xref: /openbmc/linux/kernel/time/tick-sched.c (revision eed3b9cf)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by xtime_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding xtime_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with xtime_lock held */
60 	write_seqlock(&xtime_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&xtime_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&xtime_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&xtime_lock);
99 	return period;
100 }
101 
102 /*
103  * NOHZ - aka dynamic tick functionality
104  */
105 #ifdef CONFIG_NO_HZ
106 /*
107  * NO HZ enabled ?
108  */
109 static int tick_nohz_enabled __read_mostly  = 1;
110 
111 /*
112  * Enable / Disable tickless mode
113  */
114 static int __init setup_tick_nohz(char *str)
115 {
116 	if (!strcmp(str, "off"))
117 		tick_nohz_enabled = 0;
118 	else if (!strcmp(str, "on"))
119 		tick_nohz_enabled = 1;
120 	else
121 		return 0;
122 	return 1;
123 }
124 
125 __setup("nohz=", setup_tick_nohz);
126 
127 /**
128  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129  *
130  * Called from interrupt entry when the CPU was idle
131  *
132  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133  * must be updated. Otherwise an interrupt handler could use a stale jiffy
134  * value. We do this unconditionally on any cpu, as we don't know whether the
135  * cpu, which has the update task assigned is in a long sleep.
136  */
137 static void tick_nohz_update_jiffies(ktime_t now)
138 {
139 	int cpu = smp_processor_id();
140 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 	unsigned long flags;
142 
143 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 	ts->idle_waketime = now;
145 
146 	local_irq_save(flags);
147 	tick_do_update_jiffies64(now);
148 	local_irq_restore(flags);
149 
150 	touch_softlockup_watchdog();
151 }
152 
153 static void tick_nohz_stop_idle(int cpu, ktime_t now)
154 {
155 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
156 	ktime_t delta;
157 
158 	delta = ktime_sub(now, ts->idle_entrytime);
159 	ts->idle_lastupdate = now;
160 	ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
161 	ts->idle_active = 0;
162 
163 	sched_clock_idle_wakeup_event(0);
164 }
165 
166 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
167 {
168 	ktime_t now, delta;
169 
170 	now = ktime_get();
171 	if (ts->idle_active) {
172 		delta = ktime_sub(now, ts->idle_entrytime);
173 		ts->idle_lastupdate = now;
174 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
175 	}
176 	ts->idle_entrytime = now;
177 	ts->idle_active = 1;
178 	sched_clock_idle_sleep_event();
179 	return now;
180 }
181 
182 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
183 {
184 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
185 
186 	if (!tick_nohz_enabled)
187 		return -1;
188 
189 	if (ts->idle_active)
190 		*last_update_time = ktime_to_us(ts->idle_lastupdate);
191 	else
192 		*last_update_time = ktime_to_us(ktime_get());
193 
194 	return ktime_to_us(ts->idle_sleeptime);
195 }
196 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
197 
198 /**
199  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
200  *
201  * When the next event is more than a tick into the future, stop the idle tick
202  * Called either from the idle loop or from irq_exit() when an idle period was
203  * just interrupted by an interrupt which did not cause a reschedule.
204  */
205 void tick_nohz_stop_sched_tick(int inidle)
206 {
207 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
208 	struct tick_sched *ts;
209 	ktime_t last_update, expires, now;
210 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
211 	int cpu;
212 
213 	local_irq_save(flags);
214 
215 	cpu = smp_processor_id();
216 	ts = &per_cpu(tick_cpu_sched, cpu);
217 
218 	/*
219 	 * Call to tick_nohz_start_idle stops the last_update_time from being
220 	 * updated. Thus, it must not be called in the event we are called from
221 	 * irq_exit() with the prior state different than idle.
222 	 */
223 	if (!inidle && !ts->inidle)
224 		goto end;
225 
226 	now = tick_nohz_start_idle(ts);
227 
228 	/*
229 	 * If this cpu is offline and it is the one which updates
230 	 * jiffies, then give up the assignment and let it be taken by
231 	 * the cpu which runs the tick timer next. If we don't drop
232 	 * this here the jiffies might be stale and do_timer() never
233 	 * invoked.
234 	 */
235 	if (unlikely(!cpu_online(cpu))) {
236 		if (cpu == tick_do_timer_cpu)
237 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
238 	}
239 
240 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
241 		goto end;
242 
243 	ts->inidle = 1;
244 
245 	if (need_resched())
246 		goto end;
247 
248 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
249 		static int ratelimit;
250 
251 		if (ratelimit < 10) {
252 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
253 			       local_softirq_pending());
254 			ratelimit++;
255 		}
256 		goto end;
257 	}
258 
259 	ts->idle_calls++;
260 	/* Read jiffies and the time when jiffies were updated last */
261 	do {
262 		seq = read_seqbegin(&xtime_lock);
263 		last_update = last_jiffies_update;
264 		last_jiffies = jiffies;
265 	} while (read_seqretry(&xtime_lock, seq));
266 
267 	/* Get the next timer wheel timer */
268 	next_jiffies = get_next_timer_interrupt(last_jiffies);
269 	delta_jiffies = next_jiffies - last_jiffies;
270 
271 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu))
272 		delta_jiffies = 1;
273 	/*
274 	 * Do not stop the tick, if we are only one off
275 	 * or if the cpu is required for rcu
276 	 */
277 	if (!ts->tick_stopped && delta_jiffies == 1)
278 		goto out;
279 
280 	/* Schedule the tick, if we are at least one jiffie off */
281 	if ((long)delta_jiffies >= 1) {
282 
283 		/*
284 		* calculate the expiry time for the next timer wheel
285 		* timer
286 		*/
287 		expires = ktime_add_ns(last_update, tick_period.tv64 *
288 				   delta_jiffies);
289 
290 		/*
291 		 * If this cpu is the one which updates jiffies, then
292 		 * give up the assignment and let it be taken by the
293 		 * cpu which runs the tick timer next, which might be
294 		 * this cpu as well. If we don't drop this here the
295 		 * jiffies might be stale and do_timer() never
296 		 * invoked.
297 		 */
298 		if (cpu == tick_do_timer_cpu)
299 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
300 
301 		if (delta_jiffies > 1)
302 			cpumask_set_cpu(cpu, nohz_cpu_mask);
303 
304 		/* Skip reprogram of event if its not changed */
305 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
306 			goto out;
307 
308 		/*
309 		 * nohz_stop_sched_tick can be called several times before
310 		 * the nohz_restart_sched_tick is called. This happens when
311 		 * interrupts arrive which do not cause a reschedule. In the
312 		 * first call we save the current tick time, so we can restart
313 		 * the scheduler tick in nohz_restart_sched_tick.
314 		 */
315 		if (!ts->tick_stopped) {
316 			if (select_nohz_load_balancer(1)) {
317 				/*
318 				 * sched tick not stopped!
319 				 */
320 				cpumask_clear_cpu(cpu, nohz_cpu_mask);
321 				goto out;
322 			}
323 
324 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
325 			ts->tick_stopped = 1;
326 			ts->idle_jiffies = last_jiffies;
327 			rcu_enter_nohz();
328 		}
329 
330 		ts->idle_sleeps++;
331 
332 		/*
333 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
334 		 * there is no timer pending or at least extremly far
335 		 * into the future (12 days for HZ=1000). In this case
336 		 * we simply stop the tick timer:
337 		 */
338 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
339 			ts->idle_expires.tv64 = KTIME_MAX;
340 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
341 				hrtimer_cancel(&ts->sched_timer);
342 			goto out;
343 		}
344 
345 		/* Mark expiries */
346 		ts->idle_expires = expires;
347 
348 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
349 			hrtimer_start(&ts->sched_timer, expires,
350 				      HRTIMER_MODE_ABS_PINNED);
351 			/* Check, if the timer was already in the past */
352 			if (hrtimer_active(&ts->sched_timer))
353 				goto out;
354 		} else if (!tick_program_event(expires, 0))
355 				goto out;
356 		/*
357 		 * We are past the event already. So we crossed a
358 		 * jiffie boundary. Update jiffies and raise the
359 		 * softirq.
360 		 */
361 		tick_do_update_jiffies64(ktime_get());
362 		cpumask_clear_cpu(cpu, nohz_cpu_mask);
363 	}
364 	raise_softirq_irqoff(TIMER_SOFTIRQ);
365 out:
366 	ts->next_jiffies = next_jiffies;
367 	ts->last_jiffies = last_jiffies;
368 	ts->sleep_length = ktime_sub(dev->next_event, now);
369 end:
370 	local_irq_restore(flags);
371 }
372 
373 /**
374  * tick_nohz_get_sleep_length - return the length of the current sleep
375  *
376  * Called from power state control code with interrupts disabled
377  */
378 ktime_t tick_nohz_get_sleep_length(void)
379 {
380 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
381 
382 	return ts->sleep_length;
383 }
384 
385 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
386 {
387 	hrtimer_cancel(&ts->sched_timer);
388 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
389 
390 	while (1) {
391 		/* Forward the time to expire in the future */
392 		hrtimer_forward(&ts->sched_timer, now, tick_period);
393 
394 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
395 			hrtimer_start_expires(&ts->sched_timer,
396 					      HRTIMER_MODE_ABS_PINNED);
397 			/* Check, if the timer was already in the past */
398 			if (hrtimer_active(&ts->sched_timer))
399 				break;
400 		} else {
401 			if (!tick_program_event(
402 				hrtimer_get_expires(&ts->sched_timer), 0))
403 				break;
404 		}
405 		/* Update jiffies and reread time */
406 		tick_do_update_jiffies64(now);
407 		now = ktime_get();
408 	}
409 }
410 
411 /**
412  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
413  *
414  * Restart the idle tick when the CPU is woken up from idle
415  */
416 void tick_nohz_restart_sched_tick(void)
417 {
418 	int cpu = smp_processor_id();
419 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
420 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
421 	unsigned long ticks;
422 #endif
423 	ktime_t now;
424 
425 	local_irq_disable();
426 	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
427 		now = ktime_get();
428 
429 	if (ts->idle_active)
430 		tick_nohz_stop_idle(cpu, now);
431 
432 	if (!ts->inidle || !ts->tick_stopped) {
433 		ts->inidle = 0;
434 		local_irq_enable();
435 		return;
436 	}
437 
438 	ts->inidle = 0;
439 
440 	rcu_exit_nohz();
441 
442 	/* Update jiffies first */
443 	select_nohz_load_balancer(0);
444 	tick_do_update_jiffies64(now);
445 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
446 
447 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
448 	/*
449 	 * We stopped the tick in idle. Update process times would miss the
450 	 * time we slept as update_process_times does only a 1 tick
451 	 * accounting. Enforce that this is accounted to idle !
452 	 */
453 	ticks = jiffies - ts->idle_jiffies;
454 	/*
455 	 * We might be one off. Do not randomly account a huge number of ticks!
456 	 */
457 	if (ticks && ticks < LONG_MAX)
458 		account_idle_ticks(ticks);
459 #endif
460 
461 	touch_softlockup_watchdog();
462 	/*
463 	 * Cancel the scheduled timer and restore the tick
464 	 */
465 	ts->tick_stopped  = 0;
466 	ts->idle_exittime = now;
467 
468 	tick_nohz_restart(ts, now);
469 
470 	local_irq_enable();
471 }
472 
473 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
474 {
475 	hrtimer_forward(&ts->sched_timer, now, tick_period);
476 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
477 }
478 
479 /*
480  * The nohz low res interrupt handler
481  */
482 static void tick_nohz_handler(struct clock_event_device *dev)
483 {
484 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
485 	struct pt_regs *regs = get_irq_regs();
486 	int cpu = smp_processor_id();
487 	ktime_t now = ktime_get();
488 
489 	dev->next_event.tv64 = KTIME_MAX;
490 
491 	/*
492 	 * Check if the do_timer duty was dropped. We don't care about
493 	 * concurrency: This happens only when the cpu in charge went
494 	 * into a long sleep. If two cpus happen to assign themself to
495 	 * this duty, then the jiffies update is still serialized by
496 	 * xtime_lock.
497 	 */
498 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
499 		tick_do_timer_cpu = cpu;
500 
501 	/* Check, if the jiffies need an update */
502 	if (tick_do_timer_cpu == cpu)
503 		tick_do_update_jiffies64(now);
504 
505 	/*
506 	 * When we are idle and the tick is stopped, we have to touch
507 	 * the watchdog as we might not schedule for a really long
508 	 * time. This happens on complete idle SMP systems while
509 	 * waiting on the login prompt. We also increment the "start
510 	 * of idle" jiffy stamp so the idle accounting adjustment we
511 	 * do when we go busy again does not account too much ticks.
512 	 */
513 	if (ts->tick_stopped) {
514 		touch_softlockup_watchdog();
515 		ts->idle_jiffies++;
516 	}
517 
518 	update_process_times(user_mode(regs));
519 	profile_tick(CPU_PROFILING);
520 
521 	while (tick_nohz_reprogram(ts, now)) {
522 		now = ktime_get();
523 		tick_do_update_jiffies64(now);
524 	}
525 }
526 
527 /**
528  * tick_nohz_switch_to_nohz - switch to nohz mode
529  */
530 static void tick_nohz_switch_to_nohz(void)
531 {
532 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
533 	ktime_t next;
534 
535 	if (!tick_nohz_enabled)
536 		return;
537 
538 	local_irq_disable();
539 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
540 		local_irq_enable();
541 		return;
542 	}
543 
544 	ts->nohz_mode = NOHZ_MODE_LOWRES;
545 
546 	/*
547 	 * Recycle the hrtimer in ts, so we can share the
548 	 * hrtimer_forward with the highres code.
549 	 */
550 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
551 	/* Get the next period */
552 	next = tick_init_jiffy_update();
553 
554 	for (;;) {
555 		hrtimer_set_expires(&ts->sched_timer, next);
556 		if (!tick_program_event(next, 0))
557 			break;
558 		next = ktime_add(next, tick_period);
559 	}
560 	local_irq_enable();
561 
562 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
563 	       smp_processor_id());
564 }
565 
566 /*
567  * When NOHZ is enabled and the tick is stopped, we need to kick the
568  * tick timer from irq_enter() so that the jiffies update is kept
569  * alive during long running softirqs. That's ugly as hell, but
570  * correctness is key even if we need to fix the offending softirq in
571  * the first place.
572  *
573  * Note, this is different to tick_nohz_restart. We just kick the
574  * timer and do not touch the other magic bits which need to be done
575  * when idle is left.
576  */
577 static void tick_nohz_kick_tick(int cpu, ktime_t now)
578 {
579 #if 0
580 	/* Switch back to 2.6.27 behaviour */
581 
582 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
583 	ktime_t delta;
584 
585 	/*
586 	 * Do not touch the tick device, when the next expiry is either
587 	 * already reached or less/equal than the tick period.
588 	 */
589 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
590 	if (delta.tv64 <= tick_period.tv64)
591 		return;
592 
593 	tick_nohz_restart(ts, now);
594 #endif
595 }
596 
597 static inline void tick_check_nohz(int cpu)
598 {
599 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
600 	ktime_t now;
601 
602 	if (!ts->idle_active && !ts->tick_stopped)
603 		return;
604 	now = ktime_get();
605 	if (ts->idle_active)
606 		tick_nohz_stop_idle(cpu, now);
607 	if (ts->tick_stopped) {
608 		tick_nohz_update_jiffies(now);
609 		tick_nohz_kick_tick(cpu, now);
610 	}
611 }
612 
613 #else
614 
615 static inline void tick_nohz_switch_to_nohz(void) { }
616 static inline void tick_check_nohz(int cpu) { }
617 
618 #endif /* NO_HZ */
619 
620 /*
621  * Called from irq_enter to notify about the possible interruption of idle()
622  */
623 void tick_check_idle(int cpu)
624 {
625 	tick_check_oneshot_broadcast(cpu);
626 	tick_check_nohz(cpu);
627 }
628 
629 /*
630  * High resolution timer specific code
631  */
632 #ifdef CONFIG_HIGH_RES_TIMERS
633 /*
634  * We rearm the timer until we get disabled by the idle code.
635  * Called with interrupts disabled and timer->base->cpu_base->lock held.
636  */
637 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
638 {
639 	struct tick_sched *ts =
640 		container_of(timer, struct tick_sched, sched_timer);
641 	struct pt_regs *regs = get_irq_regs();
642 	ktime_t now = ktime_get();
643 	int cpu = smp_processor_id();
644 
645 #ifdef CONFIG_NO_HZ
646 	/*
647 	 * Check if the do_timer duty was dropped. We don't care about
648 	 * concurrency: This happens only when the cpu in charge went
649 	 * into a long sleep. If two cpus happen to assign themself to
650 	 * this duty, then the jiffies update is still serialized by
651 	 * xtime_lock.
652 	 */
653 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
654 		tick_do_timer_cpu = cpu;
655 #endif
656 
657 	/* Check, if the jiffies need an update */
658 	if (tick_do_timer_cpu == cpu)
659 		tick_do_update_jiffies64(now);
660 
661 	/*
662 	 * Do not call, when we are not in irq context and have
663 	 * no valid regs pointer
664 	 */
665 	if (regs) {
666 		/*
667 		 * When we are idle and the tick is stopped, we have to touch
668 		 * the watchdog as we might not schedule for a really long
669 		 * time. This happens on complete idle SMP systems while
670 		 * waiting on the login prompt. We also increment the "start of
671 		 * idle" jiffy stamp so the idle accounting adjustment we do
672 		 * when we go busy again does not account too much ticks.
673 		 */
674 		if (ts->tick_stopped) {
675 			touch_softlockup_watchdog();
676 			ts->idle_jiffies++;
677 		}
678 		update_process_times(user_mode(regs));
679 		profile_tick(CPU_PROFILING);
680 	}
681 
682 	hrtimer_forward(timer, now, tick_period);
683 
684 	return HRTIMER_RESTART;
685 }
686 
687 /**
688  * tick_setup_sched_timer - setup the tick emulation timer
689  */
690 void tick_setup_sched_timer(void)
691 {
692 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
693 	ktime_t now = ktime_get();
694 	u64 offset;
695 
696 	/*
697 	 * Emulate tick processing via per-CPU hrtimers:
698 	 */
699 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
700 	ts->sched_timer.function = tick_sched_timer;
701 
702 	/* Get the next period (per cpu) */
703 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
704 	offset = ktime_to_ns(tick_period) >> 1;
705 	do_div(offset, num_possible_cpus());
706 	offset *= smp_processor_id();
707 	hrtimer_add_expires_ns(&ts->sched_timer, offset);
708 
709 	for (;;) {
710 		hrtimer_forward(&ts->sched_timer, now, tick_period);
711 		hrtimer_start_expires(&ts->sched_timer,
712 				      HRTIMER_MODE_ABS_PINNED);
713 		/* Check, if the timer was already in the past */
714 		if (hrtimer_active(&ts->sched_timer))
715 			break;
716 		now = ktime_get();
717 	}
718 
719 #ifdef CONFIG_NO_HZ
720 	if (tick_nohz_enabled)
721 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
722 #endif
723 }
724 #endif /* HIGH_RES_TIMERS */
725 
726 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
727 void tick_cancel_sched_timer(int cpu)
728 {
729 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
730 
731 # ifdef CONFIG_HIGH_RES_TIMERS
732 	if (ts->sched_timer.base)
733 		hrtimer_cancel(&ts->sched_timer);
734 # endif
735 
736 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
737 }
738 #endif
739 
740 /**
741  * Async notification about clocksource changes
742  */
743 void tick_clock_notify(void)
744 {
745 	int cpu;
746 
747 	for_each_possible_cpu(cpu)
748 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
749 }
750 
751 /*
752  * Async notification about clock event changes
753  */
754 void tick_oneshot_notify(void)
755 {
756 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
757 
758 	set_bit(0, &ts->check_clocks);
759 }
760 
761 /**
762  * Check, if a change happened, which makes oneshot possible.
763  *
764  * Called cyclic from the hrtimer softirq (driven by the timer
765  * softirq) allow_nohz signals, that we can switch into low-res nohz
766  * mode, because high resolution timers are disabled (either compile
767  * or runtime).
768  */
769 int tick_check_oneshot_change(int allow_nohz)
770 {
771 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
772 
773 	if (!test_and_clear_bit(0, &ts->check_clocks))
774 		return 0;
775 
776 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
777 		return 0;
778 
779 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
780 		return 0;
781 
782 	if (!allow_nohz)
783 		return 1;
784 
785 	tick_nohz_switch_to_nohz();
786 	return 0;
787 }
788