xref: /openbmc/linux/kernel/time/tick-sched.c (revision ff442c51)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by jiffies_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding jiffies_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with jiffies_lock held */
60 	write_seqlock(&jiffies_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&jiffies_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&jiffies_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&jiffies_lock);
99 	return period;
100 }
101 
102 
103 static void tick_sched_do_timer(ktime_t now)
104 {
105 	int cpu = smp_processor_id();
106 
107 #ifdef CONFIG_NO_HZ_COMMON
108 	/*
109 	 * Check if the do_timer duty was dropped. We don't care about
110 	 * concurrency: This happens only when the cpu in charge went
111 	 * into a long sleep. If two cpus happen to assign themself to
112 	 * this duty, then the jiffies update is still serialized by
113 	 * jiffies_lock.
114 	 */
115 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
116 	    && !tick_nohz_full_cpu(cpu))
117 		tick_do_timer_cpu = cpu;
118 #endif
119 
120 	/* Check, if the jiffies need an update */
121 	if (tick_do_timer_cpu == cpu)
122 		tick_do_update_jiffies64(now);
123 }
124 
125 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
126 {
127 #ifdef CONFIG_NO_HZ_COMMON
128 	/*
129 	 * When we are idle and the tick is stopped, we have to touch
130 	 * the watchdog as we might not schedule for a really long
131 	 * time. This happens on complete idle SMP systems while
132 	 * waiting on the login prompt. We also increment the "start of
133 	 * idle" jiffy stamp so the idle accounting adjustment we do
134 	 * when we go busy again does not account too much ticks.
135 	 */
136 	if (ts->tick_stopped) {
137 		touch_softlockup_watchdog();
138 		if (is_idle_task(current))
139 			ts->idle_jiffies++;
140 	}
141 #endif
142 	update_process_times(user_mode(regs));
143 	profile_tick(CPU_PROFILING);
144 }
145 
146 #ifdef CONFIG_NO_HZ_FULL
147 static cpumask_var_t nohz_full_mask;
148 bool have_nohz_full_mask;
149 
150 /*
151  * Re-evaluate the need for the tick on the current CPU
152  * and restart it if necessary.
153  */
154 void tick_nohz_full_check(void)
155 {
156 	/*
157 	 * STUB for now, will be filled with the full tick stop/restart
158 	 * infrastructure patches
159 	 */
160 }
161 
162 static void nohz_full_kick_work_func(struct irq_work *work)
163 {
164 	tick_nohz_full_check();
165 }
166 
167 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
168 	.func = nohz_full_kick_work_func,
169 };
170 
171 /*
172  * Kick the current CPU if it's full dynticks in order to force it to
173  * re-evaluate its dependency on the tick and restart it if necessary.
174  */
175 void tick_nohz_full_kick(void)
176 {
177 	if (tick_nohz_full_cpu(smp_processor_id()))
178 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
179 }
180 
181 static void nohz_full_kick_ipi(void *info)
182 {
183 	tick_nohz_full_check();
184 }
185 
186 /*
187  * Kick all full dynticks CPUs in order to force these to re-evaluate
188  * their dependency on the tick and restart it if necessary.
189  */
190 void tick_nohz_full_kick_all(void)
191 {
192 	if (!have_nohz_full_mask)
193 		return;
194 
195 	preempt_disable();
196 	smp_call_function_many(nohz_full_mask,
197 			       nohz_full_kick_ipi, NULL, false);
198 	preempt_enable();
199 }
200 
201 int tick_nohz_full_cpu(int cpu)
202 {
203 	if (!have_nohz_full_mask)
204 		return 0;
205 
206 	return cpumask_test_cpu(cpu, nohz_full_mask);
207 }
208 
209 /* Parse the boot-time nohz CPU list from the kernel parameters. */
210 static int __init tick_nohz_full_setup(char *str)
211 {
212 	int cpu;
213 
214 	alloc_bootmem_cpumask_var(&nohz_full_mask);
215 	if (cpulist_parse(str, nohz_full_mask) < 0) {
216 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
217 		return 1;
218 	}
219 
220 	cpu = smp_processor_id();
221 	if (cpumask_test_cpu(cpu, nohz_full_mask)) {
222 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
223 		cpumask_clear_cpu(cpu, nohz_full_mask);
224 	}
225 	have_nohz_full_mask = true;
226 
227 	return 1;
228 }
229 __setup("nohz_full=", tick_nohz_full_setup);
230 
231 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
232 						 unsigned long action,
233 						 void *hcpu)
234 {
235 	unsigned int cpu = (unsigned long)hcpu;
236 
237 	switch (action & ~CPU_TASKS_FROZEN) {
238 	case CPU_DOWN_PREPARE:
239 		/*
240 		 * If we handle the timekeeping duty for full dynticks CPUs,
241 		 * we can't safely shutdown that CPU.
242 		 */
243 		if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
244 			return -EINVAL;
245 		break;
246 	}
247 	return NOTIFY_OK;
248 }
249 
250 /*
251  * Worst case string length in chunks of CPU range seems 2 steps
252  * separations: 0,2,4,6,...
253  * This is NR_CPUS + sizeof('\0')
254  */
255 static char __initdata nohz_full_buf[NR_CPUS + 1];
256 
257 static int tick_nohz_init_all(void)
258 {
259 	int err = -1;
260 
261 #ifdef CONFIG_NO_HZ_FULL_ALL
262 	if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
263 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
264 		return err;
265 	}
266 	err = 0;
267 	cpumask_setall(nohz_full_mask);
268 	cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
269 	have_nohz_full_mask = true;
270 #endif
271 	return err;
272 }
273 
274 void __init tick_nohz_init(void)
275 {
276 	int cpu;
277 
278 	if (!have_nohz_full_mask) {
279 		if (tick_nohz_init_all() < 0)
280 			return;
281 	}
282 
283 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
284 
285 	/* Make sure full dynticks CPU are also RCU nocbs */
286 	for_each_cpu(cpu, nohz_full_mask) {
287 		if (!rcu_is_nocb_cpu(cpu)) {
288 			pr_warning("NO_HZ: CPU %d is not RCU nocb: "
289 				   "cleared from nohz_full range", cpu);
290 			cpumask_clear_cpu(cpu, nohz_full_mask);
291 		}
292 	}
293 
294 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
295 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
296 }
297 #else
298 #define have_nohz_full_mask (0)
299 #endif
300 
301 /*
302  * NOHZ - aka dynamic tick functionality
303  */
304 #ifdef CONFIG_NO_HZ_COMMON
305 /*
306  * NO HZ enabled ?
307  */
308 int tick_nohz_enabled __read_mostly  = 1;
309 
310 /*
311  * Enable / Disable tickless mode
312  */
313 static int __init setup_tick_nohz(char *str)
314 {
315 	if (!strcmp(str, "off"))
316 		tick_nohz_enabled = 0;
317 	else if (!strcmp(str, "on"))
318 		tick_nohz_enabled = 1;
319 	else
320 		return 0;
321 	return 1;
322 }
323 
324 __setup("nohz=", setup_tick_nohz);
325 
326 /**
327  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
328  *
329  * Called from interrupt entry when the CPU was idle
330  *
331  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
332  * must be updated. Otherwise an interrupt handler could use a stale jiffy
333  * value. We do this unconditionally on any cpu, as we don't know whether the
334  * cpu, which has the update task assigned is in a long sleep.
335  */
336 static void tick_nohz_update_jiffies(ktime_t now)
337 {
338 	int cpu = smp_processor_id();
339 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
340 	unsigned long flags;
341 
342 	ts->idle_waketime = now;
343 
344 	local_irq_save(flags);
345 	tick_do_update_jiffies64(now);
346 	local_irq_restore(flags);
347 
348 	touch_softlockup_watchdog();
349 }
350 
351 /*
352  * Updates the per cpu time idle statistics counters
353  */
354 static void
355 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
356 {
357 	ktime_t delta;
358 
359 	if (ts->idle_active) {
360 		delta = ktime_sub(now, ts->idle_entrytime);
361 		if (nr_iowait_cpu(cpu) > 0)
362 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
363 		else
364 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
365 		ts->idle_entrytime = now;
366 	}
367 
368 	if (last_update_time)
369 		*last_update_time = ktime_to_us(now);
370 
371 }
372 
373 static void tick_nohz_stop_idle(int cpu, ktime_t now)
374 {
375 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
376 
377 	update_ts_time_stats(cpu, ts, now, NULL);
378 	ts->idle_active = 0;
379 
380 	sched_clock_idle_wakeup_event(0);
381 }
382 
383 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
384 {
385 	ktime_t now = ktime_get();
386 
387 	ts->idle_entrytime = now;
388 	ts->idle_active = 1;
389 	sched_clock_idle_sleep_event();
390 	return now;
391 }
392 
393 /**
394  * get_cpu_idle_time_us - get the total idle time of a cpu
395  * @cpu: CPU number to query
396  * @last_update_time: variable to store update time in. Do not update
397  * counters if NULL.
398  *
399  * Return the cummulative idle time (since boot) for a given
400  * CPU, in microseconds.
401  *
402  * This time is measured via accounting rather than sampling,
403  * and is as accurate as ktime_get() is.
404  *
405  * This function returns -1 if NOHZ is not enabled.
406  */
407 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
408 {
409 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
410 	ktime_t now, idle;
411 
412 	if (!tick_nohz_enabled)
413 		return -1;
414 
415 	now = ktime_get();
416 	if (last_update_time) {
417 		update_ts_time_stats(cpu, ts, now, last_update_time);
418 		idle = ts->idle_sleeptime;
419 	} else {
420 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
421 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
422 
423 			idle = ktime_add(ts->idle_sleeptime, delta);
424 		} else {
425 			idle = ts->idle_sleeptime;
426 		}
427 	}
428 
429 	return ktime_to_us(idle);
430 
431 }
432 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
433 
434 /**
435  * get_cpu_iowait_time_us - get the total iowait time of a cpu
436  * @cpu: CPU number to query
437  * @last_update_time: variable to store update time in. Do not update
438  * counters if NULL.
439  *
440  * Return the cummulative iowait time (since boot) for a given
441  * CPU, in microseconds.
442  *
443  * This time is measured via accounting rather than sampling,
444  * and is as accurate as ktime_get() is.
445  *
446  * This function returns -1 if NOHZ is not enabled.
447  */
448 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
449 {
450 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
451 	ktime_t now, iowait;
452 
453 	if (!tick_nohz_enabled)
454 		return -1;
455 
456 	now = ktime_get();
457 	if (last_update_time) {
458 		update_ts_time_stats(cpu, ts, now, last_update_time);
459 		iowait = ts->iowait_sleeptime;
460 	} else {
461 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
462 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
463 
464 			iowait = ktime_add(ts->iowait_sleeptime, delta);
465 		} else {
466 			iowait = ts->iowait_sleeptime;
467 		}
468 	}
469 
470 	return ktime_to_us(iowait);
471 }
472 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
473 
474 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
475 					 ktime_t now, int cpu)
476 {
477 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
478 	ktime_t last_update, expires, ret = { .tv64 = 0 };
479 	unsigned long rcu_delta_jiffies;
480 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
481 	u64 time_delta;
482 
483 	/* Read jiffies and the time when jiffies were updated last */
484 	do {
485 		seq = read_seqbegin(&jiffies_lock);
486 		last_update = last_jiffies_update;
487 		last_jiffies = jiffies;
488 		time_delta = timekeeping_max_deferment();
489 	} while (read_seqretry(&jiffies_lock, seq));
490 
491 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
492 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
493 		next_jiffies = last_jiffies + 1;
494 		delta_jiffies = 1;
495 	} else {
496 		/* Get the next timer wheel timer */
497 		next_jiffies = get_next_timer_interrupt(last_jiffies);
498 		delta_jiffies = next_jiffies - last_jiffies;
499 		if (rcu_delta_jiffies < delta_jiffies) {
500 			next_jiffies = last_jiffies + rcu_delta_jiffies;
501 			delta_jiffies = rcu_delta_jiffies;
502 		}
503 	}
504 	/*
505 	 * Do not stop the tick, if we are only one off
506 	 * or if the cpu is required for rcu
507 	 */
508 	if (!ts->tick_stopped && delta_jiffies == 1)
509 		goto out;
510 
511 	/* Schedule the tick, if we are at least one jiffie off */
512 	if ((long)delta_jiffies >= 1) {
513 
514 		/*
515 		 * If this cpu is the one which updates jiffies, then
516 		 * give up the assignment and let it be taken by the
517 		 * cpu which runs the tick timer next, which might be
518 		 * this cpu as well. If we don't drop this here the
519 		 * jiffies might be stale and do_timer() never
520 		 * invoked. Keep track of the fact that it was the one
521 		 * which had the do_timer() duty last. If this cpu is
522 		 * the one which had the do_timer() duty last, we
523 		 * limit the sleep time to the timekeeping
524 		 * max_deferement value which we retrieved
525 		 * above. Otherwise we can sleep as long as we want.
526 		 */
527 		if (cpu == tick_do_timer_cpu) {
528 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
529 			ts->do_timer_last = 1;
530 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
531 			time_delta = KTIME_MAX;
532 			ts->do_timer_last = 0;
533 		} else if (!ts->do_timer_last) {
534 			time_delta = KTIME_MAX;
535 		}
536 
537 		/*
538 		 * calculate the expiry time for the next timer wheel
539 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
540 		 * that there is no timer pending or at least extremely
541 		 * far into the future (12 days for HZ=1000). In this
542 		 * case we set the expiry to the end of time.
543 		 */
544 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
545 			/*
546 			 * Calculate the time delta for the next timer event.
547 			 * If the time delta exceeds the maximum time delta
548 			 * permitted by the current clocksource then adjust
549 			 * the time delta accordingly to ensure the
550 			 * clocksource does not wrap.
551 			 */
552 			time_delta = min_t(u64, time_delta,
553 					   tick_period.tv64 * delta_jiffies);
554 		}
555 
556 		if (time_delta < KTIME_MAX)
557 			expires = ktime_add_ns(last_update, time_delta);
558 		else
559 			expires.tv64 = KTIME_MAX;
560 
561 		/* Skip reprogram of event if its not changed */
562 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
563 			goto out;
564 
565 		ret = expires;
566 
567 		/*
568 		 * nohz_stop_sched_tick can be called several times before
569 		 * the nohz_restart_sched_tick is called. This happens when
570 		 * interrupts arrive which do not cause a reschedule. In the
571 		 * first call we save the current tick time, so we can restart
572 		 * the scheduler tick in nohz_restart_sched_tick.
573 		 */
574 		if (!ts->tick_stopped) {
575 			nohz_balance_enter_idle(cpu);
576 			calc_load_enter_idle();
577 
578 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
579 			ts->tick_stopped = 1;
580 		}
581 
582 		/*
583 		 * If the expiration time == KTIME_MAX, then
584 		 * in this case we simply stop the tick timer.
585 		 */
586 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
587 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
588 				hrtimer_cancel(&ts->sched_timer);
589 			goto out;
590 		}
591 
592 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
593 			hrtimer_start(&ts->sched_timer, expires,
594 				      HRTIMER_MODE_ABS_PINNED);
595 			/* Check, if the timer was already in the past */
596 			if (hrtimer_active(&ts->sched_timer))
597 				goto out;
598 		} else if (!tick_program_event(expires, 0))
599 				goto out;
600 		/*
601 		 * We are past the event already. So we crossed a
602 		 * jiffie boundary. Update jiffies and raise the
603 		 * softirq.
604 		 */
605 		tick_do_update_jiffies64(ktime_get());
606 	}
607 	raise_softirq_irqoff(TIMER_SOFTIRQ);
608 out:
609 	ts->next_jiffies = next_jiffies;
610 	ts->last_jiffies = last_jiffies;
611 	ts->sleep_length = ktime_sub(dev->next_event, now);
612 
613 	return ret;
614 }
615 
616 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
617 {
618 	/*
619 	 * If this cpu is offline and it is the one which updates
620 	 * jiffies, then give up the assignment and let it be taken by
621 	 * the cpu which runs the tick timer next. If we don't drop
622 	 * this here the jiffies might be stale and do_timer() never
623 	 * invoked.
624 	 */
625 	if (unlikely(!cpu_online(cpu))) {
626 		if (cpu == tick_do_timer_cpu)
627 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
628 	}
629 
630 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
631 		return false;
632 
633 	if (need_resched())
634 		return false;
635 
636 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
637 		static int ratelimit;
638 
639 		if (ratelimit < 10 &&
640 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
641 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
642 			       (unsigned int) local_softirq_pending());
643 			ratelimit++;
644 		}
645 		return false;
646 	}
647 
648 	if (have_nohz_full_mask) {
649 		/*
650 		 * Keep the tick alive to guarantee timekeeping progression
651 		 * if there are full dynticks CPUs around
652 		 */
653 		if (tick_do_timer_cpu == cpu)
654 			return false;
655 		/*
656 		 * Boot safety: make sure the timekeeping duty has been
657 		 * assigned before entering dyntick-idle mode,
658 		 */
659 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
660 			return false;
661 	}
662 
663 	return true;
664 }
665 
666 static void __tick_nohz_idle_enter(struct tick_sched *ts)
667 {
668 	ktime_t now, expires;
669 	int cpu = smp_processor_id();
670 
671 	now = tick_nohz_start_idle(cpu, ts);
672 
673 	if (can_stop_idle_tick(cpu, ts)) {
674 		int was_stopped = ts->tick_stopped;
675 
676 		ts->idle_calls++;
677 
678 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
679 		if (expires.tv64 > 0LL) {
680 			ts->idle_sleeps++;
681 			ts->idle_expires = expires;
682 		}
683 
684 		if (!was_stopped && ts->tick_stopped)
685 			ts->idle_jiffies = ts->last_jiffies;
686 	}
687 }
688 
689 /**
690  * tick_nohz_idle_enter - stop the idle tick from the idle task
691  *
692  * When the next event is more than a tick into the future, stop the idle tick
693  * Called when we start the idle loop.
694  *
695  * The arch is responsible of calling:
696  *
697  * - rcu_idle_enter() after its last use of RCU before the CPU is put
698  *  to sleep.
699  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
700  */
701 void tick_nohz_idle_enter(void)
702 {
703 	struct tick_sched *ts;
704 
705 	WARN_ON_ONCE(irqs_disabled());
706 
707 	/*
708  	 * Update the idle state in the scheduler domain hierarchy
709  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
710  	 * State will be updated to busy during the first busy tick after
711  	 * exiting idle.
712  	 */
713 	set_cpu_sd_state_idle();
714 
715 	local_irq_disable();
716 
717 	ts = &__get_cpu_var(tick_cpu_sched);
718 	/*
719 	 * set ts->inidle unconditionally. even if the system did not
720 	 * switch to nohz mode the cpu frequency governers rely on the
721 	 * update of the idle time accounting in tick_nohz_start_idle().
722 	 */
723 	ts->inidle = 1;
724 	__tick_nohz_idle_enter(ts);
725 
726 	local_irq_enable();
727 }
728 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
729 
730 /**
731  * tick_nohz_irq_exit - update next tick event from interrupt exit
732  *
733  * When an interrupt fires while we are idle and it doesn't cause
734  * a reschedule, it may still add, modify or delete a timer, enqueue
735  * an RCU callback, etc...
736  * So we need to re-calculate and reprogram the next tick event.
737  */
738 void tick_nohz_irq_exit(void)
739 {
740 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
741 
742 	if (!ts->inidle)
743 		return;
744 
745 	/* Cancel the timer because CPU already waken up from the C-states*/
746 	menu_hrtimer_cancel();
747 	__tick_nohz_idle_enter(ts);
748 }
749 
750 /**
751  * tick_nohz_get_sleep_length - return the length of the current sleep
752  *
753  * Called from power state control code with interrupts disabled
754  */
755 ktime_t tick_nohz_get_sleep_length(void)
756 {
757 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
758 
759 	return ts->sleep_length;
760 }
761 
762 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
763 {
764 	hrtimer_cancel(&ts->sched_timer);
765 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
766 
767 	while (1) {
768 		/* Forward the time to expire in the future */
769 		hrtimer_forward(&ts->sched_timer, now, tick_period);
770 
771 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
772 			hrtimer_start_expires(&ts->sched_timer,
773 					      HRTIMER_MODE_ABS_PINNED);
774 			/* Check, if the timer was already in the past */
775 			if (hrtimer_active(&ts->sched_timer))
776 				break;
777 		} else {
778 			if (!tick_program_event(
779 				hrtimer_get_expires(&ts->sched_timer), 0))
780 				break;
781 		}
782 		/* Reread time and update jiffies */
783 		now = ktime_get();
784 		tick_do_update_jiffies64(now);
785 	}
786 }
787 
788 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
789 {
790 	/* Update jiffies first */
791 	tick_do_update_jiffies64(now);
792 	update_cpu_load_nohz();
793 
794 	calc_load_exit_idle();
795 	touch_softlockup_watchdog();
796 	/*
797 	 * Cancel the scheduled timer and restore the tick
798 	 */
799 	ts->tick_stopped  = 0;
800 	ts->idle_exittime = now;
801 
802 	tick_nohz_restart(ts, now);
803 }
804 
805 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
806 {
807 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
808 	unsigned long ticks;
809 
810 	if (vtime_accounting_enabled())
811 		return;
812 	/*
813 	 * We stopped the tick in idle. Update process times would miss the
814 	 * time we slept as update_process_times does only a 1 tick
815 	 * accounting. Enforce that this is accounted to idle !
816 	 */
817 	ticks = jiffies - ts->idle_jiffies;
818 	/*
819 	 * We might be one off. Do not randomly account a huge number of ticks!
820 	 */
821 	if (ticks && ticks < LONG_MAX)
822 		account_idle_ticks(ticks);
823 #endif
824 }
825 
826 /**
827  * tick_nohz_idle_exit - restart the idle tick from the idle task
828  *
829  * Restart the idle tick when the CPU is woken up from idle
830  * This also exit the RCU extended quiescent state. The CPU
831  * can use RCU again after this function is called.
832  */
833 void tick_nohz_idle_exit(void)
834 {
835 	int cpu = smp_processor_id();
836 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
837 	ktime_t now;
838 
839 	local_irq_disable();
840 
841 	WARN_ON_ONCE(!ts->inidle);
842 
843 	ts->inidle = 0;
844 
845 	/* Cancel the timer because CPU already waken up from the C-states*/
846 	menu_hrtimer_cancel();
847 	if (ts->idle_active || ts->tick_stopped)
848 		now = ktime_get();
849 
850 	if (ts->idle_active)
851 		tick_nohz_stop_idle(cpu, now);
852 
853 	if (ts->tick_stopped) {
854 		tick_nohz_restart_sched_tick(ts, now);
855 		tick_nohz_account_idle_ticks(ts);
856 	}
857 
858 	local_irq_enable();
859 }
860 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
861 
862 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
863 {
864 	hrtimer_forward(&ts->sched_timer, now, tick_period);
865 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
866 }
867 
868 /*
869  * The nohz low res interrupt handler
870  */
871 static void tick_nohz_handler(struct clock_event_device *dev)
872 {
873 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
874 	struct pt_regs *regs = get_irq_regs();
875 	ktime_t now = ktime_get();
876 
877 	dev->next_event.tv64 = KTIME_MAX;
878 
879 	tick_sched_do_timer(now);
880 	tick_sched_handle(ts, regs);
881 
882 	while (tick_nohz_reprogram(ts, now)) {
883 		now = ktime_get();
884 		tick_do_update_jiffies64(now);
885 	}
886 }
887 
888 /**
889  * tick_nohz_switch_to_nohz - switch to nohz mode
890  */
891 static void tick_nohz_switch_to_nohz(void)
892 {
893 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
894 	ktime_t next;
895 
896 	if (!tick_nohz_enabled)
897 		return;
898 
899 	local_irq_disable();
900 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
901 		local_irq_enable();
902 		return;
903 	}
904 
905 	ts->nohz_mode = NOHZ_MODE_LOWRES;
906 
907 	/*
908 	 * Recycle the hrtimer in ts, so we can share the
909 	 * hrtimer_forward with the highres code.
910 	 */
911 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
912 	/* Get the next period */
913 	next = tick_init_jiffy_update();
914 
915 	for (;;) {
916 		hrtimer_set_expires(&ts->sched_timer, next);
917 		if (!tick_program_event(next, 0))
918 			break;
919 		next = ktime_add(next, tick_period);
920 	}
921 	local_irq_enable();
922 }
923 
924 /*
925  * When NOHZ is enabled and the tick is stopped, we need to kick the
926  * tick timer from irq_enter() so that the jiffies update is kept
927  * alive during long running softirqs. That's ugly as hell, but
928  * correctness is key even if we need to fix the offending softirq in
929  * the first place.
930  *
931  * Note, this is different to tick_nohz_restart. We just kick the
932  * timer and do not touch the other magic bits which need to be done
933  * when idle is left.
934  */
935 static void tick_nohz_kick_tick(int cpu, ktime_t now)
936 {
937 #if 0
938 	/* Switch back to 2.6.27 behaviour */
939 
940 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
941 	ktime_t delta;
942 
943 	/*
944 	 * Do not touch the tick device, when the next expiry is either
945 	 * already reached or less/equal than the tick period.
946 	 */
947 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
948 	if (delta.tv64 <= tick_period.tv64)
949 		return;
950 
951 	tick_nohz_restart(ts, now);
952 #endif
953 }
954 
955 static inline void tick_check_nohz(int cpu)
956 {
957 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
958 	ktime_t now;
959 
960 	if (!ts->idle_active && !ts->tick_stopped)
961 		return;
962 	now = ktime_get();
963 	if (ts->idle_active)
964 		tick_nohz_stop_idle(cpu, now);
965 	if (ts->tick_stopped) {
966 		tick_nohz_update_jiffies(now);
967 		tick_nohz_kick_tick(cpu, now);
968 	}
969 }
970 
971 #else
972 
973 static inline void tick_nohz_switch_to_nohz(void) { }
974 static inline void tick_check_nohz(int cpu) { }
975 
976 #endif /* CONFIG_NO_HZ_COMMON */
977 
978 /*
979  * Called from irq_enter to notify about the possible interruption of idle()
980  */
981 void tick_check_idle(int cpu)
982 {
983 	tick_check_oneshot_broadcast(cpu);
984 	tick_check_nohz(cpu);
985 }
986 
987 /*
988  * High resolution timer specific code
989  */
990 #ifdef CONFIG_HIGH_RES_TIMERS
991 /*
992  * We rearm the timer until we get disabled by the idle code.
993  * Called with interrupts disabled.
994  */
995 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
996 {
997 	struct tick_sched *ts =
998 		container_of(timer, struct tick_sched, sched_timer);
999 	struct pt_regs *regs = get_irq_regs();
1000 	ktime_t now = ktime_get();
1001 
1002 	tick_sched_do_timer(now);
1003 
1004 	/*
1005 	 * Do not call, when we are not in irq context and have
1006 	 * no valid regs pointer
1007 	 */
1008 	if (regs)
1009 		tick_sched_handle(ts, regs);
1010 
1011 	hrtimer_forward(timer, now, tick_period);
1012 
1013 	return HRTIMER_RESTART;
1014 }
1015 
1016 static int sched_skew_tick;
1017 
1018 static int __init skew_tick(char *str)
1019 {
1020 	get_option(&str, &sched_skew_tick);
1021 
1022 	return 0;
1023 }
1024 early_param("skew_tick", skew_tick);
1025 
1026 /**
1027  * tick_setup_sched_timer - setup the tick emulation timer
1028  */
1029 void tick_setup_sched_timer(void)
1030 {
1031 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1032 	ktime_t now = ktime_get();
1033 
1034 	/*
1035 	 * Emulate tick processing via per-CPU hrtimers:
1036 	 */
1037 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1038 	ts->sched_timer.function = tick_sched_timer;
1039 
1040 	/* Get the next period (per cpu) */
1041 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1042 
1043 	/* Offset the tick to avert jiffies_lock contention. */
1044 	if (sched_skew_tick) {
1045 		u64 offset = ktime_to_ns(tick_period) >> 1;
1046 		do_div(offset, num_possible_cpus());
1047 		offset *= smp_processor_id();
1048 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1049 	}
1050 
1051 	for (;;) {
1052 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1053 		hrtimer_start_expires(&ts->sched_timer,
1054 				      HRTIMER_MODE_ABS_PINNED);
1055 		/* Check, if the timer was already in the past */
1056 		if (hrtimer_active(&ts->sched_timer))
1057 			break;
1058 		now = ktime_get();
1059 	}
1060 
1061 #ifdef CONFIG_NO_HZ_COMMON
1062 	if (tick_nohz_enabled)
1063 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1064 #endif
1065 }
1066 #endif /* HIGH_RES_TIMERS */
1067 
1068 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1069 void tick_cancel_sched_timer(int cpu)
1070 {
1071 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1072 
1073 # ifdef CONFIG_HIGH_RES_TIMERS
1074 	if (ts->sched_timer.base)
1075 		hrtimer_cancel(&ts->sched_timer);
1076 # endif
1077 
1078 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
1079 }
1080 #endif
1081 
1082 /**
1083  * Async notification about clocksource changes
1084  */
1085 void tick_clock_notify(void)
1086 {
1087 	int cpu;
1088 
1089 	for_each_possible_cpu(cpu)
1090 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1091 }
1092 
1093 /*
1094  * Async notification about clock event changes
1095  */
1096 void tick_oneshot_notify(void)
1097 {
1098 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1099 
1100 	set_bit(0, &ts->check_clocks);
1101 }
1102 
1103 /**
1104  * Check, if a change happened, which makes oneshot possible.
1105  *
1106  * Called cyclic from the hrtimer softirq (driven by the timer
1107  * softirq) allow_nohz signals, that we can switch into low-res nohz
1108  * mode, because high resolution timers are disabled (either compile
1109  * or runtime).
1110  */
1111 int tick_check_oneshot_change(int allow_nohz)
1112 {
1113 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1114 
1115 	if (!test_and_clear_bit(0, &ts->check_clocks))
1116 		return 0;
1117 
1118 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1119 		return 0;
1120 
1121 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1122 		return 0;
1123 
1124 	if (!allow_nohz)
1125 		return 1;
1126 
1127 	tick_nohz_switch_to_nohz();
1128 	return 0;
1129 }
1130