timezones. This should be done at boot time in the /etc/rc script,
159  * as soon as possible, so that the clock can be set right. Otherwise,
160  * various programs will get confused when the clock gets warped.
161  */
162 
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 	static int firsttime = 1;
166 	int error = 0;
167 
168 	if (tv && !timespec_valid(tv))
169 		return -EINVAL;
170 
171 	error = security_settime(tv, tz);
172 	if (error)
173 		return error;
174 
175 	if (tz) {
176 		sys_tz = *tz;
177 		update_vsyscall_tz();
178 		if (firsttime) {
179 			firsttime = 0;
180 			if (!tv)
181 				warp_clock();
182 		}
183 	}
184 	if (tv)
185 		return do_settimeofday(tv);
186 	return 0;
187 }
188 
189 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 		struct timezone __user *, tz)
191 {
192 	struct timeval user_tv;
193 	struct timespec	new_ts;
194 	struct timezone new_tz;
195 
196 	if (tv) {
197 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 			return -EFAULT;
199 		new_ts.tv_sec = user_tv.tv_sec;
200 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
201 	}
202 	if (tz) {
203 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
204 			return -EFAULT;
205 	}
206 
207 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
208 }
209 
210 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
211 {
212 	struct timex txc;		/* Local copy of parameter */
213 	int ret;
214 
215 	/* Copy the user data space into the kernel copy
216 	 * structure. But bear in mind that the structures
217 	 * may change
218 	 */
219 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
220 		return -EFAULT;
221 	ret = do_adjtimex(&txc);
222 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
223 }
224 
225 /**
226  * current_fs_time - Return FS time
227  * @sb: Superblock.
228  *
229  * Return the current time truncated to the time granularity supported by
230  * the fs.
231  */
232 struct timespec current_fs_time(struct super_block *sb)
233 {
234 	struct timespec now = current_kernel_time();
235 	return timespec_trunc(now, sb->s_time_gran);
236 }
237 EXPORT_SYMBOL(current_fs_time);
238 
239 /*
240  * Convert jiffies to milliseconds and back.
241  *
242  * Avoid unnecessary multiplications/divisions in the
243  * two most common HZ cases:
244  */
245 unsigned int jiffies_to_msecs(const unsigned long j)
246 {
247 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
248 	return (MSEC_PER_SEC / HZ) * j;
249 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
250 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
251 #else
252 # if BITS_PER_LONG == 32
253 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
254 # else
255 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
256 # endif
257 #endif
258 }
259 EXPORT_SYMBOL(jiffies_to_msecs);
260 
261 unsigned int jiffies_to_usecs(const unsigned long j)
262 {
263 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
264 	return (USEC_PER_SEC / HZ) * j;
265 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
266 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
267 #else
268 # if BITS_PER_LONG == 32
269 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
270 # else
271 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
272 # endif
273 #endif
274 }
275 EXPORT_SYMBOL(jiffies_to_usecs);
276 
277 /**
278  * timespec_trunc - Truncate timespec to a granularity
279  * @t: Timespec
280  * @gran: Granularity in ns.
281  *
282  * Truncate a timespec to a granularity. gran must be smaller than a second.
283  * Always rounds down.
284  *
285  * This function should be only used for timestamps returned by
286  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
287  * it doesn't handle the better resolution of the latter.
288  */
289 struct timespec timespec_trunc(struct timespec t, unsigned gran)
290 {
291 	/*
292 	 * Division is pretty slow so avoid it for common cases.
293 	 * Currently current_kernel_time() never returns better than
294 	 * jiffies resolution. Exploit that.
295 	 */
296 	if (gran <= jiffies_to_usecs(1) * 1000) {
297 		/* nothing */
298 	} else if (gran == 1000000000) {
299 		t.tv_nsec = 0;
300 	} else {
301 		t.tv_nsec -= t.tv_nsec % gran;
302 	}
303 	return t;
304 }
305 EXPORT_SYMBOL(timespec_trunc);
306 
307 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
308  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
309  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
310  *
311  * [For the Julian calendar (which was used in Russia before 1917,
312  * Britain & colonies before 1752, anywhere else before 1582,
313  * and is still in use by some communities) leave out the
314  * -year/100+year/400 terms, and add 10.]
315  *
316  * This algorithm was first published by Gauss (I think).
317  *
318  * WARNING: this function will overflow on 2106-02-07 06:28:16 on
319  * machines where long is 32-bit! (However, as time_t is signed, we
320  * will already get problems at other places on 2038-01-19 03:14:08)
321  */
322 unsigned long
323 mktime(const unsigned int year0, const unsigned int mon0,
324        const unsigned int day, const unsigned int hour,
325        const unsigned int min, const unsigned int sec)
326 {
327 	unsigned int mon = mon0, year = year0;
328 
329 	/* 1..12 -> 11,12,1..10 */
330 	if (0 >= (int) (mon -= 2)) {
331 		mon += 12;	/* Puts Feb last since it has leap day */
332 		year -= 1;
333 	}
334 
335 	return ((((unsigned long)
336 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
337 		  year*365 - 719499
338 	    )*24 + hour /* now have hours */
339 	  )*60 + min /* now have minutes */
340 	)*60 + sec; /* finally seconds */
341 }
342 
343 EXPORT_SYMBOL(mktime);
344 
345 /**
346  * set_normalized_timespec - set timespec sec and nsec parts and normalize
347  *
348  * @ts:		pointer to timespec variable to be set
349  * @sec:	seconds to set
350  * @nsec:	nanoseconds to set
351  *
352  * Set seconds and nanoseconds field of a timespec variable and
353  * normalize to the timespec storage format
354  *
355  * Note: The tv_nsec part is always in the range of
356  *	0 <= tv_nsec < NSEC_PER_SEC
357  * For negative values only the tv_sec field is negative !
358  */
359 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
360 {
361 	while (nsec >= NSEC_PER_SEC) {
362 		/*
363 		 * The following asm() prevents the compiler from
364 		 * optimising this loop into a modulo operation. See
365 		 * also __iter_div_u64_rem() in include/linux/time.h
366 		 */
367 		asm("" : "+rm"(nsec));
368 		nsec -= NSEC_PER_SEC;
369 		++sec;
370 	}
371 	while (nsec < 0) {
372 		asm("" : "+rm"(nsec));
373 		nsec += NSEC_PER_SEC;
374 		--sec;
375 	}
376 	ts->tv_sec = sec;
377 	ts->tv_nsec = nsec;
378 }
379 EXPORT_SYMBOL(set_normalized_timespec);
380 
381 /**
382  * ns_to_timespec - Convert nanoseconds to timespec
383  * @nsec:       the nanoseconds value to be converted
384  *
385  * Returns the timespec representation of the nsec parameter.
386  */
387 struct timespec ns_to_timespec(const s64 nsec)
388 {
389 	struct timespec ts;
390 	s32 rem;
391 
392 	if (!nsec)
393 		return (struct timespec) {0, 0};
394 
395 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
396 	if (unlikely(rem < 0)) {
397 		ts.tv_sec--;
398 		rem += NSEC_PER_SEC;
399 	}
400 	ts.tv_nsec = rem;
401 
402 	return ts;
403 }
404 EXPORT_SYMBOL(ns_to_timespec);
405 
406 /**
407  * ns_to_timeval - Convert nanoseconds to timeval
408  * @nsec:       the nanoseconds value to be converted
409  *
410  * Returns the timeval representation of the nsec parameter.
411  */
412 struct timeval ns_to_timeval(const s64 nsec)
413 {
414 	struct timespec ts = ns_to_timespec(nsec);
415 	struct timeval tv;
416 
417 	tv.tv_sec = ts.tv_sec;
418 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
419 
420 	return tv;
421 }
422 EXPORT_SYMBOL(ns_to_timeval);
423 
424 #if BITS_PER_LONG == 32
425 /**
426  * set_normalized_timespec - set timespec sec and nsec parts and normalize
427  *
428  * @ts:		pointer to timespec variable to be set
429  * @sec:	seconds to set
430  * @nsec:	nanoseconds to set
431  *
432  * Set seconds and nanoseconds field of a timespec variable and
433  * normalize to the timespec storage format
434  *
435  * Note: The tv_nsec part is always in the range of
436  *	0 <= tv_nsec < NSEC_PER_SEC
437  * For negative values only the tv_sec field is negative !
438  */
439 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
440 {
441 	while (nsec >= NSEC_PER_SEC) {
442 		/*
443 		 * The following asm() prevents the compiler from
444 		 * optimising this loop into a modulo operation. See
445 		 * also __iter_div_u64_rem() in include/linux/time.h
446 		 */
447 		asm("" : "+rm"(nsec));
448 		nsec -= NSEC_PER_SEC;
449 		++sec;
450 	}
451 	while (nsec < 0) {
452 		asm("" : "+rm"(nsec));
453 		nsec += NSEC_PER_SEC;
454 		--sec;
455 	}
456 	ts->tv_sec = sec;
457 	ts->tv_nsec = nsec;
458 }
459 EXPORT_SYMBOL(set_normalized_timespec64);
460 
461 /**
462  * ns_to_timespec64 - Convert nanoseconds to timespec64
463  * @nsec:       the nanoseconds value to be converted
464  *
465  * Returns the timespec64 representation of the nsec parameter.
466  */
467 struct timespec64 ns_to_timespec64(const s64 nsec)
468 {
469 	struct timespec64 ts;
470 	s32 rem;
471 
472 	if (!nsec)
473 		return (struct timespec64) {0, 0};
474 
475 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
476 	if (unlikely(rem < 0)) {
477 		ts.tv_sec--;
478 		rem += NSEC_PER_SEC;
479 	}
480 	ts.tv_nsec = rem;
481 
482 	return ts;
483 }
484 EXPORT_SYMBOL(ns_to_timespec64);
485 #endif
486 /*
487  * When we convert to jiffies then we interpret incoming values
488  * the following way:
489  *
490  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
491  *
492  * - 'too large' values [that would result in larger than
493  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
494  *
495  * - all other values are converted to jiffies by either multiplying
496  *   the input value by a factor or dividing it with a factor
497  *
498  * We must also be careful about 32-bit overflows.
499  */
500 unsigned long msecs_to_jiffies(const unsigned int m)
501 {
502 	/*
503 	 * Negative value, means infinite timeout:
504 	 */
505 	if ((int)m < 0)
506 		return MAX_JIFFY_OFFSET;
507 
508 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
509 	/*
510 	 * HZ is equal to or smaller than 1000, and 1000 is a nice
511 	 * round multiple of HZ, divide with the factor between them,
512 	 * but round upwards:
513 	 */
514 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
515 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
516 	/*
517 	 * HZ is larger than 1000, and HZ is a nice round multiple of
518 	 * 1000 - simply multiply with the factor between them.
519 	 *
520 	 * But first make sure the multiplication result cannot
521 	 * overflow:
522 	 */
523 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
524 		return MAX_JIFFY_OFFSET;
525 
526 	return m * (HZ / MSEC_PER_SEC);
527 #else
528 	/*
529 	 * Generic case - multiply, round and divide. But first
530 	 * check that if we are doing a net multiplication, that
531 	 * we wouldn't overflow:
532 	 */
533 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
534 		return MAX_JIFFY_OFFSET;
535 
536 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
537 		>> MSEC_TO_HZ_SHR32;
538 #endif
539 }
540 EXPORT_SYMBOL(msecs_to_jiffies);
541 
542 unsigned long usecs_to_jiffies(const unsigned int u)
543 {
544 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
545 		return MAX_JIFFY_OFFSET;
546 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
547 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
548 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
549 	return u * (HZ / USEC_PER_SEC);
550 #else
551 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
552 		>> USEC_TO_HZ_SHR32;
553 #endif
554 }
555 EXPORT_SYMBOL(usecs_to_jiffies);
556 
557 /*
558  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
559  * that a remainder subtract here would not do the right thing as the
560  * resolution values don't fall on second boundries.  I.e. the line:
561  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
562  *
563  * Rather, we just shift the bits off the right.
564  *
565  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
566  * value to a scaled second value.
567  */
568 unsigned long
569 timespec_to_jiffies(const struct timespec *value)
570 {
571 	unsigned long sec = value->tv_sec;
572 	long nsec = value->tv_nsec + TICK_NSEC - 1;
573 
574 	if (sec >= MAX_SEC_IN_JIFFIES){
575 		sec = MAX_SEC_IN_JIFFIES;
576 		nsec = 0;
577 	}
578 	return (((u64)sec * SEC_CONVERSION) +
579 		(((u64)nsec * NSEC_CONVERSION) >>
580 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
581 
582 }
583 EXPORT_SYMBOL(timespec_to_jiffies);
584 
585 void
586 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
587 {
588 	/*
589 	 * Convert jiffies to nanoseconds and separate with
590 	 * one divide.
591 	 */
592 	u32 rem;
593 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
594 				    NSEC_PER_SEC, &rem);
595 	value->tv_nsec = rem;
596 }
597 EXPORT_SYMBOL(jiffies_to_timespec);
598 
599 /* Same for "timeval"
600  *
601  * Well, almost.  The problem here is that the real system resolution is
602  * in nanoseconds and the value being converted is in micro seconds.
603  * Also for some machines (those that use HZ = 1024, in-particular),
604  * there is a LARGE error in the tick size in microseconds.
605 
606  * The solution we use is to do the rounding AFTER we convert the
607  * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
608  * Instruction wise, this should cost only an additional add with carry
609  * instruction above the way it was done above.
610  */
611 unsigned long
612 timeval_to_jiffies(const struct timeval *value)
613 {
614 	unsigned long sec = value->tv_sec;
615 	long usec = value->tv_usec;
616 
617 	if (sec >= MAX_SEC_IN_JIFFIES){
618 		sec = MAX_SEC_IN_JIFFIES;
619 		usec = 0;
620 	}
621 	return (((u64)sec * SEC_CONVERSION) +
622 		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
623 		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
624 }
625 EXPORT_SYMBOL(timeval_to_jiffies);
626 
627 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
628 {
629 	/*
630 	 * Convert jiffies to nanoseconds and separate with
631 	 * one divide.
632 	 */
633 	u32 rem;
634 
635 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
636 				    NSEC_PER_SEC, &rem);
637 	value->tv_usec = rem / NSEC_PER_USEC;
638 }
639 EXPORT_SYMBOL(jiffies_to_timeval);
640 
641 /*
642  * Convert jiffies/jiffies_64 to clock_t and back.
643  */
644 clock_t jiffies_to_clock_t(unsigned long x)
645 {
646 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
647 # if HZ < USER_HZ
648 	return x * (USER_HZ / HZ);
649 # else
650 	return x / (HZ / USER_HZ);
651 # endif
652 #else
653 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
654 #endif
655 }
656 EXPORT_SYMBOL(jiffies_to_clock_t);
657 
658 unsigned long clock_t_to_jiffies(unsigned long x)
659 {
660 #if (HZ % USER_HZ)==0
661 	if (x >= ~0UL / (HZ / USER_HZ))
662 		return ~0UL;
663 	return x * (HZ / USER_HZ);
664 #else
665 	/* Don't worry about loss of precision here .. */
666 	if (x >= ~0UL / HZ * USER_HZ)
667 		return ~0UL;
668 
669 	/* .. but do try to contain it here */
670 	return div_u64((u64)x * HZ, USER_HZ);
671 #endif
672 }
673 EXPORT_SYMBOL(clock_t_to_jiffies);
674 
675 u64 jiffies_64_to_clock_t(u64 x)
676 {
677 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
678 # if HZ < USER_HZ
679 	x = div_u64(x * USER_HZ, HZ);
680 # elif HZ > USER_HZ
681 	x = div_u64(x, HZ / USER_HZ);
682 # else
683 	/* Nothing to do */
684 # endif
685 #else
686 	/*
687 	 * There are better ways that don't overflow early,
688 	 * but even this doesn't overflow in hundreds of years
689 	 * in 64 bits, so..
690 	 */
691 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
692 #endif
693 	return x;
694 }
695 EXPORT_SYMBOL(jiffies_64_to_clock_t);
696 
697 u64 nsec_to_clock_t(u64 x)
698 {
699 #if (NSEC_PER_SEC % USER_HZ) == 0
700 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
701 #elif (USER_HZ % 512) == 0
702 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
703 #else
704 	/*
705          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
706          * overflow after 64.99 years.
707          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
708          */
709 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
710 #endif
711 }
712 
713 /**
714  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
715  *
716  * @n:	nsecs in u64
717  *
718  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
719  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
720  * for scheduler, not for use in device drivers to calculate timeout value.
721  *
722  * note:
723  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
724  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
725  */
726 u64 nsecs_to_jiffies64(u64 n)
727 {
728 #if (NSEC_PER_SEC % HZ) == 0
729 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
730 	return div_u64(n, NSEC_PER_SEC / HZ);
731 #elif (HZ % 512) == 0
732 	/* overflow after 292 years if HZ = 1024 */
733 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
734 #else
735 	/*
736 	 * Generic case - optimized for cases where HZ is a multiple of 3.
737 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
738 	 */
739 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
740 #endif
741 }
742 
743 /**
744  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
745  *
746  * @n:	nsecs in u64
747  *
748  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
749  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
750  * for scheduler, not for use in device drivers to calculate timeout value.
751  *
752  * note:
753  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
754  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
755  */
756 unsigned long nsecs_to_jiffies(u64 n)
757 {
758 	return (unsigned long)nsecs_to_jiffies64(n);
759 }
760 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
761 
762 /*
763  * Add two timespec values and do a safety check for overflow.
764  * It's assumed that both values are valid (>= 0)
765  */
766 struct timespec timespec_add_safe(const struct timespec lhs,
767 				  const struct timespec rhs)
768 {
769 	struct timespec res;
770 
771 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
772 				lhs.tv_nsec + rhs.tv_nsec);
773 
774 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
775 		res.tv_sec = TIME_T_MAX;
776 
777 	return res;
778 }
779