xref: /openbmc/linux/kernel/time/tick-sched.c (revision f7af616c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64bit can do a quick check without holding jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32bit cannot do that because the store of tick_next_period
68 	 * consists of two 32bit stores and the first store could move it
69 	 * to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on jiffies_lock and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Reevaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the jiffies_seq protected job */
118 	jiffies_64 += ticks;
119 
120 	/*
121 	 * Keep the tick_next_period variable up to date.
122 	 */
123 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124 
125 	if (IS_ENABLED(CONFIG_64BIT)) {
126 		/*
127 		 * Pairs with smp_load_acquire() in the lockless quick
128 		 * check above and ensures that the update to jiffies_64 is
129 		 * not reordered vs. the store to tick_next_period, neither
130 		 * by the compiler nor by the CPU.
131 		 */
132 		smp_store_release(&tick_next_period, nextp);
133 	} else {
134 		/*
135 		 * A plain store is good enough on 32bit as the quick check
136 		 * above is protected by the sequence count.
137 		 */
138 		tick_next_period = nextp;
139 	}
140 
141 	/*
142 	 * Release the sequence count. calc_global_load() below is not
143 	 * protected by it, but jiffies_lock needs to be held to prevent
144 	 * concurrent invocations.
145 	 */
146 	write_seqcount_end(&jiffies_seq);
147 
148 	calc_global_load();
149 
150 	raw_spin_unlock(&jiffies_lock);
151 	update_wall_time();
152 }
153 
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
157 static ktime_t tick_init_jiffy_update(void)
158 {
159 	ktime_t period;
160 
161 	raw_spin_lock(&jiffies_lock);
162 	write_seqcount_begin(&jiffies_seq);
163 	/* Did we start the jiffies update yet ? */
164 	if (last_jiffies_update == 0)
165 		last_jiffies_update = tick_next_period;
166 	period = last_jiffies_update;
167 	write_seqcount_end(&jiffies_seq);
168 	raw_spin_unlock(&jiffies_lock);
169 	return period;
170 }
171 
172 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
173 {
174 	int cpu = smp_processor_id();
175 
176 #ifdef CONFIG_NO_HZ_COMMON
177 	/*
178 	 * Check if the do_timer duty was dropped. We don't care about
179 	 * concurrency: This happens only when the CPU in charge went
180 	 * into a long sleep. If two CPUs happen to assign themselves to
181 	 * this duty, then the jiffies update is still serialized by
182 	 * jiffies_lock.
183 	 *
184 	 * If nohz_full is enabled, this should not happen because the
185 	 * tick_do_timer_cpu never relinquishes.
186 	 */
187 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
188 #ifdef CONFIG_NO_HZ_FULL
189 		WARN_ON(tick_nohz_full_running);
190 #endif
191 		tick_do_timer_cpu = cpu;
192 	}
193 #endif
194 
195 	/* Check, if the jiffies need an update */
196 	if (tick_do_timer_cpu == cpu)
197 		tick_do_update_jiffies64(now);
198 
199 	if (ts->inidle)
200 		ts->got_idle_tick = 1;
201 }
202 
203 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
204 {
205 #ifdef CONFIG_NO_HZ_COMMON
206 	/*
207 	 * When we are idle and the tick is stopped, we have to touch
208 	 * the watchdog as we might not schedule for a really long
209 	 * time. This happens on complete idle SMP systems while
210 	 * waiting on the login prompt. We also increment the "start of
211 	 * idle" jiffy stamp so the idle accounting adjustment we do
212 	 * when we go busy again does not account too much ticks.
213 	 */
214 	if (ts->tick_stopped) {
215 		touch_softlockup_watchdog_sched();
216 		if (is_idle_task(current))
217 			ts->idle_jiffies++;
218 		/*
219 		 * In case the current tick fired too early past its expected
220 		 * expiration, make sure we don't bypass the next clock reprogramming
221 		 * to the same deadline.
222 		 */
223 		ts->next_tick = 0;
224 	}
225 #endif
226 	update_process_times(user_mode(regs));
227 	profile_tick(CPU_PROFILING);
228 }
229 #endif
230 
231 #ifdef CONFIG_NO_HZ_FULL
232 cpumask_var_t tick_nohz_full_mask;
233 bool tick_nohz_full_running;
234 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
235 static atomic_t tick_dep_mask;
236 
237 static bool check_tick_dependency(atomic_t *dep)
238 {
239 	int val = atomic_read(dep);
240 
241 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
242 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
243 		return true;
244 	}
245 
246 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
247 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
248 		return true;
249 	}
250 
251 	if (val & TICK_DEP_MASK_SCHED) {
252 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
253 		return true;
254 	}
255 
256 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
257 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
258 		return true;
259 	}
260 
261 	if (val & TICK_DEP_MASK_RCU) {
262 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
263 		return true;
264 	}
265 
266 	return false;
267 }
268 
269 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
270 {
271 	lockdep_assert_irqs_disabled();
272 
273 	if (unlikely(!cpu_online(cpu)))
274 		return false;
275 
276 	if (check_tick_dependency(&tick_dep_mask))
277 		return false;
278 
279 	if (check_tick_dependency(&ts->tick_dep_mask))
280 		return false;
281 
282 	if (check_tick_dependency(&current->tick_dep_mask))
283 		return false;
284 
285 	if (check_tick_dependency(&current->signal->tick_dep_mask))
286 		return false;
287 
288 	return true;
289 }
290 
291 static void nohz_full_kick_func(struct irq_work *work)
292 {
293 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
294 }
295 
296 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
297 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
298 
299 /*
300  * Kick this CPU if it's full dynticks in order to force it to
301  * re-evaluate its dependency on the tick and restart it if necessary.
302  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
303  * is NMI safe.
304  */
305 static void tick_nohz_full_kick(void)
306 {
307 	if (!tick_nohz_full_cpu(smp_processor_id()))
308 		return;
309 
310 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
311 }
312 
313 /*
314  * Kick the CPU if it's full dynticks in order to force it to
315  * re-evaluate its dependency on the tick and restart it if necessary.
316  */
317 void tick_nohz_full_kick_cpu(int cpu)
318 {
319 	if (!tick_nohz_full_cpu(cpu))
320 		return;
321 
322 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
323 }
324 
325 /*
326  * Kick all full dynticks CPUs in order to force these to re-evaluate
327  * their dependency on the tick and restart it if necessary.
328  */
329 static void tick_nohz_full_kick_all(void)
330 {
331 	int cpu;
332 
333 	if (!tick_nohz_full_running)
334 		return;
335 
336 	preempt_disable();
337 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
338 		tick_nohz_full_kick_cpu(cpu);
339 	preempt_enable();
340 }
341 
342 static void tick_nohz_dep_set_all(atomic_t *dep,
343 				  enum tick_dep_bits bit)
344 {
345 	int prev;
346 
347 	prev = atomic_fetch_or(BIT(bit), dep);
348 	if (!prev)
349 		tick_nohz_full_kick_all();
350 }
351 
352 /*
353  * Set a global tick dependency. Used by perf events that rely on freq and
354  * by unstable clock.
355  */
356 void tick_nohz_dep_set(enum tick_dep_bits bit)
357 {
358 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
359 }
360 
361 void tick_nohz_dep_clear(enum tick_dep_bits bit)
362 {
363 	atomic_andnot(BIT(bit), &tick_dep_mask);
364 }
365 
366 /*
367  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
368  * manage events throttling.
369  */
370 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
371 {
372 	int prev;
373 	struct tick_sched *ts;
374 
375 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
376 
377 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
378 	if (!prev) {
379 		preempt_disable();
380 		/* Perf needs local kick that is NMI safe */
381 		if (cpu == smp_processor_id()) {
382 			tick_nohz_full_kick();
383 		} else {
384 			/* Remote irq work not NMI-safe */
385 			if (!WARN_ON_ONCE(in_nmi()))
386 				tick_nohz_full_kick_cpu(cpu);
387 		}
388 		preempt_enable();
389 	}
390 }
391 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
392 
393 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
394 {
395 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
396 
397 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
398 }
399 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
400 
401 /*
402  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
403  * in order to elapse per task timers.
404  */
405 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
406 {
407 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
408 		if (tsk == current) {
409 			preempt_disable();
410 			tick_nohz_full_kick();
411 			preempt_enable();
412 		} else {
413 			/*
414 			 * Some future tick_nohz_full_kick_task()
415 			 * should optimize this.
416 			 */
417 			tick_nohz_full_kick_all();
418 		}
419 	}
420 }
421 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
422 
423 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
424 {
425 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
426 }
427 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
428 
429 /*
430  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
431  * per process timers.
432  */
433 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
434 {
435 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
436 }
437 
438 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
439 {
440 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
441 }
442 
443 /*
444  * Re-evaluate the need for the tick as we switch the current task.
445  * It might need the tick due to per task/process properties:
446  * perf events, posix CPU timers, ...
447  */
448 void __tick_nohz_task_switch(void)
449 {
450 	unsigned long flags;
451 	struct tick_sched *ts;
452 
453 	local_irq_save(flags);
454 
455 	if (!tick_nohz_full_cpu(smp_processor_id()))
456 		goto out;
457 
458 	ts = this_cpu_ptr(&tick_cpu_sched);
459 
460 	if (ts->tick_stopped) {
461 		if (atomic_read(&current->tick_dep_mask) ||
462 		    atomic_read(&current->signal->tick_dep_mask))
463 			tick_nohz_full_kick();
464 	}
465 out:
466 	local_irq_restore(flags);
467 }
468 
469 /* Get the boot-time nohz CPU list from the kernel parameters. */
470 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
471 {
472 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
473 	cpumask_copy(tick_nohz_full_mask, cpumask);
474 	tick_nohz_full_running = true;
475 }
476 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
477 
478 static int tick_nohz_cpu_down(unsigned int cpu)
479 {
480 	/*
481 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
482 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
483 	 * CPUs. It must remain online when nohz full is enabled.
484 	 */
485 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
486 		return -EBUSY;
487 	return 0;
488 }
489 
490 void __init tick_nohz_init(void)
491 {
492 	int cpu, ret;
493 
494 	if (!tick_nohz_full_running)
495 		return;
496 
497 	/*
498 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
499 	 * locking contexts. But then we need irq work to raise its own
500 	 * interrupts to avoid circular dependency on the tick
501 	 */
502 	if (!arch_irq_work_has_interrupt()) {
503 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
504 		cpumask_clear(tick_nohz_full_mask);
505 		tick_nohz_full_running = false;
506 		return;
507 	}
508 
509 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
510 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
511 		cpu = smp_processor_id();
512 
513 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
514 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
515 				"for timekeeping\n", cpu);
516 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
517 		}
518 	}
519 
520 	for_each_cpu(cpu, tick_nohz_full_mask)
521 		context_tracking_cpu_set(cpu);
522 
523 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
524 					"kernel/nohz:predown", NULL,
525 					tick_nohz_cpu_down);
526 	WARN_ON(ret < 0);
527 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
528 		cpumask_pr_args(tick_nohz_full_mask));
529 }
530 #endif
531 
532 /*
533  * NOHZ - aka dynamic tick functionality
534  */
535 #ifdef CONFIG_NO_HZ_COMMON
536 /*
537  * NO HZ enabled ?
538  */
539 bool tick_nohz_enabled __read_mostly  = true;
540 unsigned long tick_nohz_active  __read_mostly;
541 /*
542  * Enable / Disable tickless mode
543  */
544 static int __init setup_tick_nohz(char *str)
545 {
546 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
547 }
548 
549 __setup("nohz=", setup_tick_nohz);
550 
551 bool tick_nohz_tick_stopped(void)
552 {
553 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
554 
555 	return ts->tick_stopped;
556 }
557 
558 bool tick_nohz_tick_stopped_cpu(int cpu)
559 {
560 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
561 
562 	return ts->tick_stopped;
563 }
564 
565 /**
566  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
567  *
568  * Called from interrupt entry when the CPU was idle
569  *
570  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
571  * must be updated. Otherwise an interrupt handler could use a stale jiffy
572  * value. We do this unconditionally on any CPU, as we don't know whether the
573  * CPU, which has the update task assigned is in a long sleep.
574  */
575 static void tick_nohz_update_jiffies(ktime_t now)
576 {
577 	unsigned long flags;
578 
579 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
580 
581 	local_irq_save(flags);
582 	tick_do_update_jiffies64(now);
583 	local_irq_restore(flags);
584 
585 	touch_softlockup_watchdog_sched();
586 }
587 
588 /*
589  * Updates the per-CPU time idle statistics counters
590  */
591 static void
592 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
593 {
594 	ktime_t delta;
595 
596 	if (ts->idle_active) {
597 		delta = ktime_sub(now, ts->idle_entrytime);
598 		if (nr_iowait_cpu(cpu) > 0)
599 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
600 		else
601 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
602 		ts->idle_entrytime = now;
603 	}
604 
605 	if (last_update_time)
606 		*last_update_time = ktime_to_us(now);
607 
608 }
609 
610 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
611 {
612 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
613 	ts->idle_active = 0;
614 
615 	sched_clock_idle_wakeup_event();
616 }
617 
618 static void tick_nohz_start_idle(struct tick_sched *ts)
619 {
620 	ts->idle_entrytime = ktime_get();
621 	ts->idle_active = 1;
622 	sched_clock_idle_sleep_event();
623 }
624 
625 /**
626  * get_cpu_idle_time_us - get the total idle time of a CPU
627  * @cpu: CPU number to query
628  * @last_update_time: variable to store update time in. Do not update
629  * counters if NULL.
630  *
631  * Return the cumulative idle time (since boot) for a given
632  * CPU, in microseconds.
633  *
634  * This time is measured via accounting rather than sampling,
635  * and is as accurate as ktime_get() is.
636  *
637  * This function returns -1 if NOHZ is not enabled.
638  */
639 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
640 {
641 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
642 	ktime_t now, idle;
643 
644 	if (!tick_nohz_active)
645 		return -1;
646 
647 	now = ktime_get();
648 	if (last_update_time) {
649 		update_ts_time_stats(cpu, ts, now, last_update_time);
650 		idle = ts->idle_sleeptime;
651 	} else {
652 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
653 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
654 
655 			idle = ktime_add(ts->idle_sleeptime, delta);
656 		} else {
657 			idle = ts->idle_sleeptime;
658 		}
659 	}
660 
661 	return ktime_to_us(idle);
662 
663 }
664 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
665 
666 /**
667  * get_cpu_iowait_time_us - get the total iowait time of a CPU
668  * @cpu: CPU number to query
669  * @last_update_time: variable to store update time in. Do not update
670  * counters if NULL.
671  *
672  * Return the cumulative iowait time (since boot) for a given
673  * CPU, in microseconds.
674  *
675  * This time is measured via accounting rather than sampling,
676  * and is as accurate as ktime_get() is.
677  *
678  * This function returns -1 if NOHZ is not enabled.
679  */
680 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
681 {
682 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
683 	ktime_t now, iowait;
684 
685 	if (!tick_nohz_active)
686 		return -1;
687 
688 	now = ktime_get();
689 	if (last_update_time) {
690 		update_ts_time_stats(cpu, ts, now, last_update_time);
691 		iowait = ts->iowait_sleeptime;
692 	} else {
693 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
694 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
695 
696 			iowait = ktime_add(ts->iowait_sleeptime, delta);
697 		} else {
698 			iowait = ts->iowait_sleeptime;
699 		}
700 	}
701 
702 	return ktime_to_us(iowait);
703 }
704 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
705 
706 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
707 {
708 	hrtimer_cancel(&ts->sched_timer);
709 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
710 
711 	/* Forward the time to expire in the future */
712 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
713 
714 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
715 		hrtimer_start_expires(&ts->sched_timer,
716 				      HRTIMER_MODE_ABS_PINNED_HARD);
717 	} else {
718 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
719 	}
720 
721 	/*
722 	 * Reset to make sure next tick stop doesn't get fooled by past
723 	 * cached clock deadline.
724 	 */
725 	ts->next_tick = 0;
726 }
727 
728 static inline bool local_timer_softirq_pending(void)
729 {
730 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
731 }
732 
733 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
734 {
735 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
736 	unsigned long basejiff;
737 	unsigned int seq;
738 
739 	/* Read jiffies and the time when jiffies were updated last */
740 	do {
741 		seq = read_seqcount_begin(&jiffies_seq);
742 		basemono = last_jiffies_update;
743 		basejiff = jiffies;
744 	} while (read_seqcount_retry(&jiffies_seq, seq));
745 	ts->last_jiffies = basejiff;
746 	ts->timer_expires_base = basemono;
747 
748 	/*
749 	 * Keep the periodic tick, when RCU, architecture or irq_work
750 	 * requests it.
751 	 * Aside of that check whether the local timer softirq is
752 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
753 	 * because there is an already expired timer, so it will request
754 	 * immediate expiry, which rearms the hardware timer with a
755 	 * minimal delta which brings us back to this place
756 	 * immediately. Lather, rinse and repeat...
757 	 */
758 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
759 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
760 		next_tick = basemono + TICK_NSEC;
761 	} else {
762 		/*
763 		 * Get the next pending timer. If high resolution
764 		 * timers are enabled this only takes the timer wheel
765 		 * timers into account. If high resolution timers are
766 		 * disabled this also looks at the next expiring
767 		 * hrtimer.
768 		 */
769 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
770 		ts->next_timer = next_tmr;
771 		/* Take the next rcu event into account */
772 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
773 	}
774 
775 	/*
776 	 * If the tick is due in the next period, keep it ticking or
777 	 * force prod the timer.
778 	 */
779 	delta = next_tick - basemono;
780 	if (delta <= (u64)TICK_NSEC) {
781 		/*
782 		 * Tell the timer code that the base is not idle, i.e. undo
783 		 * the effect of get_next_timer_interrupt():
784 		 */
785 		timer_clear_idle();
786 		/*
787 		 * We've not stopped the tick yet, and there's a timer in the
788 		 * next period, so no point in stopping it either, bail.
789 		 */
790 		if (!ts->tick_stopped) {
791 			ts->timer_expires = 0;
792 			goto out;
793 		}
794 	}
795 
796 	/*
797 	 * If this CPU is the one which had the do_timer() duty last, we limit
798 	 * the sleep time to the timekeeping max_deferment value.
799 	 * Otherwise we can sleep as long as we want.
800 	 */
801 	delta = timekeeping_max_deferment();
802 	if (cpu != tick_do_timer_cpu &&
803 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
804 		delta = KTIME_MAX;
805 
806 	/* Calculate the next expiry time */
807 	if (delta < (KTIME_MAX - basemono))
808 		expires = basemono + delta;
809 	else
810 		expires = KTIME_MAX;
811 
812 	ts->timer_expires = min_t(u64, expires, next_tick);
813 
814 out:
815 	return ts->timer_expires;
816 }
817 
818 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
819 {
820 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
821 	u64 basemono = ts->timer_expires_base;
822 	u64 expires = ts->timer_expires;
823 	ktime_t tick = expires;
824 
825 	/* Make sure we won't be trying to stop it twice in a row. */
826 	ts->timer_expires_base = 0;
827 
828 	/*
829 	 * If this CPU is the one which updates jiffies, then give up
830 	 * the assignment and let it be taken by the CPU which runs
831 	 * the tick timer next, which might be this CPU as well. If we
832 	 * don't drop this here the jiffies might be stale and
833 	 * do_timer() never invoked. Keep track of the fact that it
834 	 * was the one which had the do_timer() duty last.
835 	 */
836 	if (cpu == tick_do_timer_cpu) {
837 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
838 		ts->do_timer_last = 1;
839 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
840 		ts->do_timer_last = 0;
841 	}
842 
843 	/* Skip reprogram of event if its not changed */
844 	if (ts->tick_stopped && (expires == ts->next_tick)) {
845 		/* Sanity check: make sure clockevent is actually programmed */
846 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
847 			return;
848 
849 		WARN_ON_ONCE(1);
850 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
851 			    basemono, ts->next_tick, dev->next_event,
852 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
853 	}
854 
855 	/*
856 	 * nohz_stop_sched_tick can be called several times before
857 	 * the nohz_restart_sched_tick is called. This happens when
858 	 * interrupts arrive which do not cause a reschedule. In the
859 	 * first call we save the current tick time, so we can restart
860 	 * the scheduler tick in nohz_restart_sched_tick.
861 	 */
862 	if (!ts->tick_stopped) {
863 		calc_load_nohz_start();
864 		quiet_vmstat();
865 
866 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
867 		ts->tick_stopped = 1;
868 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
869 	}
870 
871 	ts->next_tick = tick;
872 
873 	/*
874 	 * If the expiration time == KTIME_MAX, then we simply stop
875 	 * the tick timer.
876 	 */
877 	if (unlikely(expires == KTIME_MAX)) {
878 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
879 			hrtimer_cancel(&ts->sched_timer);
880 		return;
881 	}
882 
883 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
884 		hrtimer_start(&ts->sched_timer, tick,
885 			      HRTIMER_MODE_ABS_PINNED_HARD);
886 	} else {
887 		hrtimer_set_expires(&ts->sched_timer, tick);
888 		tick_program_event(tick, 1);
889 	}
890 }
891 
892 static void tick_nohz_retain_tick(struct tick_sched *ts)
893 {
894 	ts->timer_expires_base = 0;
895 }
896 
897 #ifdef CONFIG_NO_HZ_FULL
898 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
899 {
900 	if (tick_nohz_next_event(ts, cpu))
901 		tick_nohz_stop_tick(ts, cpu);
902 	else
903 		tick_nohz_retain_tick(ts);
904 }
905 #endif /* CONFIG_NO_HZ_FULL */
906 
907 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
908 {
909 	/* Update jiffies first */
910 	tick_do_update_jiffies64(now);
911 
912 	/*
913 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
914 	 * the clock forward checks in the enqueue path:
915 	 */
916 	timer_clear_idle();
917 
918 	calc_load_nohz_stop();
919 	touch_softlockup_watchdog_sched();
920 	/*
921 	 * Cancel the scheduled timer and restore the tick
922 	 */
923 	ts->tick_stopped  = 0;
924 	ts->idle_exittime = now;
925 
926 	tick_nohz_restart(ts, now);
927 }
928 
929 static void tick_nohz_full_update_tick(struct tick_sched *ts)
930 {
931 #ifdef CONFIG_NO_HZ_FULL
932 	int cpu = smp_processor_id();
933 
934 	if (!tick_nohz_full_cpu(cpu))
935 		return;
936 
937 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
938 		return;
939 
940 	if (can_stop_full_tick(cpu, ts))
941 		tick_nohz_stop_sched_tick(ts, cpu);
942 	else if (ts->tick_stopped)
943 		tick_nohz_restart_sched_tick(ts, ktime_get());
944 #endif
945 }
946 
947 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
948 {
949 	/*
950 	 * If this CPU is offline and it is the one which updates
951 	 * jiffies, then give up the assignment and let it be taken by
952 	 * the CPU which runs the tick timer next. If we don't drop
953 	 * this here the jiffies might be stale and do_timer() never
954 	 * invoked.
955 	 */
956 	if (unlikely(!cpu_online(cpu))) {
957 		if (cpu == tick_do_timer_cpu)
958 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
959 		/*
960 		 * Make sure the CPU doesn't get fooled by obsolete tick
961 		 * deadline if it comes back online later.
962 		 */
963 		ts->next_tick = 0;
964 		return false;
965 	}
966 
967 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
968 		return false;
969 
970 	if (need_resched())
971 		return false;
972 
973 	if (unlikely(local_softirq_pending())) {
974 		static int ratelimit;
975 
976 		if (ratelimit < 10 && !local_bh_blocked() &&
977 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
978 			pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
979 				(unsigned int) local_softirq_pending());
980 			ratelimit++;
981 		}
982 		return false;
983 	}
984 
985 	if (tick_nohz_full_enabled()) {
986 		/*
987 		 * Keep the tick alive to guarantee timekeeping progression
988 		 * if there are full dynticks CPUs around
989 		 */
990 		if (tick_do_timer_cpu == cpu)
991 			return false;
992 
993 		/* Should not happen for nohz-full */
994 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
995 			return false;
996 	}
997 
998 	return true;
999 }
1000 
1001 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1002 {
1003 	ktime_t expires;
1004 	int cpu = smp_processor_id();
1005 
1006 	/*
1007 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1008 	 * tick timer expiration time is known already.
1009 	 */
1010 	if (ts->timer_expires_base)
1011 		expires = ts->timer_expires;
1012 	else if (can_stop_idle_tick(cpu, ts))
1013 		expires = tick_nohz_next_event(ts, cpu);
1014 	else
1015 		return;
1016 
1017 	ts->idle_calls++;
1018 
1019 	if (expires > 0LL) {
1020 		int was_stopped = ts->tick_stopped;
1021 
1022 		tick_nohz_stop_tick(ts, cpu);
1023 
1024 		ts->idle_sleeps++;
1025 		ts->idle_expires = expires;
1026 
1027 		if (!was_stopped && ts->tick_stopped) {
1028 			ts->idle_jiffies = ts->last_jiffies;
1029 			nohz_balance_enter_idle(cpu);
1030 		}
1031 	} else {
1032 		tick_nohz_retain_tick(ts);
1033 	}
1034 }
1035 
1036 /**
1037  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1038  *
1039  * When the next event is more than a tick into the future, stop the idle tick
1040  */
1041 void tick_nohz_idle_stop_tick(void)
1042 {
1043 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1044 }
1045 
1046 void tick_nohz_idle_retain_tick(void)
1047 {
1048 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1049 	/*
1050 	 * Undo the effect of get_next_timer_interrupt() called from
1051 	 * tick_nohz_next_event().
1052 	 */
1053 	timer_clear_idle();
1054 }
1055 
1056 /**
1057  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1058  *
1059  * Called when we start the idle loop.
1060  */
1061 void tick_nohz_idle_enter(void)
1062 {
1063 	struct tick_sched *ts;
1064 
1065 	lockdep_assert_irqs_enabled();
1066 
1067 	local_irq_disable();
1068 
1069 	ts = this_cpu_ptr(&tick_cpu_sched);
1070 
1071 	WARN_ON_ONCE(ts->timer_expires_base);
1072 
1073 	ts->inidle = 1;
1074 	tick_nohz_start_idle(ts);
1075 
1076 	local_irq_enable();
1077 }
1078 
1079 /**
1080  * tick_nohz_irq_exit - update next tick event from interrupt exit
1081  *
1082  * When an interrupt fires while we are idle and it doesn't cause
1083  * a reschedule, it may still add, modify or delete a timer, enqueue
1084  * an RCU callback, etc...
1085  * So we need to re-calculate and reprogram the next tick event.
1086  */
1087 void tick_nohz_irq_exit(void)
1088 {
1089 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1090 
1091 	if (ts->inidle)
1092 		tick_nohz_start_idle(ts);
1093 	else
1094 		tick_nohz_full_update_tick(ts);
1095 }
1096 
1097 /**
1098  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1099  */
1100 bool tick_nohz_idle_got_tick(void)
1101 {
1102 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1103 
1104 	if (ts->got_idle_tick) {
1105 		ts->got_idle_tick = 0;
1106 		return true;
1107 	}
1108 	return false;
1109 }
1110 
1111 /**
1112  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1113  * or the tick, whatever that expires first. Note that, if the tick has been
1114  * stopped, it returns the next hrtimer.
1115  *
1116  * Called from power state control code with interrupts disabled
1117  */
1118 ktime_t tick_nohz_get_next_hrtimer(void)
1119 {
1120 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1121 }
1122 
1123 /**
1124  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1125  * @delta_next: duration until the next event if the tick cannot be stopped
1126  *
1127  * Called from power state control code with interrupts disabled.
1128  *
1129  * The return value of this function and/or the value returned by it through the
1130  * @delta_next pointer can be negative which must be taken into account by its
1131  * callers.
1132  */
1133 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1134 {
1135 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1136 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1137 	int cpu = smp_processor_id();
1138 	/*
1139 	 * The idle entry time is expected to be a sufficient approximation of
1140 	 * the current time at this point.
1141 	 */
1142 	ktime_t now = ts->idle_entrytime;
1143 	ktime_t next_event;
1144 
1145 	WARN_ON_ONCE(!ts->inidle);
1146 
1147 	*delta_next = ktime_sub(dev->next_event, now);
1148 
1149 	if (!can_stop_idle_tick(cpu, ts))
1150 		return *delta_next;
1151 
1152 	next_event = tick_nohz_next_event(ts, cpu);
1153 	if (!next_event)
1154 		return *delta_next;
1155 
1156 	/*
1157 	 * If the next highres timer to expire is earlier than next_event, the
1158 	 * idle governor needs to know that.
1159 	 */
1160 	next_event = min_t(u64, next_event,
1161 			   hrtimer_next_event_without(&ts->sched_timer));
1162 
1163 	return ktime_sub(next_event, now);
1164 }
1165 
1166 /**
1167  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1168  * for a particular CPU.
1169  *
1170  * Called from the schedutil frequency scaling governor in scheduler context.
1171  */
1172 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1173 {
1174 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1175 
1176 	return ts->idle_calls;
1177 }
1178 
1179 /**
1180  * tick_nohz_get_idle_calls - return the current idle calls counter value
1181  *
1182  * Called from the schedutil frequency scaling governor in scheduler context.
1183  */
1184 unsigned long tick_nohz_get_idle_calls(void)
1185 {
1186 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1187 
1188 	return ts->idle_calls;
1189 }
1190 
1191 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1192 {
1193 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1194 	unsigned long ticks;
1195 
1196 	if (vtime_accounting_enabled_this_cpu())
1197 		return;
1198 	/*
1199 	 * We stopped the tick in idle. Update process times would miss the
1200 	 * time we slept as update_process_times does only a 1 tick
1201 	 * accounting. Enforce that this is accounted to idle !
1202 	 */
1203 	ticks = jiffies - ts->idle_jiffies;
1204 	/*
1205 	 * We might be one off. Do not randomly account a huge number of ticks!
1206 	 */
1207 	if (ticks && ticks < LONG_MAX)
1208 		account_idle_ticks(ticks);
1209 #endif
1210 }
1211 
1212 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1213 {
1214 	tick_nohz_restart_sched_tick(ts, now);
1215 	tick_nohz_account_idle_ticks(ts);
1216 }
1217 
1218 void tick_nohz_idle_restart_tick(void)
1219 {
1220 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1221 
1222 	if (ts->tick_stopped)
1223 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1224 }
1225 
1226 /**
1227  * tick_nohz_idle_exit - restart the idle tick from the idle task
1228  *
1229  * Restart the idle tick when the CPU is woken up from idle
1230  * This also exit the RCU extended quiescent state. The CPU
1231  * can use RCU again after this function is called.
1232  */
1233 void tick_nohz_idle_exit(void)
1234 {
1235 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1236 	bool idle_active, tick_stopped;
1237 	ktime_t now;
1238 
1239 	local_irq_disable();
1240 
1241 	WARN_ON_ONCE(!ts->inidle);
1242 	WARN_ON_ONCE(ts->timer_expires_base);
1243 
1244 	ts->inidle = 0;
1245 	idle_active = ts->idle_active;
1246 	tick_stopped = ts->tick_stopped;
1247 
1248 	if (idle_active || tick_stopped)
1249 		now = ktime_get();
1250 
1251 	if (idle_active)
1252 		tick_nohz_stop_idle(ts, now);
1253 
1254 	if (tick_stopped)
1255 		__tick_nohz_idle_restart_tick(ts, now);
1256 
1257 	local_irq_enable();
1258 }
1259 
1260 /*
1261  * The nohz low res interrupt handler
1262  */
1263 static void tick_nohz_handler(struct clock_event_device *dev)
1264 {
1265 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1266 	struct pt_regs *regs = get_irq_regs();
1267 	ktime_t now = ktime_get();
1268 
1269 	dev->next_event = KTIME_MAX;
1270 
1271 	tick_sched_do_timer(ts, now);
1272 	tick_sched_handle(ts, regs);
1273 
1274 	/* No need to reprogram if we are running tickless  */
1275 	if (unlikely(ts->tick_stopped))
1276 		return;
1277 
1278 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1279 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1280 }
1281 
1282 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1283 {
1284 	if (!tick_nohz_enabled)
1285 		return;
1286 	ts->nohz_mode = mode;
1287 	/* One update is enough */
1288 	if (!test_and_set_bit(0, &tick_nohz_active))
1289 		timers_update_nohz();
1290 }
1291 
1292 /**
1293  * tick_nohz_switch_to_nohz - switch to nohz mode
1294  */
1295 static void tick_nohz_switch_to_nohz(void)
1296 {
1297 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1298 	ktime_t next;
1299 
1300 	if (!tick_nohz_enabled)
1301 		return;
1302 
1303 	if (tick_switch_to_oneshot(tick_nohz_handler))
1304 		return;
1305 
1306 	/*
1307 	 * Recycle the hrtimer in ts, so we can share the
1308 	 * hrtimer_forward with the highres code.
1309 	 */
1310 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1311 	/* Get the next period */
1312 	next = tick_init_jiffy_update();
1313 
1314 	hrtimer_set_expires(&ts->sched_timer, next);
1315 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1316 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1317 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1318 }
1319 
1320 static inline void tick_nohz_irq_enter(void)
1321 {
1322 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1323 	ktime_t now;
1324 
1325 	if (!ts->idle_active && !ts->tick_stopped)
1326 		return;
1327 	now = ktime_get();
1328 	if (ts->idle_active)
1329 		tick_nohz_stop_idle(ts, now);
1330 	if (ts->tick_stopped)
1331 		tick_nohz_update_jiffies(now);
1332 }
1333 
1334 #else
1335 
1336 static inline void tick_nohz_switch_to_nohz(void) { }
1337 static inline void tick_nohz_irq_enter(void) { }
1338 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1339 
1340 #endif /* CONFIG_NO_HZ_COMMON */
1341 
1342 /*
1343  * Called from irq_enter to notify about the possible interruption of idle()
1344  */
1345 void tick_irq_enter(void)
1346 {
1347 	tick_check_oneshot_broadcast_this_cpu();
1348 	tick_nohz_irq_enter();
1349 }
1350 
1351 /*
1352  * High resolution timer specific code
1353  */
1354 #ifdef CONFIG_HIGH_RES_TIMERS
1355 /*
1356  * We rearm the timer until we get disabled by the idle code.
1357  * Called with interrupts disabled.
1358  */
1359 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1360 {
1361 	struct tick_sched *ts =
1362 		container_of(timer, struct tick_sched, sched_timer);
1363 	struct pt_regs *regs = get_irq_regs();
1364 	ktime_t now = ktime_get();
1365 
1366 	tick_sched_do_timer(ts, now);
1367 
1368 	/*
1369 	 * Do not call, when we are not in irq context and have
1370 	 * no valid regs pointer
1371 	 */
1372 	if (regs)
1373 		tick_sched_handle(ts, regs);
1374 	else
1375 		ts->next_tick = 0;
1376 
1377 	/* No need to reprogram if we are in idle or full dynticks mode */
1378 	if (unlikely(ts->tick_stopped))
1379 		return HRTIMER_NORESTART;
1380 
1381 	hrtimer_forward(timer, now, TICK_NSEC);
1382 
1383 	return HRTIMER_RESTART;
1384 }
1385 
1386 static int sched_skew_tick;
1387 
1388 static int __init skew_tick(char *str)
1389 {
1390 	get_option(&str, &sched_skew_tick);
1391 
1392 	return 0;
1393 }
1394 early_param("skew_tick", skew_tick);
1395 
1396 /**
1397  * tick_setup_sched_timer - setup the tick emulation timer
1398  */
1399 void tick_setup_sched_timer(void)
1400 {
1401 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1402 	ktime_t now = ktime_get();
1403 
1404 	/*
1405 	 * Emulate tick processing via per-CPU hrtimers:
1406 	 */
1407 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1408 	ts->sched_timer.function = tick_sched_timer;
1409 
1410 	/* Get the next period (per-CPU) */
1411 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1412 
1413 	/* Offset the tick to avert jiffies_lock contention. */
1414 	if (sched_skew_tick) {
1415 		u64 offset = TICK_NSEC >> 1;
1416 		do_div(offset, num_possible_cpus());
1417 		offset *= smp_processor_id();
1418 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1419 	}
1420 
1421 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1422 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1423 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1424 }
1425 #endif /* HIGH_RES_TIMERS */
1426 
1427 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1428 void tick_cancel_sched_timer(int cpu)
1429 {
1430 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1431 
1432 # ifdef CONFIG_HIGH_RES_TIMERS
1433 	if (ts->sched_timer.base)
1434 		hrtimer_cancel(&ts->sched_timer);
1435 # endif
1436 
1437 	memset(ts, 0, sizeof(*ts));
1438 }
1439 #endif
1440 
1441 /**
1442  * Async notification about clocksource changes
1443  */
1444 void tick_clock_notify(void)
1445 {
1446 	int cpu;
1447 
1448 	for_each_possible_cpu(cpu)
1449 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1450 }
1451 
1452 /*
1453  * Async notification about clock event changes
1454  */
1455 void tick_oneshot_notify(void)
1456 {
1457 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1458 
1459 	set_bit(0, &ts->check_clocks);
1460 }
1461 
1462 /**
1463  * Check, if a change happened, which makes oneshot possible.
1464  *
1465  * Called cyclic from the hrtimer softirq (driven by the timer
1466  * softirq) allow_nohz signals, that we can switch into low-res nohz
1467  * mode, because high resolution timers are disabled (either compile
1468  * or runtime). Called with interrupts disabled.
1469  */
1470 int tick_check_oneshot_change(int allow_nohz)
1471 {
1472 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1473 
1474 	if (!test_and_clear_bit(0, &ts->check_clocks))
1475 		return 0;
1476 
1477 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1478 		return 0;
1479 
1480 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1481 		return 0;
1482 
1483 	if (!allow_nohz)
1484 		return 1;
1485 
1486 	tick_nohz_switch_to_nohz();
1487 	return 0;
1488 }
1489