xref: /openbmc/linux/kernel/time/tick-sched.c (revision ee8a99bd)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per cpu nohz control structure
35  */
36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 /*
39  * The time, when the last jiffy update happened. Protected by jiffies_lock.
40  */
41 static ktime_t last_jiffies_update;
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 /*
49  * Must be called with interrupts disabled !
50  */
51 static void tick_do_update_jiffies64(ktime_t now)
52 {
53 	unsigned long ticks = 0;
54 	ktime_t delta;
55 
56 	/*
57 	 * Do a quick check without holding jiffies_lock:
58 	 */
59 	delta = ktime_sub(now, last_jiffies_update);
60 	if (delta.tv64 < tick_period.tv64)
61 		return;
62 
63 	/* Reevalute with jiffies_lock held */
64 	write_seqlock(&jiffies_lock);
65 
66 	delta = ktime_sub(now, last_jiffies_update);
67 	if (delta.tv64 >= tick_period.tv64) {
68 
69 		delta = ktime_sub(delta, tick_period);
70 		last_jiffies_update = ktime_add(last_jiffies_update,
71 						tick_period);
72 
73 		/* Slow path for long timeouts */
74 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
75 			s64 incr = ktime_to_ns(tick_period);
76 
77 			ticks = ktime_divns(delta, incr);
78 
79 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
80 							   incr * ticks);
81 		}
82 		do_timer(++ticks);
83 
84 		/* Keep the tick_next_period variable up to date */
85 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
86 	}
87 	write_sequnlock(&jiffies_lock);
88 }
89 
90 /*
91  * Initialize and return retrieve the jiffies update.
92  */
93 static ktime_t tick_init_jiffy_update(void)
94 {
95 	ktime_t period;
96 
97 	write_seqlock(&jiffies_lock);
98 	/* Did we start the jiffies update yet ? */
99 	if (last_jiffies_update.tv64 == 0)
100 		last_jiffies_update = tick_next_period;
101 	period = last_jiffies_update;
102 	write_sequnlock(&jiffies_lock);
103 	return period;
104 }
105 
106 
107 static void tick_sched_do_timer(ktime_t now)
108 {
109 	int cpu = smp_processor_id();
110 
111 #ifdef CONFIG_NO_HZ_COMMON
112 	/*
113 	 * Check if the do_timer duty was dropped. We don't care about
114 	 * concurrency: This happens only when the cpu in charge went
115 	 * into a long sleep. If two cpus happen to assign themself to
116 	 * this duty, then the jiffies update is still serialized by
117 	 * jiffies_lock.
118 	 */
119 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
120 	    && !tick_nohz_full_cpu(cpu))
121 		tick_do_timer_cpu = cpu;
122 #endif
123 
124 	/* Check, if the jiffies need an update */
125 	if (tick_do_timer_cpu == cpu)
126 		tick_do_update_jiffies64(now);
127 }
128 
129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
130 {
131 #ifdef CONFIG_NO_HZ_COMMON
132 	/*
133 	 * When we are idle and the tick is stopped, we have to touch
134 	 * the watchdog as we might not schedule for a really long
135 	 * time. This happens on complete idle SMP systems while
136 	 * waiting on the login prompt. We also increment the "start of
137 	 * idle" jiffy stamp so the idle accounting adjustment we do
138 	 * when we go busy again does not account too much ticks.
139 	 */
140 	if (ts->tick_stopped) {
141 		touch_softlockup_watchdog();
142 		if (is_idle_task(current))
143 			ts->idle_jiffies++;
144 	}
145 #endif
146 	update_process_times(user_mode(regs));
147 	profile_tick(CPU_PROFILING);
148 }
149 
150 #ifdef CONFIG_NO_HZ_FULL
151 static cpumask_var_t nohz_full_mask;
152 bool have_nohz_full_mask;
153 
154 static bool can_stop_full_tick(void)
155 {
156 	WARN_ON_ONCE(!irqs_disabled());
157 
158 	if (!sched_can_stop_tick()) {
159 		trace_tick_stop(0, "more than 1 task in runqueue\n");
160 		return false;
161 	}
162 
163 	if (!posix_cpu_timers_can_stop_tick(current)) {
164 		trace_tick_stop(0, "posix timers running\n");
165 		return false;
166 	}
167 
168 	if (!perf_event_can_stop_tick()) {
169 		trace_tick_stop(0, "perf events running\n");
170 		return false;
171 	}
172 
173 	/* sched_clock_tick() needs us? */
174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
175 	/*
176 	 * TODO: kick full dynticks CPUs when
177 	 * sched_clock_stable is set.
178 	 */
179 	if (!sched_clock_stable) {
180 		trace_tick_stop(0, "unstable sched clock\n");
181 		/*
182 		 * Don't allow the user to think they can get
183 		 * full NO_HZ with this machine.
184 		 */
185 		WARN_ONCE(have_nohz_full_mask,
186 			  "NO_HZ FULL will not work with unstable sched clock");
187 		return false;
188 	}
189 #endif
190 
191 	return true;
192 }
193 
194 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
195 
196 /*
197  * Re-evaluate the need for the tick on the current CPU
198  * and restart it if necessary.
199  */
200 void tick_nohz_full_check(void)
201 {
202 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
203 
204 	if (tick_nohz_full_cpu(smp_processor_id())) {
205 		if (ts->tick_stopped && !is_idle_task(current)) {
206 			if (!can_stop_full_tick())
207 				tick_nohz_restart_sched_tick(ts, ktime_get());
208 		}
209 	}
210 }
211 
212 static void nohz_full_kick_work_func(struct irq_work *work)
213 {
214 	tick_nohz_full_check();
215 }
216 
217 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
218 	.func = nohz_full_kick_work_func,
219 };
220 
221 /*
222  * Kick the current CPU if it's full dynticks in order to force it to
223  * re-evaluate its dependency on the tick and restart it if necessary.
224  */
225 void tick_nohz_full_kick(void)
226 {
227 	if (tick_nohz_full_cpu(smp_processor_id()))
228 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
229 }
230 
231 static void nohz_full_kick_ipi(void *info)
232 {
233 	tick_nohz_full_check();
234 }
235 
236 /*
237  * Kick all full dynticks CPUs in order to force these to re-evaluate
238  * their dependency on the tick and restart it if necessary.
239  */
240 void tick_nohz_full_kick_all(void)
241 {
242 	if (!have_nohz_full_mask)
243 		return;
244 
245 	preempt_disable();
246 	smp_call_function_many(nohz_full_mask,
247 			       nohz_full_kick_ipi, NULL, false);
248 	preempt_enable();
249 }
250 
251 /*
252  * Re-evaluate the need for the tick as we switch the current task.
253  * It might need the tick due to per task/process properties:
254  * perf events, posix cpu timers, ...
255  */
256 void tick_nohz_task_switch(struct task_struct *tsk)
257 {
258 	unsigned long flags;
259 
260 	local_irq_save(flags);
261 
262 	if (!tick_nohz_full_cpu(smp_processor_id()))
263 		goto out;
264 
265 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
266 		tick_nohz_full_kick();
267 
268 out:
269 	local_irq_restore(flags);
270 }
271 
272 int tick_nohz_full_cpu(int cpu)
273 {
274 	if (!have_nohz_full_mask)
275 		return 0;
276 
277 	return cpumask_test_cpu(cpu, nohz_full_mask);
278 }
279 
280 /* Parse the boot-time nohz CPU list from the kernel parameters. */
281 static int __init tick_nohz_full_setup(char *str)
282 {
283 	int cpu;
284 
285 	alloc_bootmem_cpumask_var(&nohz_full_mask);
286 	if (cpulist_parse(str, nohz_full_mask) < 0) {
287 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
288 		return 1;
289 	}
290 
291 	cpu = smp_processor_id();
292 	if (cpumask_test_cpu(cpu, nohz_full_mask)) {
293 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
294 		cpumask_clear_cpu(cpu, nohz_full_mask);
295 	}
296 	have_nohz_full_mask = true;
297 
298 	return 1;
299 }
300 __setup("nohz_full=", tick_nohz_full_setup);
301 
302 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
303 						 unsigned long action,
304 						 void *hcpu)
305 {
306 	unsigned int cpu = (unsigned long)hcpu;
307 
308 	switch (action & ~CPU_TASKS_FROZEN) {
309 	case CPU_DOWN_PREPARE:
310 		/*
311 		 * If we handle the timekeeping duty for full dynticks CPUs,
312 		 * we can't safely shutdown that CPU.
313 		 */
314 		if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
315 			return NOTIFY_BAD;
316 		break;
317 	}
318 	return NOTIFY_OK;
319 }
320 
321 /*
322  * Worst case string length in chunks of CPU range seems 2 steps
323  * separations: 0,2,4,6,...
324  * This is NR_CPUS + sizeof('\0')
325  */
326 static char __initdata nohz_full_buf[NR_CPUS + 1];
327 
328 static int tick_nohz_init_all(void)
329 {
330 	int err = -1;
331 
332 #ifdef CONFIG_NO_HZ_FULL_ALL
333 	if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
334 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
335 		return err;
336 	}
337 	err = 0;
338 	cpumask_setall(nohz_full_mask);
339 	cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
340 	have_nohz_full_mask = true;
341 #endif
342 	return err;
343 }
344 
345 void __init tick_nohz_init(void)
346 {
347 	if (!have_nohz_full_mask) {
348 		if (tick_nohz_init_all() < 0)
349 			return;
350 	}
351 
352 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
353 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
354 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
355 }
356 #else
357 #define have_nohz_full_mask (0)
358 #endif
359 
360 /*
361  * NOHZ - aka dynamic tick functionality
362  */
363 #ifdef CONFIG_NO_HZ_COMMON
364 /*
365  * NO HZ enabled ?
366  */
367 int tick_nohz_enabled __read_mostly  = 1;
368 
369 /*
370  * Enable / Disable tickless mode
371  */
372 static int __init setup_tick_nohz(char *str)
373 {
374 	if (!strcmp(str, "off"))
375 		tick_nohz_enabled = 0;
376 	else if (!strcmp(str, "on"))
377 		tick_nohz_enabled = 1;
378 	else
379 		return 0;
380 	return 1;
381 }
382 
383 __setup("nohz=", setup_tick_nohz);
384 
385 /**
386  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
387  *
388  * Called from interrupt entry when the CPU was idle
389  *
390  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
391  * must be updated. Otherwise an interrupt handler could use a stale jiffy
392  * value. We do this unconditionally on any cpu, as we don't know whether the
393  * cpu, which has the update task assigned is in a long sleep.
394  */
395 static void tick_nohz_update_jiffies(ktime_t now)
396 {
397 	int cpu = smp_processor_id();
398 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
399 	unsigned long flags;
400 
401 	ts->idle_waketime = now;
402 
403 	local_irq_save(flags);
404 	tick_do_update_jiffies64(now);
405 	local_irq_restore(flags);
406 
407 	touch_softlockup_watchdog();
408 }
409 
410 /*
411  * Updates the per cpu time idle statistics counters
412  */
413 static void
414 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
415 {
416 	ktime_t delta;
417 
418 	if (ts->idle_active) {
419 		delta = ktime_sub(now, ts->idle_entrytime);
420 		if (nr_iowait_cpu(cpu) > 0)
421 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
422 		else
423 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
424 		ts->idle_entrytime = now;
425 	}
426 
427 	if (last_update_time)
428 		*last_update_time = ktime_to_us(now);
429 
430 }
431 
432 static void tick_nohz_stop_idle(int cpu, ktime_t now)
433 {
434 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
435 
436 	update_ts_time_stats(cpu, ts, now, NULL);
437 	ts->idle_active = 0;
438 
439 	sched_clock_idle_wakeup_event(0);
440 }
441 
442 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
443 {
444 	ktime_t now = ktime_get();
445 
446 	ts->idle_entrytime = now;
447 	ts->idle_active = 1;
448 	sched_clock_idle_sleep_event();
449 	return now;
450 }
451 
452 /**
453  * get_cpu_idle_time_us - get the total idle time of a cpu
454  * @cpu: CPU number to query
455  * @last_update_time: variable to store update time in. Do not update
456  * counters if NULL.
457  *
458  * Return the cummulative idle time (since boot) for a given
459  * CPU, in microseconds.
460  *
461  * This time is measured via accounting rather than sampling,
462  * and is as accurate as ktime_get() is.
463  *
464  * This function returns -1 if NOHZ is not enabled.
465  */
466 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
467 {
468 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
469 	ktime_t now, idle;
470 
471 	if (!tick_nohz_enabled)
472 		return -1;
473 
474 	now = ktime_get();
475 	if (last_update_time) {
476 		update_ts_time_stats(cpu, ts, now, last_update_time);
477 		idle = ts->idle_sleeptime;
478 	} else {
479 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
480 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
481 
482 			idle = ktime_add(ts->idle_sleeptime, delta);
483 		} else {
484 			idle = ts->idle_sleeptime;
485 		}
486 	}
487 
488 	return ktime_to_us(idle);
489 
490 }
491 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
492 
493 /**
494  * get_cpu_iowait_time_us - get the total iowait time of a cpu
495  * @cpu: CPU number to query
496  * @last_update_time: variable to store update time in. Do not update
497  * counters if NULL.
498  *
499  * Return the cummulative iowait time (since boot) for a given
500  * CPU, in microseconds.
501  *
502  * This time is measured via accounting rather than sampling,
503  * and is as accurate as ktime_get() is.
504  *
505  * This function returns -1 if NOHZ is not enabled.
506  */
507 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
508 {
509 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
510 	ktime_t now, iowait;
511 
512 	if (!tick_nohz_enabled)
513 		return -1;
514 
515 	now = ktime_get();
516 	if (last_update_time) {
517 		update_ts_time_stats(cpu, ts, now, last_update_time);
518 		iowait = ts->iowait_sleeptime;
519 	} else {
520 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
521 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
522 
523 			iowait = ktime_add(ts->iowait_sleeptime, delta);
524 		} else {
525 			iowait = ts->iowait_sleeptime;
526 		}
527 	}
528 
529 	return ktime_to_us(iowait);
530 }
531 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
532 
533 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
534 					 ktime_t now, int cpu)
535 {
536 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
537 	ktime_t last_update, expires, ret = { .tv64 = 0 };
538 	unsigned long rcu_delta_jiffies;
539 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
540 	u64 time_delta;
541 
542 	/* Read jiffies and the time when jiffies were updated last */
543 	do {
544 		seq = read_seqbegin(&jiffies_lock);
545 		last_update = last_jiffies_update;
546 		last_jiffies = jiffies;
547 		time_delta = timekeeping_max_deferment();
548 	} while (read_seqretry(&jiffies_lock, seq));
549 
550 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
551 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
552 		next_jiffies = last_jiffies + 1;
553 		delta_jiffies = 1;
554 	} else {
555 		/* Get the next timer wheel timer */
556 		next_jiffies = get_next_timer_interrupt(last_jiffies);
557 		delta_jiffies = next_jiffies - last_jiffies;
558 		if (rcu_delta_jiffies < delta_jiffies) {
559 			next_jiffies = last_jiffies + rcu_delta_jiffies;
560 			delta_jiffies = rcu_delta_jiffies;
561 		}
562 	}
563 
564 	/*
565 	 * Do not stop the tick, if we are only one off (or less)
566 	 * or if the cpu is required for RCU:
567 	 */
568 	if (!ts->tick_stopped && delta_jiffies <= 1)
569 		goto out;
570 
571 	/* Schedule the tick, if we are at least one jiffie off */
572 	if ((long)delta_jiffies >= 1) {
573 
574 		/*
575 		 * If this cpu is the one which updates jiffies, then
576 		 * give up the assignment and let it be taken by the
577 		 * cpu which runs the tick timer next, which might be
578 		 * this cpu as well. If we don't drop this here the
579 		 * jiffies might be stale and do_timer() never
580 		 * invoked. Keep track of the fact that it was the one
581 		 * which had the do_timer() duty last. If this cpu is
582 		 * the one which had the do_timer() duty last, we
583 		 * limit the sleep time to the timekeeping
584 		 * max_deferement value which we retrieved
585 		 * above. Otherwise we can sleep as long as we want.
586 		 */
587 		if (cpu == tick_do_timer_cpu) {
588 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
589 			ts->do_timer_last = 1;
590 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
591 			time_delta = KTIME_MAX;
592 			ts->do_timer_last = 0;
593 		} else if (!ts->do_timer_last) {
594 			time_delta = KTIME_MAX;
595 		}
596 
597 #ifdef CONFIG_NO_HZ_FULL
598 		if (!ts->inidle) {
599 			time_delta = min(time_delta,
600 					 scheduler_tick_max_deferment());
601 		}
602 #endif
603 
604 		/*
605 		 * calculate the expiry time for the next timer wheel
606 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
607 		 * that there is no timer pending or at least extremely
608 		 * far into the future (12 days for HZ=1000). In this
609 		 * case we set the expiry to the end of time.
610 		 */
611 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
612 			/*
613 			 * Calculate the time delta for the next timer event.
614 			 * If the time delta exceeds the maximum time delta
615 			 * permitted by the current clocksource then adjust
616 			 * the time delta accordingly to ensure the
617 			 * clocksource does not wrap.
618 			 */
619 			time_delta = min_t(u64, time_delta,
620 					   tick_period.tv64 * delta_jiffies);
621 		}
622 
623 		if (time_delta < KTIME_MAX)
624 			expires = ktime_add_ns(last_update, time_delta);
625 		else
626 			expires.tv64 = KTIME_MAX;
627 
628 		/* Skip reprogram of event if its not changed */
629 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
630 			goto out;
631 
632 		ret = expires;
633 
634 		/*
635 		 * nohz_stop_sched_tick can be called several times before
636 		 * the nohz_restart_sched_tick is called. This happens when
637 		 * interrupts arrive which do not cause a reschedule. In the
638 		 * first call we save the current tick time, so we can restart
639 		 * the scheduler tick in nohz_restart_sched_tick.
640 		 */
641 		if (!ts->tick_stopped) {
642 			nohz_balance_enter_idle(cpu);
643 			calc_load_enter_idle();
644 
645 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
646 			ts->tick_stopped = 1;
647 			trace_tick_stop(1, " ");
648 		}
649 
650 		/*
651 		 * If the expiration time == KTIME_MAX, then
652 		 * in this case we simply stop the tick timer.
653 		 */
654 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
655 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
656 				hrtimer_cancel(&ts->sched_timer);
657 			goto out;
658 		}
659 
660 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
661 			hrtimer_start(&ts->sched_timer, expires,
662 				      HRTIMER_MODE_ABS_PINNED);
663 			/* Check, if the timer was already in the past */
664 			if (hrtimer_active(&ts->sched_timer))
665 				goto out;
666 		} else if (!tick_program_event(expires, 0))
667 				goto out;
668 		/*
669 		 * We are past the event already. So we crossed a
670 		 * jiffie boundary. Update jiffies and raise the
671 		 * softirq.
672 		 */
673 		tick_do_update_jiffies64(ktime_get());
674 	}
675 	raise_softirq_irqoff(TIMER_SOFTIRQ);
676 out:
677 	ts->next_jiffies = next_jiffies;
678 	ts->last_jiffies = last_jiffies;
679 	ts->sleep_length = ktime_sub(dev->next_event, now);
680 
681 	return ret;
682 }
683 
684 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
685 {
686 #ifdef CONFIG_NO_HZ_FULL
687        int cpu = smp_processor_id();
688 
689        if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
690                return;
691 
692        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
693 	       return;
694 
695        if (!can_stop_full_tick())
696                return;
697 
698        tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
699 #endif
700 }
701 
702 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
703 {
704 	/*
705 	 * If this cpu is offline and it is the one which updates
706 	 * jiffies, then give up the assignment and let it be taken by
707 	 * the cpu which runs the tick timer next. If we don't drop
708 	 * this here the jiffies might be stale and do_timer() never
709 	 * invoked.
710 	 */
711 	if (unlikely(!cpu_online(cpu))) {
712 		if (cpu == tick_do_timer_cpu)
713 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
714 		return false;
715 	}
716 
717 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
718 		return false;
719 
720 	if (need_resched())
721 		return false;
722 
723 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
724 		static int ratelimit;
725 
726 		if (ratelimit < 10 &&
727 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
728 			pr_warn("NOHZ: local_softirq_pending %02x\n",
729 				(unsigned int) local_softirq_pending());
730 			ratelimit++;
731 		}
732 		return false;
733 	}
734 
735 	if (have_nohz_full_mask) {
736 		/*
737 		 * Keep the tick alive to guarantee timekeeping progression
738 		 * if there are full dynticks CPUs around
739 		 */
740 		if (tick_do_timer_cpu == cpu)
741 			return false;
742 		/*
743 		 * Boot safety: make sure the timekeeping duty has been
744 		 * assigned before entering dyntick-idle mode,
745 		 */
746 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
747 			return false;
748 	}
749 
750 	return true;
751 }
752 
753 static void __tick_nohz_idle_enter(struct tick_sched *ts)
754 {
755 	ktime_t now, expires;
756 	int cpu = smp_processor_id();
757 
758 	now = tick_nohz_start_idle(cpu, ts);
759 
760 	if (can_stop_idle_tick(cpu, ts)) {
761 		int was_stopped = ts->tick_stopped;
762 
763 		ts->idle_calls++;
764 
765 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
766 		if (expires.tv64 > 0LL) {
767 			ts->idle_sleeps++;
768 			ts->idle_expires = expires;
769 		}
770 
771 		if (!was_stopped && ts->tick_stopped)
772 			ts->idle_jiffies = ts->last_jiffies;
773 	}
774 }
775 
776 /**
777  * tick_nohz_idle_enter - stop the idle tick from the idle task
778  *
779  * When the next event is more than a tick into the future, stop the idle tick
780  * Called when we start the idle loop.
781  *
782  * The arch is responsible of calling:
783  *
784  * - rcu_idle_enter() after its last use of RCU before the CPU is put
785  *  to sleep.
786  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
787  */
788 void tick_nohz_idle_enter(void)
789 {
790 	struct tick_sched *ts;
791 
792 	WARN_ON_ONCE(irqs_disabled());
793 
794 	/*
795  	 * Update the idle state in the scheduler domain hierarchy
796  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
797  	 * State will be updated to busy during the first busy tick after
798  	 * exiting idle.
799  	 */
800 	set_cpu_sd_state_idle();
801 
802 	local_irq_disable();
803 
804 	ts = &__get_cpu_var(tick_cpu_sched);
805 	/*
806 	 * set ts->inidle unconditionally. even if the system did not
807 	 * switch to nohz mode the cpu frequency governers rely on the
808 	 * update of the idle time accounting in tick_nohz_start_idle().
809 	 */
810 	ts->inidle = 1;
811 	__tick_nohz_idle_enter(ts);
812 
813 	local_irq_enable();
814 }
815 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
816 
817 /**
818  * tick_nohz_irq_exit - update next tick event from interrupt exit
819  *
820  * When an interrupt fires while we are idle and it doesn't cause
821  * a reschedule, it may still add, modify or delete a timer, enqueue
822  * an RCU callback, etc...
823  * So we need to re-calculate and reprogram the next tick event.
824  */
825 void tick_nohz_irq_exit(void)
826 {
827 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
828 
829 	if (ts->inidle)
830 		__tick_nohz_idle_enter(ts);
831 	else
832 		tick_nohz_full_stop_tick(ts);
833 }
834 
835 /**
836  * tick_nohz_get_sleep_length - return the length of the current sleep
837  *
838  * Called from power state control code with interrupts disabled
839  */
840 ktime_t tick_nohz_get_sleep_length(void)
841 {
842 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
843 
844 	return ts->sleep_length;
845 }
846 
847 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
848 {
849 	hrtimer_cancel(&ts->sched_timer);
850 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
851 
852 	while (1) {
853 		/* Forward the time to expire in the future */
854 		hrtimer_forward(&ts->sched_timer, now, tick_period);
855 
856 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
857 			hrtimer_start_expires(&ts->sched_timer,
858 					      HRTIMER_MODE_ABS_PINNED);
859 			/* Check, if the timer was already in the past */
860 			if (hrtimer_active(&ts->sched_timer))
861 				break;
862 		} else {
863 			if (!tick_program_event(
864 				hrtimer_get_expires(&ts->sched_timer), 0))
865 				break;
866 		}
867 		/* Reread time and update jiffies */
868 		now = ktime_get();
869 		tick_do_update_jiffies64(now);
870 	}
871 }
872 
873 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
874 {
875 	/* Update jiffies first */
876 	tick_do_update_jiffies64(now);
877 	update_cpu_load_nohz();
878 
879 	calc_load_exit_idle();
880 	touch_softlockup_watchdog();
881 	/*
882 	 * Cancel the scheduled timer and restore the tick
883 	 */
884 	ts->tick_stopped  = 0;
885 	ts->idle_exittime = now;
886 
887 	tick_nohz_restart(ts, now);
888 }
889 
890 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
891 {
892 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
893 	unsigned long ticks;
894 
895 	if (vtime_accounting_enabled())
896 		return;
897 	/*
898 	 * We stopped the tick in idle. Update process times would miss the
899 	 * time we slept as update_process_times does only a 1 tick
900 	 * accounting. Enforce that this is accounted to idle !
901 	 */
902 	ticks = jiffies - ts->idle_jiffies;
903 	/*
904 	 * We might be one off. Do not randomly account a huge number of ticks!
905 	 */
906 	if (ticks && ticks < LONG_MAX)
907 		account_idle_ticks(ticks);
908 #endif
909 }
910 
911 /**
912  * tick_nohz_idle_exit - restart the idle tick from the idle task
913  *
914  * Restart the idle tick when the CPU is woken up from idle
915  * This also exit the RCU extended quiescent state. The CPU
916  * can use RCU again after this function is called.
917  */
918 void tick_nohz_idle_exit(void)
919 {
920 	int cpu = smp_processor_id();
921 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
922 	ktime_t now;
923 
924 	local_irq_disable();
925 
926 	WARN_ON_ONCE(!ts->inidle);
927 
928 	ts->inidle = 0;
929 
930 	if (ts->idle_active || ts->tick_stopped)
931 		now = ktime_get();
932 
933 	if (ts->idle_active)
934 		tick_nohz_stop_idle(cpu, now);
935 
936 	if (ts->tick_stopped) {
937 		tick_nohz_restart_sched_tick(ts, now);
938 		tick_nohz_account_idle_ticks(ts);
939 	}
940 
941 	local_irq_enable();
942 }
943 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
944 
945 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
946 {
947 	hrtimer_forward(&ts->sched_timer, now, tick_period);
948 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
949 }
950 
951 /*
952  * The nohz low res interrupt handler
953  */
954 static void tick_nohz_handler(struct clock_event_device *dev)
955 {
956 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
957 	struct pt_regs *regs = get_irq_regs();
958 	ktime_t now = ktime_get();
959 
960 	dev->next_event.tv64 = KTIME_MAX;
961 
962 	tick_sched_do_timer(now);
963 	tick_sched_handle(ts, regs);
964 
965 	while (tick_nohz_reprogram(ts, now)) {
966 		now = ktime_get();
967 		tick_do_update_jiffies64(now);
968 	}
969 }
970 
971 /**
972  * tick_nohz_switch_to_nohz - switch to nohz mode
973  */
974 static void tick_nohz_switch_to_nohz(void)
975 {
976 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
977 	ktime_t next;
978 
979 	if (!tick_nohz_enabled)
980 		return;
981 
982 	local_irq_disable();
983 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
984 		local_irq_enable();
985 		return;
986 	}
987 
988 	ts->nohz_mode = NOHZ_MODE_LOWRES;
989 
990 	/*
991 	 * Recycle the hrtimer in ts, so we can share the
992 	 * hrtimer_forward with the highres code.
993 	 */
994 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
995 	/* Get the next period */
996 	next = tick_init_jiffy_update();
997 
998 	for (;;) {
999 		hrtimer_set_expires(&ts->sched_timer, next);
1000 		if (!tick_program_event(next, 0))
1001 			break;
1002 		next = ktime_add(next, tick_period);
1003 	}
1004 	local_irq_enable();
1005 }
1006 
1007 /*
1008  * When NOHZ is enabled and the tick is stopped, we need to kick the
1009  * tick timer from irq_enter() so that the jiffies update is kept
1010  * alive during long running softirqs. That's ugly as hell, but
1011  * correctness is key even if we need to fix the offending softirq in
1012  * the first place.
1013  *
1014  * Note, this is different to tick_nohz_restart. We just kick the
1015  * timer and do not touch the other magic bits which need to be done
1016  * when idle is left.
1017  */
1018 static void tick_nohz_kick_tick(int cpu, ktime_t now)
1019 {
1020 #if 0
1021 	/* Switch back to 2.6.27 behaviour */
1022 
1023 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1024 	ktime_t delta;
1025 
1026 	/*
1027 	 * Do not touch the tick device, when the next expiry is either
1028 	 * already reached or less/equal than the tick period.
1029 	 */
1030 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1031 	if (delta.tv64 <= tick_period.tv64)
1032 		return;
1033 
1034 	tick_nohz_restart(ts, now);
1035 #endif
1036 }
1037 
1038 static inline void tick_check_nohz(int cpu)
1039 {
1040 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1041 	ktime_t now;
1042 
1043 	if (!ts->idle_active && !ts->tick_stopped)
1044 		return;
1045 	now = ktime_get();
1046 	if (ts->idle_active)
1047 		tick_nohz_stop_idle(cpu, now);
1048 	if (ts->tick_stopped) {
1049 		tick_nohz_update_jiffies(now);
1050 		tick_nohz_kick_tick(cpu, now);
1051 	}
1052 }
1053 
1054 #else
1055 
1056 static inline void tick_nohz_switch_to_nohz(void) { }
1057 static inline void tick_check_nohz(int cpu) { }
1058 
1059 #endif /* CONFIG_NO_HZ_COMMON */
1060 
1061 /*
1062  * Called from irq_enter to notify about the possible interruption of idle()
1063  */
1064 void tick_check_idle(int cpu)
1065 {
1066 	tick_check_oneshot_broadcast(cpu);
1067 	tick_check_nohz(cpu);
1068 }
1069 
1070 /*
1071  * High resolution timer specific code
1072  */
1073 #ifdef CONFIG_HIGH_RES_TIMERS
1074 /*
1075  * We rearm the timer until we get disabled by the idle code.
1076  * Called with interrupts disabled.
1077  */
1078 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1079 {
1080 	struct tick_sched *ts =
1081 		container_of(timer, struct tick_sched, sched_timer);
1082 	struct pt_regs *regs = get_irq_regs();
1083 	ktime_t now = ktime_get();
1084 
1085 	tick_sched_do_timer(now);
1086 
1087 	/*
1088 	 * Do not call, when we are not in irq context and have
1089 	 * no valid regs pointer
1090 	 */
1091 	if (regs)
1092 		tick_sched_handle(ts, regs);
1093 
1094 	hrtimer_forward(timer, now, tick_period);
1095 
1096 	return HRTIMER_RESTART;
1097 }
1098 
1099 static int sched_skew_tick;
1100 
1101 static int __init skew_tick(char *str)
1102 {
1103 	get_option(&str, &sched_skew_tick);
1104 
1105 	return 0;
1106 }
1107 early_param("skew_tick", skew_tick);
1108 
1109 /**
1110  * tick_setup_sched_timer - setup the tick emulation timer
1111  */
1112 void tick_setup_sched_timer(void)
1113 {
1114 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1115 	ktime_t now = ktime_get();
1116 
1117 	/*
1118 	 * Emulate tick processing via per-CPU hrtimers:
1119 	 */
1120 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1121 	ts->sched_timer.function = tick_sched_timer;
1122 
1123 	/* Get the next period (per cpu) */
1124 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1125 
1126 	/* Offset the tick to avert jiffies_lock contention. */
1127 	if (sched_skew_tick) {
1128 		u64 offset = ktime_to_ns(tick_period) >> 1;
1129 		do_div(offset, num_possible_cpus());
1130 		offset *= smp_processor_id();
1131 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1132 	}
1133 
1134 	for (;;) {
1135 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1136 		hrtimer_start_expires(&ts->sched_timer,
1137 				      HRTIMER_MODE_ABS_PINNED);
1138 		/* Check, if the timer was already in the past */
1139 		if (hrtimer_active(&ts->sched_timer))
1140 			break;
1141 		now = ktime_get();
1142 	}
1143 
1144 #ifdef CONFIG_NO_HZ_COMMON
1145 	if (tick_nohz_enabled)
1146 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1147 #endif
1148 }
1149 #endif /* HIGH_RES_TIMERS */
1150 
1151 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1152 void tick_cancel_sched_timer(int cpu)
1153 {
1154 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1155 
1156 # ifdef CONFIG_HIGH_RES_TIMERS
1157 	if (ts->sched_timer.base)
1158 		hrtimer_cancel(&ts->sched_timer);
1159 # endif
1160 
1161 	memset(ts, 0, sizeof(*ts));
1162 }
1163 #endif
1164 
1165 /**
1166  * Async notification about clocksource changes
1167  */
1168 void tick_clock_notify(void)
1169 {
1170 	int cpu;
1171 
1172 	for_each_possible_cpu(cpu)
1173 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1174 }
1175 
1176 /*
1177  * Async notification about clock event changes
1178  */
1179 void tick_oneshot_notify(void)
1180 {
1181 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1182 
1183 	set_bit(0, &ts->check_clocks);
1184 }
1185 
1186 /**
1187  * Check, if a change happened, which makes oneshot possible.
1188  *
1189  * Called cyclic from the hrtimer softirq (driven by the timer
1190  * softirq) allow_nohz signals, that we can switch into low-res nohz
1191  * mode, because high resolution timers are disabled (either compile
1192  * or runtime).
1193  */
1194 int tick_check_oneshot_change(int allow_nohz)
1195 {
1196 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1197 
1198 	if (!test_and_clear_bit(0, &ts->check_clocks))
1199 		return 0;
1200 
1201 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1202 		return 0;
1203 
1204 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1205 		return 0;
1206 
1207 	if (!allow_nohz)
1208 		return 1;
1209 
1210 	tick_nohz_switch_to_nohz();
1211 	return 0;
1212 }
1213