xref: /openbmc/linux/kernel/time/tick-sched.c (revision f4a80ec8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64bit can do a quick check without holding jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32bit cannot do that because the store of tick_next_period
68 	 * consists of two 32bit stores and the first store could move it
69 	 * to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on jiffies_lock and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Reevaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the jiffies_seq protected job */
118 	jiffies_64 += ticks;
119 
120 	/*
121 	 * Keep the tick_next_period variable up to date.
122 	 */
123 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124 
125 	if (IS_ENABLED(CONFIG_64BIT)) {
126 		/*
127 		 * Pairs with smp_load_acquire() in the lockless quick
128 		 * check above and ensures that the update to jiffies_64 is
129 		 * not reordered vs. the store to tick_next_period, neither
130 		 * by the compiler nor by the CPU.
131 		 */
132 		smp_store_release(&tick_next_period, nextp);
133 	} else {
134 		/*
135 		 * A plain store is good enough on 32bit as the quick check
136 		 * above is protected by the sequence count.
137 		 */
138 		tick_next_period = nextp;
139 	}
140 
141 	/*
142 	 * Release the sequence count. calc_global_load() below is not
143 	 * protected by it, but jiffies_lock needs to be held to prevent
144 	 * concurrent invocations.
145 	 */
146 	write_seqcount_end(&jiffies_seq);
147 
148 	calc_global_load();
149 
150 	raw_spin_unlock(&jiffies_lock);
151 	update_wall_time();
152 }
153 
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
157 static ktime_t tick_init_jiffy_update(void)
158 {
159 	ktime_t period;
160 
161 	raw_spin_lock(&jiffies_lock);
162 	write_seqcount_begin(&jiffies_seq);
163 	/* Did we start the jiffies update yet ? */
164 	if (last_jiffies_update == 0)
165 		last_jiffies_update = tick_next_period;
166 	period = last_jiffies_update;
167 	write_seqcount_end(&jiffies_seq);
168 	raw_spin_unlock(&jiffies_lock);
169 	return period;
170 }
171 
172 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
173 {
174 	int cpu = smp_processor_id();
175 
176 #ifdef CONFIG_NO_HZ_COMMON
177 	/*
178 	 * Check if the do_timer duty was dropped. We don't care about
179 	 * concurrency: This happens only when the CPU in charge went
180 	 * into a long sleep. If two CPUs happen to assign themselves to
181 	 * this duty, then the jiffies update is still serialized by
182 	 * jiffies_lock.
183 	 *
184 	 * If nohz_full is enabled, this should not happen because the
185 	 * tick_do_timer_cpu never relinquishes.
186 	 */
187 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
188 #ifdef CONFIG_NO_HZ_FULL
189 		WARN_ON_ONCE(tick_nohz_full_running);
190 #endif
191 		tick_do_timer_cpu = cpu;
192 	}
193 #endif
194 
195 	/* Check, if the jiffies need an update */
196 	if (tick_do_timer_cpu == cpu)
197 		tick_do_update_jiffies64(now);
198 
199 	if (ts->inidle)
200 		ts->got_idle_tick = 1;
201 }
202 
203 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
204 {
205 #ifdef CONFIG_NO_HZ_COMMON
206 	/*
207 	 * When we are idle and the tick is stopped, we have to touch
208 	 * the watchdog as we might not schedule for a really long
209 	 * time. This happens on complete idle SMP systems while
210 	 * waiting on the login prompt. We also increment the "start of
211 	 * idle" jiffy stamp so the idle accounting adjustment we do
212 	 * when we go busy again does not account too much ticks.
213 	 */
214 	if (ts->tick_stopped) {
215 		touch_softlockup_watchdog_sched();
216 		if (is_idle_task(current))
217 			ts->idle_jiffies++;
218 		/*
219 		 * In case the current tick fired too early past its expected
220 		 * expiration, make sure we don't bypass the next clock reprogramming
221 		 * to the same deadline.
222 		 */
223 		ts->next_tick = 0;
224 	}
225 #endif
226 	update_process_times(user_mode(regs));
227 	profile_tick(CPU_PROFILING);
228 }
229 #endif
230 
231 #ifdef CONFIG_NO_HZ_FULL
232 cpumask_var_t tick_nohz_full_mask;
233 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
234 bool tick_nohz_full_running;
235 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
236 static atomic_t tick_dep_mask;
237 
238 static bool check_tick_dependency(atomic_t *dep)
239 {
240 	int val = atomic_read(dep);
241 
242 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
243 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
244 		return true;
245 	}
246 
247 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
248 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
249 		return true;
250 	}
251 
252 	if (val & TICK_DEP_MASK_SCHED) {
253 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
254 		return true;
255 	}
256 
257 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
258 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
259 		return true;
260 	}
261 
262 	if (val & TICK_DEP_MASK_RCU) {
263 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
264 		return true;
265 	}
266 
267 	return false;
268 }
269 
270 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
271 {
272 	lockdep_assert_irqs_disabled();
273 
274 	if (unlikely(!cpu_online(cpu)))
275 		return false;
276 
277 	if (check_tick_dependency(&tick_dep_mask))
278 		return false;
279 
280 	if (check_tick_dependency(&ts->tick_dep_mask))
281 		return false;
282 
283 	if (check_tick_dependency(&current->tick_dep_mask))
284 		return false;
285 
286 	if (check_tick_dependency(&current->signal->tick_dep_mask))
287 		return false;
288 
289 	return true;
290 }
291 
292 static void nohz_full_kick_func(struct irq_work *work)
293 {
294 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
295 }
296 
297 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
298 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
299 
300 /*
301  * Kick this CPU if it's full dynticks in order to force it to
302  * re-evaluate its dependency on the tick and restart it if necessary.
303  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
304  * is NMI safe.
305  */
306 static void tick_nohz_full_kick(void)
307 {
308 	if (!tick_nohz_full_cpu(smp_processor_id()))
309 		return;
310 
311 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
312 }
313 
314 /*
315  * Kick the CPU if it's full dynticks in order to force it to
316  * re-evaluate its dependency on the tick and restart it if necessary.
317  */
318 void tick_nohz_full_kick_cpu(int cpu)
319 {
320 	if (!tick_nohz_full_cpu(cpu))
321 		return;
322 
323 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
324 }
325 
326 static void tick_nohz_kick_task(struct task_struct *tsk)
327 {
328 	int cpu;
329 
330 	/*
331 	 * If the task is not running, run_posix_cpu_timers()
332 	 * has nothing to elapse, IPI can then be spared.
333 	 *
334 	 * activate_task()                      STORE p->tick_dep_mask
335 	 *   STORE p->on_rq
336 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
337 	 *   LOCK rq->lock                      LOAD p->on_rq
338 	 *   smp_mb__after_spin_lock()
339 	 *   tick_nohz_task_switch()
340 	 *     LOAD p->tick_dep_mask
341 	 */
342 	if (!sched_task_on_rq(tsk))
343 		return;
344 
345 	/*
346 	 * If the task concurrently migrates to another CPU,
347 	 * we guarantee it sees the new tick dependency upon
348 	 * schedule.
349 	 *
350 	 * set_task_cpu(p, cpu);
351 	 *   STORE p->cpu = @cpu
352 	 * __schedule() (switch to task 'p')
353 	 *   LOCK rq->lock
354 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
355 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
356 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
357 	 */
358 	cpu = task_cpu(tsk);
359 
360 	preempt_disable();
361 	if (cpu_online(cpu))
362 		tick_nohz_full_kick_cpu(cpu);
363 	preempt_enable();
364 }
365 
366 /*
367  * Kick all full dynticks CPUs in order to force these to re-evaluate
368  * their dependency on the tick and restart it if necessary.
369  */
370 static void tick_nohz_full_kick_all(void)
371 {
372 	int cpu;
373 
374 	if (!tick_nohz_full_running)
375 		return;
376 
377 	preempt_disable();
378 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
379 		tick_nohz_full_kick_cpu(cpu);
380 	preempt_enable();
381 }
382 
383 static void tick_nohz_dep_set_all(atomic_t *dep,
384 				  enum tick_dep_bits bit)
385 {
386 	int prev;
387 
388 	prev = atomic_fetch_or(BIT(bit), dep);
389 	if (!prev)
390 		tick_nohz_full_kick_all();
391 }
392 
393 /*
394  * Set a global tick dependency. Used by perf events that rely on freq and
395  * by unstable clock.
396  */
397 void tick_nohz_dep_set(enum tick_dep_bits bit)
398 {
399 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
400 }
401 
402 void tick_nohz_dep_clear(enum tick_dep_bits bit)
403 {
404 	atomic_andnot(BIT(bit), &tick_dep_mask);
405 }
406 
407 /*
408  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
409  * manage events throttling.
410  */
411 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
412 {
413 	int prev;
414 	struct tick_sched *ts;
415 
416 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
417 
418 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
419 	if (!prev) {
420 		preempt_disable();
421 		/* Perf needs local kick that is NMI safe */
422 		if (cpu == smp_processor_id()) {
423 			tick_nohz_full_kick();
424 		} else {
425 			/* Remote irq work not NMI-safe */
426 			if (!WARN_ON_ONCE(in_nmi()))
427 				tick_nohz_full_kick_cpu(cpu);
428 		}
429 		preempt_enable();
430 	}
431 }
432 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
433 
434 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
435 {
436 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
437 
438 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
439 }
440 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
441 
442 /*
443  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
444  * in order to elapse per task timers.
445  */
446 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
447 {
448 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
449 		tick_nohz_kick_task(tsk);
450 }
451 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
452 
453 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
454 {
455 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
456 }
457 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
458 
459 /*
460  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
461  * per process timers.
462  */
463 void tick_nohz_dep_set_signal(struct task_struct *tsk,
464 			      enum tick_dep_bits bit)
465 {
466 	int prev;
467 	struct signal_struct *sig = tsk->signal;
468 
469 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
470 	if (!prev) {
471 		struct task_struct *t;
472 
473 		lockdep_assert_held(&tsk->sighand->siglock);
474 		__for_each_thread(sig, t)
475 			tick_nohz_kick_task(t);
476 	}
477 }
478 
479 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
480 {
481 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
482 }
483 
484 /*
485  * Re-evaluate the need for the tick as we switch the current task.
486  * It might need the tick due to per task/process properties:
487  * perf events, posix CPU timers, ...
488  */
489 void __tick_nohz_task_switch(void)
490 {
491 	struct tick_sched *ts;
492 
493 	if (!tick_nohz_full_cpu(smp_processor_id()))
494 		return;
495 
496 	ts = this_cpu_ptr(&tick_cpu_sched);
497 
498 	if (ts->tick_stopped) {
499 		if (atomic_read(&current->tick_dep_mask) ||
500 		    atomic_read(&current->signal->tick_dep_mask))
501 			tick_nohz_full_kick();
502 	}
503 }
504 
505 /* Get the boot-time nohz CPU list from the kernel parameters. */
506 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
507 {
508 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
509 	cpumask_copy(tick_nohz_full_mask, cpumask);
510 	tick_nohz_full_running = true;
511 }
512 
513 static int tick_nohz_cpu_down(unsigned int cpu)
514 {
515 	/*
516 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
517 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
518 	 * CPUs. It must remain online when nohz full is enabled.
519 	 */
520 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
521 		return -EBUSY;
522 	return 0;
523 }
524 
525 void __init tick_nohz_init(void)
526 {
527 	int cpu, ret;
528 
529 	if (!tick_nohz_full_running)
530 		return;
531 
532 	/*
533 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
534 	 * locking contexts. But then we need irq work to raise its own
535 	 * interrupts to avoid circular dependency on the tick
536 	 */
537 	if (!arch_irq_work_has_interrupt()) {
538 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
539 		cpumask_clear(tick_nohz_full_mask);
540 		tick_nohz_full_running = false;
541 		return;
542 	}
543 
544 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
545 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
546 		cpu = smp_processor_id();
547 
548 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
549 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
550 				"for timekeeping\n", cpu);
551 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
552 		}
553 	}
554 
555 	for_each_cpu(cpu, tick_nohz_full_mask)
556 		context_tracking_cpu_set(cpu);
557 
558 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
559 					"kernel/nohz:predown", NULL,
560 					tick_nohz_cpu_down);
561 	WARN_ON(ret < 0);
562 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
563 		cpumask_pr_args(tick_nohz_full_mask));
564 }
565 #endif
566 
567 /*
568  * NOHZ - aka dynamic tick functionality
569  */
570 #ifdef CONFIG_NO_HZ_COMMON
571 /*
572  * NO HZ enabled ?
573  */
574 bool tick_nohz_enabled __read_mostly  = true;
575 unsigned long tick_nohz_active  __read_mostly;
576 /*
577  * Enable / Disable tickless mode
578  */
579 static int __init setup_tick_nohz(char *str)
580 {
581 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
582 }
583 
584 __setup("nohz=", setup_tick_nohz);
585 
586 bool tick_nohz_tick_stopped(void)
587 {
588 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
589 
590 	return ts->tick_stopped;
591 }
592 
593 bool tick_nohz_tick_stopped_cpu(int cpu)
594 {
595 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
596 
597 	return ts->tick_stopped;
598 }
599 
600 /**
601  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
602  *
603  * Called from interrupt entry when the CPU was idle
604  *
605  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
606  * must be updated. Otherwise an interrupt handler could use a stale jiffy
607  * value. We do this unconditionally on any CPU, as we don't know whether the
608  * CPU, which has the update task assigned is in a long sleep.
609  */
610 static void tick_nohz_update_jiffies(ktime_t now)
611 {
612 	unsigned long flags;
613 
614 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
615 
616 	local_irq_save(flags);
617 	tick_do_update_jiffies64(now);
618 	local_irq_restore(flags);
619 
620 	touch_softlockup_watchdog_sched();
621 }
622 
623 /*
624  * Updates the per-CPU time idle statistics counters
625  */
626 static void
627 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
628 {
629 	ktime_t delta;
630 
631 	if (ts->idle_active) {
632 		delta = ktime_sub(now, ts->idle_entrytime);
633 		if (nr_iowait_cpu(cpu) > 0)
634 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
635 		else
636 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
637 		ts->idle_entrytime = now;
638 	}
639 
640 	if (last_update_time)
641 		*last_update_time = ktime_to_us(now);
642 
643 }
644 
645 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
646 {
647 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
648 	ts->idle_active = 0;
649 
650 	sched_clock_idle_wakeup_event();
651 }
652 
653 static void tick_nohz_start_idle(struct tick_sched *ts)
654 {
655 	ts->idle_entrytime = ktime_get();
656 	ts->idle_active = 1;
657 	sched_clock_idle_sleep_event();
658 }
659 
660 /**
661  * get_cpu_idle_time_us - get the total idle time of a CPU
662  * @cpu: CPU number to query
663  * @last_update_time: variable to store update time in. Do not update
664  * counters if NULL.
665  *
666  * Return the cumulative idle time (since boot) for a given
667  * CPU, in microseconds.
668  *
669  * This time is measured via accounting rather than sampling,
670  * and is as accurate as ktime_get() is.
671  *
672  * This function returns -1 if NOHZ is not enabled.
673  */
674 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
675 {
676 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
677 	ktime_t now, idle;
678 
679 	if (!tick_nohz_active)
680 		return -1;
681 
682 	now = ktime_get();
683 	if (last_update_time) {
684 		update_ts_time_stats(cpu, ts, now, last_update_time);
685 		idle = ts->idle_sleeptime;
686 	} else {
687 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
688 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
689 
690 			idle = ktime_add(ts->idle_sleeptime, delta);
691 		} else {
692 			idle = ts->idle_sleeptime;
693 		}
694 	}
695 
696 	return ktime_to_us(idle);
697 
698 }
699 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
700 
701 /**
702  * get_cpu_iowait_time_us - get the total iowait time of a CPU
703  * @cpu: CPU number to query
704  * @last_update_time: variable to store update time in. Do not update
705  * counters if NULL.
706  *
707  * Return the cumulative iowait time (since boot) for a given
708  * CPU, in microseconds.
709  *
710  * This time is measured via accounting rather than sampling,
711  * and is as accurate as ktime_get() is.
712  *
713  * This function returns -1 if NOHZ is not enabled.
714  */
715 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
716 {
717 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
718 	ktime_t now, iowait;
719 
720 	if (!tick_nohz_active)
721 		return -1;
722 
723 	now = ktime_get();
724 	if (last_update_time) {
725 		update_ts_time_stats(cpu, ts, now, last_update_time);
726 		iowait = ts->iowait_sleeptime;
727 	} else {
728 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
729 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
730 
731 			iowait = ktime_add(ts->iowait_sleeptime, delta);
732 		} else {
733 			iowait = ts->iowait_sleeptime;
734 		}
735 	}
736 
737 	return ktime_to_us(iowait);
738 }
739 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
740 
741 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
742 {
743 	hrtimer_cancel(&ts->sched_timer);
744 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
745 
746 	/* Forward the time to expire in the future */
747 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
748 
749 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
750 		hrtimer_start_expires(&ts->sched_timer,
751 				      HRTIMER_MODE_ABS_PINNED_HARD);
752 	} else {
753 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
754 	}
755 
756 	/*
757 	 * Reset to make sure next tick stop doesn't get fooled by past
758 	 * cached clock deadline.
759 	 */
760 	ts->next_tick = 0;
761 }
762 
763 static inline bool local_timer_softirq_pending(void)
764 {
765 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
766 }
767 
768 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
769 {
770 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
771 	unsigned long basejiff;
772 	unsigned int seq;
773 
774 	/* Read jiffies and the time when jiffies were updated last */
775 	do {
776 		seq = read_seqcount_begin(&jiffies_seq);
777 		basemono = last_jiffies_update;
778 		basejiff = jiffies;
779 	} while (read_seqcount_retry(&jiffies_seq, seq));
780 	ts->last_jiffies = basejiff;
781 	ts->timer_expires_base = basemono;
782 
783 	/*
784 	 * Keep the periodic tick, when RCU, architecture or irq_work
785 	 * requests it.
786 	 * Aside of that check whether the local timer softirq is
787 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
788 	 * because there is an already expired timer, so it will request
789 	 * immediate expiry, which rearms the hardware timer with a
790 	 * minimal delta which brings us back to this place
791 	 * immediately. Lather, rinse and repeat...
792 	 */
793 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
794 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
795 		next_tick = basemono + TICK_NSEC;
796 	} else {
797 		/*
798 		 * Get the next pending timer. If high resolution
799 		 * timers are enabled this only takes the timer wheel
800 		 * timers into account. If high resolution timers are
801 		 * disabled this also looks at the next expiring
802 		 * hrtimer.
803 		 */
804 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
805 		ts->next_timer = next_tmr;
806 		/* Take the next rcu event into account */
807 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
808 	}
809 
810 	/*
811 	 * If the tick is due in the next period, keep it ticking or
812 	 * force prod the timer.
813 	 */
814 	delta = next_tick - basemono;
815 	if (delta <= (u64)TICK_NSEC) {
816 		/*
817 		 * Tell the timer code that the base is not idle, i.e. undo
818 		 * the effect of get_next_timer_interrupt():
819 		 */
820 		timer_clear_idle();
821 		/*
822 		 * We've not stopped the tick yet, and there's a timer in the
823 		 * next period, so no point in stopping it either, bail.
824 		 */
825 		if (!ts->tick_stopped) {
826 			ts->timer_expires = 0;
827 			goto out;
828 		}
829 	}
830 
831 	/*
832 	 * If this CPU is the one which had the do_timer() duty last, we limit
833 	 * the sleep time to the timekeeping max_deferment value.
834 	 * Otherwise we can sleep as long as we want.
835 	 */
836 	delta = timekeeping_max_deferment();
837 	if (cpu != tick_do_timer_cpu &&
838 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
839 		delta = KTIME_MAX;
840 
841 	/* Calculate the next expiry time */
842 	if (delta < (KTIME_MAX - basemono))
843 		expires = basemono + delta;
844 	else
845 		expires = KTIME_MAX;
846 
847 	ts->timer_expires = min_t(u64, expires, next_tick);
848 
849 out:
850 	return ts->timer_expires;
851 }
852 
853 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
854 {
855 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
856 	u64 basemono = ts->timer_expires_base;
857 	u64 expires = ts->timer_expires;
858 	ktime_t tick = expires;
859 
860 	/* Make sure we won't be trying to stop it twice in a row. */
861 	ts->timer_expires_base = 0;
862 
863 	/*
864 	 * If this CPU is the one which updates jiffies, then give up
865 	 * the assignment and let it be taken by the CPU which runs
866 	 * the tick timer next, which might be this CPU as well. If we
867 	 * don't drop this here the jiffies might be stale and
868 	 * do_timer() never invoked. Keep track of the fact that it
869 	 * was the one which had the do_timer() duty last.
870 	 */
871 	if (cpu == tick_do_timer_cpu) {
872 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
873 		ts->do_timer_last = 1;
874 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
875 		ts->do_timer_last = 0;
876 	}
877 
878 	/* Skip reprogram of event if its not changed */
879 	if (ts->tick_stopped && (expires == ts->next_tick)) {
880 		/* Sanity check: make sure clockevent is actually programmed */
881 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
882 			return;
883 
884 		WARN_ON_ONCE(1);
885 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
886 			    basemono, ts->next_tick, dev->next_event,
887 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
888 	}
889 
890 	/*
891 	 * nohz_stop_sched_tick can be called several times before
892 	 * the nohz_restart_sched_tick is called. This happens when
893 	 * interrupts arrive which do not cause a reschedule. In the
894 	 * first call we save the current tick time, so we can restart
895 	 * the scheduler tick in nohz_restart_sched_tick.
896 	 */
897 	if (!ts->tick_stopped) {
898 		calc_load_nohz_start();
899 		quiet_vmstat();
900 
901 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
902 		ts->tick_stopped = 1;
903 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
904 	}
905 
906 	ts->next_tick = tick;
907 
908 	/*
909 	 * If the expiration time == KTIME_MAX, then we simply stop
910 	 * the tick timer.
911 	 */
912 	if (unlikely(expires == KTIME_MAX)) {
913 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
914 			hrtimer_cancel(&ts->sched_timer);
915 		return;
916 	}
917 
918 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
919 		hrtimer_start(&ts->sched_timer, tick,
920 			      HRTIMER_MODE_ABS_PINNED_HARD);
921 	} else {
922 		hrtimer_set_expires(&ts->sched_timer, tick);
923 		tick_program_event(tick, 1);
924 	}
925 }
926 
927 static void tick_nohz_retain_tick(struct tick_sched *ts)
928 {
929 	ts->timer_expires_base = 0;
930 }
931 
932 #ifdef CONFIG_NO_HZ_FULL
933 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
934 {
935 	if (tick_nohz_next_event(ts, cpu))
936 		tick_nohz_stop_tick(ts, cpu);
937 	else
938 		tick_nohz_retain_tick(ts);
939 }
940 #endif /* CONFIG_NO_HZ_FULL */
941 
942 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
943 {
944 	/* Update jiffies first */
945 	tick_do_update_jiffies64(now);
946 
947 	/*
948 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
949 	 * the clock forward checks in the enqueue path:
950 	 */
951 	timer_clear_idle();
952 
953 	calc_load_nohz_stop();
954 	touch_softlockup_watchdog_sched();
955 	/*
956 	 * Cancel the scheduled timer and restore the tick
957 	 */
958 	ts->tick_stopped  = 0;
959 	tick_nohz_restart(ts, now);
960 }
961 
962 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
963 					 ktime_t now)
964 {
965 #ifdef CONFIG_NO_HZ_FULL
966 	int cpu = smp_processor_id();
967 
968 	if (can_stop_full_tick(cpu, ts))
969 		tick_nohz_stop_sched_tick(ts, cpu);
970 	else if (ts->tick_stopped)
971 		tick_nohz_restart_sched_tick(ts, now);
972 #endif
973 }
974 
975 static void tick_nohz_full_update_tick(struct tick_sched *ts)
976 {
977 	if (!tick_nohz_full_cpu(smp_processor_id()))
978 		return;
979 
980 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
981 		return;
982 
983 	__tick_nohz_full_update_tick(ts, ktime_get());
984 }
985 
986 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
987 {
988 	/*
989 	 * If this CPU is offline and it is the one which updates
990 	 * jiffies, then give up the assignment and let it be taken by
991 	 * the CPU which runs the tick timer next. If we don't drop
992 	 * this here the jiffies might be stale and do_timer() never
993 	 * invoked.
994 	 */
995 	if (unlikely(!cpu_online(cpu))) {
996 		if (cpu == tick_do_timer_cpu)
997 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
998 		/*
999 		 * Make sure the CPU doesn't get fooled by obsolete tick
1000 		 * deadline if it comes back online later.
1001 		 */
1002 		ts->next_tick = 0;
1003 		return false;
1004 	}
1005 
1006 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1007 		return false;
1008 
1009 	if (need_resched())
1010 		return false;
1011 
1012 	if (unlikely(local_softirq_pending())) {
1013 		static int ratelimit;
1014 
1015 		if (ratelimit < 10 && !local_bh_blocked() &&
1016 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
1017 			pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
1018 				(unsigned int) local_softirq_pending());
1019 			ratelimit++;
1020 		}
1021 		return false;
1022 	}
1023 
1024 	if (tick_nohz_full_enabled()) {
1025 		/*
1026 		 * Keep the tick alive to guarantee timekeeping progression
1027 		 * if there are full dynticks CPUs around
1028 		 */
1029 		if (tick_do_timer_cpu == cpu)
1030 			return false;
1031 
1032 		/* Should not happen for nohz-full */
1033 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1034 			return false;
1035 	}
1036 
1037 	return true;
1038 }
1039 
1040 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1041 {
1042 	ktime_t expires;
1043 	int cpu = smp_processor_id();
1044 
1045 	/*
1046 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1047 	 * tick timer expiration time is known already.
1048 	 */
1049 	if (ts->timer_expires_base)
1050 		expires = ts->timer_expires;
1051 	else if (can_stop_idle_tick(cpu, ts))
1052 		expires = tick_nohz_next_event(ts, cpu);
1053 	else
1054 		return;
1055 
1056 	ts->idle_calls++;
1057 
1058 	if (expires > 0LL) {
1059 		int was_stopped = ts->tick_stopped;
1060 
1061 		tick_nohz_stop_tick(ts, cpu);
1062 
1063 		ts->idle_sleeps++;
1064 		ts->idle_expires = expires;
1065 
1066 		if (!was_stopped && ts->tick_stopped) {
1067 			ts->idle_jiffies = ts->last_jiffies;
1068 			nohz_balance_enter_idle(cpu);
1069 		}
1070 	} else {
1071 		tick_nohz_retain_tick(ts);
1072 	}
1073 }
1074 
1075 /**
1076  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1077  *
1078  * When the next event is more than a tick into the future, stop the idle tick
1079  */
1080 void tick_nohz_idle_stop_tick(void)
1081 {
1082 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1083 }
1084 
1085 void tick_nohz_idle_retain_tick(void)
1086 {
1087 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1088 	/*
1089 	 * Undo the effect of get_next_timer_interrupt() called from
1090 	 * tick_nohz_next_event().
1091 	 */
1092 	timer_clear_idle();
1093 }
1094 
1095 /**
1096  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1097  *
1098  * Called when we start the idle loop.
1099  */
1100 void tick_nohz_idle_enter(void)
1101 {
1102 	struct tick_sched *ts;
1103 
1104 	lockdep_assert_irqs_enabled();
1105 
1106 	local_irq_disable();
1107 
1108 	ts = this_cpu_ptr(&tick_cpu_sched);
1109 
1110 	WARN_ON_ONCE(ts->timer_expires_base);
1111 
1112 	ts->inidle = 1;
1113 	tick_nohz_start_idle(ts);
1114 
1115 	local_irq_enable();
1116 }
1117 
1118 /**
1119  * tick_nohz_irq_exit - update next tick event from interrupt exit
1120  *
1121  * When an interrupt fires while we are idle and it doesn't cause
1122  * a reschedule, it may still add, modify or delete a timer, enqueue
1123  * an RCU callback, etc...
1124  * So we need to re-calculate and reprogram the next tick event.
1125  */
1126 void tick_nohz_irq_exit(void)
1127 {
1128 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1129 
1130 	if (ts->inidle)
1131 		tick_nohz_start_idle(ts);
1132 	else
1133 		tick_nohz_full_update_tick(ts);
1134 }
1135 
1136 /**
1137  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1138  */
1139 bool tick_nohz_idle_got_tick(void)
1140 {
1141 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1142 
1143 	if (ts->got_idle_tick) {
1144 		ts->got_idle_tick = 0;
1145 		return true;
1146 	}
1147 	return false;
1148 }
1149 
1150 /**
1151  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1152  * or the tick, whatever that expires first. Note that, if the tick has been
1153  * stopped, it returns the next hrtimer.
1154  *
1155  * Called from power state control code with interrupts disabled
1156  */
1157 ktime_t tick_nohz_get_next_hrtimer(void)
1158 {
1159 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1160 }
1161 
1162 /**
1163  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1164  * @delta_next: duration until the next event if the tick cannot be stopped
1165  *
1166  * Called from power state control code with interrupts disabled.
1167  *
1168  * The return value of this function and/or the value returned by it through the
1169  * @delta_next pointer can be negative which must be taken into account by its
1170  * callers.
1171  */
1172 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1173 {
1174 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1175 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176 	int cpu = smp_processor_id();
1177 	/*
1178 	 * The idle entry time is expected to be a sufficient approximation of
1179 	 * the current time at this point.
1180 	 */
1181 	ktime_t now = ts->idle_entrytime;
1182 	ktime_t next_event;
1183 
1184 	WARN_ON_ONCE(!ts->inidle);
1185 
1186 	*delta_next = ktime_sub(dev->next_event, now);
1187 
1188 	if (!can_stop_idle_tick(cpu, ts))
1189 		return *delta_next;
1190 
1191 	next_event = tick_nohz_next_event(ts, cpu);
1192 	if (!next_event)
1193 		return *delta_next;
1194 
1195 	/*
1196 	 * If the next highres timer to expire is earlier than next_event, the
1197 	 * idle governor needs to know that.
1198 	 */
1199 	next_event = min_t(u64, next_event,
1200 			   hrtimer_next_event_without(&ts->sched_timer));
1201 
1202 	return ktime_sub(next_event, now);
1203 }
1204 
1205 /**
1206  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1207  * for a particular CPU.
1208  *
1209  * Called from the schedutil frequency scaling governor in scheduler context.
1210  */
1211 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1212 {
1213 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1214 
1215 	return ts->idle_calls;
1216 }
1217 
1218 /**
1219  * tick_nohz_get_idle_calls - return the current idle calls counter value
1220  *
1221  * Called from the schedutil frequency scaling governor in scheduler context.
1222  */
1223 unsigned long tick_nohz_get_idle_calls(void)
1224 {
1225 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1226 
1227 	return ts->idle_calls;
1228 }
1229 
1230 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1231 					ktime_t now)
1232 {
1233 	unsigned long ticks;
1234 
1235 	ts->idle_exittime = now;
1236 
1237 	if (vtime_accounting_enabled_this_cpu())
1238 		return;
1239 	/*
1240 	 * We stopped the tick in idle. Update process times would miss the
1241 	 * time we slept as update_process_times does only a 1 tick
1242 	 * accounting. Enforce that this is accounted to idle !
1243 	 */
1244 	ticks = jiffies - ts->idle_jiffies;
1245 	/*
1246 	 * We might be one off. Do not randomly account a huge number of ticks!
1247 	 */
1248 	if (ticks && ticks < LONG_MAX)
1249 		account_idle_ticks(ticks);
1250 }
1251 
1252 void tick_nohz_idle_restart_tick(void)
1253 {
1254 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1255 
1256 	if (ts->tick_stopped) {
1257 		ktime_t now = ktime_get();
1258 		tick_nohz_restart_sched_tick(ts, now);
1259 		tick_nohz_account_idle_time(ts, now);
1260 	}
1261 }
1262 
1263 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1264 {
1265 	if (tick_nohz_full_cpu(smp_processor_id()))
1266 		__tick_nohz_full_update_tick(ts, now);
1267 	else
1268 		tick_nohz_restart_sched_tick(ts, now);
1269 
1270 	tick_nohz_account_idle_time(ts, now);
1271 }
1272 
1273 /**
1274  * tick_nohz_idle_exit - restart the idle tick from the idle task
1275  *
1276  * Restart the idle tick when the CPU is woken up from idle
1277  * This also exit the RCU extended quiescent state. The CPU
1278  * can use RCU again after this function is called.
1279  */
1280 void tick_nohz_idle_exit(void)
1281 {
1282 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1283 	bool idle_active, tick_stopped;
1284 	ktime_t now;
1285 
1286 	local_irq_disable();
1287 
1288 	WARN_ON_ONCE(!ts->inidle);
1289 	WARN_ON_ONCE(ts->timer_expires_base);
1290 
1291 	ts->inidle = 0;
1292 	idle_active = ts->idle_active;
1293 	tick_stopped = ts->tick_stopped;
1294 
1295 	if (idle_active || tick_stopped)
1296 		now = ktime_get();
1297 
1298 	if (idle_active)
1299 		tick_nohz_stop_idle(ts, now);
1300 
1301 	if (tick_stopped)
1302 		tick_nohz_idle_update_tick(ts, now);
1303 
1304 	local_irq_enable();
1305 }
1306 
1307 /*
1308  * The nohz low res interrupt handler
1309  */
1310 static void tick_nohz_handler(struct clock_event_device *dev)
1311 {
1312 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1313 	struct pt_regs *regs = get_irq_regs();
1314 	ktime_t now = ktime_get();
1315 
1316 	dev->next_event = KTIME_MAX;
1317 
1318 	tick_sched_do_timer(ts, now);
1319 	tick_sched_handle(ts, regs);
1320 
1321 	/* No need to reprogram if we are running tickless  */
1322 	if (unlikely(ts->tick_stopped))
1323 		return;
1324 
1325 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1326 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1327 }
1328 
1329 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1330 {
1331 	if (!tick_nohz_enabled)
1332 		return;
1333 	ts->nohz_mode = mode;
1334 	/* One update is enough */
1335 	if (!test_and_set_bit(0, &tick_nohz_active))
1336 		timers_update_nohz();
1337 }
1338 
1339 /**
1340  * tick_nohz_switch_to_nohz - switch to nohz mode
1341  */
1342 static void tick_nohz_switch_to_nohz(void)
1343 {
1344 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1345 	ktime_t next;
1346 
1347 	if (!tick_nohz_enabled)
1348 		return;
1349 
1350 	if (tick_switch_to_oneshot(tick_nohz_handler))
1351 		return;
1352 
1353 	/*
1354 	 * Recycle the hrtimer in ts, so we can share the
1355 	 * hrtimer_forward with the highres code.
1356 	 */
1357 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1358 	/* Get the next period */
1359 	next = tick_init_jiffy_update();
1360 
1361 	hrtimer_set_expires(&ts->sched_timer, next);
1362 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1363 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1364 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1365 }
1366 
1367 static inline void tick_nohz_irq_enter(void)
1368 {
1369 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1370 	ktime_t now;
1371 
1372 	if (!ts->idle_active && !ts->tick_stopped)
1373 		return;
1374 	now = ktime_get();
1375 	if (ts->idle_active)
1376 		tick_nohz_stop_idle(ts, now);
1377 	if (ts->tick_stopped)
1378 		tick_nohz_update_jiffies(now);
1379 }
1380 
1381 #else
1382 
1383 static inline void tick_nohz_switch_to_nohz(void) { }
1384 static inline void tick_nohz_irq_enter(void) { }
1385 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1386 
1387 #endif /* CONFIG_NO_HZ_COMMON */
1388 
1389 /*
1390  * Called from irq_enter to notify about the possible interruption of idle()
1391  */
1392 void tick_irq_enter(void)
1393 {
1394 	tick_check_oneshot_broadcast_this_cpu();
1395 	tick_nohz_irq_enter();
1396 }
1397 
1398 /*
1399  * High resolution timer specific code
1400  */
1401 #ifdef CONFIG_HIGH_RES_TIMERS
1402 /*
1403  * We rearm the timer until we get disabled by the idle code.
1404  * Called with interrupts disabled.
1405  */
1406 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1407 {
1408 	struct tick_sched *ts =
1409 		container_of(timer, struct tick_sched, sched_timer);
1410 	struct pt_regs *regs = get_irq_regs();
1411 	ktime_t now = ktime_get();
1412 
1413 	tick_sched_do_timer(ts, now);
1414 
1415 	/*
1416 	 * Do not call, when we are not in irq context and have
1417 	 * no valid regs pointer
1418 	 */
1419 	if (regs)
1420 		tick_sched_handle(ts, regs);
1421 	else
1422 		ts->next_tick = 0;
1423 
1424 	/* No need to reprogram if we are in idle or full dynticks mode */
1425 	if (unlikely(ts->tick_stopped))
1426 		return HRTIMER_NORESTART;
1427 
1428 	hrtimer_forward(timer, now, TICK_NSEC);
1429 
1430 	return HRTIMER_RESTART;
1431 }
1432 
1433 static int sched_skew_tick;
1434 
1435 static int __init skew_tick(char *str)
1436 {
1437 	get_option(&str, &sched_skew_tick);
1438 
1439 	return 0;
1440 }
1441 early_param("skew_tick", skew_tick);
1442 
1443 /**
1444  * tick_setup_sched_timer - setup the tick emulation timer
1445  */
1446 void tick_setup_sched_timer(void)
1447 {
1448 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1449 	ktime_t now = ktime_get();
1450 
1451 	/*
1452 	 * Emulate tick processing via per-CPU hrtimers:
1453 	 */
1454 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1455 	ts->sched_timer.function = tick_sched_timer;
1456 
1457 	/* Get the next period (per-CPU) */
1458 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1459 
1460 	/* Offset the tick to avert jiffies_lock contention. */
1461 	if (sched_skew_tick) {
1462 		u64 offset = TICK_NSEC >> 1;
1463 		do_div(offset, num_possible_cpus());
1464 		offset *= smp_processor_id();
1465 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1466 	}
1467 
1468 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1469 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1470 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1471 }
1472 #endif /* HIGH_RES_TIMERS */
1473 
1474 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1475 void tick_cancel_sched_timer(int cpu)
1476 {
1477 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1478 
1479 # ifdef CONFIG_HIGH_RES_TIMERS
1480 	if (ts->sched_timer.base)
1481 		hrtimer_cancel(&ts->sched_timer);
1482 # endif
1483 
1484 	memset(ts, 0, sizeof(*ts));
1485 }
1486 #endif
1487 
1488 /**
1489  * Async notification about clocksource changes
1490  */
1491 void tick_clock_notify(void)
1492 {
1493 	int cpu;
1494 
1495 	for_each_possible_cpu(cpu)
1496 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1497 }
1498 
1499 /*
1500  * Async notification about clock event changes
1501  */
1502 void tick_oneshot_notify(void)
1503 {
1504 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1505 
1506 	set_bit(0, &ts->check_clocks);
1507 }
1508 
1509 /**
1510  * Check, if a change happened, which makes oneshot possible.
1511  *
1512  * Called cyclic from the hrtimer softirq (driven by the timer
1513  * softirq) allow_nohz signals, that we can switch into low-res nohz
1514  * mode, because high resolution timers are disabled (either compile
1515  * or runtime). Called with interrupts disabled.
1516  */
1517 int tick_check_oneshot_change(int allow_nohz)
1518 {
1519 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1520 
1521 	if (!test_and_clear_bit(0, &ts->check_clocks))
1522 		return 0;
1523 
1524 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1525 		return 0;
1526 
1527 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1528 		return 0;
1529 
1530 	if (!allow_nohz)
1531 		return 1;
1532 
1533 	tick_nohz_switch_to_nohz();
1534 	return 0;
1535 }
1536