xref: /openbmc/linux/kernel/time/time.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46 
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52 
53 EXPORT_SYMBOL(sys_tz);
54 
55 #ifdef __ARCH_WANT_SYS_TIME
56 
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 	time_t i = get_seconds();
66 
67 	if (tloc) {
68 		if (put_user(i,tloc))
69 			return -EFAULT;
70 	}
71 	force_successful_syscall_return();
72 	return i;
73 }
74 
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81 
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 	struct timespec tv;
85 	int err;
86 
87 	if (get_user(tv.tv_sec, tptr))
88 		return -EFAULT;
89 
90 	tv.tv_nsec = 0;
91 
92 	err = security_settime(&tv, NULL);
93 	if (err)
94 		return err;
95 
96 	do_settimeofday(&tv);
97 	return 0;
98 }
99 
100 #endif /* __ARCH_WANT_SYS_TIME */
101 
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 		struct timezone __user *, tz)
104 {
105 	if (likely(tv != NULL)) {
106 		struct timeval ktv;
107 		do_gettimeofday(&ktv);
108 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 			return -EFAULT;
110 	}
111 	if (unlikely(tz != NULL)) {
112 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Indicates if there is an offset between the system clock and the hardware
120  * clock/persistent clock/rtc.
121  */
122 int persistent_clock_is_local;
123 
124 /*
125  * Adjust the time obtained from the CMOS to be UTC time instead of
126  * local time.
127  *
128  * This is ugly, but preferable to the alternatives.  Otherwise we
129  * would either need to write a program to do it in /etc/rc (and risk
130  * confusion if the program gets run more than once; it would also be
131  * hard to make the program warp the clock precisely n hours)  or
132  * compile in the timezone information into the kernel.  Bad, bad....
133  *
134  *						- TYT, 1992-01-01
135  *
136  * The best thing to do is to keep the CMOS clock in universal time (UTC)
137  * as real UNIX machines always do it. This avoids all headaches about
138  * daylight saving times and warping kernel clocks.
139  */
140 static inline void warp_clock(void)
141 {
142 	if (sys_tz.tz_minuteswest != 0) {
143 		struct timespec adjust;
144 
145 		persistent_clock_is_local = 1;
146 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 		adjust.tv_nsec = 0;
148 		timekeeping_inject_offset(&adjust);
149 	}
150 }
151 
152 /*
153  * In case for some reason the CMOS clock has not already been running
154  * in UTC, but in some local time: The first time we set the timezone,
155  * we will warp the clock so that it is ticking UTC time instead of
156  * local time. Presumably, if someone is setting the timezone then we
157  * are running in an environment where the programs understand about
158  * timezones. This should be done at boot time in the /etc/rc script,
159  * as soon as possible, so that the clock can be set right. Otherwise,
160  * various programs will get confused when the clock gets warped.
161  */
162 
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 	static int firsttime = 1;
166 	int error = 0;
167 
168 	if (tv && !timespec_valid(tv))
169 		return -EINVAL;
170 
171 	error = security_settime(tv, tz);
172 	if (error)
173 		return error;
174 
175 	if (tz) {
176 		/* Verify we're witin the +-15 hrs range */
177 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 			return -EINVAL;
179 
180 		sys_tz = *tz;
181 		update_vsyscall_tz();
182 		if (firsttime) {
183 			firsttime = 0;
184 			if (!tv)
185 				warp_clock();
186 		}
187 	}
188 	if (tv)
189 		return do_settimeofday(tv);
190 	return 0;
191 }
192 
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 		struct timezone __user *, tz)
195 {
196 	struct timeval user_tv;
197 	struct timespec	new_ts;
198 	struct timezone new_tz;
199 
200 	if (tv) {
201 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 			return -EFAULT;
203 
204 		if (!timeval_valid(&user_tv))
205 			return -EINVAL;
206 
207 		new_ts.tv_sec = user_tv.tv_sec;
208 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 	}
210 	if (tz) {
211 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 			return -EFAULT;
213 	}
214 
215 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216 }
217 
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219 {
220 	struct timex txc;		/* Local copy of parameter */
221 	int ret;
222 
223 	/* Copy the user data space into the kernel copy
224 	 * structure. But bear in mind that the structures
225 	 * may change
226 	 */
227 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 		return -EFAULT;
229 	ret = do_adjtimex(&txc);
230 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231 }
232 
233 /**
234  * current_fs_time - Return FS time
235  * @sb: Superblock.
236  *
237  * Return the current time truncated to the time granularity supported by
238  * the fs.
239  */
240 struct timespec current_fs_time(struct super_block *sb)
241 {
242 	struct timespec now = current_kernel_time();
243 	return timespec_trunc(now, sb->s_time_gran);
244 }
245 EXPORT_SYMBOL(current_fs_time);
246 
247 /*
248  * Convert jiffies to milliseconds and back.
249  *
250  * Avoid unnecessary multiplications/divisions in the
251  * two most common HZ cases:
252  */
253 unsigned int jiffies_to_msecs(const unsigned long j)
254 {
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 	return (MSEC_PER_SEC / HZ) * j;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259 #else
260 # if BITS_PER_LONG == 32
261 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 # else
263 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264 # endif
265 #endif
266 }
267 EXPORT_SYMBOL(jiffies_to_msecs);
268 
269 unsigned int jiffies_to_usecs(const unsigned long j)
270 {
271 	/*
272 	 * Hz usually doesn't go much further MSEC_PER_SEC.
273 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
274 	 */
275 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
276 
277 #if !(USEC_PER_SEC % HZ)
278 	return (USEC_PER_SEC / HZ) * j;
279 #else
280 # if BITS_PER_LONG == 32
281 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282 # else
283 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284 # endif
285 #endif
286 }
287 EXPORT_SYMBOL(jiffies_to_usecs);
288 
289 /**
290  * timespec_trunc - Truncate timespec to a granularity
291  * @t: Timespec
292  * @gran: Granularity in ns.
293  *
294  * Truncate a timespec to a granularity. Always rounds down. gran must
295  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
296  */
297 struct timespec timespec_trunc(struct timespec t, unsigned gran)
298 {
299 	/* Avoid division in the common cases 1 ns and 1 s. */
300 	if (gran == 1) {
301 		/* nothing */
302 	} else if (gran == NSEC_PER_SEC) {
303 		t.tv_nsec = 0;
304 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
305 		t.tv_nsec -= t.tv_nsec % gran;
306 	} else {
307 		WARN(1, "illegal file time granularity: %u", gran);
308 	}
309 	return t;
310 }
311 EXPORT_SYMBOL(timespec_trunc);
312 
313 /*
314  * mktime64 - Converts date to seconds.
315  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
317  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
318  *
319  * [For the Julian calendar (which was used in Russia before 1917,
320  * Britain & colonies before 1752, anywhere else before 1582,
321  * and is still in use by some communities) leave out the
322  * -year/100+year/400 terms, and add 10.]
323  *
324  * This algorithm was first published by Gauss (I think).
325  */
326 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
327 		const unsigned int day, const unsigned int hour,
328 		const unsigned int min, const unsigned int sec)
329 {
330 	unsigned int mon = mon0, year = year0;
331 
332 	/* 1..12 -> 11,12,1..10 */
333 	if (0 >= (int) (mon -= 2)) {
334 		mon += 12;	/* Puts Feb last since it has leap day */
335 		year -= 1;
336 	}
337 
338 	return ((((time64_t)
339 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
340 		  year*365 - 719499
341 	    )*24 + hour /* now have hours */
342 	  )*60 + min /* now have minutes */
343 	)*60 + sec; /* finally seconds */
344 }
345 EXPORT_SYMBOL(mktime64);
346 
347 /**
348  * set_normalized_timespec - set timespec sec and nsec parts and normalize
349  *
350  * @ts:		pointer to timespec variable to be set
351  * @sec:	seconds to set
352  * @nsec:	nanoseconds to set
353  *
354  * Set seconds and nanoseconds field of a timespec variable and
355  * normalize to the timespec storage format
356  *
357  * Note: The tv_nsec part is always in the range of
358  *	0 <= tv_nsec < NSEC_PER_SEC
359  * For negative values only the tv_sec field is negative !
360  */
361 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
362 {
363 	while (nsec >= NSEC_PER_SEC) {
364 		/*
365 		 * The following asm() prevents the compiler from
366 		 * optimising this loop into a modulo operation. See
367 		 * also __iter_div_u64_rem() in include/linux/time.h
368 		 */
369 		asm("" : "+rm"(nsec));
370 		nsec -= NSEC_PER_SEC;
371 		++sec;
372 	}
373 	while (nsec < 0) {
374 		asm("" : "+rm"(nsec));
375 		nsec += NSEC_PER_SEC;
376 		--sec;
377 	}
378 	ts->tv_sec = sec;
379 	ts->tv_nsec = nsec;
380 }
381 EXPORT_SYMBOL(set_normalized_timespec);
382 
383 /**
384  * ns_to_timespec - Convert nanoseconds to timespec
385  * @nsec:       the nanoseconds value to be converted
386  *
387  * Returns the timespec representation of the nsec parameter.
388  */
389 struct timespec ns_to_timespec(const s64 nsec)
390 {
391 	struct timespec ts;
392 	s32 rem;
393 
394 	if (!nsec)
395 		return (struct timespec) {0, 0};
396 
397 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
398 	if (unlikely(rem < 0)) {
399 		ts.tv_sec--;
400 		rem += NSEC_PER_SEC;
401 	}
402 	ts.tv_nsec = rem;
403 
404 	return ts;
405 }
406 EXPORT_SYMBOL(ns_to_timespec);
407 
408 /**
409  * ns_to_timeval - Convert nanoseconds to timeval
410  * @nsec:       the nanoseconds value to be converted
411  *
412  * Returns the timeval representation of the nsec parameter.
413  */
414 struct timeval ns_to_timeval(const s64 nsec)
415 {
416 	struct timespec ts = ns_to_timespec(nsec);
417 	struct timeval tv;
418 
419 	tv.tv_sec = ts.tv_sec;
420 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
421 
422 	return tv;
423 }
424 EXPORT_SYMBOL(ns_to_timeval);
425 
426 #if BITS_PER_LONG == 32
427 /**
428  * set_normalized_timespec - set timespec sec and nsec parts and normalize
429  *
430  * @ts:		pointer to timespec variable to be set
431  * @sec:	seconds to set
432  * @nsec:	nanoseconds to set
433  *
434  * Set seconds and nanoseconds field of a timespec variable and
435  * normalize to the timespec storage format
436  *
437  * Note: The tv_nsec part is always in the range of
438  *	0 <= tv_nsec < NSEC_PER_SEC
439  * For negative values only the tv_sec field is negative !
440  */
441 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
442 {
443 	while (nsec >= NSEC_PER_SEC) {
444 		/*
445 		 * The following asm() prevents the compiler from
446 		 * optimising this loop into a modulo operation. See
447 		 * also __iter_div_u64_rem() in include/linux/time.h
448 		 */
449 		asm("" : "+rm"(nsec));
450 		nsec -= NSEC_PER_SEC;
451 		++sec;
452 	}
453 	while (nsec < 0) {
454 		asm("" : "+rm"(nsec));
455 		nsec += NSEC_PER_SEC;
456 		--sec;
457 	}
458 	ts->tv_sec = sec;
459 	ts->tv_nsec = nsec;
460 }
461 EXPORT_SYMBOL(set_normalized_timespec64);
462 
463 /**
464  * ns_to_timespec64 - Convert nanoseconds to timespec64
465  * @nsec:       the nanoseconds value to be converted
466  *
467  * Returns the timespec64 representation of the nsec parameter.
468  */
469 struct timespec64 ns_to_timespec64(const s64 nsec)
470 {
471 	struct timespec64 ts;
472 	s32 rem;
473 
474 	if (!nsec)
475 		return (struct timespec64) {0, 0};
476 
477 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
478 	if (unlikely(rem < 0)) {
479 		ts.tv_sec--;
480 		rem += NSEC_PER_SEC;
481 	}
482 	ts.tv_nsec = rem;
483 
484 	return ts;
485 }
486 EXPORT_SYMBOL(ns_to_timespec64);
487 #endif
488 /**
489  * msecs_to_jiffies: - convert milliseconds to jiffies
490  * @m:	time in milliseconds
491  *
492  * conversion is done as follows:
493  *
494  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
495  *
496  * - 'too large' values [that would result in larger than
497  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
498  *
499  * - all other values are converted to jiffies by either multiplying
500  *   the input value by a factor or dividing it with a factor and
501  *   handling any 32-bit overflows.
502  *   for the details see __msecs_to_jiffies()
503  *
504  * msecs_to_jiffies() checks for the passed in value being a constant
505  * via __builtin_constant_p() allowing gcc to eliminate most of the
506  * code, __msecs_to_jiffies() is called if the value passed does not
507  * allow constant folding and the actual conversion must be done at
508  * runtime.
509  * the _msecs_to_jiffies helpers are the HZ dependent conversion
510  * routines found in include/linux/jiffies.h
511  */
512 unsigned long __msecs_to_jiffies(const unsigned int m)
513 {
514 	/*
515 	 * Negative value, means infinite timeout:
516 	 */
517 	if ((int)m < 0)
518 		return MAX_JIFFY_OFFSET;
519 	return _msecs_to_jiffies(m);
520 }
521 EXPORT_SYMBOL(__msecs_to_jiffies);
522 
523 unsigned long __usecs_to_jiffies(const unsigned int u)
524 {
525 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
526 		return MAX_JIFFY_OFFSET;
527 	return _usecs_to_jiffies(u);
528 }
529 EXPORT_SYMBOL(__usecs_to_jiffies);
530 
531 /*
532  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
533  * that a remainder subtract here would not do the right thing as the
534  * resolution values don't fall on second boundries.  I.e. the line:
535  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
536  * Note that due to the small error in the multiplier here, this
537  * rounding is incorrect for sufficiently large values of tv_nsec, but
538  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
539  * OK.
540  *
541  * Rather, we just shift the bits off the right.
542  *
543  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
544  * value to a scaled second value.
545  */
546 static unsigned long
547 __timespec64_to_jiffies(u64 sec, long nsec)
548 {
549 	nsec = nsec + TICK_NSEC - 1;
550 
551 	if (sec >= MAX_SEC_IN_JIFFIES){
552 		sec = MAX_SEC_IN_JIFFIES;
553 		nsec = 0;
554 	}
555 	return ((sec * SEC_CONVERSION) +
556 		(((u64)nsec * NSEC_CONVERSION) >>
557 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
558 
559 }
560 
561 static unsigned long
562 __timespec_to_jiffies(unsigned long sec, long nsec)
563 {
564 	return __timespec64_to_jiffies((u64)sec, nsec);
565 }
566 
567 unsigned long
568 timespec64_to_jiffies(const struct timespec64 *value)
569 {
570 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
571 }
572 EXPORT_SYMBOL(timespec64_to_jiffies);
573 
574 void
575 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
576 {
577 	/*
578 	 * Convert jiffies to nanoseconds and separate with
579 	 * one divide.
580 	 */
581 	u32 rem;
582 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
583 				    NSEC_PER_SEC, &rem);
584 	value->tv_nsec = rem;
585 }
586 EXPORT_SYMBOL(jiffies_to_timespec64);
587 
588 /*
589  * We could use a similar algorithm to timespec_to_jiffies (with a
590  * different multiplier for usec instead of nsec). But this has a
591  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
592  * usec value, since it's not necessarily integral.
593  *
594  * We could instead round in the intermediate scaled representation
595  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
596  * perilous: the scaling introduces a small positive error, which
597  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
598  * units to the intermediate before shifting) leads to accidental
599  * overflow and overestimates.
600  *
601  * At the cost of one additional multiplication by a constant, just
602  * use the timespec implementation.
603  */
604 unsigned long
605 timeval_to_jiffies(const struct timeval *value)
606 {
607 	return __timespec_to_jiffies(value->tv_sec,
608 				     value->tv_usec * NSEC_PER_USEC);
609 }
610 EXPORT_SYMBOL(timeval_to_jiffies);
611 
612 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
613 {
614 	/*
615 	 * Convert jiffies to nanoseconds and separate with
616 	 * one divide.
617 	 */
618 	u32 rem;
619 
620 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
621 				    NSEC_PER_SEC, &rem);
622 	value->tv_usec = rem / NSEC_PER_USEC;
623 }
624 EXPORT_SYMBOL(jiffies_to_timeval);
625 
626 /*
627  * Convert jiffies/jiffies_64 to clock_t and back.
628  */
629 clock_t jiffies_to_clock_t(unsigned long x)
630 {
631 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
632 # if HZ < USER_HZ
633 	return x * (USER_HZ / HZ);
634 # else
635 	return x / (HZ / USER_HZ);
636 # endif
637 #else
638 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
639 #endif
640 }
641 EXPORT_SYMBOL(jiffies_to_clock_t);
642 
643 unsigned long clock_t_to_jiffies(unsigned long x)
644 {
645 #if (HZ % USER_HZ)==0
646 	if (x >= ~0UL / (HZ / USER_HZ))
647 		return ~0UL;
648 	return x * (HZ / USER_HZ);
649 #else
650 	/* Don't worry about loss of precision here .. */
651 	if (x >= ~0UL / HZ * USER_HZ)
652 		return ~0UL;
653 
654 	/* .. but do try to contain it here */
655 	return div_u64((u64)x * HZ, USER_HZ);
656 #endif
657 }
658 EXPORT_SYMBOL(clock_t_to_jiffies);
659 
660 u64 jiffies_64_to_clock_t(u64 x)
661 {
662 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
663 # if HZ < USER_HZ
664 	x = div_u64(x * USER_HZ, HZ);
665 # elif HZ > USER_HZ
666 	x = div_u64(x, HZ / USER_HZ);
667 # else
668 	/* Nothing to do */
669 # endif
670 #else
671 	/*
672 	 * There are better ways that don't overflow early,
673 	 * but even this doesn't overflow in hundreds of years
674 	 * in 64 bits, so..
675 	 */
676 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
677 #endif
678 	return x;
679 }
680 EXPORT_SYMBOL(jiffies_64_to_clock_t);
681 
682 u64 nsec_to_clock_t(u64 x)
683 {
684 #if (NSEC_PER_SEC % USER_HZ) == 0
685 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
686 #elif (USER_HZ % 512) == 0
687 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
688 #else
689 	/*
690          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
691          * overflow after 64.99 years.
692          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
693          */
694 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
695 #endif
696 }
697 
698 /**
699  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
700  *
701  * @n:	nsecs in u64
702  *
703  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
704  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
705  * for scheduler, not for use in device drivers to calculate timeout value.
706  *
707  * note:
708  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
709  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
710  */
711 u64 nsecs_to_jiffies64(u64 n)
712 {
713 #if (NSEC_PER_SEC % HZ) == 0
714 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
715 	return div_u64(n, NSEC_PER_SEC / HZ);
716 #elif (HZ % 512) == 0
717 	/* overflow after 292 years if HZ = 1024 */
718 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
719 #else
720 	/*
721 	 * Generic case - optimized for cases where HZ is a multiple of 3.
722 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
723 	 */
724 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
725 #endif
726 }
727 EXPORT_SYMBOL(nsecs_to_jiffies64);
728 
729 /**
730  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
731  *
732  * @n:	nsecs in u64
733  *
734  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
735  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
736  * for scheduler, not for use in device drivers to calculate timeout value.
737  *
738  * note:
739  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
740  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
741  */
742 unsigned long nsecs_to_jiffies(u64 n)
743 {
744 	return (unsigned long)nsecs_to_jiffies64(n);
745 }
746 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
747 
748 /*
749  * Add two timespec values and do a safety check for overflow.
750  * It's assumed that both values are valid (>= 0)
751  */
752 struct timespec timespec_add_safe(const struct timespec lhs,
753 				  const struct timespec rhs)
754 {
755 	struct timespec res;
756 
757 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
758 				lhs.tv_nsec + rhs.tv_nsec);
759 
760 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
761 		res.tv_sec = TIME_T_MAX;
762 
763 	return res;
764 }
765