xref: /openbmc/linux/kernel/time/tick-sched.c (revision f42b3800)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/* Reevalute with xtime_lock held */
52 	write_seqlock(&xtime_lock);
53 
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 >= tick_period.tv64) {
56 
57 		delta = ktime_sub(delta, tick_period);
58 		last_jiffies_update = ktime_add(last_jiffies_update,
59 						tick_period);
60 
61 		/* Slow path for long timeouts */
62 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 			s64 incr = ktime_to_ns(tick_period);
64 
65 			ticks = ktime_divns(delta, incr);
66 
67 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 							   incr * ticks);
69 		}
70 		do_timer(++ticks);
71 	}
72 	write_sequnlock(&xtime_lock);
73 }
74 
75 /*
76  * Initialize and return retrieve the jiffies update.
77  */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 	ktime_t period;
81 
82 	write_seqlock(&xtime_lock);
83 	/* Did we start the jiffies update yet ? */
84 	if (last_jiffies_update.tv64 == 0)
85 		last_jiffies_update = tick_next_period;
86 	period = last_jiffies_update;
87 	write_sequnlock(&xtime_lock);
88 	return period;
89 }
90 
91 /*
92  * NOHZ - aka dynamic tick functionality
93  */
94 #ifdef CONFIG_NO_HZ
95 /*
96  * NO HZ enabled ?
97  */
98 static int tick_nohz_enabled __read_mostly  = 1;
99 
100 /*
101  * Enable / Disable tickless mode
102  */
103 static int __init setup_tick_nohz(char *str)
104 {
105 	if (!strcmp(str, "off"))
106 		tick_nohz_enabled = 0;
107 	else if (!strcmp(str, "on"))
108 		tick_nohz_enabled = 1;
109 	else
110 		return 0;
111 	return 1;
112 }
113 
114 __setup("nohz=", setup_tick_nohz);
115 
116 /**
117  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118  *
119  * Called from interrupt entry when the CPU was idle
120  *
121  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122  * must be updated. Otherwise an interrupt handler could use a stale jiffy
123  * value. We do this unconditionally on any cpu, as we don't know whether the
124  * cpu, which has the update task assigned is in a long sleep.
125  */
126 void tick_nohz_update_jiffies(void)
127 {
128 	int cpu = smp_processor_id();
129 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 	unsigned long flags;
131 	ktime_t now;
132 
133 	if (!ts->tick_stopped)
134 		return;
135 
136 	touch_softlockup_watchdog();
137 
138 	cpu_clear(cpu, nohz_cpu_mask);
139 	now = ktime_get();
140 	ts->idle_waketime = now;
141 
142 	local_irq_save(flags);
143 	tick_do_update_jiffies64(now);
144 	local_irq_restore(flags);
145 }
146 
147 void tick_nohz_stop_idle(int cpu)
148 {
149 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
150 
151 	if (ts->idle_active) {
152 		ktime_t now, delta;
153 		now = ktime_get();
154 		delta = ktime_sub(now, ts->idle_entrytime);
155 		ts->idle_lastupdate = now;
156 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
157 		ts->idle_active = 0;
158 	}
159 }
160 
161 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
162 {
163 	ktime_t now, delta;
164 
165 	now = ktime_get();
166 	if (ts->idle_active) {
167 		delta = ktime_sub(now, ts->idle_entrytime);
168 		ts->idle_lastupdate = now;
169 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
170 	}
171 	ts->idle_entrytime = now;
172 	ts->idle_active = 1;
173 	return now;
174 }
175 
176 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
177 {
178 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
179 
180 	*last_update_time = ktime_to_us(ts->idle_lastupdate);
181 	return ktime_to_us(ts->idle_sleeptime);
182 }
183 
184 /**
185  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
186  *
187  * When the next event is more than a tick into the future, stop the idle tick
188  * Called either from the idle loop or from irq_exit() when an idle period was
189  * just interrupted by an interrupt which did not cause a reschedule.
190  */
191 void tick_nohz_stop_sched_tick(void)
192 {
193 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
194 	unsigned long rt_jiffies;
195 	struct tick_sched *ts;
196 	ktime_t last_update, expires, now;
197 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
198 	int cpu;
199 
200 	local_irq_save(flags);
201 
202 	cpu = smp_processor_id();
203 	ts = &per_cpu(tick_cpu_sched, cpu);
204 	now = tick_nohz_start_idle(ts);
205 
206 	/*
207 	 * If this cpu is offline and it is the one which updates
208 	 * jiffies, then give up the assignment and let it be taken by
209 	 * the cpu which runs the tick timer next. If we don't drop
210 	 * this here the jiffies might be stale and do_timer() never
211 	 * invoked.
212 	 */
213 	if (unlikely(!cpu_online(cpu))) {
214 		if (cpu == tick_do_timer_cpu)
215 			tick_do_timer_cpu = -1;
216 	}
217 
218 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
219 		goto end;
220 
221 	if (need_resched())
222 		goto end;
223 
224 	if (unlikely(local_softirq_pending())) {
225 		static int ratelimit;
226 
227 		if (ratelimit < 10) {
228 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
229 			       local_softirq_pending());
230 			ratelimit++;
231 		}
232 	}
233 
234 	ts->idle_calls++;
235 	/* Read jiffies and the time when jiffies were updated last */
236 	do {
237 		seq = read_seqbegin(&xtime_lock);
238 		last_update = last_jiffies_update;
239 		last_jiffies = jiffies;
240 	} while (read_seqretry(&xtime_lock, seq));
241 
242 	/* Get the next timer wheel timer */
243 	next_jiffies = get_next_timer_interrupt(last_jiffies);
244 	delta_jiffies = next_jiffies - last_jiffies;
245 
246 	rt_jiffies = rt_needs_cpu(cpu);
247 	if (rt_jiffies && rt_jiffies < delta_jiffies)
248 		delta_jiffies = rt_jiffies;
249 
250 	if (rcu_needs_cpu(cpu))
251 		delta_jiffies = 1;
252 	/*
253 	 * Do not stop the tick, if we are only one off
254 	 * or if the cpu is required for rcu
255 	 */
256 	if (!ts->tick_stopped && delta_jiffies == 1)
257 		goto out;
258 
259 	/* Schedule the tick, if we are at least one jiffie off */
260 	if ((long)delta_jiffies >= 1) {
261 
262 		if (delta_jiffies > 1)
263 			cpu_set(cpu, nohz_cpu_mask);
264 		/*
265 		 * nohz_stop_sched_tick can be called several times before
266 		 * the nohz_restart_sched_tick is called. This happens when
267 		 * interrupts arrive which do not cause a reschedule. In the
268 		 * first call we save the current tick time, so we can restart
269 		 * the scheduler tick in nohz_restart_sched_tick.
270 		 */
271 		if (!ts->tick_stopped) {
272 			if (select_nohz_load_balancer(1)) {
273 				/*
274 				 * sched tick not stopped!
275 				 */
276 				cpu_clear(cpu, nohz_cpu_mask);
277 				goto out;
278 			}
279 
280 			ts->idle_tick = ts->sched_timer.expires;
281 			ts->tick_stopped = 1;
282 			ts->idle_jiffies = last_jiffies;
283 			rcu_enter_nohz();
284 		}
285 
286 		/*
287 		 * If this cpu is the one which updates jiffies, then
288 		 * give up the assignment and let it be taken by the
289 		 * cpu which runs the tick timer next, which might be
290 		 * this cpu as well. If we don't drop this here the
291 		 * jiffies might be stale and do_timer() never
292 		 * invoked.
293 		 */
294 		if (cpu == tick_do_timer_cpu)
295 			tick_do_timer_cpu = -1;
296 
297 		ts->idle_sleeps++;
298 
299 		/*
300 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
301 		 * there is no timer pending or at least extremly far
302 		 * into the future (12 days for HZ=1000). In this case
303 		 * we simply stop the tick timer:
304 		 */
305 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
306 			ts->idle_expires.tv64 = KTIME_MAX;
307 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
308 				hrtimer_cancel(&ts->sched_timer);
309 			goto out;
310 		}
311 
312 		/*
313 		 * calculate the expiry time for the next timer wheel
314 		 * timer
315 		 */
316 		expires = ktime_add_ns(last_update, tick_period.tv64 *
317 				       delta_jiffies);
318 		ts->idle_expires = expires;
319 
320 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
321 			hrtimer_start(&ts->sched_timer, expires,
322 				      HRTIMER_MODE_ABS);
323 			/* Check, if the timer was already in the past */
324 			if (hrtimer_active(&ts->sched_timer))
325 				goto out;
326 		} else if (!tick_program_event(expires, 0))
327 				goto out;
328 		/*
329 		 * We are past the event already. So we crossed a
330 		 * jiffie boundary. Update jiffies and raise the
331 		 * softirq.
332 		 */
333 		tick_do_update_jiffies64(ktime_get());
334 		cpu_clear(cpu, nohz_cpu_mask);
335 	}
336 	raise_softirq_irqoff(TIMER_SOFTIRQ);
337 out:
338 	ts->next_jiffies = next_jiffies;
339 	ts->last_jiffies = last_jiffies;
340 	ts->sleep_length = ktime_sub(dev->next_event, now);
341 end:
342 	local_irq_restore(flags);
343 }
344 
345 /**
346  * tick_nohz_get_sleep_length - return the length of the current sleep
347  *
348  * Called from power state control code with interrupts disabled
349  */
350 ktime_t tick_nohz_get_sleep_length(void)
351 {
352 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
353 
354 	return ts->sleep_length;
355 }
356 
357 /**
358  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
359  *
360  * Restart the idle tick when the CPU is woken up from idle
361  */
362 void tick_nohz_restart_sched_tick(void)
363 {
364 	int cpu = smp_processor_id();
365 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
366 	unsigned long ticks;
367 	ktime_t now;
368 
369 	local_irq_disable();
370 	tick_nohz_stop_idle(cpu);
371 
372 	if (!ts->tick_stopped) {
373 		local_irq_enable();
374 		return;
375 	}
376 
377 	rcu_exit_nohz();
378 
379 	/* Update jiffies first */
380 	select_nohz_load_balancer(0);
381 	now = ktime_get();
382 	tick_do_update_jiffies64(now);
383 	cpu_clear(cpu, nohz_cpu_mask);
384 
385 	/*
386 	 * We stopped the tick in idle. Update process times would miss the
387 	 * time we slept as update_process_times does only a 1 tick
388 	 * accounting. Enforce that this is accounted to idle !
389 	 */
390 	ticks = jiffies - ts->idle_jiffies;
391 	/*
392 	 * We might be one off. Do not randomly account a huge number of ticks!
393 	 */
394 	if (ticks && ticks < LONG_MAX) {
395 		add_preempt_count(HARDIRQ_OFFSET);
396 		account_system_time(current, HARDIRQ_OFFSET,
397 				    jiffies_to_cputime(ticks));
398 		sub_preempt_count(HARDIRQ_OFFSET);
399 	}
400 
401 	/*
402 	 * Cancel the scheduled timer and restore the tick
403 	 */
404 	ts->tick_stopped  = 0;
405 	ts->idle_exittime = now;
406 	hrtimer_cancel(&ts->sched_timer);
407 	ts->sched_timer.expires = ts->idle_tick;
408 
409 	while (1) {
410 		/* Forward the time to expire in the future */
411 		hrtimer_forward(&ts->sched_timer, now, tick_period);
412 
413 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
414 			hrtimer_start(&ts->sched_timer,
415 				      ts->sched_timer.expires,
416 				      HRTIMER_MODE_ABS);
417 			/* Check, if the timer was already in the past */
418 			if (hrtimer_active(&ts->sched_timer))
419 				break;
420 		} else {
421 			if (!tick_program_event(ts->sched_timer.expires, 0))
422 				break;
423 		}
424 		/* Update jiffies and reread time */
425 		tick_do_update_jiffies64(now);
426 		now = ktime_get();
427 	}
428 	local_irq_enable();
429 }
430 
431 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
432 {
433 	hrtimer_forward(&ts->sched_timer, now, tick_period);
434 	return tick_program_event(ts->sched_timer.expires, 0);
435 }
436 
437 /*
438  * The nohz low res interrupt handler
439  */
440 static void tick_nohz_handler(struct clock_event_device *dev)
441 {
442 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
443 	struct pt_regs *regs = get_irq_regs();
444 	int cpu = smp_processor_id();
445 	ktime_t now = ktime_get();
446 
447 	dev->next_event.tv64 = KTIME_MAX;
448 
449 	/*
450 	 * Check if the do_timer duty was dropped. We don't care about
451 	 * concurrency: This happens only when the cpu in charge went
452 	 * into a long sleep. If two cpus happen to assign themself to
453 	 * this duty, then the jiffies update is still serialized by
454 	 * xtime_lock.
455 	 */
456 	if (unlikely(tick_do_timer_cpu == -1))
457 		tick_do_timer_cpu = cpu;
458 
459 	/* Check, if the jiffies need an update */
460 	if (tick_do_timer_cpu == cpu)
461 		tick_do_update_jiffies64(now);
462 
463 	/*
464 	 * When we are idle and the tick is stopped, we have to touch
465 	 * the watchdog as we might not schedule for a really long
466 	 * time. This happens on complete idle SMP systems while
467 	 * waiting on the login prompt. We also increment the "start
468 	 * of idle" jiffy stamp so the idle accounting adjustment we
469 	 * do when we go busy again does not account too much ticks.
470 	 */
471 	if (ts->tick_stopped) {
472 		touch_softlockup_watchdog();
473 		ts->idle_jiffies++;
474 	}
475 
476 	update_process_times(user_mode(regs));
477 	profile_tick(CPU_PROFILING);
478 
479 	/* Do not restart, when we are in the idle loop */
480 	if (ts->tick_stopped)
481 		return;
482 
483 	while (tick_nohz_reprogram(ts, now)) {
484 		now = ktime_get();
485 		tick_do_update_jiffies64(now);
486 	}
487 }
488 
489 /**
490  * tick_nohz_switch_to_nohz - switch to nohz mode
491  */
492 static void tick_nohz_switch_to_nohz(void)
493 {
494 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
495 	ktime_t next;
496 
497 	if (!tick_nohz_enabled)
498 		return;
499 
500 	local_irq_disable();
501 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
502 		local_irq_enable();
503 		return;
504 	}
505 
506 	ts->nohz_mode = NOHZ_MODE_LOWRES;
507 
508 	/*
509 	 * Recycle the hrtimer in ts, so we can share the
510 	 * hrtimer_forward with the highres code.
511 	 */
512 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
513 	/* Get the next period */
514 	next = tick_init_jiffy_update();
515 
516 	for (;;) {
517 		ts->sched_timer.expires = next;
518 		if (!tick_program_event(next, 0))
519 			break;
520 		next = ktime_add(next, tick_period);
521 	}
522 	local_irq_enable();
523 
524 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
525 	       smp_processor_id());
526 }
527 
528 #else
529 
530 static inline void tick_nohz_switch_to_nohz(void) { }
531 
532 #endif /* NO_HZ */
533 
534 /*
535  * High resolution timer specific code
536  */
537 #ifdef CONFIG_HIGH_RES_TIMERS
538 /*
539  * We rearm the timer until we get disabled by the idle code.
540  * Called with interrupts disabled and timer->base->cpu_base->lock held.
541  */
542 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
543 {
544 	struct tick_sched *ts =
545 		container_of(timer, struct tick_sched, sched_timer);
546 	struct pt_regs *regs = get_irq_regs();
547 	ktime_t now = ktime_get();
548 	int cpu = smp_processor_id();
549 
550 #ifdef CONFIG_NO_HZ
551 	/*
552 	 * Check if the do_timer duty was dropped. We don't care about
553 	 * concurrency: This happens only when the cpu in charge went
554 	 * into a long sleep. If two cpus happen to assign themself to
555 	 * this duty, then the jiffies update is still serialized by
556 	 * xtime_lock.
557 	 */
558 	if (unlikely(tick_do_timer_cpu == -1))
559 		tick_do_timer_cpu = cpu;
560 #endif
561 
562 	/* Check, if the jiffies need an update */
563 	if (tick_do_timer_cpu == cpu)
564 		tick_do_update_jiffies64(now);
565 
566 	/*
567 	 * Do not call, when we are not in irq context and have
568 	 * no valid regs pointer
569 	 */
570 	if (regs) {
571 		/*
572 		 * When we are idle and the tick is stopped, we have to touch
573 		 * the watchdog as we might not schedule for a really long
574 		 * time. This happens on complete idle SMP systems while
575 		 * waiting on the login prompt. We also increment the "start of
576 		 * idle" jiffy stamp so the idle accounting adjustment we do
577 		 * when we go busy again does not account too much ticks.
578 		 */
579 		if (ts->tick_stopped) {
580 			touch_softlockup_watchdog();
581 			ts->idle_jiffies++;
582 		}
583 		update_process_times(user_mode(regs));
584 		profile_tick(CPU_PROFILING);
585 	}
586 
587 	/* Do not restart, when we are in the idle loop */
588 	if (ts->tick_stopped)
589 		return HRTIMER_NORESTART;
590 
591 	hrtimer_forward(timer, now, tick_period);
592 
593 	return HRTIMER_RESTART;
594 }
595 
596 /**
597  * tick_setup_sched_timer - setup the tick emulation timer
598  */
599 void tick_setup_sched_timer(void)
600 {
601 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
602 	ktime_t now = ktime_get();
603 	u64 offset;
604 
605 	/*
606 	 * Emulate tick processing via per-CPU hrtimers:
607 	 */
608 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
609 	ts->sched_timer.function = tick_sched_timer;
610 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
611 
612 	/* Get the next period (per cpu) */
613 	ts->sched_timer.expires = tick_init_jiffy_update();
614 	offset = ktime_to_ns(tick_period) >> 1;
615 	do_div(offset, num_possible_cpus());
616 	offset *= smp_processor_id();
617 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
618 
619 	for (;;) {
620 		hrtimer_forward(&ts->sched_timer, now, tick_period);
621 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
622 			      HRTIMER_MODE_ABS);
623 		/* Check, if the timer was already in the past */
624 		if (hrtimer_active(&ts->sched_timer))
625 			break;
626 		now = ktime_get();
627 	}
628 
629 #ifdef CONFIG_NO_HZ
630 	if (tick_nohz_enabled)
631 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
632 #endif
633 }
634 
635 void tick_cancel_sched_timer(int cpu)
636 {
637 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
638 
639 	if (ts->sched_timer.base)
640 		hrtimer_cancel(&ts->sched_timer);
641 
642 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
643 }
644 #endif /* HIGH_RES_TIMERS */
645 
646 /**
647  * Async notification about clocksource changes
648  */
649 void tick_clock_notify(void)
650 {
651 	int cpu;
652 
653 	for_each_possible_cpu(cpu)
654 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
655 }
656 
657 /*
658  * Async notification about clock event changes
659  */
660 void tick_oneshot_notify(void)
661 {
662 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
663 
664 	set_bit(0, &ts->check_clocks);
665 }
666 
667 /**
668  * Check, if a change happened, which makes oneshot possible.
669  *
670  * Called cyclic from the hrtimer softirq (driven by the timer
671  * softirq) allow_nohz signals, that we can switch into low-res nohz
672  * mode, because high resolution timers are disabled (either compile
673  * or runtime).
674  */
675 int tick_check_oneshot_change(int allow_nohz)
676 {
677 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
678 
679 	if (!test_and_clear_bit(0, &ts->check_clocks))
680 		return 0;
681 
682 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
683 		return 0;
684 
685 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
686 		return 0;
687 
688 	if (!allow_nohz)
689 		return 1;
690 
691 	tick_nohz_switch_to_nohz();
692 	return 0;
693 }
694