1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * 5 * This file contains the interface functions for the various time related 6 * system calls: time, stime, gettimeofday, settimeofday, adjtime 7 * 8 * Modification history: 9 * 10 * 1993-09-02 Philip Gladstone 11 * Created file with time related functions from sched/core.c and adjtimex() 12 * 1993-10-08 Torsten Duwe 13 * adjtime interface update and CMOS clock write code 14 * 1995-08-13 Torsten Duwe 15 * kernel PLL updated to 1994-12-13 specs (rfc-1589) 16 * 1999-01-16 Ulrich Windl 17 * Introduced error checking for many cases in adjtimex(). 18 * Updated NTP code according to technical memorandum Jan '96 19 * "A Kernel Model for Precision Timekeeping" by Dave Mills 20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) 21 * (Even though the technical memorandum forbids it) 22 * 2004-07-14 Christoph Lameter 23 * Added getnstimeofday to allow the posix timer functions to return 24 * with nanosecond accuracy 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/timex.h> 30 #include <linux/capability.h> 31 #include <linux/timekeeper_internal.h> 32 #include <linux/errno.h> 33 #include <linux/syscalls.h> 34 #include <linux/security.h> 35 #include <linux/fs.h> 36 #include <linux/math64.h> 37 #include <linux/ptrace.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/compat.h> 41 #include <asm/unistd.h> 42 43 #include <generated/timeconst.h> 44 #include "timekeeping.h" 45 46 /* 47 * The timezone where the local system is located. Used as a default by some 48 * programs who obtain this value by using gettimeofday. 49 */ 50 struct timezone sys_tz; 51 52 EXPORT_SYMBOL(sys_tz); 53 54 #ifdef __ARCH_WANT_SYS_TIME 55 56 /* 57 * sys_time() can be implemented in user-level using 58 * sys_gettimeofday(). Is this for backwards compatibility? If so, 59 * why not move it into the appropriate arch directory (for those 60 * architectures that need it). 61 */ 62 SYSCALL_DEFINE1(time, time_t __user *, tloc) 63 { 64 time_t i = (time_t)ktime_get_real_seconds(); 65 66 if (tloc) { 67 if (put_user(i,tloc)) 68 return -EFAULT; 69 } 70 force_successful_syscall_return(); 71 return i; 72 } 73 74 /* 75 * sys_stime() can be implemented in user-level using 76 * sys_settimeofday(). Is this for backwards compatibility? If so, 77 * why not move it into the appropriate arch directory (for those 78 * architectures that need it). 79 */ 80 81 SYSCALL_DEFINE1(stime, time_t __user *, tptr) 82 { 83 struct timespec64 tv; 84 int err; 85 86 if (get_user(tv.tv_sec, tptr)) 87 return -EFAULT; 88 89 tv.tv_nsec = 0; 90 91 err = security_settime64(&tv, NULL); 92 if (err) 93 return err; 94 95 do_settimeofday64(&tv); 96 return 0; 97 } 98 99 #endif /* __ARCH_WANT_SYS_TIME */ 100 101 #ifdef CONFIG_COMPAT_32BIT_TIME 102 #ifdef __ARCH_WANT_SYS_TIME32 103 104 /* old_time32_t is a 32 bit "long" and needs to get converted. */ 105 SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc) 106 { 107 old_time32_t i; 108 109 i = (old_time32_t)ktime_get_real_seconds(); 110 111 if (tloc) { 112 if (put_user(i,tloc)) 113 return -EFAULT; 114 } 115 force_successful_syscall_return(); 116 return i; 117 } 118 119 SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr) 120 { 121 struct timespec64 tv; 122 int err; 123 124 if (get_user(tv.tv_sec, tptr)) 125 return -EFAULT; 126 127 tv.tv_nsec = 0; 128 129 err = security_settime64(&tv, NULL); 130 if (err) 131 return err; 132 133 do_settimeofday64(&tv); 134 return 0; 135 } 136 137 #endif /* __ARCH_WANT_SYS_TIME32 */ 138 #endif 139 140 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, 141 struct timezone __user *, tz) 142 { 143 if (likely(tv != NULL)) { 144 struct timespec64 ts; 145 146 ktime_get_real_ts64(&ts); 147 if (put_user(ts.tv_sec, &tv->tv_sec) || 148 put_user(ts.tv_nsec / 1000, &tv->tv_usec)) 149 return -EFAULT; 150 } 151 if (unlikely(tz != NULL)) { 152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 153 return -EFAULT; 154 } 155 return 0; 156 } 157 158 /* 159 * In case for some reason the CMOS clock has not already been running 160 * in UTC, but in some local time: The first time we set the timezone, 161 * we will warp the clock so that it is ticking UTC time instead of 162 * local time. Presumably, if someone is setting the timezone then we 163 * are running in an environment where the programs understand about 164 * timezones. This should be done at boot time in the /etc/rc script, 165 * as soon as possible, so that the clock can be set right. Otherwise, 166 * various programs will get confused when the clock gets warped. 167 */ 168 169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz) 170 { 171 static int firsttime = 1; 172 int error = 0; 173 174 if (tv && !timespec64_valid_settod(tv)) 175 return -EINVAL; 176 177 error = security_settime64(tv, tz); 178 if (error) 179 return error; 180 181 if (tz) { 182 /* Verify we're witin the +-15 hrs range */ 183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60) 184 return -EINVAL; 185 186 sys_tz = *tz; 187 update_vsyscall_tz(); 188 if (firsttime) { 189 firsttime = 0; 190 if (!tv) 191 timekeeping_warp_clock(); 192 } 193 } 194 if (tv) 195 return do_settimeofday64(tv); 196 return 0; 197 } 198 199 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, 200 struct timezone __user *, tz) 201 { 202 struct timespec64 new_ts; 203 struct timeval user_tv; 204 struct timezone new_tz; 205 206 if (tv) { 207 if (copy_from_user(&user_tv, tv, sizeof(*tv))) 208 return -EFAULT; 209 210 if (!timeval_valid(&user_tv)) 211 return -EINVAL; 212 213 new_ts.tv_sec = user_tv.tv_sec; 214 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 215 } 216 if (tz) { 217 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 218 return -EFAULT; 219 } 220 221 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 222 } 223 224 #ifdef CONFIG_COMPAT 225 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv, 226 struct timezone __user *, tz) 227 { 228 if (tv) { 229 struct timespec64 ts; 230 231 ktime_get_real_ts64(&ts); 232 if (put_user(ts.tv_sec, &tv->tv_sec) || 233 put_user(ts.tv_nsec / 1000, &tv->tv_usec)) 234 return -EFAULT; 235 } 236 if (tz) { 237 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 238 return -EFAULT; 239 } 240 241 return 0; 242 } 243 244 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv, 245 struct timezone __user *, tz) 246 { 247 struct timespec64 new_ts; 248 struct timeval user_tv; 249 struct timezone new_tz; 250 251 if (tv) { 252 if (compat_get_timeval(&user_tv, tv)) 253 return -EFAULT; 254 255 if (!timeval_valid(&user_tv)) 256 return -EINVAL; 257 258 new_ts.tv_sec = user_tv.tv_sec; 259 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 260 } 261 if (tz) { 262 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 263 return -EFAULT; 264 } 265 266 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 267 } 268 #endif 269 270 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) 271 SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p) 272 { 273 struct __kernel_timex txc; /* Local copy of parameter */ 274 int ret; 275 276 /* Copy the user data space into the kernel copy 277 * structure. But bear in mind that the structures 278 * may change 279 */ 280 if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex))) 281 return -EFAULT; 282 ret = do_adjtimex(&txc); 283 return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret; 284 } 285 #endif 286 287 #ifdef CONFIG_COMPAT_32BIT_TIME 288 int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp) 289 { 290 struct old_timex32 tx32; 291 292 memset(txc, 0, sizeof(struct __kernel_timex)); 293 if (copy_from_user(&tx32, utp, sizeof(struct old_timex32))) 294 return -EFAULT; 295 296 txc->modes = tx32.modes; 297 txc->offset = tx32.offset; 298 txc->freq = tx32.freq; 299 txc->maxerror = tx32.maxerror; 300 txc->esterror = tx32.esterror; 301 txc->status = tx32.status; 302 txc->constant = tx32.constant; 303 txc->precision = tx32.precision; 304 txc->tolerance = tx32.tolerance; 305 txc->time.tv_sec = tx32.time.tv_sec; 306 txc->time.tv_usec = tx32.time.tv_usec; 307 txc->tick = tx32.tick; 308 txc->ppsfreq = tx32.ppsfreq; 309 txc->jitter = tx32.jitter; 310 txc->shift = tx32.shift; 311 txc->stabil = tx32.stabil; 312 txc->jitcnt = tx32.jitcnt; 313 txc->calcnt = tx32.calcnt; 314 txc->errcnt = tx32.errcnt; 315 txc->stbcnt = tx32.stbcnt; 316 317 return 0; 318 } 319 320 int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc) 321 { 322 struct old_timex32 tx32; 323 324 memset(&tx32, 0, sizeof(struct old_timex32)); 325 tx32.modes = txc->modes; 326 tx32.offset = txc->offset; 327 tx32.freq = txc->freq; 328 tx32.maxerror = txc->maxerror; 329 tx32.esterror = txc->esterror; 330 tx32.status = txc->status; 331 tx32.constant = txc->constant; 332 tx32.precision = txc->precision; 333 tx32.tolerance = txc->tolerance; 334 tx32.time.tv_sec = txc->time.tv_sec; 335 tx32.time.tv_usec = txc->time.tv_usec; 336 tx32.tick = txc->tick; 337 tx32.ppsfreq = txc->ppsfreq; 338 tx32.jitter = txc->jitter; 339 tx32.shift = txc->shift; 340 tx32.stabil = txc->stabil; 341 tx32.jitcnt = txc->jitcnt; 342 tx32.calcnt = txc->calcnt; 343 tx32.errcnt = txc->errcnt; 344 tx32.stbcnt = txc->stbcnt; 345 tx32.tai = txc->tai; 346 if (copy_to_user(utp, &tx32, sizeof(struct old_timex32))) 347 return -EFAULT; 348 return 0; 349 } 350 351 SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp) 352 { 353 struct __kernel_timex txc; 354 int err, ret; 355 356 err = get_old_timex32(&txc, utp); 357 if (err) 358 return err; 359 360 ret = do_adjtimex(&txc); 361 362 err = put_old_timex32(utp, &txc); 363 if (err) 364 return err; 365 366 return ret; 367 } 368 #endif 369 370 /* 371 * Convert jiffies to milliseconds and back. 372 * 373 * Avoid unnecessary multiplications/divisions in the 374 * two most common HZ cases: 375 */ 376 unsigned int jiffies_to_msecs(const unsigned long j) 377 { 378 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 379 return (MSEC_PER_SEC / HZ) * j; 380 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 381 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); 382 #else 383 # if BITS_PER_LONG == 32 384 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >> 385 HZ_TO_MSEC_SHR32; 386 # else 387 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN); 388 # endif 389 #endif 390 } 391 EXPORT_SYMBOL(jiffies_to_msecs); 392 393 unsigned int jiffies_to_usecs(const unsigned long j) 394 { 395 /* 396 * Hz usually doesn't go much further MSEC_PER_SEC. 397 * jiffies_to_usecs() and usecs_to_jiffies() depend on that. 398 */ 399 BUILD_BUG_ON(HZ > USEC_PER_SEC); 400 401 #if !(USEC_PER_SEC % HZ) 402 return (USEC_PER_SEC / HZ) * j; 403 #else 404 # if BITS_PER_LONG == 32 405 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; 406 # else 407 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; 408 # endif 409 #endif 410 } 411 EXPORT_SYMBOL(jiffies_to_usecs); 412 413 /* 414 * mktime64 - Converts date to seconds. 415 * Converts Gregorian date to seconds since 1970-01-01 00:00:00. 416 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 417 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. 418 * 419 * [For the Julian calendar (which was used in Russia before 1917, 420 * Britain & colonies before 1752, anywhere else before 1582, 421 * and is still in use by some communities) leave out the 422 * -year/100+year/400 terms, and add 10.] 423 * 424 * This algorithm was first published by Gauss (I think). 425 * 426 * A leap second can be indicated by calling this function with sec as 427 * 60 (allowable under ISO 8601). The leap second is treated the same 428 * as the following second since they don't exist in UNIX time. 429 * 430 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight 431 * tomorrow - (allowable under ISO 8601) is supported. 432 */ 433 time64_t mktime64(const unsigned int year0, const unsigned int mon0, 434 const unsigned int day, const unsigned int hour, 435 const unsigned int min, const unsigned int sec) 436 { 437 unsigned int mon = mon0, year = year0; 438 439 /* 1..12 -> 11,12,1..10 */ 440 if (0 >= (int) (mon -= 2)) { 441 mon += 12; /* Puts Feb last since it has leap day */ 442 year -= 1; 443 } 444 445 return ((((time64_t) 446 (year/4 - year/100 + year/400 + 367*mon/12 + day) + 447 year*365 - 719499 448 )*24 + hour /* now have hours - midnight tomorrow handled here */ 449 )*60 + min /* now have minutes */ 450 )*60 + sec; /* finally seconds */ 451 } 452 EXPORT_SYMBOL(mktime64); 453 454 /** 455 * ns_to_timespec - Convert nanoseconds to timespec 456 * @nsec: the nanoseconds value to be converted 457 * 458 * Returns the timespec representation of the nsec parameter. 459 */ 460 struct timespec ns_to_timespec(const s64 nsec) 461 { 462 struct timespec ts; 463 s32 rem; 464 465 if (!nsec) 466 return (struct timespec) {0, 0}; 467 468 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 469 if (unlikely(rem < 0)) { 470 ts.tv_sec--; 471 rem += NSEC_PER_SEC; 472 } 473 ts.tv_nsec = rem; 474 475 return ts; 476 } 477 EXPORT_SYMBOL(ns_to_timespec); 478 479 /** 480 * ns_to_timeval - Convert nanoseconds to timeval 481 * @nsec: the nanoseconds value to be converted 482 * 483 * Returns the timeval representation of the nsec parameter. 484 */ 485 struct timeval ns_to_timeval(const s64 nsec) 486 { 487 struct timespec ts = ns_to_timespec(nsec); 488 struct timeval tv; 489 490 tv.tv_sec = ts.tv_sec; 491 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; 492 493 return tv; 494 } 495 EXPORT_SYMBOL(ns_to_timeval); 496 497 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec) 498 { 499 struct timespec64 ts = ns_to_timespec64(nsec); 500 struct __kernel_old_timeval tv; 501 502 tv.tv_sec = ts.tv_sec; 503 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000; 504 505 return tv; 506 } 507 EXPORT_SYMBOL(ns_to_kernel_old_timeval); 508 509 /** 510 * set_normalized_timespec - set timespec sec and nsec parts and normalize 511 * 512 * @ts: pointer to timespec variable to be set 513 * @sec: seconds to set 514 * @nsec: nanoseconds to set 515 * 516 * Set seconds and nanoseconds field of a timespec variable and 517 * normalize to the timespec storage format 518 * 519 * Note: The tv_nsec part is always in the range of 520 * 0 <= tv_nsec < NSEC_PER_SEC 521 * For negative values only the tv_sec field is negative ! 522 */ 523 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) 524 { 525 while (nsec >= NSEC_PER_SEC) { 526 /* 527 * The following asm() prevents the compiler from 528 * optimising this loop into a modulo operation. See 529 * also __iter_div_u64_rem() in include/linux/time.h 530 */ 531 asm("" : "+rm"(nsec)); 532 nsec -= NSEC_PER_SEC; 533 ++sec; 534 } 535 while (nsec < 0) { 536 asm("" : "+rm"(nsec)); 537 nsec += NSEC_PER_SEC; 538 --sec; 539 } 540 ts->tv_sec = sec; 541 ts->tv_nsec = nsec; 542 } 543 EXPORT_SYMBOL(set_normalized_timespec64); 544 545 /** 546 * ns_to_timespec64 - Convert nanoseconds to timespec64 547 * @nsec: the nanoseconds value to be converted 548 * 549 * Returns the timespec64 representation of the nsec parameter. 550 */ 551 struct timespec64 ns_to_timespec64(const s64 nsec) 552 { 553 struct timespec64 ts; 554 s32 rem; 555 556 if (!nsec) 557 return (struct timespec64) {0, 0}; 558 559 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 560 if (unlikely(rem < 0)) { 561 ts.tv_sec--; 562 rem += NSEC_PER_SEC; 563 } 564 ts.tv_nsec = rem; 565 566 return ts; 567 } 568 EXPORT_SYMBOL(ns_to_timespec64); 569 570 /** 571 * msecs_to_jiffies: - convert milliseconds to jiffies 572 * @m: time in milliseconds 573 * 574 * conversion is done as follows: 575 * 576 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 577 * 578 * - 'too large' values [that would result in larger than 579 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 580 * 581 * - all other values are converted to jiffies by either multiplying 582 * the input value by a factor or dividing it with a factor and 583 * handling any 32-bit overflows. 584 * for the details see __msecs_to_jiffies() 585 * 586 * msecs_to_jiffies() checks for the passed in value being a constant 587 * via __builtin_constant_p() allowing gcc to eliminate most of the 588 * code, __msecs_to_jiffies() is called if the value passed does not 589 * allow constant folding and the actual conversion must be done at 590 * runtime. 591 * the _msecs_to_jiffies helpers are the HZ dependent conversion 592 * routines found in include/linux/jiffies.h 593 */ 594 unsigned long __msecs_to_jiffies(const unsigned int m) 595 { 596 /* 597 * Negative value, means infinite timeout: 598 */ 599 if ((int)m < 0) 600 return MAX_JIFFY_OFFSET; 601 return _msecs_to_jiffies(m); 602 } 603 EXPORT_SYMBOL(__msecs_to_jiffies); 604 605 unsigned long __usecs_to_jiffies(const unsigned int u) 606 { 607 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 608 return MAX_JIFFY_OFFSET; 609 return _usecs_to_jiffies(u); 610 } 611 EXPORT_SYMBOL(__usecs_to_jiffies); 612 613 /* 614 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 615 * that a remainder subtract here would not do the right thing as the 616 * resolution values don't fall on second boundries. I.e. the line: 617 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 618 * Note that due to the small error in the multiplier here, this 619 * rounding is incorrect for sufficiently large values of tv_nsec, but 620 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're 621 * OK. 622 * 623 * Rather, we just shift the bits off the right. 624 * 625 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 626 * value to a scaled second value. 627 */ 628 static unsigned long 629 __timespec64_to_jiffies(u64 sec, long nsec) 630 { 631 nsec = nsec + TICK_NSEC - 1; 632 633 if (sec >= MAX_SEC_IN_JIFFIES){ 634 sec = MAX_SEC_IN_JIFFIES; 635 nsec = 0; 636 } 637 return ((sec * SEC_CONVERSION) + 638 (((u64)nsec * NSEC_CONVERSION) >> 639 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 640 641 } 642 643 static unsigned long 644 __timespec_to_jiffies(unsigned long sec, long nsec) 645 { 646 return __timespec64_to_jiffies((u64)sec, nsec); 647 } 648 649 unsigned long 650 timespec64_to_jiffies(const struct timespec64 *value) 651 { 652 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec); 653 } 654 EXPORT_SYMBOL(timespec64_to_jiffies); 655 656 void 657 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value) 658 { 659 /* 660 * Convert jiffies to nanoseconds and separate with 661 * one divide. 662 */ 663 u32 rem; 664 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 665 NSEC_PER_SEC, &rem); 666 value->tv_nsec = rem; 667 } 668 EXPORT_SYMBOL(jiffies_to_timespec64); 669 670 /* 671 * We could use a similar algorithm to timespec_to_jiffies (with a 672 * different multiplier for usec instead of nsec). But this has a 673 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the 674 * usec value, since it's not necessarily integral. 675 * 676 * We could instead round in the intermediate scaled representation 677 * (i.e. in units of 1/2^(large scale) jiffies) but that's also 678 * perilous: the scaling introduces a small positive error, which 679 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 680 * units to the intermediate before shifting) leads to accidental 681 * overflow and overestimates. 682 * 683 * At the cost of one additional multiplication by a constant, just 684 * use the timespec implementation. 685 */ 686 unsigned long 687 timeval_to_jiffies(const struct timeval *value) 688 { 689 return __timespec_to_jiffies(value->tv_sec, 690 value->tv_usec * NSEC_PER_USEC); 691 } 692 EXPORT_SYMBOL(timeval_to_jiffies); 693 694 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 695 { 696 /* 697 * Convert jiffies to nanoseconds and separate with 698 * one divide. 699 */ 700 u32 rem; 701 702 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 703 NSEC_PER_SEC, &rem); 704 value->tv_usec = rem / NSEC_PER_USEC; 705 } 706 EXPORT_SYMBOL(jiffies_to_timeval); 707 708 /* 709 * Convert jiffies/jiffies_64 to clock_t and back. 710 */ 711 clock_t jiffies_to_clock_t(unsigned long x) 712 { 713 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 714 # if HZ < USER_HZ 715 return x * (USER_HZ / HZ); 716 # else 717 return x / (HZ / USER_HZ); 718 # endif 719 #else 720 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); 721 #endif 722 } 723 EXPORT_SYMBOL(jiffies_to_clock_t); 724 725 unsigned long clock_t_to_jiffies(unsigned long x) 726 { 727 #if (HZ % USER_HZ)==0 728 if (x >= ~0UL / (HZ / USER_HZ)) 729 return ~0UL; 730 return x * (HZ / USER_HZ); 731 #else 732 /* Don't worry about loss of precision here .. */ 733 if (x >= ~0UL / HZ * USER_HZ) 734 return ~0UL; 735 736 /* .. but do try to contain it here */ 737 return div_u64((u64)x * HZ, USER_HZ); 738 #endif 739 } 740 EXPORT_SYMBOL(clock_t_to_jiffies); 741 742 u64 jiffies_64_to_clock_t(u64 x) 743 { 744 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 745 # if HZ < USER_HZ 746 x = div_u64(x * USER_HZ, HZ); 747 # elif HZ > USER_HZ 748 x = div_u64(x, HZ / USER_HZ); 749 # else 750 /* Nothing to do */ 751 # endif 752 #else 753 /* 754 * There are better ways that don't overflow early, 755 * but even this doesn't overflow in hundreds of years 756 * in 64 bits, so.. 757 */ 758 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); 759 #endif 760 return x; 761 } 762 EXPORT_SYMBOL(jiffies_64_to_clock_t); 763 764 u64 nsec_to_clock_t(u64 x) 765 { 766 #if (NSEC_PER_SEC % USER_HZ) == 0 767 return div_u64(x, NSEC_PER_SEC / USER_HZ); 768 #elif (USER_HZ % 512) == 0 769 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); 770 #else 771 /* 772 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 773 * overflow after 64.99 years. 774 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 775 */ 776 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); 777 #endif 778 } 779 780 u64 jiffies64_to_nsecs(u64 j) 781 { 782 #if !(NSEC_PER_SEC % HZ) 783 return (NSEC_PER_SEC / HZ) * j; 784 # else 785 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN); 786 #endif 787 } 788 EXPORT_SYMBOL(jiffies64_to_nsecs); 789 790 u64 jiffies64_to_msecs(const u64 j) 791 { 792 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 793 return (MSEC_PER_SEC / HZ) * j; 794 #else 795 return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN); 796 #endif 797 } 798 EXPORT_SYMBOL(jiffies64_to_msecs); 799 800 /** 801 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 802 * 803 * @n: nsecs in u64 804 * 805 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 806 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 807 * for scheduler, not for use in device drivers to calculate timeout value. 808 * 809 * note: 810 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 811 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 812 */ 813 u64 nsecs_to_jiffies64(u64 n) 814 { 815 #if (NSEC_PER_SEC % HZ) == 0 816 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ 817 return div_u64(n, NSEC_PER_SEC / HZ); 818 #elif (HZ % 512) == 0 819 /* overflow after 292 years if HZ = 1024 */ 820 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); 821 #else 822 /* 823 * Generic case - optimized for cases where HZ is a multiple of 3. 824 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. 825 */ 826 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); 827 #endif 828 } 829 EXPORT_SYMBOL(nsecs_to_jiffies64); 830 831 /** 832 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies 833 * 834 * @n: nsecs in u64 835 * 836 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. 837 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed 838 * for scheduler, not for use in device drivers to calculate timeout value. 839 * 840 * note: 841 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) 842 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years 843 */ 844 unsigned long nsecs_to_jiffies(u64 n) 845 { 846 return (unsigned long)nsecs_to_jiffies64(n); 847 } 848 EXPORT_SYMBOL_GPL(nsecs_to_jiffies); 849 850 /* 851 * Add two timespec64 values and do a safety check for overflow. 852 * It's assumed that both values are valid (>= 0). 853 * And, each timespec64 is in normalized form. 854 */ 855 struct timespec64 timespec64_add_safe(const struct timespec64 lhs, 856 const struct timespec64 rhs) 857 { 858 struct timespec64 res; 859 860 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec, 861 lhs.tv_nsec + rhs.tv_nsec); 862 863 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) { 864 res.tv_sec = TIME64_MAX; 865 res.tv_nsec = 0; 866 } 867 868 return res; 869 } 870 871 int get_timespec64(struct timespec64 *ts, 872 const struct __kernel_timespec __user *uts) 873 { 874 struct __kernel_timespec kts; 875 int ret; 876 877 ret = copy_from_user(&kts, uts, sizeof(kts)); 878 if (ret) 879 return -EFAULT; 880 881 ts->tv_sec = kts.tv_sec; 882 883 /* Zero out the padding for 32 bit systems or in compat mode */ 884 if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall()) 885 kts.tv_nsec &= 0xFFFFFFFFUL; 886 887 ts->tv_nsec = kts.tv_nsec; 888 889 return 0; 890 } 891 EXPORT_SYMBOL_GPL(get_timespec64); 892 893 int put_timespec64(const struct timespec64 *ts, 894 struct __kernel_timespec __user *uts) 895 { 896 struct __kernel_timespec kts = { 897 .tv_sec = ts->tv_sec, 898 .tv_nsec = ts->tv_nsec 899 }; 900 901 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0; 902 } 903 EXPORT_SYMBOL_GPL(put_timespec64); 904 905 static int __get_old_timespec32(struct timespec64 *ts64, 906 const struct old_timespec32 __user *cts) 907 { 908 struct old_timespec32 ts; 909 int ret; 910 911 ret = copy_from_user(&ts, cts, sizeof(ts)); 912 if (ret) 913 return -EFAULT; 914 915 ts64->tv_sec = ts.tv_sec; 916 ts64->tv_nsec = ts.tv_nsec; 917 918 return 0; 919 } 920 921 static int __put_old_timespec32(const struct timespec64 *ts64, 922 struct old_timespec32 __user *cts) 923 { 924 struct old_timespec32 ts = { 925 .tv_sec = ts64->tv_sec, 926 .tv_nsec = ts64->tv_nsec 927 }; 928 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0; 929 } 930 931 int get_old_timespec32(struct timespec64 *ts, const void __user *uts) 932 { 933 if (COMPAT_USE_64BIT_TIME) 934 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0; 935 else 936 return __get_old_timespec32(ts, uts); 937 } 938 EXPORT_SYMBOL_GPL(get_old_timespec32); 939 940 int put_old_timespec32(const struct timespec64 *ts, void __user *uts) 941 { 942 if (COMPAT_USE_64BIT_TIME) 943 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0; 944 else 945 return __put_old_timespec32(ts, uts); 946 } 947 EXPORT_SYMBOL_GPL(put_old_timespec32); 948 949 int get_itimerspec64(struct itimerspec64 *it, 950 const struct __kernel_itimerspec __user *uit) 951 { 952 int ret; 953 954 ret = get_timespec64(&it->it_interval, &uit->it_interval); 955 if (ret) 956 return ret; 957 958 ret = get_timespec64(&it->it_value, &uit->it_value); 959 960 return ret; 961 } 962 EXPORT_SYMBOL_GPL(get_itimerspec64); 963 964 int put_itimerspec64(const struct itimerspec64 *it, 965 struct __kernel_itimerspec __user *uit) 966 { 967 int ret; 968 969 ret = put_timespec64(&it->it_interval, &uit->it_interval); 970 if (ret) 971 return ret; 972 973 ret = put_timespec64(&it->it_value, &uit->it_value); 974 975 return ret; 976 } 977 EXPORT_SYMBOL_GPL(put_itimerspec64); 978 979 int get_old_itimerspec32(struct itimerspec64 *its, 980 const struct old_itimerspec32 __user *uits) 981 { 982 983 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) || 984 __get_old_timespec32(&its->it_value, &uits->it_value)) 985 return -EFAULT; 986 return 0; 987 } 988 EXPORT_SYMBOL_GPL(get_old_itimerspec32); 989 990 int put_old_itimerspec32(const struct itimerspec64 *its, 991 struct old_itimerspec32 __user *uits) 992 { 993 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) || 994 __put_old_timespec32(&its->it_value, &uits->it_value)) 995 return -EFAULT; 996 return 0; 997 } 998 EXPORT_SYMBOL_GPL(put_old_itimerspec32); 999