1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* Reevalute with xtime_lock held */ 52 write_seqlock(&xtime_lock); 53 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 >= tick_period.tv64) { 56 57 delta = ktime_sub(delta, tick_period); 58 last_jiffies_update = ktime_add(last_jiffies_update, 59 tick_period); 60 61 /* Slow path for long timeouts */ 62 if (unlikely(delta.tv64 >= tick_period.tv64)) { 63 s64 incr = ktime_to_ns(tick_period); 64 65 ticks = ktime_divns(delta, incr); 66 67 last_jiffies_update = ktime_add_ns(last_jiffies_update, 68 incr * ticks); 69 } 70 do_timer(++ticks); 71 } 72 write_sequnlock(&xtime_lock); 73 } 74 75 /* 76 * Initialize and return retrieve the jiffies update. 77 */ 78 static ktime_t tick_init_jiffy_update(void) 79 { 80 ktime_t period; 81 82 write_seqlock(&xtime_lock); 83 /* Did we start the jiffies update yet ? */ 84 if (last_jiffies_update.tv64 == 0) 85 last_jiffies_update = tick_next_period; 86 period = last_jiffies_update; 87 write_sequnlock(&xtime_lock); 88 return period; 89 } 90 91 /* 92 * NOHZ - aka dynamic tick functionality 93 */ 94 #ifdef CONFIG_NO_HZ 95 /* 96 * NO HZ enabled ? 97 */ 98 static int tick_nohz_enabled __read_mostly = 1; 99 100 /* 101 * Enable / Disable tickless mode 102 */ 103 static int __init setup_tick_nohz(char *str) 104 { 105 if (!strcmp(str, "off")) 106 tick_nohz_enabled = 0; 107 else if (!strcmp(str, "on")) 108 tick_nohz_enabled = 1; 109 else 110 return 0; 111 return 1; 112 } 113 114 __setup("nohz=", setup_tick_nohz); 115 116 /** 117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 118 * 119 * Called from interrupt entry when the CPU was idle 120 * 121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 122 * must be updated. Otherwise an interrupt handler could use a stale jiffy 123 * value. We do this unconditionally on any cpu, as we don't know whether the 124 * cpu, which has the update task assigned is in a long sleep. 125 */ 126 void tick_nohz_update_jiffies(void) 127 { 128 int cpu = smp_processor_id(); 129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 130 unsigned long flags; 131 ktime_t now; 132 133 if (!ts->tick_stopped) 134 return; 135 136 touch_softlockup_watchdog(); 137 138 cpu_clear(cpu, nohz_cpu_mask); 139 now = ktime_get(); 140 ts->idle_waketime = now; 141 142 local_irq_save(flags); 143 tick_do_update_jiffies64(now); 144 local_irq_restore(flags); 145 } 146 147 void tick_nohz_stop_idle(int cpu) 148 { 149 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 150 151 if (ts->idle_active) { 152 ktime_t now, delta; 153 now = ktime_get(); 154 delta = ktime_sub(now, ts->idle_entrytime); 155 ts->idle_lastupdate = now; 156 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 157 ts->idle_active = 0; 158 } 159 } 160 161 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 162 { 163 ktime_t now, delta; 164 165 now = ktime_get(); 166 if (ts->idle_active) { 167 delta = ktime_sub(now, ts->idle_entrytime); 168 ts->idle_lastupdate = now; 169 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 170 } 171 ts->idle_entrytime = now; 172 ts->idle_active = 1; 173 return now; 174 } 175 176 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 177 { 178 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 179 180 *last_update_time = ktime_to_us(ts->idle_lastupdate); 181 return ktime_to_us(ts->idle_sleeptime); 182 } 183 184 /** 185 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 186 * 187 * When the next event is more than a tick into the future, stop the idle tick 188 * Called either from the idle loop or from irq_exit() when an idle period was 189 * just interrupted by an interrupt which did not cause a reschedule. 190 */ 191 void tick_nohz_stop_sched_tick(void) 192 { 193 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 194 unsigned long rt_jiffies; 195 struct tick_sched *ts; 196 ktime_t last_update, expires, now; 197 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 198 int cpu; 199 200 local_irq_save(flags); 201 202 cpu = smp_processor_id(); 203 ts = &per_cpu(tick_cpu_sched, cpu); 204 now = tick_nohz_start_idle(ts); 205 206 /* 207 * If this cpu is offline and it is the one which updates 208 * jiffies, then give up the assignment and let it be taken by 209 * the cpu which runs the tick timer next. If we don't drop 210 * this here the jiffies might be stale and do_timer() never 211 * invoked. 212 */ 213 if (unlikely(!cpu_online(cpu))) { 214 if (cpu == tick_do_timer_cpu) 215 tick_do_timer_cpu = -1; 216 } 217 218 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 219 goto end; 220 221 if (need_resched()) 222 goto end; 223 224 if (unlikely(local_softirq_pending())) { 225 static int ratelimit; 226 227 if (ratelimit < 10) { 228 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 229 local_softirq_pending()); 230 ratelimit++; 231 } 232 } 233 234 ts->idle_calls++; 235 /* Read jiffies and the time when jiffies were updated last */ 236 do { 237 seq = read_seqbegin(&xtime_lock); 238 last_update = last_jiffies_update; 239 last_jiffies = jiffies; 240 } while (read_seqretry(&xtime_lock, seq)); 241 242 /* Get the next timer wheel timer */ 243 next_jiffies = get_next_timer_interrupt(last_jiffies); 244 delta_jiffies = next_jiffies - last_jiffies; 245 246 rt_jiffies = rt_needs_cpu(cpu); 247 if (rt_jiffies && rt_jiffies < delta_jiffies) 248 delta_jiffies = rt_jiffies; 249 250 if (rcu_needs_cpu(cpu)) 251 delta_jiffies = 1; 252 /* 253 * Do not stop the tick, if we are only one off 254 * or if the cpu is required for rcu 255 */ 256 if (!ts->tick_stopped && delta_jiffies == 1) 257 goto out; 258 259 /* Schedule the tick, if we are at least one jiffie off */ 260 if ((long)delta_jiffies >= 1) { 261 262 if (delta_jiffies > 1) 263 cpu_set(cpu, nohz_cpu_mask); 264 /* 265 * nohz_stop_sched_tick can be called several times before 266 * the nohz_restart_sched_tick is called. This happens when 267 * interrupts arrive which do not cause a reschedule. In the 268 * first call we save the current tick time, so we can restart 269 * the scheduler tick in nohz_restart_sched_tick. 270 */ 271 if (!ts->tick_stopped) { 272 if (select_nohz_load_balancer(1)) { 273 /* 274 * sched tick not stopped! 275 */ 276 cpu_clear(cpu, nohz_cpu_mask); 277 goto out; 278 } 279 280 ts->idle_tick = ts->sched_timer.expires; 281 ts->tick_stopped = 1; 282 ts->idle_jiffies = last_jiffies; 283 rcu_enter_nohz(); 284 } 285 286 /* 287 * If this cpu is the one which updates jiffies, then 288 * give up the assignment and let it be taken by the 289 * cpu which runs the tick timer next, which might be 290 * this cpu as well. If we don't drop this here the 291 * jiffies might be stale and do_timer() never 292 * invoked. 293 */ 294 if (cpu == tick_do_timer_cpu) 295 tick_do_timer_cpu = -1; 296 297 ts->idle_sleeps++; 298 299 /* 300 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that 301 * there is no timer pending or at least extremly far 302 * into the future (12 days for HZ=1000). In this case 303 * we simply stop the tick timer: 304 */ 305 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { 306 ts->idle_expires.tv64 = KTIME_MAX; 307 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 308 hrtimer_cancel(&ts->sched_timer); 309 goto out; 310 } 311 312 /* 313 * calculate the expiry time for the next timer wheel 314 * timer 315 */ 316 expires = ktime_add_ns(last_update, tick_period.tv64 * 317 delta_jiffies); 318 ts->idle_expires = expires; 319 320 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 321 hrtimer_start(&ts->sched_timer, expires, 322 HRTIMER_MODE_ABS); 323 /* Check, if the timer was already in the past */ 324 if (hrtimer_active(&ts->sched_timer)) 325 goto out; 326 } else if (!tick_program_event(expires, 0)) 327 goto out; 328 /* 329 * We are past the event already. So we crossed a 330 * jiffie boundary. Update jiffies and raise the 331 * softirq. 332 */ 333 tick_do_update_jiffies64(ktime_get()); 334 cpu_clear(cpu, nohz_cpu_mask); 335 } 336 raise_softirq_irqoff(TIMER_SOFTIRQ); 337 out: 338 ts->next_jiffies = next_jiffies; 339 ts->last_jiffies = last_jiffies; 340 ts->sleep_length = ktime_sub(dev->next_event, now); 341 end: 342 local_irq_restore(flags); 343 } 344 345 /** 346 * tick_nohz_get_sleep_length - return the length of the current sleep 347 * 348 * Called from power state control code with interrupts disabled 349 */ 350 ktime_t tick_nohz_get_sleep_length(void) 351 { 352 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 353 354 return ts->sleep_length; 355 } 356 357 /** 358 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 359 * 360 * Restart the idle tick when the CPU is woken up from idle 361 */ 362 void tick_nohz_restart_sched_tick(void) 363 { 364 int cpu = smp_processor_id(); 365 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 366 unsigned long ticks; 367 ktime_t now; 368 369 local_irq_disable(); 370 tick_nohz_stop_idle(cpu); 371 372 if (!ts->tick_stopped) { 373 local_irq_enable(); 374 return; 375 } 376 377 rcu_exit_nohz(); 378 379 /* Update jiffies first */ 380 select_nohz_load_balancer(0); 381 now = ktime_get(); 382 tick_do_update_jiffies64(now); 383 cpu_clear(cpu, nohz_cpu_mask); 384 385 /* 386 * We stopped the tick in idle. Update process times would miss the 387 * time we slept as update_process_times does only a 1 tick 388 * accounting. Enforce that this is accounted to idle ! 389 */ 390 ticks = jiffies - ts->idle_jiffies; 391 /* 392 * We might be one off. Do not randomly account a huge number of ticks! 393 */ 394 if (ticks && ticks < LONG_MAX) { 395 add_preempt_count(HARDIRQ_OFFSET); 396 account_system_time(current, HARDIRQ_OFFSET, 397 jiffies_to_cputime(ticks)); 398 sub_preempt_count(HARDIRQ_OFFSET); 399 } 400 401 /* 402 * Cancel the scheduled timer and restore the tick 403 */ 404 ts->tick_stopped = 0; 405 ts->idle_exittime = now; 406 hrtimer_cancel(&ts->sched_timer); 407 ts->sched_timer.expires = ts->idle_tick; 408 409 while (1) { 410 /* Forward the time to expire in the future */ 411 hrtimer_forward(&ts->sched_timer, now, tick_period); 412 413 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 414 hrtimer_start(&ts->sched_timer, 415 ts->sched_timer.expires, 416 HRTIMER_MODE_ABS); 417 /* Check, if the timer was already in the past */ 418 if (hrtimer_active(&ts->sched_timer)) 419 break; 420 } else { 421 if (!tick_program_event(ts->sched_timer.expires, 0)) 422 break; 423 } 424 /* Update jiffies and reread time */ 425 tick_do_update_jiffies64(now); 426 now = ktime_get(); 427 } 428 local_irq_enable(); 429 } 430 431 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 432 { 433 hrtimer_forward(&ts->sched_timer, now, tick_period); 434 return tick_program_event(ts->sched_timer.expires, 0); 435 } 436 437 /* 438 * The nohz low res interrupt handler 439 */ 440 static void tick_nohz_handler(struct clock_event_device *dev) 441 { 442 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 443 struct pt_regs *regs = get_irq_regs(); 444 int cpu = smp_processor_id(); 445 ktime_t now = ktime_get(); 446 447 dev->next_event.tv64 = KTIME_MAX; 448 449 /* 450 * Check if the do_timer duty was dropped. We don't care about 451 * concurrency: This happens only when the cpu in charge went 452 * into a long sleep. If two cpus happen to assign themself to 453 * this duty, then the jiffies update is still serialized by 454 * xtime_lock. 455 */ 456 if (unlikely(tick_do_timer_cpu == -1)) 457 tick_do_timer_cpu = cpu; 458 459 /* Check, if the jiffies need an update */ 460 if (tick_do_timer_cpu == cpu) 461 tick_do_update_jiffies64(now); 462 463 /* 464 * When we are idle and the tick is stopped, we have to touch 465 * the watchdog as we might not schedule for a really long 466 * time. This happens on complete idle SMP systems while 467 * waiting on the login prompt. We also increment the "start 468 * of idle" jiffy stamp so the idle accounting adjustment we 469 * do when we go busy again does not account too much ticks. 470 */ 471 if (ts->tick_stopped) { 472 touch_softlockup_watchdog(); 473 ts->idle_jiffies++; 474 } 475 476 update_process_times(user_mode(regs)); 477 profile_tick(CPU_PROFILING); 478 479 /* Do not restart, when we are in the idle loop */ 480 if (ts->tick_stopped) 481 return; 482 483 while (tick_nohz_reprogram(ts, now)) { 484 now = ktime_get(); 485 tick_do_update_jiffies64(now); 486 } 487 } 488 489 /** 490 * tick_nohz_switch_to_nohz - switch to nohz mode 491 */ 492 static void tick_nohz_switch_to_nohz(void) 493 { 494 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 495 ktime_t next; 496 497 if (!tick_nohz_enabled) 498 return; 499 500 local_irq_disable(); 501 if (tick_switch_to_oneshot(tick_nohz_handler)) { 502 local_irq_enable(); 503 return; 504 } 505 506 ts->nohz_mode = NOHZ_MODE_LOWRES; 507 508 /* 509 * Recycle the hrtimer in ts, so we can share the 510 * hrtimer_forward with the highres code. 511 */ 512 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 513 /* Get the next period */ 514 next = tick_init_jiffy_update(); 515 516 for (;;) { 517 ts->sched_timer.expires = next; 518 if (!tick_program_event(next, 0)) 519 break; 520 next = ktime_add(next, tick_period); 521 } 522 local_irq_enable(); 523 524 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 525 smp_processor_id()); 526 } 527 528 #else 529 530 static inline void tick_nohz_switch_to_nohz(void) { } 531 532 #endif /* NO_HZ */ 533 534 /* 535 * High resolution timer specific code 536 */ 537 #ifdef CONFIG_HIGH_RES_TIMERS 538 /* 539 * We rearm the timer until we get disabled by the idle code. 540 * Called with interrupts disabled and timer->base->cpu_base->lock held. 541 */ 542 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 543 { 544 struct tick_sched *ts = 545 container_of(timer, struct tick_sched, sched_timer); 546 struct pt_regs *regs = get_irq_regs(); 547 ktime_t now = ktime_get(); 548 int cpu = smp_processor_id(); 549 550 #ifdef CONFIG_NO_HZ 551 /* 552 * Check if the do_timer duty was dropped. We don't care about 553 * concurrency: This happens only when the cpu in charge went 554 * into a long sleep. If two cpus happen to assign themself to 555 * this duty, then the jiffies update is still serialized by 556 * xtime_lock. 557 */ 558 if (unlikely(tick_do_timer_cpu == -1)) 559 tick_do_timer_cpu = cpu; 560 #endif 561 562 /* Check, if the jiffies need an update */ 563 if (tick_do_timer_cpu == cpu) 564 tick_do_update_jiffies64(now); 565 566 /* 567 * Do not call, when we are not in irq context and have 568 * no valid regs pointer 569 */ 570 if (regs) { 571 /* 572 * When we are idle and the tick is stopped, we have to touch 573 * the watchdog as we might not schedule for a really long 574 * time. This happens on complete idle SMP systems while 575 * waiting on the login prompt. We also increment the "start of 576 * idle" jiffy stamp so the idle accounting adjustment we do 577 * when we go busy again does not account too much ticks. 578 */ 579 if (ts->tick_stopped) { 580 touch_softlockup_watchdog(); 581 ts->idle_jiffies++; 582 } 583 update_process_times(user_mode(regs)); 584 profile_tick(CPU_PROFILING); 585 } 586 587 /* Do not restart, when we are in the idle loop */ 588 if (ts->tick_stopped) 589 return HRTIMER_NORESTART; 590 591 hrtimer_forward(timer, now, tick_period); 592 593 return HRTIMER_RESTART; 594 } 595 596 /** 597 * tick_setup_sched_timer - setup the tick emulation timer 598 */ 599 void tick_setup_sched_timer(void) 600 { 601 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 602 ktime_t now = ktime_get(); 603 u64 offset; 604 605 /* 606 * Emulate tick processing via per-CPU hrtimers: 607 */ 608 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 609 ts->sched_timer.function = tick_sched_timer; 610 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 611 612 /* Get the next period (per cpu) */ 613 ts->sched_timer.expires = tick_init_jiffy_update(); 614 offset = ktime_to_ns(tick_period) >> 1; 615 do_div(offset, num_possible_cpus()); 616 offset *= smp_processor_id(); 617 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset); 618 619 for (;;) { 620 hrtimer_forward(&ts->sched_timer, now, tick_period); 621 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, 622 HRTIMER_MODE_ABS); 623 /* Check, if the timer was already in the past */ 624 if (hrtimer_active(&ts->sched_timer)) 625 break; 626 now = ktime_get(); 627 } 628 629 #ifdef CONFIG_NO_HZ 630 if (tick_nohz_enabled) 631 ts->nohz_mode = NOHZ_MODE_HIGHRES; 632 #endif 633 } 634 635 void tick_cancel_sched_timer(int cpu) 636 { 637 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 638 639 if (ts->sched_timer.base) 640 hrtimer_cancel(&ts->sched_timer); 641 642 ts->nohz_mode = NOHZ_MODE_INACTIVE; 643 } 644 #endif /* HIGH_RES_TIMERS */ 645 646 /** 647 * Async notification about clocksource changes 648 */ 649 void tick_clock_notify(void) 650 { 651 int cpu; 652 653 for_each_possible_cpu(cpu) 654 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 655 } 656 657 /* 658 * Async notification about clock event changes 659 */ 660 void tick_oneshot_notify(void) 661 { 662 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 663 664 set_bit(0, &ts->check_clocks); 665 } 666 667 /** 668 * Check, if a change happened, which makes oneshot possible. 669 * 670 * Called cyclic from the hrtimer softirq (driven by the timer 671 * softirq) allow_nohz signals, that we can switch into low-res nohz 672 * mode, because high resolution timers are disabled (either compile 673 * or runtime). 674 */ 675 int tick_check_oneshot_change(int allow_nohz) 676 { 677 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 678 679 if (!test_and_clear_bit(0, &ts->check_clocks)) 680 return 0; 681 682 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 683 return 0; 684 685 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 686 return 0; 687 688 if (!allow_nohz) 689 return 1; 690 691 tick_nohz_switch_to_nohz(); 692 return 0; 693 } 694