1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/perf_event.h> 26 27 #include <asm/irq_regs.h> 28 29 #include "tick-internal.h" 30 31 #include <trace/events/timer.h> 32 33 /* 34 * Per cpu nohz control structure 35 */ 36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 37 38 /* 39 * The time, when the last jiffy update happened. Protected by jiffies_lock. 40 */ 41 static ktime_t last_jiffies_update; 42 43 struct tick_sched *tick_get_tick_sched(int cpu) 44 { 45 return &per_cpu(tick_cpu_sched, cpu); 46 } 47 48 /* 49 * Must be called with interrupts disabled ! 50 */ 51 static void tick_do_update_jiffies64(ktime_t now) 52 { 53 unsigned long ticks = 0; 54 ktime_t delta; 55 56 /* 57 * Do a quick check without holding jiffies_lock: 58 */ 59 delta = ktime_sub(now, last_jiffies_update); 60 if (delta.tv64 < tick_period.tv64) 61 return; 62 63 /* Reevalute with jiffies_lock held */ 64 write_seqlock(&jiffies_lock); 65 66 delta = ktime_sub(now, last_jiffies_update); 67 if (delta.tv64 >= tick_period.tv64) { 68 69 delta = ktime_sub(delta, tick_period); 70 last_jiffies_update = ktime_add(last_jiffies_update, 71 tick_period); 72 73 /* Slow path for long timeouts */ 74 if (unlikely(delta.tv64 >= tick_period.tv64)) { 75 s64 incr = ktime_to_ns(tick_period); 76 77 ticks = ktime_divns(delta, incr); 78 79 last_jiffies_update = ktime_add_ns(last_jiffies_update, 80 incr * ticks); 81 } 82 do_timer(++ticks); 83 84 /* Keep the tick_next_period variable up to date */ 85 tick_next_period = ktime_add(last_jiffies_update, tick_period); 86 } 87 write_sequnlock(&jiffies_lock); 88 } 89 90 /* 91 * Initialize and return retrieve the jiffies update. 92 */ 93 static ktime_t tick_init_jiffy_update(void) 94 { 95 ktime_t period; 96 97 write_seqlock(&jiffies_lock); 98 /* Did we start the jiffies update yet ? */ 99 if (last_jiffies_update.tv64 == 0) 100 last_jiffies_update = tick_next_period; 101 period = last_jiffies_update; 102 write_sequnlock(&jiffies_lock); 103 return period; 104 } 105 106 107 static void tick_sched_do_timer(ktime_t now) 108 { 109 int cpu = smp_processor_id(); 110 111 #ifdef CONFIG_NO_HZ_COMMON 112 /* 113 * Check if the do_timer duty was dropped. We don't care about 114 * concurrency: This happens only when the cpu in charge went 115 * into a long sleep. If two cpus happen to assign themself to 116 * this duty, then the jiffies update is still serialized by 117 * jiffies_lock. 118 */ 119 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 120 && !tick_nohz_full_cpu(cpu)) 121 tick_do_timer_cpu = cpu; 122 #endif 123 124 /* Check, if the jiffies need an update */ 125 if (tick_do_timer_cpu == cpu) 126 tick_do_update_jiffies64(now); 127 } 128 129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 130 { 131 #ifdef CONFIG_NO_HZ_COMMON 132 /* 133 * When we are idle and the tick is stopped, we have to touch 134 * the watchdog as we might not schedule for a really long 135 * time. This happens on complete idle SMP systems while 136 * waiting on the login prompt. We also increment the "start of 137 * idle" jiffy stamp so the idle accounting adjustment we do 138 * when we go busy again does not account too much ticks. 139 */ 140 if (ts->tick_stopped) { 141 touch_softlockup_watchdog(); 142 if (is_idle_task(current)) 143 ts->idle_jiffies++; 144 } 145 #endif 146 update_process_times(user_mode(regs)); 147 profile_tick(CPU_PROFILING); 148 } 149 150 #ifdef CONFIG_NO_HZ_FULL 151 static cpumask_var_t nohz_full_mask; 152 bool have_nohz_full_mask; 153 154 static bool can_stop_full_tick(void) 155 { 156 WARN_ON_ONCE(!irqs_disabled()); 157 158 if (!sched_can_stop_tick()) { 159 trace_tick_stop(0, "more than 1 task in runqueue\n"); 160 return false; 161 } 162 163 if (!posix_cpu_timers_can_stop_tick(current)) { 164 trace_tick_stop(0, "posix timers running\n"); 165 return false; 166 } 167 168 if (!perf_event_can_stop_tick()) { 169 trace_tick_stop(0, "perf events running\n"); 170 return false; 171 } 172 173 /* sched_clock_tick() needs us? */ 174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 175 /* 176 * TODO: kick full dynticks CPUs when 177 * sched_clock_stable is set. 178 */ 179 if (!sched_clock_stable) { 180 trace_tick_stop(0, "unstable sched clock\n"); 181 return false; 182 } 183 #endif 184 185 return true; 186 } 187 188 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now); 189 190 /* 191 * Re-evaluate the need for the tick on the current CPU 192 * and restart it if necessary. 193 */ 194 void tick_nohz_full_check(void) 195 { 196 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 197 198 if (tick_nohz_full_cpu(smp_processor_id())) { 199 if (ts->tick_stopped && !is_idle_task(current)) { 200 if (!can_stop_full_tick()) 201 tick_nohz_restart_sched_tick(ts, ktime_get()); 202 } 203 } 204 } 205 206 static void nohz_full_kick_work_func(struct irq_work *work) 207 { 208 tick_nohz_full_check(); 209 } 210 211 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 212 .func = nohz_full_kick_work_func, 213 }; 214 215 /* 216 * Kick the current CPU if it's full dynticks in order to force it to 217 * re-evaluate its dependency on the tick and restart it if necessary. 218 */ 219 void tick_nohz_full_kick(void) 220 { 221 if (tick_nohz_full_cpu(smp_processor_id())) 222 irq_work_queue(&__get_cpu_var(nohz_full_kick_work)); 223 } 224 225 static void nohz_full_kick_ipi(void *info) 226 { 227 tick_nohz_full_check(); 228 } 229 230 /* 231 * Kick all full dynticks CPUs in order to force these to re-evaluate 232 * their dependency on the tick and restart it if necessary. 233 */ 234 void tick_nohz_full_kick_all(void) 235 { 236 if (!have_nohz_full_mask) 237 return; 238 239 preempt_disable(); 240 smp_call_function_many(nohz_full_mask, 241 nohz_full_kick_ipi, NULL, false); 242 preempt_enable(); 243 } 244 245 /* 246 * Re-evaluate the need for the tick as we switch the current task. 247 * It might need the tick due to per task/process properties: 248 * perf events, posix cpu timers, ... 249 */ 250 void tick_nohz_task_switch(struct task_struct *tsk) 251 { 252 unsigned long flags; 253 254 local_irq_save(flags); 255 256 if (!tick_nohz_full_cpu(smp_processor_id())) 257 goto out; 258 259 if (tick_nohz_tick_stopped() && !can_stop_full_tick()) 260 tick_nohz_full_kick(); 261 262 out: 263 local_irq_restore(flags); 264 } 265 266 int tick_nohz_full_cpu(int cpu) 267 { 268 if (!have_nohz_full_mask) 269 return 0; 270 271 return cpumask_test_cpu(cpu, nohz_full_mask); 272 } 273 274 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 275 static int __init tick_nohz_full_setup(char *str) 276 { 277 int cpu; 278 279 alloc_bootmem_cpumask_var(&nohz_full_mask); 280 if (cpulist_parse(str, nohz_full_mask) < 0) { 281 pr_warning("NOHZ: Incorrect nohz_full cpumask\n"); 282 return 1; 283 } 284 285 cpu = smp_processor_id(); 286 if (cpumask_test_cpu(cpu, nohz_full_mask)) { 287 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu); 288 cpumask_clear_cpu(cpu, nohz_full_mask); 289 } 290 have_nohz_full_mask = true; 291 292 return 1; 293 } 294 __setup("nohz_full=", tick_nohz_full_setup); 295 296 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb, 297 unsigned long action, 298 void *hcpu) 299 { 300 unsigned int cpu = (unsigned long)hcpu; 301 302 switch (action & ~CPU_TASKS_FROZEN) { 303 case CPU_DOWN_PREPARE: 304 /* 305 * If we handle the timekeeping duty for full dynticks CPUs, 306 * we can't safely shutdown that CPU. 307 */ 308 if (have_nohz_full_mask && tick_do_timer_cpu == cpu) 309 return -EINVAL; 310 break; 311 } 312 return NOTIFY_OK; 313 } 314 315 /* 316 * Worst case string length in chunks of CPU range seems 2 steps 317 * separations: 0,2,4,6,... 318 * This is NR_CPUS + sizeof('\0') 319 */ 320 static char __initdata nohz_full_buf[NR_CPUS + 1]; 321 322 static int tick_nohz_init_all(void) 323 { 324 int err = -1; 325 326 #ifdef CONFIG_NO_HZ_FULL_ALL 327 if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) { 328 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n"); 329 return err; 330 } 331 err = 0; 332 cpumask_setall(nohz_full_mask); 333 cpumask_clear_cpu(smp_processor_id(), nohz_full_mask); 334 have_nohz_full_mask = true; 335 #endif 336 return err; 337 } 338 339 void __init tick_nohz_init(void) 340 { 341 int cpu; 342 343 if (!have_nohz_full_mask) { 344 if (tick_nohz_init_all() < 0) 345 return; 346 } 347 348 cpu_notifier(tick_nohz_cpu_down_callback, 0); 349 350 /* Make sure full dynticks CPU are also RCU nocbs */ 351 for_each_cpu(cpu, nohz_full_mask) { 352 if (!rcu_is_nocb_cpu(cpu)) { 353 pr_warning("NO_HZ: CPU %d is not RCU nocb: " 354 "cleared from nohz_full range", cpu); 355 cpumask_clear_cpu(cpu, nohz_full_mask); 356 } 357 } 358 359 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask); 360 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf); 361 } 362 #else 363 #define have_nohz_full_mask (0) 364 #endif 365 366 /* 367 * NOHZ - aka dynamic tick functionality 368 */ 369 #ifdef CONFIG_NO_HZ_COMMON 370 /* 371 * NO HZ enabled ? 372 */ 373 int tick_nohz_enabled __read_mostly = 1; 374 375 /* 376 * Enable / Disable tickless mode 377 */ 378 static int __init setup_tick_nohz(char *str) 379 { 380 if (!strcmp(str, "off")) 381 tick_nohz_enabled = 0; 382 else if (!strcmp(str, "on")) 383 tick_nohz_enabled = 1; 384 else 385 return 0; 386 return 1; 387 } 388 389 __setup("nohz=", setup_tick_nohz); 390 391 /** 392 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 393 * 394 * Called from interrupt entry when the CPU was idle 395 * 396 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 397 * must be updated. Otherwise an interrupt handler could use a stale jiffy 398 * value. We do this unconditionally on any cpu, as we don't know whether the 399 * cpu, which has the update task assigned is in a long sleep. 400 */ 401 static void tick_nohz_update_jiffies(ktime_t now) 402 { 403 int cpu = smp_processor_id(); 404 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 405 unsigned long flags; 406 407 ts->idle_waketime = now; 408 409 local_irq_save(flags); 410 tick_do_update_jiffies64(now); 411 local_irq_restore(flags); 412 413 touch_softlockup_watchdog(); 414 } 415 416 /* 417 * Updates the per cpu time idle statistics counters 418 */ 419 static void 420 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 421 { 422 ktime_t delta; 423 424 if (ts->idle_active) { 425 delta = ktime_sub(now, ts->idle_entrytime); 426 if (nr_iowait_cpu(cpu) > 0) 427 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 428 else 429 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 430 ts->idle_entrytime = now; 431 } 432 433 if (last_update_time) 434 *last_update_time = ktime_to_us(now); 435 436 } 437 438 static void tick_nohz_stop_idle(int cpu, ktime_t now) 439 { 440 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 441 442 update_ts_time_stats(cpu, ts, now, NULL); 443 ts->idle_active = 0; 444 445 sched_clock_idle_wakeup_event(0); 446 } 447 448 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 449 { 450 ktime_t now = ktime_get(); 451 452 ts->idle_entrytime = now; 453 ts->idle_active = 1; 454 sched_clock_idle_sleep_event(); 455 return now; 456 } 457 458 /** 459 * get_cpu_idle_time_us - get the total idle time of a cpu 460 * @cpu: CPU number to query 461 * @last_update_time: variable to store update time in. Do not update 462 * counters if NULL. 463 * 464 * Return the cummulative idle time (since boot) for a given 465 * CPU, in microseconds. 466 * 467 * This time is measured via accounting rather than sampling, 468 * and is as accurate as ktime_get() is. 469 * 470 * This function returns -1 if NOHZ is not enabled. 471 */ 472 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 473 { 474 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 475 ktime_t now, idle; 476 477 if (!tick_nohz_enabled) 478 return -1; 479 480 now = ktime_get(); 481 if (last_update_time) { 482 update_ts_time_stats(cpu, ts, now, last_update_time); 483 idle = ts->idle_sleeptime; 484 } else { 485 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 486 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 487 488 idle = ktime_add(ts->idle_sleeptime, delta); 489 } else { 490 idle = ts->idle_sleeptime; 491 } 492 } 493 494 return ktime_to_us(idle); 495 496 } 497 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 498 499 /** 500 * get_cpu_iowait_time_us - get the total iowait time of a cpu 501 * @cpu: CPU number to query 502 * @last_update_time: variable to store update time in. Do not update 503 * counters if NULL. 504 * 505 * Return the cummulative iowait time (since boot) for a given 506 * CPU, in microseconds. 507 * 508 * This time is measured via accounting rather than sampling, 509 * and is as accurate as ktime_get() is. 510 * 511 * This function returns -1 if NOHZ is not enabled. 512 */ 513 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 514 { 515 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 516 ktime_t now, iowait; 517 518 if (!tick_nohz_enabled) 519 return -1; 520 521 now = ktime_get(); 522 if (last_update_time) { 523 update_ts_time_stats(cpu, ts, now, last_update_time); 524 iowait = ts->iowait_sleeptime; 525 } else { 526 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 527 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 528 529 iowait = ktime_add(ts->iowait_sleeptime, delta); 530 } else { 531 iowait = ts->iowait_sleeptime; 532 } 533 } 534 535 return ktime_to_us(iowait); 536 } 537 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 538 539 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 540 ktime_t now, int cpu) 541 { 542 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 543 ktime_t last_update, expires, ret = { .tv64 = 0 }; 544 unsigned long rcu_delta_jiffies; 545 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 546 u64 time_delta; 547 548 /* Read jiffies and the time when jiffies were updated last */ 549 do { 550 seq = read_seqbegin(&jiffies_lock); 551 last_update = last_jiffies_update; 552 last_jiffies = jiffies; 553 time_delta = timekeeping_max_deferment(); 554 } while (read_seqretry(&jiffies_lock, seq)); 555 556 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || 557 arch_needs_cpu(cpu) || irq_work_needs_cpu()) { 558 next_jiffies = last_jiffies + 1; 559 delta_jiffies = 1; 560 } else { 561 /* Get the next timer wheel timer */ 562 next_jiffies = get_next_timer_interrupt(last_jiffies); 563 delta_jiffies = next_jiffies - last_jiffies; 564 if (rcu_delta_jiffies < delta_jiffies) { 565 next_jiffies = last_jiffies + rcu_delta_jiffies; 566 delta_jiffies = rcu_delta_jiffies; 567 } 568 } 569 570 /* 571 * Do not stop the tick, if we are only one off (or less) 572 * or if the cpu is required for RCU: 573 */ 574 if (!ts->tick_stopped && delta_jiffies <= 1) 575 goto out; 576 577 /* Schedule the tick, if we are at least one jiffie off */ 578 if ((long)delta_jiffies >= 1) { 579 580 /* 581 * If this cpu is the one which updates jiffies, then 582 * give up the assignment and let it be taken by the 583 * cpu which runs the tick timer next, which might be 584 * this cpu as well. If we don't drop this here the 585 * jiffies might be stale and do_timer() never 586 * invoked. Keep track of the fact that it was the one 587 * which had the do_timer() duty last. If this cpu is 588 * the one which had the do_timer() duty last, we 589 * limit the sleep time to the timekeeping 590 * max_deferement value which we retrieved 591 * above. Otherwise we can sleep as long as we want. 592 */ 593 if (cpu == tick_do_timer_cpu) { 594 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 595 ts->do_timer_last = 1; 596 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 597 time_delta = KTIME_MAX; 598 ts->do_timer_last = 0; 599 } else if (!ts->do_timer_last) { 600 time_delta = KTIME_MAX; 601 } 602 603 #ifdef CONFIG_NO_HZ_FULL 604 if (!ts->inidle) { 605 time_delta = min(time_delta, 606 scheduler_tick_max_deferment()); 607 } 608 #endif 609 610 /* 611 * calculate the expiry time for the next timer wheel 612 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 613 * that there is no timer pending or at least extremely 614 * far into the future (12 days for HZ=1000). In this 615 * case we set the expiry to the end of time. 616 */ 617 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 618 /* 619 * Calculate the time delta for the next timer event. 620 * If the time delta exceeds the maximum time delta 621 * permitted by the current clocksource then adjust 622 * the time delta accordingly to ensure the 623 * clocksource does not wrap. 624 */ 625 time_delta = min_t(u64, time_delta, 626 tick_period.tv64 * delta_jiffies); 627 } 628 629 if (time_delta < KTIME_MAX) 630 expires = ktime_add_ns(last_update, time_delta); 631 else 632 expires.tv64 = KTIME_MAX; 633 634 /* Skip reprogram of event if its not changed */ 635 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 636 goto out; 637 638 ret = expires; 639 640 /* 641 * nohz_stop_sched_tick can be called several times before 642 * the nohz_restart_sched_tick is called. This happens when 643 * interrupts arrive which do not cause a reschedule. In the 644 * first call we save the current tick time, so we can restart 645 * the scheduler tick in nohz_restart_sched_tick. 646 */ 647 if (!ts->tick_stopped) { 648 nohz_balance_enter_idle(cpu); 649 calc_load_enter_idle(); 650 651 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 652 ts->tick_stopped = 1; 653 trace_tick_stop(1, " "); 654 } 655 656 /* 657 * If the expiration time == KTIME_MAX, then 658 * in this case we simply stop the tick timer. 659 */ 660 if (unlikely(expires.tv64 == KTIME_MAX)) { 661 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 662 hrtimer_cancel(&ts->sched_timer); 663 goto out; 664 } 665 666 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 667 hrtimer_start(&ts->sched_timer, expires, 668 HRTIMER_MODE_ABS_PINNED); 669 /* Check, if the timer was already in the past */ 670 if (hrtimer_active(&ts->sched_timer)) 671 goto out; 672 } else if (!tick_program_event(expires, 0)) 673 goto out; 674 /* 675 * We are past the event already. So we crossed a 676 * jiffie boundary. Update jiffies and raise the 677 * softirq. 678 */ 679 tick_do_update_jiffies64(ktime_get()); 680 } 681 raise_softirq_irqoff(TIMER_SOFTIRQ); 682 out: 683 ts->next_jiffies = next_jiffies; 684 ts->last_jiffies = last_jiffies; 685 ts->sleep_length = ktime_sub(dev->next_event, now); 686 687 return ret; 688 } 689 690 static void tick_nohz_full_stop_tick(struct tick_sched *ts) 691 { 692 #ifdef CONFIG_NO_HZ_FULL 693 int cpu = smp_processor_id(); 694 695 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current)) 696 return; 697 698 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 699 return; 700 701 if (!can_stop_full_tick()) 702 return; 703 704 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 705 #endif 706 } 707 708 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 709 { 710 /* 711 * If this cpu is offline and it is the one which updates 712 * jiffies, then give up the assignment and let it be taken by 713 * the cpu which runs the tick timer next. If we don't drop 714 * this here the jiffies might be stale and do_timer() never 715 * invoked. 716 */ 717 if (unlikely(!cpu_online(cpu))) { 718 if (cpu == tick_do_timer_cpu) 719 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 720 } 721 722 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 723 return false; 724 725 if (need_resched()) 726 return false; 727 728 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 729 static int ratelimit; 730 731 if (ratelimit < 10 && 732 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 733 pr_warn("NOHZ: local_softirq_pending %02x\n", 734 (unsigned int) local_softirq_pending()); 735 ratelimit++; 736 } 737 return false; 738 } 739 740 if (have_nohz_full_mask) { 741 /* 742 * Keep the tick alive to guarantee timekeeping progression 743 * if there are full dynticks CPUs around 744 */ 745 if (tick_do_timer_cpu == cpu) 746 return false; 747 /* 748 * Boot safety: make sure the timekeeping duty has been 749 * assigned before entering dyntick-idle mode, 750 */ 751 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 752 return false; 753 } 754 755 return true; 756 } 757 758 static void __tick_nohz_idle_enter(struct tick_sched *ts) 759 { 760 ktime_t now, expires; 761 int cpu = smp_processor_id(); 762 763 now = tick_nohz_start_idle(cpu, ts); 764 765 if (can_stop_idle_tick(cpu, ts)) { 766 int was_stopped = ts->tick_stopped; 767 768 ts->idle_calls++; 769 770 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 771 if (expires.tv64 > 0LL) { 772 ts->idle_sleeps++; 773 ts->idle_expires = expires; 774 } 775 776 if (!was_stopped && ts->tick_stopped) 777 ts->idle_jiffies = ts->last_jiffies; 778 } 779 } 780 781 /** 782 * tick_nohz_idle_enter - stop the idle tick from the idle task 783 * 784 * When the next event is more than a tick into the future, stop the idle tick 785 * Called when we start the idle loop. 786 * 787 * The arch is responsible of calling: 788 * 789 * - rcu_idle_enter() after its last use of RCU before the CPU is put 790 * to sleep. 791 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 792 */ 793 void tick_nohz_idle_enter(void) 794 { 795 struct tick_sched *ts; 796 797 WARN_ON_ONCE(irqs_disabled()); 798 799 /* 800 * Update the idle state in the scheduler domain hierarchy 801 * when tick_nohz_stop_sched_tick() is called from the idle loop. 802 * State will be updated to busy during the first busy tick after 803 * exiting idle. 804 */ 805 set_cpu_sd_state_idle(); 806 807 local_irq_disable(); 808 809 ts = &__get_cpu_var(tick_cpu_sched); 810 /* 811 * set ts->inidle unconditionally. even if the system did not 812 * switch to nohz mode the cpu frequency governers rely on the 813 * update of the idle time accounting in tick_nohz_start_idle(). 814 */ 815 ts->inidle = 1; 816 __tick_nohz_idle_enter(ts); 817 818 local_irq_enable(); 819 } 820 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter); 821 822 /** 823 * tick_nohz_irq_exit - update next tick event from interrupt exit 824 * 825 * When an interrupt fires while we are idle and it doesn't cause 826 * a reschedule, it may still add, modify or delete a timer, enqueue 827 * an RCU callback, etc... 828 * So we need to re-calculate and reprogram the next tick event. 829 */ 830 void tick_nohz_irq_exit(void) 831 { 832 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 833 834 if (ts->inidle) { 835 /* Cancel the timer because CPU already waken up from the C-states*/ 836 menu_hrtimer_cancel(); 837 __tick_nohz_idle_enter(ts); 838 } else { 839 tick_nohz_full_stop_tick(ts); 840 } 841 } 842 843 /** 844 * tick_nohz_get_sleep_length - return the length of the current sleep 845 * 846 * Called from power state control code with interrupts disabled 847 */ 848 ktime_t tick_nohz_get_sleep_length(void) 849 { 850 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 851 852 return ts->sleep_length; 853 } 854 855 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 856 { 857 hrtimer_cancel(&ts->sched_timer); 858 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 859 860 while (1) { 861 /* Forward the time to expire in the future */ 862 hrtimer_forward(&ts->sched_timer, now, tick_period); 863 864 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 865 hrtimer_start_expires(&ts->sched_timer, 866 HRTIMER_MODE_ABS_PINNED); 867 /* Check, if the timer was already in the past */ 868 if (hrtimer_active(&ts->sched_timer)) 869 break; 870 } else { 871 if (!tick_program_event( 872 hrtimer_get_expires(&ts->sched_timer), 0)) 873 break; 874 } 875 /* Reread time and update jiffies */ 876 now = ktime_get(); 877 tick_do_update_jiffies64(now); 878 } 879 } 880 881 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 882 { 883 /* Update jiffies first */ 884 tick_do_update_jiffies64(now); 885 update_cpu_load_nohz(); 886 887 calc_load_exit_idle(); 888 touch_softlockup_watchdog(); 889 /* 890 * Cancel the scheduled timer and restore the tick 891 */ 892 ts->tick_stopped = 0; 893 ts->idle_exittime = now; 894 895 tick_nohz_restart(ts, now); 896 } 897 898 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 899 { 900 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 901 unsigned long ticks; 902 903 if (vtime_accounting_enabled()) 904 return; 905 /* 906 * We stopped the tick in idle. Update process times would miss the 907 * time we slept as update_process_times does only a 1 tick 908 * accounting. Enforce that this is accounted to idle ! 909 */ 910 ticks = jiffies - ts->idle_jiffies; 911 /* 912 * We might be one off. Do not randomly account a huge number of ticks! 913 */ 914 if (ticks && ticks < LONG_MAX) 915 account_idle_ticks(ticks); 916 #endif 917 } 918 919 /** 920 * tick_nohz_idle_exit - restart the idle tick from the idle task 921 * 922 * Restart the idle tick when the CPU is woken up from idle 923 * This also exit the RCU extended quiescent state. The CPU 924 * can use RCU again after this function is called. 925 */ 926 void tick_nohz_idle_exit(void) 927 { 928 int cpu = smp_processor_id(); 929 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 930 ktime_t now; 931 932 local_irq_disable(); 933 934 WARN_ON_ONCE(!ts->inidle); 935 936 ts->inidle = 0; 937 938 /* Cancel the timer because CPU already waken up from the C-states*/ 939 menu_hrtimer_cancel(); 940 if (ts->idle_active || ts->tick_stopped) 941 now = ktime_get(); 942 943 if (ts->idle_active) 944 tick_nohz_stop_idle(cpu, now); 945 946 if (ts->tick_stopped) { 947 tick_nohz_restart_sched_tick(ts, now); 948 tick_nohz_account_idle_ticks(ts); 949 } 950 951 local_irq_enable(); 952 } 953 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit); 954 955 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 956 { 957 hrtimer_forward(&ts->sched_timer, now, tick_period); 958 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 959 } 960 961 /* 962 * The nohz low res interrupt handler 963 */ 964 static void tick_nohz_handler(struct clock_event_device *dev) 965 { 966 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 967 struct pt_regs *regs = get_irq_regs(); 968 ktime_t now = ktime_get(); 969 970 dev->next_event.tv64 = KTIME_MAX; 971 972 tick_sched_do_timer(now); 973 tick_sched_handle(ts, regs); 974 975 while (tick_nohz_reprogram(ts, now)) { 976 now = ktime_get(); 977 tick_do_update_jiffies64(now); 978 } 979 } 980 981 /** 982 * tick_nohz_switch_to_nohz - switch to nohz mode 983 */ 984 static void tick_nohz_switch_to_nohz(void) 985 { 986 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 987 ktime_t next; 988 989 if (!tick_nohz_enabled) 990 return; 991 992 local_irq_disable(); 993 if (tick_switch_to_oneshot(tick_nohz_handler)) { 994 local_irq_enable(); 995 return; 996 } 997 998 ts->nohz_mode = NOHZ_MODE_LOWRES; 999 1000 /* 1001 * Recycle the hrtimer in ts, so we can share the 1002 * hrtimer_forward with the highres code. 1003 */ 1004 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1005 /* Get the next period */ 1006 next = tick_init_jiffy_update(); 1007 1008 for (;;) { 1009 hrtimer_set_expires(&ts->sched_timer, next); 1010 if (!tick_program_event(next, 0)) 1011 break; 1012 next = ktime_add(next, tick_period); 1013 } 1014 local_irq_enable(); 1015 } 1016 1017 /* 1018 * When NOHZ is enabled and the tick is stopped, we need to kick the 1019 * tick timer from irq_enter() so that the jiffies update is kept 1020 * alive during long running softirqs. That's ugly as hell, but 1021 * correctness is key even if we need to fix the offending softirq in 1022 * the first place. 1023 * 1024 * Note, this is different to tick_nohz_restart. We just kick the 1025 * timer and do not touch the other magic bits which need to be done 1026 * when idle is left. 1027 */ 1028 static void tick_nohz_kick_tick(int cpu, ktime_t now) 1029 { 1030 #if 0 1031 /* Switch back to 2.6.27 behaviour */ 1032 1033 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1034 ktime_t delta; 1035 1036 /* 1037 * Do not touch the tick device, when the next expiry is either 1038 * already reached or less/equal than the tick period. 1039 */ 1040 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 1041 if (delta.tv64 <= tick_period.tv64) 1042 return; 1043 1044 tick_nohz_restart(ts, now); 1045 #endif 1046 } 1047 1048 static inline void tick_check_nohz(int cpu) 1049 { 1050 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1051 ktime_t now; 1052 1053 if (!ts->idle_active && !ts->tick_stopped) 1054 return; 1055 now = ktime_get(); 1056 if (ts->idle_active) 1057 tick_nohz_stop_idle(cpu, now); 1058 if (ts->tick_stopped) { 1059 tick_nohz_update_jiffies(now); 1060 tick_nohz_kick_tick(cpu, now); 1061 } 1062 } 1063 1064 #else 1065 1066 static inline void tick_nohz_switch_to_nohz(void) { } 1067 static inline void tick_check_nohz(int cpu) { } 1068 1069 #endif /* CONFIG_NO_HZ_COMMON */ 1070 1071 /* 1072 * Called from irq_enter to notify about the possible interruption of idle() 1073 */ 1074 void tick_check_idle(int cpu) 1075 { 1076 tick_check_oneshot_broadcast(cpu); 1077 tick_check_nohz(cpu); 1078 } 1079 1080 /* 1081 * High resolution timer specific code 1082 */ 1083 #ifdef CONFIG_HIGH_RES_TIMERS 1084 /* 1085 * We rearm the timer until we get disabled by the idle code. 1086 * Called with interrupts disabled. 1087 */ 1088 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1089 { 1090 struct tick_sched *ts = 1091 container_of(timer, struct tick_sched, sched_timer); 1092 struct pt_regs *regs = get_irq_regs(); 1093 ktime_t now = ktime_get(); 1094 1095 tick_sched_do_timer(now); 1096 1097 /* 1098 * Do not call, when we are not in irq context and have 1099 * no valid regs pointer 1100 */ 1101 if (regs) 1102 tick_sched_handle(ts, regs); 1103 1104 hrtimer_forward(timer, now, tick_period); 1105 1106 return HRTIMER_RESTART; 1107 } 1108 1109 static int sched_skew_tick; 1110 1111 static int __init skew_tick(char *str) 1112 { 1113 get_option(&str, &sched_skew_tick); 1114 1115 return 0; 1116 } 1117 early_param("skew_tick", skew_tick); 1118 1119 /** 1120 * tick_setup_sched_timer - setup the tick emulation timer 1121 */ 1122 void tick_setup_sched_timer(void) 1123 { 1124 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1125 ktime_t now = ktime_get(); 1126 1127 /* 1128 * Emulate tick processing via per-CPU hrtimers: 1129 */ 1130 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1131 ts->sched_timer.function = tick_sched_timer; 1132 1133 /* Get the next period (per cpu) */ 1134 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1135 1136 /* Offset the tick to avert jiffies_lock contention. */ 1137 if (sched_skew_tick) { 1138 u64 offset = ktime_to_ns(tick_period) >> 1; 1139 do_div(offset, num_possible_cpus()); 1140 offset *= smp_processor_id(); 1141 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1142 } 1143 1144 for (;;) { 1145 hrtimer_forward(&ts->sched_timer, now, tick_period); 1146 hrtimer_start_expires(&ts->sched_timer, 1147 HRTIMER_MODE_ABS_PINNED); 1148 /* Check, if the timer was already in the past */ 1149 if (hrtimer_active(&ts->sched_timer)) 1150 break; 1151 now = ktime_get(); 1152 } 1153 1154 #ifdef CONFIG_NO_HZ_COMMON 1155 if (tick_nohz_enabled) 1156 ts->nohz_mode = NOHZ_MODE_HIGHRES; 1157 #endif 1158 } 1159 #endif /* HIGH_RES_TIMERS */ 1160 1161 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1162 void tick_cancel_sched_timer(int cpu) 1163 { 1164 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1165 1166 # ifdef CONFIG_HIGH_RES_TIMERS 1167 if (ts->sched_timer.base) 1168 hrtimer_cancel(&ts->sched_timer); 1169 # endif 1170 1171 ts->nohz_mode = NOHZ_MODE_INACTIVE; 1172 } 1173 #endif 1174 1175 /** 1176 * Async notification about clocksource changes 1177 */ 1178 void tick_clock_notify(void) 1179 { 1180 int cpu; 1181 1182 for_each_possible_cpu(cpu) 1183 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1184 } 1185 1186 /* 1187 * Async notification about clock event changes 1188 */ 1189 void tick_oneshot_notify(void) 1190 { 1191 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1192 1193 set_bit(0, &ts->check_clocks); 1194 } 1195 1196 /** 1197 * Check, if a change happened, which makes oneshot possible. 1198 * 1199 * Called cyclic from the hrtimer softirq (driven by the timer 1200 * softirq) allow_nohz signals, that we can switch into low-res nohz 1201 * mode, because high resolution timers are disabled (either compile 1202 * or runtime). 1203 */ 1204 int tick_check_oneshot_change(int allow_nohz) 1205 { 1206 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1207 1208 if (!test_and_clear_bit(0, &ts->check_clocks)) 1209 return 0; 1210 1211 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1212 return 0; 1213 1214 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1215 return 0; 1216 1217 if (!allow_nohz) 1218 return 1; 1219 1220 tick_nohz_switch_to_nohz(); 1221 return 0; 1222 } 1223