xref: /openbmc/linux/kernel/time/tick-sched.c (revision f99973e1)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 
31 #include <asm/irq_regs.h>
32 
33 #include "tick-internal.h"
34 
35 #include <trace/events/timer.h>
36 
37 /*
38  * Per-CPU nohz control structure
39  */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 
42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 	return &per_cpu(tick_cpu_sched, cpu);
45 }
46 
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48 /*
49  * The time, when the last jiffy update happened. Protected by jiffies_lock.
50  */
51 static ktime_t last_jiffies_update;
52 
53 /*
54  * Must be called with interrupts disabled !
55  */
56 static void tick_do_update_jiffies64(ktime_t now)
57 {
58 	unsigned long ticks = 0;
59 	ktime_t delta;
60 
61 	/*
62 	 * Do a quick check without holding jiffies_lock:
63 	 */
64 	delta = ktime_sub(now, last_jiffies_update);
65 	if (delta < tick_period)
66 		return;
67 
68 	/* Reevaluate with jiffies_lock held */
69 	write_seqlock(&jiffies_lock);
70 
71 	delta = ktime_sub(now, last_jiffies_update);
72 	if (delta >= tick_period) {
73 
74 		delta = ktime_sub(delta, tick_period);
75 		last_jiffies_update = ktime_add(last_jiffies_update,
76 						tick_period);
77 
78 		/* Slow path for long timeouts */
79 		if (unlikely(delta >= tick_period)) {
80 			s64 incr = ktime_to_ns(tick_period);
81 
82 			ticks = ktime_divns(delta, incr);
83 
84 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
85 							   incr * ticks);
86 		}
87 		do_timer(++ticks);
88 
89 		/* Keep the tick_next_period variable up to date */
90 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
91 	} else {
92 		write_sequnlock(&jiffies_lock);
93 		return;
94 	}
95 	write_sequnlock(&jiffies_lock);
96 	update_wall_time();
97 }
98 
99 /*
100  * Initialize and return retrieve the jiffies update.
101  */
102 static ktime_t tick_init_jiffy_update(void)
103 {
104 	ktime_t period;
105 
106 	write_seqlock(&jiffies_lock);
107 	/* Did we start the jiffies update yet ? */
108 	if (last_jiffies_update == 0)
109 		last_jiffies_update = tick_next_period;
110 	period = last_jiffies_update;
111 	write_sequnlock(&jiffies_lock);
112 	return period;
113 }
114 
115 
116 static void tick_sched_do_timer(ktime_t now)
117 {
118 	int cpu = smp_processor_id();
119 
120 #ifdef CONFIG_NO_HZ_COMMON
121 	/*
122 	 * Check if the do_timer duty was dropped. We don't care about
123 	 * concurrency: This happens only when the CPU in charge went
124 	 * into a long sleep. If two CPUs happen to assign themselves to
125 	 * this duty, then the jiffies update is still serialized by
126 	 * jiffies_lock.
127 	 */
128 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
129 	    && !tick_nohz_full_cpu(cpu))
130 		tick_do_timer_cpu = cpu;
131 #endif
132 
133 	/* Check, if the jiffies need an update */
134 	if (tick_do_timer_cpu == cpu)
135 		tick_do_update_jiffies64(now);
136 }
137 
138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
139 {
140 #ifdef CONFIG_NO_HZ_COMMON
141 	/*
142 	 * When we are idle and the tick is stopped, we have to touch
143 	 * the watchdog as we might not schedule for a really long
144 	 * time. This happens on complete idle SMP systems while
145 	 * waiting on the login prompt. We also increment the "start of
146 	 * idle" jiffy stamp so the idle accounting adjustment we do
147 	 * when we go busy again does not account too much ticks.
148 	 */
149 	if (ts->tick_stopped) {
150 		touch_softlockup_watchdog_sched();
151 		if (is_idle_task(current))
152 			ts->idle_jiffies++;
153 		/*
154 		 * In case the current tick fired too early past its expected
155 		 * expiration, make sure we don't bypass the next clock reprogramming
156 		 * to the same deadline.
157 		 */
158 		ts->next_tick = 0;
159 	}
160 #endif
161 	update_process_times(user_mode(regs));
162 	profile_tick(CPU_PROFILING);
163 }
164 #endif
165 
166 #ifdef CONFIG_NO_HZ_FULL
167 cpumask_var_t tick_nohz_full_mask;
168 cpumask_var_t housekeeping_mask;
169 bool tick_nohz_full_running;
170 static atomic_t tick_dep_mask;
171 
172 static bool check_tick_dependency(atomic_t *dep)
173 {
174 	int val = atomic_read(dep);
175 
176 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
177 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
182 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183 		return true;
184 	}
185 
186 	if (val & TICK_DEP_MASK_SCHED) {
187 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188 		return true;
189 	}
190 
191 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 		return true;
194 	}
195 
196 	return false;
197 }
198 
199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
200 {
201 	WARN_ON_ONCE(!irqs_disabled());
202 
203 	if (unlikely(!cpu_online(cpu)))
204 		return false;
205 
206 	if (check_tick_dependency(&tick_dep_mask))
207 		return false;
208 
209 	if (check_tick_dependency(&ts->tick_dep_mask))
210 		return false;
211 
212 	if (check_tick_dependency(&current->tick_dep_mask))
213 		return false;
214 
215 	if (check_tick_dependency(&current->signal->tick_dep_mask))
216 		return false;
217 
218 	return true;
219 }
220 
221 static void nohz_full_kick_func(struct irq_work *work)
222 {
223 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
224 }
225 
226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227 	.func = nohz_full_kick_func,
228 };
229 
230 /*
231  * Kick this CPU if it's full dynticks in order to force it to
232  * re-evaluate its dependency on the tick and restart it if necessary.
233  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234  * is NMI safe.
235  */
236 static void tick_nohz_full_kick(void)
237 {
238 	if (!tick_nohz_full_cpu(smp_processor_id()))
239 		return;
240 
241 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 }
243 
244 /*
245  * Kick the CPU if it's full dynticks in order to force it to
246  * re-evaluate its dependency on the tick and restart it if necessary.
247  */
248 void tick_nohz_full_kick_cpu(int cpu)
249 {
250 	if (!tick_nohz_full_cpu(cpu))
251 		return;
252 
253 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
254 }
255 
256 /*
257  * Kick all full dynticks CPUs in order to force these to re-evaluate
258  * their dependency on the tick and restart it if necessary.
259  */
260 static void tick_nohz_full_kick_all(void)
261 {
262 	int cpu;
263 
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 		tick_nohz_full_kick_cpu(cpu);
270 	preempt_enable();
271 }
272 
273 static void tick_nohz_dep_set_all(atomic_t *dep,
274 				  enum tick_dep_bits bit)
275 {
276 	int prev;
277 
278 	prev = atomic_fetch_or(BIT(bit), dep);
279 	if (!prev)
280 		tick_nohz_full_kick_all();
281 }
282 
283 /*
284  * Set a global tick dependency. Used by perf events that rely on freq and
285  * by unstable clock.
286  */
287 void tick_nohz_dep_set(enum tick_dep_bits bit)
288 {
289 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
290 }
291 
292 void tick_nohz_dep_clear(enum tick_dep_bits bit)
293 {
294 	atomic_andnot(BIT(bit), &tick_dep_mask);
295 }
296 
297 /*
298  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299  * manage events throttling.
300  */
301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302 {
303 	int prev;
304 	struct tick_sched *ts;
305 
306 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307 
308 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 	if (!prev) {
310 		preempt_disable();
311 		/* Perf needs local kick that is NMI safe */
312 		if (cpu == smp_processor_id()) {
313 			tick_nohz_full_kick();
314 		} else {
315 			/* Remote irq work not NMI-safe */
316 			if (!WARN_ON_ONCE(in_nmi()))
317 				tick_nohz_full_kick_cpu(cpu);
318 		}
319 		preempt_enable();
320 	}
321 }
322 
323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324 {
325 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326 
327 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
328 }
329 
330 /*
331  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332  * per task timers.
333  */
334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 {
336 	/*
337 	 * We could optimize this with just kicking the target running the task
338 	 * if that noise matters for nohz full users.
339 	 */
340 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341 }
342 
343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
346 }
347 
348 /*
349  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350  * per process timers.
351  */
352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353 {
354 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355 }
356 
357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
360 }
361 
362 /*
363  * Re-evaluate the need for the tick as we switch the current task.
364  * It might need the tick due to per task/process properties:
365  * perf events, posix CPU timers, ...
366  */
367 void __tick_nohz_task_switch(void)
368 {
369 	unsigned long flags;
370 	struct tick_sched *ts;
371 
372 	local_irq_save(flags);
373 
374 	if (!tick_nohz_full_cpu(smp_processor_id()))
375 		goto out;
376 
377 	ts = this_cpu_ptr(&tick_cpu_sched);
378 
379 	if (ts->tick_stopped) {
380 		if (atomic_read(&current->tick_dep_mask) ||
381 		    atomic_read(&current->signal->tick_dep_mask))
382 			tick_nohz_full_kick();
383 	}
384 out:
385 	local_irq_restore(flags);
386 }
387 
388 /* Parse the boot-time nohz CPU list from the kernel parameters. */
389 static int __init tick_nohz_full_setup(char *str)
390 {
391 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
393 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
394 		free_bootmem_cpumask_var(tick_nohz_full_mask);
395 		return 1;
396 	}
397 	tick_nohz_full_running = true;
398 
399 	return 1;
400 }
401 __setup("nohz_full=", tick_nohz_full_setup);
402 
403 static int tick_nohz_cpu_down(unsigned int cpu)
404 {
405 	/*
406 	 * The boot CPU handles housekeeping duty (unbound timers,
407 	 * workqueues, timekeeping, ...) on behalf of full dynticks
408 	 * CPUs. It must remain online when nohz full is enabled.
409 	 */
410 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
411 		return -EBUSY;
412 	return 0;
413 }
414 
415 static int tick_nohz_init_all(void)
416 {
417 	int err = -1;
418 
419 #ifdef CONFIG_NO_HZ_FULL_ALL
420 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
421 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
422 		return err;
423 	}
424 	err = 0;
425 	cpumask_setall(tick_nohz_full_mask);
426 	tick_nohz_full_running = true;
427 #endif
428 	return err;
429 }
430 
431 void __init tick_nohz_init(void)
432 {
433 	int cpu, ret;
434 
435 	if (!tick_nohz_full_running) {
436 		if (tick_nohz_init_all() < 0)
437 			return;
438 	}
439 
440 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
441 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
442 		cpumask_clear(tick_nohz_full_mask);
443 		tick_nohz_full_running = false;
444 		return;
445 	}
446 
447 	/*
448 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
449 	 * locking contexts. But then we need irq work to raise its own
450 	 * interrupts to avoid circular dependency on the tick
451 	 */
452 	if (!arch_irq_work_has_interrupt()) {
453 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
454 		cpumask_clear(tick_nohz_full_mask);
455 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
456 		tick_nohz_full_running = false;
457 		return;
458 	}
459 
460 	cpu = smp_processor_id();
461 
462 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
463 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
464 			cpu);
465 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
466 	}
467 
468 	cpumask_andnot(housekeeping_mask,
469 		       cpu_possible_mask, tick_nohz_full_mask);
470 
471 	for_each_cpu(cpu, tick_nohz_full_mask)
472 		context_tracking_cpu_set(cpu);
473 
474 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
475 					"kernel/nohz:predown", NULL,
476 					tick_nohz_cpu_down);
477 	WARN_ON(ret < 0);
478 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
479 		cpumask_pr_args(tick_nohz_full_mask));
480 
481 	/*
482 	 * We need at least one CPU to handle housekeeping work such
483 	 * as timekeeping, unbound timers, workqueues, ...
484 	 */
485 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
486 }
487 #endif
488 
489 /*
490  * NOHZ - aka dynamic tick functionality
491  */
492 #ifdef CONFIG_NO_HZ_COMMON
493 /*
494  * NO HZ enabled ?
495  */
496 bool tick_nohz_enabled __read_mostly  = true;
497 unsigned long tick_nohz_active  __read_mostly;
498 /*
499  * Enable / Disable tickless mode
500  */
501 static int __init setup_tick_nohz(char *str)
502 {
503 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
504 }
505 
506 __setup("nohz=", setup_tick_nohz);
507 
508 int tick_nohz_tick_stopped(void)
509 {
510 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
511 }
512 
513 /**
514  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
515  *
516  * Called from interrupt entry when the CPU was idle
517  *
518  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
519  * must be updated. Otherwise an interrupt handler could use a stale jiffy
520  * value. We do this unconditionally on any CPU, as we don't know whether the
521  * CPU, which has the update task assigned is in a long sleep.
522  */
523 static void tick_nohz_update_jiffies(ktime_t now)
524 {
525 	unsigned long flags;
526 
527 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
528 
529 	local_irq_save(flags);
530 	tick_do_update_jiffies64(now);
531 	local_irq_restore(flags);
532 
533 	touch_softlockup_watchdog_sched();
534 }
535 
536 /*
537  * Updates the per-CPU time idle statistics counters
538  */
539 static void
540 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
541 {
542 	ktime_t delta;
543 
544 	if (ts->idle_active) {
545 		delta = ktime_sub(now, ts->idle_entrytime);
546 		if (nr_iowait_cpu(cpu) > 0)
547 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
548 		else
549 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
550 		ts->idle_entrytime = now;
551 	}
552 
553 	if (last_update_time)
554 		*last_update_time = ktime_to_us(now);
555 
556 }
557 
558 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
559 {
560 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
561 	ts->idle_active = 0;
562 
563 	sched_clock_idle_wakeup_event(0);
564 }
565 
566 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
567 {
568 	ktime_t now = ktime_get();
569 
570 	ts->idle_entrytime = now;
571 	ts->idle_active = 1;
572 	sched_clock_idle_sleep_event();
573 	return now;
574 }
575 
576 /**
577  * get_cpu_idle_time_us - get the total idle time of a CPU
578  * @cpu: CPU number to query
579  * @last_update_time: variable to store update time in. Do not update
580  * counters if NULL.
581  *
582  * Return the cumulative idle time (since boot) for a given
583  * CPU, in microseconds.
584  *
585  * This time is measured via accounting rather than sampling,
586  * and is as accurate as ktime_get() is.
587  *
588  * This function returns -1 if NOHZ is not enabled.
589  */
590 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
591 {
592 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
593 	ktime_t now, idle;
594 
595 	if (!tick_nohz_active)
596 		return -1;
597 
598 	now = ktime_get();
599 	if (last_update_time) {
600 		update_ts_time_stats(cpu, ts, now, last_update_time);
601 		idle = ts->idle_sleeptime;
602 	} else {
603 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
604 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
605 
606 			idle = ktime_add(ts->idle_sleeptime, delta);
607 		} else {
608 			idle = ts->idle_sleeptime;
609 		}
610 	}
611 
612 	return ktime_to_us(idle);
613 
614 }
615 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
616 
617 /**
618  * get_cpu_iowait_time_us - get the total iowait time of a CPU
619  * @cpu: CPU number to query
620  * @last_update_time: variable to store update time in. Do not update
621  * counters if NULL.
622  *
623  * Return the cumulative iowait time (since boot) for a given
624  * CPU, in microseconds.
625  *
626  * This time is measured via accounting rather than sampling,
627  * and is as accurate as ktime_get() is.
628  *
629  * This function returns -1 if NOHZ is not enabled.
630  */
631 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
632 {
633 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
634 	ktime_t now, iowait;
635 
636 	if (!tick_nohz_active)
637 		return -1;
638 
639 	now = ktime_get();
640 	if (last_update_time) {
641 		update_ts_time_stats(cpu, ts, now, last_update_time);
642 		iowait = ts->iowait_sleeptime;
643 	} else {
644 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
645 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
646 
647 			iowait = ktime_add(ts->iowait_sleeptime, delta);
648 		} else {
649 			iowait = ts->iowait_sleeptime;
650 		}
651 	}
652 
653 	return ktime_to_us(iowait);
654 }
655 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
656 
657 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
658 {
659 	hrtimer_cancel(&ts->sched_timer);
660 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
661 
662 	/* Forward the time to expire in the future */
663 	hrtimer_forward(&ts->sched_timer, now, tick_period);
664 
665 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
666 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
667 	else
668 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
669 
670 	/*
671 	 * Reset to make sure next tick stop doesn't get fooled by past
672 	 * cached clock deadline.
673 	 */
674 	ts->next_tick = 0;
675 }
676 
677 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
678 					 ktime_t now, int cpu)
679 {
680 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
681 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
682 	unsigned long seq, basejiff;
683 	ktime_t	tick;
684 
685 	/* Read jiffies and the time when jiffies were updated last */
686 	do {
687 		seq = read_seqbegin(&jiffies_lock);
688 		basemono = last_jiffies_update;
689 		basejiff = jiffies;
690 	} while (read_seqretry(&jiffies_lock, seq));
691 	ts->last_jiffies = basejiff;
692 
693 	if (rcu_needs_cpu(basemono, &next_rcu) ||
694 	    arch_needs_cpu() || irq_work_needs_cpu()) {
695 		next_tick = basemono + TICK_NSEC;
696 	} else {
697 		/*
698 		 * Get the next pending timer. If high resolution
699 		 * timers are enabled this only takes the timer wheel
700 		 * timers into account. If high resolution timers are
701 		 * disabled this also looks at the next expiring
702 		 * hrtimer.
703 		 */
704 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
705 		ts->next_timer = next_tmr;
706 		/* Take the next rcu event into account */
707 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
708 	}
709 
710 	/*
711 	 * If the tick is due in the next period, keep it ticking or
712 	 * force prod the timer.
713 	 */
714 	delta = next_tick - basemono;
715 	if (delta <= (u64)TICK_NSEC) {
716 		/*
717 		 * Tell the timer code that the base is not idle, i.e. undo
718 		 * the effect of get_next_timer_interrupt():
719 		 */
720 		timer_clear_idle();
721 		/*
722 		 * We've not stopped the tick yet, and there's a timer in the
723 		 * next period, so no point in stopping it either, bail.
724 		 */
725 		if (!ts->tick_stopped) {
726 			tick = 0;
727 			goto out;
728 		}
729 	}
730 
731 	/*
732 	 * If this CPU is the one which updates jiffies, then give up
733 	 * the assignment and let it be taken by the CPU which runs
734 	 * the tick timer next, which might be this CPU as well. If we
735 	 * don't drop this here the jiffies might be stale and
736 	 * do_timer() never invoked. Keep track of the fact that it
737 	 * was the one which had the do_timer() duty last. If this CPU
738 	 * is the one which had the do_timer() duty last, we limit the
739 	 * sleep time to the timekeeping max_deferment value.
740 	 * Otherwise we can sleep as long as we want.
741 	 */
742 	delta = timekeeping_max_deferment();
743 	if (cpu == tick_do_timer_cpu) {
744 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
745 		ts->do_timer_last = 1;
746 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
747 		delta = KTIME_MAX;
748 		ts->do_timer_last = 0;
749 	} else if (!ts->do_timer_last) {
750 		delta = KTIME_MAX;
751 	}
752 
753 #ifdef CONFIG_NO_HZ_FULL
754 	/* Limit the tick delta to the maximum scheduler deferment */
755 	if (!ts->inidle)
756 		delta = min(delta, scheduler_tick_max_deferment());
757 #endif
758 
759 	/* Calculate the next expiry time */
760 	if (delta < (KTIME_MAX - basemono))
761 		expires = basemono + delta;
762 	else
763 		expires = KTIME_MAX;
764 
765 	expires = min_t(u64, expires, next_tick);
766 	tick = expires;
767 
768 	/* Skip reprogram of event if its not changed */
769 	if (ts->tick_stopped && (expires == ts->next_tick)) {
770 		/* Sanity check: make sure clockevent is actually programmed */
771 		if (likely(dev->next_event <= ts->next_tick))
772 			goto out;
773 
774 		WARN_ON_ONCE(1);
775 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
776 			    basemono, ts->next_tick, dev->next_event,
777 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
778 	}
779 
780 	/*
781 	 * nohz_stop_sched_tick can be called several times before
782 	 * the nohz_restart_sched_tick is called. This happens when
783 	 * interrupts arrive which do not cause a reschedule. In the
784 	 * first call we save the current tick time, so we can restart
785 	 * the scheduler tick in nohz_restart_sched_tick.
786 	 */
787 	if (!ts->tick_stopped) {
788 		nohz_balance_enter_idle(cpu);
789 		calc_load_enter_idle();
790 		cpu_load_update_nohz_start();
791 
792 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
793 		ts->tick_stopped = 1;
794 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
795 	}
796 
797 	ts->next_tick = tick;
798 
799 	/*
800 	 * If the expiration time == KTIME_MAX, then we simply stop
801 	 * the tick timer.
802 	 */
803 	if (unlikely(expires == KTIME_MAX)) {
804 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
805 			hrtimer_cancel(&ts->sched_timer);
806 		goto out;
807 	}
808 
809 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
810 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
811 	else
812 		tick_program_event(tick, 1);
813 out:
814 	/*
815 	 * Update the estimated sleep length until the next timer
816 	 * (not only the tick).
817 	 */
818 	ts->sleep_length = ktime_sub(dev->next_event, now);
819 	return tick;
820 }
821 
822 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
823 {
824 	/* Update jiffies first */
825 	tick_do_update_jiffies64(now);
826 	cpu_load_update_nohz_stop();
827 
828 	/*
829 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
830 	 * the clock forward checks in the enqueue path:
831 	 */
832 	timer_clear_idle();
833 
834 	calc_load_exit_idle();
835 	touch_softlockup_watchdog_sched();
836 	/*
837 	 * Cancel the scheduled timer and restore the tick
838 	 */
839 	ts->tick_stopped  = 0;
840 	ts->idle_exittime = now;
841 
842 	tick_nohz_restart(ts, now);
843 }
844 
845 static void tick_nohz_full_update_tick(struct tick_sched *ts)
846 {
847 #ifdef CONFIG_NO_HZ_FULL
848 	int cpu = smp_processor_id();
849 
850 	if (!tick_nohz_full_cpu(cpu))
851 		return;
852 
853 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
854 		return;
855 
856 	if (can_stop_full_tick(cpu, ts))
857 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
858 	else if (ts->tick_stopped)
859 		tick_nohz_restart_sched_tick(ts, ktime_get());
860 #endif
861 }
862 
863 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
864 {
865 	/*
866 	 * If this CPU is offline and it is the one which updates
867 	 * jiffies, then give up the assignment and let it be taken by
868 	 * the CPU which runs the tick timer next. If we don't drop
869 	 * this here the jiffies might be stale and do_timer() never
870 	 * invoked.
871 	 */
872 	if (unlikely(!cpu_online(cpu))) {
873 		if (cpu == tick_do_timer_cpu)
874 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
875 		/*
876 		 * Make sure the CPU doesn't get fooled by obsolete tick
877 		 * deadline if it comes back online later.
878 		 */
879 		ts->next_tick = 0;
880 		return false;
881 	}
882 
883 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
884 		ts->sleep_length = NSEC_PER_SEC / HZ;
885 		return false;
886 	}
887 
888 	if (need_resched())
889 		return false;
890 
891 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
892 		static int ratelimit;
893 
894 		if (ratelimit < 10 &&
895 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
896 			pr_warn("NOHZ: local_softirq_pending %02x\n",
897 				(unsigned int) local_softirq_pending());
898 			ratelimit++;
899 		}
900 		return false;
901 	}
902 
903 	if (tick_nohz_full_enabled()) {
904 		/*
905 		 * Keep the tick alive to guarantee timekeeping progression
906 		 * if there are full dynticks CPUs around
907 		 */
908 		if (tick_do_timer_cpu == cpu)
909 			return false;
910 		/*
911 		 * Boot safety: make sure the timekeeping duty has been
912 		 * assigned before entering dyntick-idle mode,
913 		 */
914 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
915 			return false;
916 	}
917 
918 	return true;
919 }
920 
921 static void __tick_nohz_idle_enter(struct tick_sched *ts)
922 {
923 	ktime_t now, expires;
924 	int cpu = smp_processor_id();
925 
926 	now = tick_nohz_start_idle(ts);
927 
928 	if (can_stop_idle_tick(cpu, ts)) {
929 		int was_stopped = ts->tick_stopped;
930 
931 		ts->idle_calls++;
932 
933 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
934 		if (expires > 0LL) {
935 			ts->idle_sleeps++;
936 			ts->idle_expires = expires;
937 		}
938 
939 		if (!was_stopped && ts->tick_stopped)
940 			ts->idle_jiffies = ts->last_jiffies;
941 	}
942 }
943 
944 /**
945  * tick_nohz_idle_enter - stop the idle tick from the idle task
946  *
947  * When the next event is more than a tick into the future, stop the idle tick
948  * Called when we start the idle loop.
949  *
950  * The arch is responsible of calling:
951  *
952  * - rcu_idle_enter() after its last use of RCU before the CPU is put
953  *  to sleep.
954  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
955  */
956 void tick_nohz_idle_enter(void)
957 {
958 	struct tick_sched *ts;
959 
960 	WARN_ON_ONCE(irqs_disabled());
961 
962 	/*
963 	 * Update the idle state in the scheduler domain hierarchy
964 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
965 	 * State will be updated to busy during the first busy tick after
966 	 * exiting idle.
967 	 */
968 	set_cpu_sd_state_idle();
969 
970 	local_irq_disable();
971 
972 	ts = this_cpu_ptr(&tick_cpu_sched);
973 	ts->inidle = 1;
974 	__tick_nohz_idle_enter(ts);
975 
976 	local_irq_enable();
977 }
978 
979 /**
980  * tick_nohz_irq_exit - update next tick event from interrupt exit
981  *
982  * When an interrupt fires while we are idle and it doesn't cause
983  * a reschedule, it may still add, modify or delete a timer, enqueue
984  * an RCU callback, etc...
985  * So we need to re-calculate and reprogram the next tick event.
986  */
987 void tick_nohz_irq_exit(void)
988 {
989 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
990 
991 	if (ts->inidle)
992 		__tick_nohz_idle_enter(ts);
993 	else
994 		tick_nohz_full_update_tick(ts);
995 }
996 
997 /**
998  * tick_nohz_get_sleep_length - return the length of the current sleep
999  *
1000  * Called from power state control code with interrupts disabled
1001  */
1002 ktime_t tick_nohz_get_sleep_length(void)
1003 {
1004 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1005 
1006 	return ts->sleep_length;
1007 }
1008 
1009 /**
1010  * tick_nohz_get_idle_calls - return the current idle calls counter value
1011  *
1012  * Called from the schedutil frequency scaling governor in scheduler context.
1013  */
1014 unsigned long tick_nohz_get_idle_calls(void)
1015 {
1016 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1017 
1018 	return ts->idle_calls;
1019 }
1020 
1021 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1022 {
1023 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1024 	unsigned long ticks;
1025 
1026 	if (vtime_accounting_cpu_enabled())
1027 		return;
1028 	/*
1029 	 * We stopped the tick in idle. Update process times would miss the
1030 	 * time we slept as update_process_times does only a 1 tick
1031 	 * accounting. Enforce that this is accounted to idle !
1032 	 */
1033 	ticks = jiffies - ts->idle_jiffies;
1034 	/*
1035 	 * We might be one off. Do not randomly account a huge number of ticks!
1036 	 */
1037 	if (ticks && ticks < LONG_MAX)
1038 		account_idle_ticks(ticks);
1039 #endif
1040 }
1041 
1042 /**
1043  * tick_nohz_idle_exit - restart the idle tick from the idle task
1044  *
1045  * Restart the idle tick when the CPU is woken up from idle
1046  * This also exit the RCU extended quiescent state. The CPU
1047  * can use RCU again after this function is called.
1048  */
1049 void tick_nohz_idle_exit(void)
1050 {
1051 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1052 	ktime_t now;
1053 
1054 	local_irq_disable();
1055 
1056 	WARN_ON_ONCE(!ts->inidle);
1057 
1058 	ts->inidle = 0;
1059 
1060 	if (ts->idle_active || ts->tick_stopped)
1061 		now = ktime_get();
1062 
1063 	if (ts->idle_active)
1064 		tick_nohz_stop_idle(ts, now);
1065 
1066 	if (ts->tick_stopped) {
1067 		tick_nohz_restart_sched_tick(ts, now);
1068 		tick_nohz_account_idle_ticks(ts);
1069 	}
1070 
1071 	local_irq_enable();
1072 }
1073 
1074 /*
1075  * The nohz low res interrupt handler
1076  */
1077 static void tick_nohz_handler(struct clock_event_device *dev)
1078 {
1079 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1080 	struct pt_regs *regs = get_irq_regs();
1081 	ktime_t now = ktime_get();
1082 
1083 	dev->next_event = KTIME_MAX;
1084 
1085 	tick_sched_do_timer(now);
1086 	tick_sched_handle(ts, regs);
1087 
1088 	/* No need to reprogram if we are running tickless  */
1089 	if (unlikely(ts->tick_stopped))
1090 		return;
1091 
1092 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1093 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1094 }
1095 
1096 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1097 {
1098 	if (!tick_nohz_enabled)
1099 		return;
1100 	ts->nohz_mode = mode;
1101 	/* One update is enough */
1102 	if (!test_and_set_bit(0, &tick_nohz_active))
1103 		timers_update_migration(true);
1104 }
1105 
1106 /**
1107  * tick_nohz_switch_to_nohz - switch to nohz mode
1108  */
1109 static void tick_nohz_switch_to_nohz(void)
1110 {
1111 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1112 	ktime_t next;
1113 
1114 	if (!tick_nohz_enabled)
1115 		return;
1116 
1117 	if (tick_switch_to_oneshot(tick_nohz_handler))
1118 		return;
1119 
1120 	/*
1121 	 * Recycle the hrtimer in ts, so we can share the
1122 	 * hrtimer_forward with the highres code.
1123 	 */
1124 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1125 	/* Get the next period */
1126 	next = tick_init_jiffy_update();
1127 
1128 	hrtimer_set_expires(&ts->sched_timer, next);
1129 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1130 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1131 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1132 }
1133 
1134 static inline void tick_nohz_irq_enter(void)
1135 {
1136 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1137 	ktime_t now;
1138 
1139 	if (!ts->idle_active && !ts->tick_stopped)
1140 		return;
1141 	now = ktime_get();
1142 	if (ts->idle_active)
1143 		tick_nohz_stop_idle(ts, now);
1144 	if (ts->tick_stopped)
1145 		tick_nohz_update_jiffies(now);
1146 }
1147 
1148 #else
1149 
1150 static inline void tick_nohz_switch_to_nohz(void) { }
1151 static inline void tick_nohz_irq_enter(void) { }
1152 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1153 
1154 #endif /* CONFIG_NO_HZ_COMMON */
1155 
1156 /*
1157  * Called from irq_enter to notify about the possible interruption of idle()
1158  */
1159 void tick_irq_enter(void)
1160 {
1161 	tick_check_oneshot_broadcast_this_cpu();
1162 	tick_nohz_irq_enter();
1163 }
1164 
1165 /*
1166  * High resolution timer specific code
1167  */
1168 #ifdef CONFIG_HIGH_RES_TIMERS
1169 /*
1170  * We rearm the timer until we get disabled by the idle code.
1171  * Called with interrupts disabled.
1172  */
1173 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1174 {
1175 	struct tick_sched *ts =
1176 		container_of(timer, struct tick_sched, sched_timer);
1177 	struct pt_regs *regs = get_irq_regs();
1178 	ktime_t now = ktime_get();
1179 
1180 	tick_sched_do_timer(now);
1181 
1182 	/*
1183 	 * Do not call, when we are not in irq context and have
1184 	 * no valid regs pointer
1185 	 */
1186 	if (regs)
1187 		tick_sched_handle(ts, regs);
1188 	else
1189 		ts->next_tick = 0;
1190 
1191 	/* No need to reprogram if we are in idle or full dynticks mode */
1192 	if (unlikely(ts->tick_stopped))
1193 		return HRTIMER_NORESTART;
1194 
1195 	hrtimer_forward(timer, now, tick_period);
1196 
1197 	return HRTIMER_RESTART;
1198 }
1199 
1200 static int sched_skew_tick;
1201 
1202 static int __init skew_tick(char *str)
1203 {
1204 	get_option(&str, &sched_skew_tick);
1205 
1206 	return 0;
1207 }
1208 early_param("skew_tick", skew_tick);
1209 
1210 /**
1211  * tick_setup_sched_timer - setup the tick emulation timer
1212  */
1213 void tick_setup_sched_timer(void)
1214 {
1215 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1216 	ktime_t now = ktime_get();
1217 
1218 	/*
1219 	 * Emulate tick processing via per-CPU hrtimers:
1220 	 */
1221 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1222 	ts->sched_timer.function = tick_sched_timer;
1223 
1224 	/* Get the next period (per-CPU) */
1225 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1226 
1227 	/* Offset the tick to avert jiffies_lock contention. */
1228 	if (sched_skew_tick) {
1229 		u64 offset = ktime_to_ns(tick_period) >> 1;
1230 		do_div(offset, num_possible_cpus());
1231 		offset *= smp_processor_id();
1232 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1233 	}
1234 
1235 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1236 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1237 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1238 }
1239 #endif /* HIGH_RES_TIMERS */
1240 
1241 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1242 void tick_cancel_sched_timer(int cpu)
1243 {
1244 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1245 
1246 # ifdef CONFIG_HIGH_RES_TIMERS
1247 	if (ts->sched_timer.base)
1248 		hrtimer_cancel(&ts->sched_timer);
1249 # endif
1250 
1251 	memset(ts, 0, sizeof(*ts));
1252 }
1253 #endif
1254 
1255 /**
1256  * Async notification about clocksource changes
1257  */
1258 void tick_clock_notify(void)
1259 {
1260 	int cpu;
1261 
1262 	for_each_possible_cpu(cpu)
1263 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1264 }
1265 
1266 /*
1267  * Async notification about clock event changes
1268  */
1269 void tick_oneshot_notify(void)
1270 {
1271 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1272 
1273 	set_bit(0, &ts->check_clocks);
1274 }
1275 
1276 /**
1277  * Check, if a change happened, which makes oneshot possible.
1278  *
1279  * Called cyclic from the hrtimer softirq (driven by the timer
1280  * softirq) allow_nohz signals, that we can switch into low-res nohz
1281  * mode, because high resolution timers are disabled (either compile
1282  * or runtime). Called with interrupts disabled.
1283  */
1284 int tick_check_oneshot_change(int allow_nohz)
1285 {
1286 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1287 
1288 	if (!test_and_clear_bit(0, &ts->check_clocks))
1289 		return 0;
1290 
1291 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1292 		return 0;
1293 
1294 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1295 		return 0;
1296 
1297 	if (!allow_nohz)
1298 		return 1;
1299 
1300 	tick_nohz_switch_to_nohz();
1301 	return 0;
1302 }
1303