1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/perf_event.h> 26 27 #include <asm/irq_regs.h> 28 29 #include "tick-internal.h" 30 31 #include <trace/events/timer.h> 32 33 /* 34 * Per cpu nohz control structure 35 */ 36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 37 38 /* 39 * The time, when the last jiffy update happened. Protected by jiffies_lock. 40 */ 41 static ktime_t last_jiffies_update; 42 43 struct tick_sched *tick_get_tick_sched(int cpu) 44 { 45 return &per_cpu(tick_cpu_sched, cpu); 46 } 47 48 /* 49 * Must be called with interrupts disabled ! 50 */ 51 static void tick_do_update_jiffies64(ktime_t now) 52 { 53 unsigned long ticks = 0; 54 ktime_t delta; 55 56 /* 57 * Do a quick check without holding jiffies_lock: 58 */ 59 delta = ktime_sub(now, last_jiffies_update); 60 if (delta.tv64 < tick_period.tv64) 61 return; 62 63 /* Reevalute with jiffies_lock held */ 64 write_seqlock(&jiffies_lock); 65 66 delta = ktime_sub(now, last_jiffies_update); 67 if (delta.tv64 >= tick_period.tv64) { 68 69 delta = ktime_sub(delta, tick_period); 70 last_jiffies_update = ktime_add(last_jiffies_update, 71 tick_period); 72 73 /* Slow path for long timeouts */ 74 if (unlikely(delta.tv64 >= tick_period.tv64)) { 75 s64 incr = ktime_to_ns(tick_period); 76 77 ticks = ktime_divns(delta, incr); 78 79 last_jiffies_update = ktime_add_ns(last_jiffies_update, 80 incr * ticks); 81 } 82 do_timer(++ticks); 83 84 /* Keep the tick_next_period variable up to date */ 85 tick_next_period = ktime_add(last_jiffies_update, tick_period); 86 } 87 write_sequnlock(&jiffies_lock); 88 } 89 90 /* 91 * Initialize and return retrieve the jiffies update. 92 */ 93 static ktime_t tick_init_jiffy_update(void) 94 { 95 ktime_t period; 96 97 write_seqlock(&jiffies_lock); 98 /* Did we start the jiffies update yet ? */ 99 if (last_jiffies_update.tv64 == 0) 100 last_jiffies_update = tick_next_period; 101 period = last_jiffies_update; 102 write_sequnlock(&jiffies_lock); 103 return period; 104 } 105 106 107 static void tick_sched_do_timer(ktime_t now) 108 { 109 int cpu = smp_processor_id(); 110 111 #ifdef CONFIG_NO_HZ_COMMON 112 /* 113 * Check if the do_timer duty was dropped. We don't care about 114 * concurrency: This happens only when the cpu in charge went 115 * into a long sleep. If two cpus happen to assign themself to 116 * this duty, then the jiffies update is still serialized by 117 * jiffies_lock. 118 */ 119 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 120 && !tick_nohz_full_cpu(cpu)) 121 tick_do_timer_cpu = cpu; 122 #endif 123 124 /* Check, if the jiffies need an update */ 125 if (tick_do_timer_cpu == cpu) 126 tick_do_update_jiffies64(now); 127 } 128 129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 130 { 131 #ifdef CONFIG_NO_HZ_COMMON 132 /* 133 * When we are idle and the tick is stopped, we have to touch 134 * the watchdog as we might not schedule for a really long 135 * time. This happens on complete idle SMP systems while 136 * waiting on the login prompt. We also increment the "start of 137 * idle" jiffy stamp so the idle accounting adjustment we do 138 * when we go busy again does not account too much ticks. 139 */ 140 if (ts->tick_stopped) { 141 touch_softlockup_watchdog(); 142 if (is_idle_task(current)) 143 ts->idle_jiffies++; 144 } 145 #endif 146 update_process_times(user_mode(regs)); 147 profile_tick(CPU_PROFILING); 148 } 149 150 #ifdef CONFIG_NO_HZ_FULL 151 static cpumask_var_t nohz_full_mask; 152 bool have_nohz_full_mask; 153 154 static bool can_stop_full_tick(void) 155 { 156 WARN_ON_ONCE(!irqs_disabled()); 157 158 if (!sched_can_stop_tick()) { 159 trace_tick_stop(0, "more than 1 task in runqueue\n"); 160 return false; 161 } 162 163 if (!posix_cpu_timers_can_stop_tick(current)) { 164 trace_tick_stop(0, "posix timers running\n"); 165 return false; 166 } 167 168 if (!perf_event_can_stop_tick()) { 169 trace_tick_stop(0, "perf events running\n"); 170 return false; 171 } 172 173 /* sched_clock_tick() needs us? */ 174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 175 /* 176 * TODO: kick full dynticks CPUs when 177 * sched_clock_stable is set. 178 */ 179 if (!sched_clock_stable) { 180 trace_tick_stop(0, "unstable sched clock\n"); 181 /* 182 * Don't allow the user to think they can get 183 * full NO_HZ with this machine. 184 */ 185 WARN_ONCE(have_nohz_full_mask, 186 "NO_HZ FULL will not work with unstable sched clock"); 187 return false; 188 } 189 #endif 190 191 return true; 192 } 193 194 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now); 195 196 /* 197 * Re-evaluate the need for the tick on the current CPU 198 * and restart it if necessary. 199 */ 200 void tick_nohz_full_check(void) 201 { 202 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 203 204 if (tick_nohz_full_cpu(smp_processor_id())) { 205 if (ts->tick_stopped && !is_idle_task(current)) { 206 if (!can_stop_full_tick()) 207 tick_nohz_restart_sched_tick(ts, ktime_get()); 208 } 209 } 210 } 211 212 static void nohz_full_kick_work_func(struct irq_work *work) 213 { 214 tick_nohz_full_check(); 215 } 216 217 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 218 .func = nohz_full_kick_work_func, 219 }; 220 221 /* 222 * Kick the current CPU if it's full dynticks in order to force it to 223 * re-evaluate its dependency on the tick and restart it if necessary. 224 */ 225 void tick_nohz_full_kick(void) 226 { 227 if (tick_nohz_full_cpu(smp_processor_id())) 228 irq_work_queue(&__get_cpu_var(nohz_full_kick_work)); 229 } 230 231 static void nohz_full_kick_ipi(void *info) 232 { 233 tick_nohz_full_check(); 234 } 235 236 /* 237 * Kick all full dynticks CPUs in order to force these to re-evaluate 238 * their dependency on the tick and restart it if necessary. 239 */ 240 void tick_nohz_full_kick_all(void) 241 { 242 if (!have_nohz_full_mask) 243 return; 244 245 preempt_disable(); 246 smp_call_function_many(nohz_full_mask, 247 nohz_full_kick_ipi, NULL, false); 248 preempt_enable(); 249 } 250 251 /* 252 * Re-evaluate the need for the tick as we switch the current task. 253 * It might need the tick due to per task/process properties: 254 * perf events, posix cpu timers, ... 255 */ 256 void tick_nohz_task_switch(struct task_struct *tsk) 257 { 258 unsigned long flags; 259 260 local_irq_save(flags); 261 262 if (!tick_nohz_full_cpu(smp_processor_id())) 263 goto out; 264 265 if (tick_nohz_tick_stopped() && !can_stop_full_tick()) 266 tick_nohz_full_kick(); 267 268 out: 269 local_irq_restore(flags); 270 } 271 272 int tick_nohz_full_cpu(int cpu) 273 { 274 if (!have_nohz_full_mask) 275 return 0; 276 277 return cpumask_test_cpu(cpu, nohz_full_mask); 278 } 279 280 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 281 static int __init tick_nohz_full_setup(char *str) 282 { 283 int cpu; 284 285 alloc_bootmem_cpumask_var(&nohz_full_mask); 286 if (cpulist_parse(str, nohz_full_mask) < 0) { 287 pr_warning("NOHZ: Incorrect nohz_full cpumask\n"); 288 return 1; 289 } 290 291 cpu = smp_processor_id(); 292 if (cpumask_test_cpu(cpu, nohz_full_mask)) { 293 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu); 294 cpumask_clear_cpu(cpu, nohz_full_mask); 295 } 296 have_nohz_full_mask = true; 297 298 return 1; 299 } 300 __setup("nohz_full=", tick_nohz_full_setup); 301 302 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb, 303 unsigned long action, 304 void *hcpu) 305 { 306 unsigned int cpu = (unsigned long)hcpu; 307 308 switch (action & ~CPU_TASKS_FROZEN) { 309 case CPU_DOWN_PREPARE: 310 /* 311 * If we handle the timekeeping duty for full dynticks CPUs, 312 * we can't safely shutdown that CPU. 313 */ 314 if (have_nohz_full_mask && tick_do_timer_cpu == cpu) 315 return NOTIFY_BAD; 316 break; 317 } 318 return NOTIFY_OK; 319 } 320 321 /* 322 * Worst case string length in chunks of CPU range seems 2 steps 323 * separations: 0,2,4,6,... 324 * This is NR_CPUS + sizeof('\0') 325 */ 326 static char __initdata nohz_full_buf[NR_CPUS + 1]; 327 328 static int tick_nohz_init_all(void) 329 { 330 int err = -1; 331 332 #ifdef CONFIG_NO_HZ_FULL_ALL 333 if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) { 334 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n"); 335 return err; 336 } 337 err = 0; 338 cpumask_setall(nohz_full_mask); 339 cpumask_clear_cpu(smp_processor_id(), nohz_full_mask); 340 have_nohz_full_mask = true; 341 #endif 342 return err; 343 } 344 345 void __init tick_nohz_init(void) 346 { 347 if (!have_nohz_full_mask) { 348 if (tick_nohz_init_all() < 0) 349 return; 350 } 351 352 cpu_notifier(tick_nohz_cpu_down_callback, 0); 353 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask); 354 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf); 355 } 356 #else 357 #define have_nohz_full_mask (0) 358 #endif 359 360 /* 361 * NOHZ - aka dynamic tick functionality 362 */ 363 #ifdef CONFIG_NO_HZ_COMMON 364 /* 365 * NO HZ enabled ? 366 */ 367 int tick_nohz_enabled __read_mostly = 1; 368 369 /* 370 * Enable / Disable tickless mode 371 */ 372 static int __init setup_tick_nohz(char *str) 373 { 374 if (!strcmp(str, "off")) 375 tick_nohz_enabled = 0; 376 else if (!strcmp(str, "on")) 377 tick_nohz_enabled = 1; 378 else 379 return 0; 380 return 1; 381 } 382 383 __setup("nohz=", setup_tick_nohz); 384 385 /** 386 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 387 * 388 * Called from interrupt entry when the CPU was idle 389 * 390 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 391 * must be updated. Otherwise an interrupt handler could use a stale jiffy 392 * value. We do this unconditionally on any cpu, as we don't know whether the 393 * cpu, which has the update task assigned is in a long sleep. 394 */ 395 static void tick_nohz_update_jiffies(ktime_t now) 396 { 397 int cpu = smp_processor_id(); 398 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 399 unsigned long flags; 400 401 ts->idle_waketime = now; 402 403 local_irq_save(flags); 404 tick_do_update_jiffies64(now); 405 local_irq_restore(flags); 406 407 touch_softlockup_watchdog(); 408 } 409 410 /* 411 * Updates the per cpu time idle statistics counters 412 */ 413 static void 414 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 415 { 416 ktime_t delta; 417 418 if (ts->idle_active) { 419 delta = ktime_sub(now, ts->idle_entrytime); 420 if (nr_iowait_cpu(cpu) > 0) 421 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 422 else 423 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 424 ts->idle_entrytime = now; 425 } 426 427 if (last_update_time) 428 *last_update_time = ktime_to_us(now); 429 430 } 431 432 static void tick_nohz_stop_idle(int cpu, ktime_t now) 433 { 434 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 435 436 update_ts_time_stats(cpu, ts, now, NULL); 437 ts->idle_active = 0; 438 439 sched_clock_idle_wakeup_event(0); 440 } 441 442 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 443 { 444 ktime_t now = ktime_get(); 445 446 ts->idle_entrytime = now; 447 ts->idle_active = 1; 448 sched_clock_idle_sleep_event(); 449 return now; 450 } 451 452 /** 453 * get_cpu_idle_time_us - get the total idle time of a cpu 454 * @cpu: CPU number to query 455 * @last_update_time: variable to store update time in. Do not update 456 * counters if NULL. 457 * 458 * Return the cummulative idle time (since boot) for a given 459 * CPU, in microseconds. 460 * 461 * This time is measured via accounting rather than sampling, 462 * and is as accurate as ktime_get() is. 463 * 464 * This function returns -1 if NOHZ is not enabled. 465 */ 466 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 467 { 468 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 469 ktime_t now, idle; 470 471 if (!tick_nohz_enabled) 472 return -1; 473 474 now = ktime_get(); 475 if (last_update_time) { 476 update_ts_time_stats(cpu, ts, now, last_update_time); 477 idle = ts->idle_sleeptime; 478 } else { 479 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 480 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 481 482 idle = ktime_add(ts->idle_sleeptime, delta); 483 } else { 484 idle = ts->idle_sleeptime; 485 } 486 } 487 488 return ktime_to_us(idle); 489 490 } 491 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 492 493 /** 494 * get_cpu_iowait_time_us - get the total iowait time of a cpu 495 * @cpu: CPU number to query 496 * @last_update_time: variable to store update time in. Do not update 497 * counters if NULL. 498 * 499 * Return the cummulative iowait time (since boot) for a given 500 * CPU, in microseconds. 501 * 502 * This time is measured via accounting rather than sampling, 503 * and is as accurate as ktime_get() is. 504 * 505 * This function returns -1 if NOHZ is not enabled. 506 */ 507 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 508 { 509 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 510 ktime_t now, iowait; 511 512 if (!tick_nohz_enabled) 513 return -1; 514 515 now = ktime_get(); 516 if (last_update_time) { 517 update_ts_time_stats(cpu, ts, now, last_update_time); 518 iowait = ts->iowait_sleeptime; 519 } else { 520 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 521 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 522 523 iowait = ktime_add(ts->iowait_sleeptime, delta); 524 } else { 525 iowait = ts->iowait_sleeptime; 526 } 527 } 528 529 return ktime_to_us(iowait); 530 } 531 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 532 533 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 534 ktime_t now, int cpu) 535 { 536 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 537 ktime_t last_update, expires, ret = { .tv64 = 0 }; 538 unsigned long rcu_delta_jiffies; 539 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 540 u64 time_delta; 541 542 /* Read jiffies and the time when jiffies were updated last */ 543 do { 544 seq = read_seqbegin(&jiffies_lock); 545 last_update = last_jiffies_update; 546 last_jiffies = jiffies; 547 time_delta = timekeeping_max_deferment(); 548 } while (read_seqretry(&jiffies_lock, seq)); 549 550 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || 551 arch_needs_cpu(cpu) || irq_work_needs_cpu()) { 552 next_jiffies = last_jiffies + 1; 553 delta_jiffies = 1; 554 } else { 555 /* Get the next timer wheel timer */ 556 next_jiffies = get_next_timer_interrupt(last_jiffies); 557 delta_jiffies = next_jiffies - last_jiffies; 558 if (rcu_delta_jiffies < delta_jiffies) { 559 next_jiffies = last_jiffies + rcu_delta_jiffies; 560 delta_jiffies = rcu_delta_jiffies; 561 } 562 } 563 564 /* 565 * Do not stop the tick, if we are only one off (or less) 566 * or if the cpu is required for RCU: 567 */ 568 if (!ts->tick_stopped && delta_jiffies <= 1) 569 goto out; 570 571 /* Schedule the tick, if we are at least one jiffie off */ 572 if ((long)delta_jiffies >= 1) { 573 574 /* 575 * If this cpu is the one which updates jiffies, then 576 * give up the assignment and let it be taken by the 577 * cpu which runs the tick timer next, which might be 578 * this cpu as well. If we don't drop this here the 579 * jiffies might be stale and do_timer() never 580 * invoked. Keep track of the fact that it was the one 581 * which had the do_timer() duty last. If this cpu is 582 * the one which had the do_timer() duty last, we 583 * limit the sleep time to the timekeeping 584 * max_deferement value which we retrieved 585 * above. Otherwise we can sleep as long as we want. 586 */ 587 if (cpu == tick_do_timer_cpu) { 588 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 589 ts->do_timer_last = 1; 590 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 591 time_delta = KTIME_MAX; 592 ts->do_timer_last = 0; 593 } else if (!ts->do_timer_last) { 594 time_delta = KTIME_MAX; 595 } 596 597 #ifdef CONFIG_NO_HZ_FULL 598 if (!ts->inidle) { 599 time_delta = min(time_delta, 600 scheduler_tick_max_deferment()); 601 } 602 #endif 603 604 /* 605 * calculate the expiry time for the next timer wheel 606 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 607 * that there is no timer pending or at least extremely 608 * far into the future (12 days for HZ=1000). In this 609 * case we set the expiry to the end of time. 610 */ 611 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 612 /* 613 * Calculate the time delta for the next timer event. 614 * If the time delta exceeds the maximum time delta 615 * permitted by the current clocksource then adjust 616 * the time delta accordingly to ensure the 617 * clocksource does not wrap. 618 */ 619 time_delta = min_t(u64, time_delta, 620 tick_period.tv64 * delta_jiffies); 621 } 622 623 if (time_delta < KTIME_MAX) 624 expires = ktime_add_ns(last_update, time_delta); 625 else 626 expires.tv64 = KTIME_MAX; 627 628 /* Skip reprogram of event if its not changed */ 629 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 630 goto out; 631 632 ret = expires; 633 634 /* 635 * nohz_stop_sched_tick can be called several times before 636 * the nohz_restart_sched_tick is called. This happens when 637 * interrupts arrive which do not cause a reschedule. In the 638 * first call we save the current tick time, so we can restart 639 * the scheduler tick in nohz_restart_sched_tick. 640 */ 641 if (!ts->tick_stopped) { 642 nohz_balance_enter_idle(cpu); 643 calc_load_enter_idle(); 644 645 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 646 ts->tick_stopped = 1; 647 trace_tick_stop(1, " "); 648 } 649 650 /* 651 * If the expiration time == KTIME_MAX, then 652 * in this case we simply stop the tick timer. 653 */ 654 if (unlikely(expires.tv64 == KTIME_MAX)) { 655 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 656 hrtimer_cancel(&ts->sched_timer); 657 goto out; 658 } 659 660 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 661 hrtimer_start(&ts->sched_timer, expires, 662 HRTIMER_MODE_ABS_PINNED); 663 /* Check, if the timer was already in the past */ 664 if (hrtimer_active(&ts->sched_timer)) 665 goto out; 666 } else if (!tick_program_event(expires, 0)) 667 goto out; 668 /* 669 * We are past the event already. So we crossed a 670 * jiffie boundary. Update jiffies and raise the 671 * softirq. 672 */ 673 tick_do_update_jiffies64(ktime_get()); 674 } 675 raise_softirq_irqoff(TIMER_SOFTIRQ); 676 out: 677 ts->next_jiffies = next_jiffies; 678 ts->last_jiffies = last_jiffies; 679 ts->sleep_length = ktime_sub(dev->next_event, now); 680 681 return ret; 682 } 683 684 static void tick_nohz_full_stop_tick(struct tick_sched *ts) 685 { 686 #ifdef CONFIG_NO_HZ_FULL 687 int cpu = smp_processor_id(); 688 689 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current)) 690 return; 691 692 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 693 return; 694 695 if (!can_stop_full_tick()) 696 return; 697 698 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 699 #endif 700 } 701 702 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 703 { 704 /* 705 * If this cpu is offline and it is the one which updates 706 * jiffies, then give up the assignment and let it be taken by 707 * the cpu which runs the tick timer next. If we don't drop 708 * this here the jiffies might be stale and do_timer() never 709 * invoked. 710 */ 711 if (unlikely(!cpu_online(cpu))) { 712 if (cpu == tick_do_timer_cpu) 713 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 714 return false; 715 } 716 717 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 718 return false; 719 720 if (need_resched()) 721 return false; 722 723 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 724 static int ratelimit; 725 726 if (ratelimit < 10 && 727 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 728 pr_warn("NOHZ: local_softirq_pending %02x\n", 729 (unsigned int) local_softirq_pending()); 730 ratelimit++; 731 } 732 return false; 733 } 734 735 if (have_nohz_full_mask) { 736 /* 737 * Keep the tick alive to guarantee timekeeping progression 738 * if there are full dynticks CPUs around 739 */ 740 if (tick_do_timer_cpu == cpu) 741 return false; 742 /* 743 * Boot safety: make sure the timekeeping duty has been 744 * assigned before entering dyntick-idle mode, 745 */ 746 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 747 return false; 748 } 749 750 return true; 751 } 752 753 static void __tick_nohz_idle_enter(struct tick_sched *ts) 754 { 755 ktime_t now, expires; 756 int cpu = smp_processor_id(); 757 758 now = tick_nohz_start_idle(cpu, ts); 759 760 if (can_stop_idle_tick(cpu, ts)) { 761 int was_stopped = ts->tick_stopped; 762 763 ts->idle_calls++; 764 765 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 766 if (expires.tv64 > 0LL) { 767 ts->idle_sleeps++; 768 ts->idle_expires = expires; 769 } 770 771 if (!was_stopped && ts->tick_stopped) 772 ts->idle_jiffies = ts->last_jiffies; 773 } 774 } 775 776 /** 777 * tick_nohz_idle_enter - stop the idle tick from the idle task 778 * 779 * When the next event is more than a tick into the future, stop the idle tick 780 * Called when we start the idle loop. 781 * 782 * The arch is responsible of calling: 783 * 784 * - rcu_idle_enter() after its last use of RCU before the CPU is put 785 * to sleep. 786 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 787 */ 788 void tick_nohz_idle_enter(void) 789 { 790 struct tick_sched *ts; 791 792 WARN_ON_ONCE(irqs_disabled()); 793 794 /* 795 * Update the idle state in the scheduler domain hierarchy 796 * when tick_nohz_stop_sched_tick() is called from the idle loop. 797 * State will be updated to busy during the first busy tick after 798 * exiting idle. 799 */ 800 set_cpu_sd_state_idle(); 801 802 local_irq_disable(); 803 804 ts = &__get_cpu_var(tick_cpu_sched); 805 /* 806 * set ts->inidle unconditionally. even if the system did not 807 * switch to nohz mode the cpu frequency governers rely on the 808 * update of the idle time accounting in tick_nohz_start_idle(). 809 */ 810 ts->inidle = 1; 811 __tick_nohz_idle_enter(ts); 812 813 local_irq_enable(); 814 } 815 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter); 816 817 /** 818 * tick_nohz_irq_exit - update next tick event from interrupt exit 819 * 820 * When an interrupt fires while we are idle and it doesn't cause 821 * a reschedule, it may still add, modify or delete a timer, enqueue 822 * an RCU callback, etc... 823 * So we need to re-calculate and reprogram the next tick event. 824 */ 825 void tick_nohz_irq_exit(void) 826 { 827 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 828 829 if (ts->inidle) 830 __tick_nohz_idle_enter(ts); 831 else 832 tick_nohz_full_stop_tick(ts); 833 } 834 835 /** 836 * tick_nohz_get_sleep_length - return the length of the current sleep 837 * 838 * Called from power state control code with interrupts disabled 839 */ 840 ktime_t tick_nohz_get_sleep_length(void) 841 { 842 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 843 844 return ts->sleep_length; 845 } 846 847 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 848 { 849 hrtimer_cancel(&ts->sched_timer); 850 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 851 852 while (1) { 853 /* Forward the time to expire in the future */ 854 hrtimer_forward(&ts->sched_timer, now, tick_period); 855 856 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 857 hrtimer_start_expires(&ts->sched_timer, 858 HRTIMER_MODE_ABS_PINNED); 859 /* Check, if the timer was already in the past */ 860 if (hrtimer_active(&ts->sched_timer)) 861 break; 862 } else { 863 if (!tick_program_event( 864 hrtimer_get_expires(&ts->sched_timer), 0)) 865 break; 866 } 867 /* Reread time and update jiffies */ 868 now = ktime_get(); 869 tick_do_update_jiffies64(now); 870 } 871 } 872 873 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 874 { 875 /* Update jiffies first */ 876 tick_do_update_jiffies64(now); 877 update_cpu_load_nohz(); 878 879 calc_load_exit_idle(); 880 touch_softlockup_watchdog(); 881 /* 882 * Cancel the scheduled timer and restore the tick 883 */ 884 ts->tick_stopped = 0; 885 ts->idle_exittime = now; 886 887 tick_nohz_restart(ts, now); 888 } 889 890 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 891 { 892 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 893 unsigned long ticks; 894 895 if (vtime_accounting_enabled()) 896 return; 897 /* 898 * We stopped the tick in idle. Update process times would miss the 899 * time we slept as update_process_times does only a 1 tick 900 * accounting. Enforce that this is accounted to idle ! 901 */ 902 ticks = jiffies - ts->idle_jiffies; 903 /* 904 * We might be one off. Do not randomly account a huge number of ticks! 905 */ 906 if (ticks && ticks < LONG_MAX) 907 account_idle_ticks(ticks); 908 #endif 909 } 910 911 /** 912 * tick_nohz_idle_exit - restart the idle tick from the idle task 913 * 914 * Restart the idle tick when the CPU is woken up from idle 915 * This also exit the RCU extended quiescent state. The CPU 916 * can use RCU again after this function is called. 917 */ 918 void tick_nohz_idle_exit(void) 919 { 920 int cpu = smp_processor_id(); 921 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 922 ktime_t now; 923 924 local_irq_disable(); 925 926 WARN_ON_ONCE(!ts->inidle); 927 928 ts->inidle = 0; 929 930 if (ts->idle_active || ts->tick_stopped) 931 now = ktime_get(); 932 933 if (ts->idle_active) 934 tick_nohz_stop_idle(cpu, now); 935 936 if (ts->tick_stopped) { 937 tick_nohz_restart_sched_tick(ts, now); 938 tick_nohz_account_idle_ticks(ts); 939 } 940 941 local_irq_enable(); 942 } 943 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit); 944 945 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 946 { 947 hrtimer_forward(&ts->sched_timer, now, tick_period); 948 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 949 } 950 951 /* 952 * The nohz low res interrupt handler 953 */ 954 static void tick_nohz_handler(struct clock_event_device *dev) 955 { 956 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 957 struct pt_regs *regs = get_irq_regs(); 958 ktime_t now = ktime_get(); 959 960 dev->next_event.tv64 = KTIME_MAX; 961 962 tick_sched_do_timer(now); 963 tick_sched_handle(ts, regs); 964 965 while (tick_nohz_reprogram(ts, now)) { 966 now = ktime_get(); 967 tick_do_update_jiffies64(now); 968 } 969 } 970 971 /** 972 * tick_nohz_switch_to_nohz - switch to nohz mode 973 */ 974 static void tick_nohz_switch_to_nohz(void) 975 { 976 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 977 ktime_t next; 978 979 if (!tick_nohz_enabled) 980 return; 981 982 local_irq_disable(); 983 if (tick_switch_to_oneshot(tick_nohz_handler)) { 984 local_irq_enable(); 985 return; 986 } 987 988 ts->nohz_mode = NOHZ_MODE_LOWRES; 989 990 /* 991 * Recycle the hrtimer in ts, so we can share the 992 * hrtimer_forward with the highres code. 993 */ 994 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 995 /* Get the next period */ 996 next = tick_init_jiffy_update(); 997 998 for (;;) { 999 hrtimer_set_expires(&ts->sched_timer, next); 1000 if (!tick_program_event(next, 0)) 1001 break; 1002 next = ktime_add(next, tick_period); 1003 } 1004 local_irq_enable(); 1005 } 1006 1007 /* 1008 * When NOHZ is enabled and the tick is stopped, we need to kick the 1009 * tick timer from irq_enter() so that the jiffies update is kept 1010 * alive during long running softirqs. That's ugly as hell, but 1011 * correctness is key even if we need to fix the offending softirq in 1012 * the first place. 1013 * 1014 * Note, this is different to tick_nohz_restart. We just kick the 1015 * timer and do not touch the other magic bits which need to be done 1016 * when idle is left. 1017 */ 1018 static void tick_nohz_kick_tick(int cpu, ktime_t now) 1019 { 1020 #if 0 1021 /* Switch back to 2.6.27 behaviour */ 1022 1023 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1024 ktime_t delta; 1025 1026 /* 1027 * Do not touch the tick device, when the next expiry is either 1028 * already reached or less/equal than the tick period. 1029 */ 1030 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 1031 if (delta.tv64 <= tick_period.tv64) 1032 return; 1033 1034 tick_nohz_restart(ts, now); 1035 #endif 1036 } 1037 1038 static inline void tick_check_nohz(int cpu) 1039 { 1040 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1041 ktime_t now; 1042 1043 if (!ts->idle_active && !ts->tick_stopped) 1044 return; 1045 now = ktime_get(); 1046 if (ts->idle_active) 1047 tick_nohz_stop_idle(cpu, now); 1048 if (ts->tick_stopped) { 1049 tick_nohz_update_jiffies(now); 1050 tick_nohz_kick_tick(cpu, now); 1051 } 1052 } 1053 1054 #else 1055 1056 static inline void tick_nohz_switch_to_nohz(void) { } 1057 static inline void tick_check_nohz(int cpu) { } 1058 1059 #endif /* CONFIG_NO_HZ_COMMON */ 1060 1061 /* 1062 * Called from irq_enter to notify about the possible interruption of idle() 1063 */ 1064 void tick_check_idle(int cpu) 1065 { 1066 tick_check_oneshot_broadcast(cpu); 1067 tick_check_nohz(cpu); 1068 } 1069 1070 /* 1071 * High resolution timer specific code 1072 */ 1073 #ifdef CONFIG_HIGH_RES_TIMERS 1074 /* 1075 * We rearm the timer until we get disabled by the idle code. 1076 * Called with interrupts disabled. 1077 */ 1078 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1079 { 1080 struct tick_sched *ts = 1081 container_of(timer, struct tick_sched, sched_timer); 1082 struct pt_regs *regs = get_irq_regs(); 1083 ktime_t now = ktime_get(); 1084 1085 tick_sched_do_timer(now); 1086 1087 /* 1088 * Do not call, when we are not in irq context and have 1089 * no valid regs pointer 1090 */ 1091 if (regs) 1092 tick_sched_handle(ts, regs); 1093 1094 hrtimer_forward(timer, now, tick_period); 1095 1096 return HRTIMER_RESTART; 1097 } 1098 1099 static int sched_skew_tick; 1100 1101 static int __init skew_tick(char *str) 1102 { 1103 get_option(&str, &sched_skew_tick); 1104 1105 return 0; 1106 } 1107 early_param("skew_tick", skew_tick); 1108 1109 /** 1110 * tick_setup_sched_timer - setup the tick emulation timer 1111 */ 1112 void tick_setup_sched_timer(void) 1113 { 1114 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1115 ktime_t now = ktime_get(); 1116 1117 /* 1118 * Emulate tick processing via per-CPU hrtimers: 1119 */ 1120 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1121 ts->sched_timer.function = tick_sched_timer; 1122 1123 /* Get the next period (per cpu) */ 1124 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1125 1126 /* Offset the tick to avert jiffies_lock contention. */ 1127 if (sched_skew_tick) { 1128 u64 offset = ktime_to_ns(tick_period) >> 1; 1129 do_div(offset, num_possible_cpus()); 1130 offset *= smp_processor_id(); 1131 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1132 } 1133 1134 for (;;) { 1135 hrtimer_forward(&ts->sched_timer, now, tick_period); 1136 hrtimer_start_expires(&ts->sched_timer, 1137 HRTIMER_MODE_ABS_PINNED); 1138 /* Check, if the timer was already in the past */ 1139 if (hrtimer_active(&ts->sched_timer)) 1140 break; 1141 now = ktime_get(); 1142 } 1143 1144 #ifdef CONFIG_NO_HZ_COMMON 1145 if (tick_nohz_enabled) 1146 ts->nohz_mode = NOHZ_MODE_HIGHRES; 1147 #endif 1148 } 1149 #endif /* HIGH_RES_TIMERS */ 1150 1151 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1152 void tick_cancel_sched_timer(int cpu) 1153 { 1154 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1155 1156 # ifdef CONFIG_HIGH_RES_TIMERS 1157 if (ts->sched_timer.base) 1158 hrtimer_cancel(&ts->sched_timer); 1159 # endif 1160 1161 memset(ts, 0, sizeof(*ts)); 1162 } 1163 #endif 1164 1165 /** 1166 * Async notification about clocksource changes 1167 */ 1168 void tick_clock_notify(void) 1169 { 1170 int cpu; 1171 1172 for_each_possible_cpu(cpu) 1173 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1174 } 1175 1176 /* 1177 * Async notification about clock event changes 1178 */ 1179 void tick_oneshot_notify(void) 1180 { 1181 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1182 1183 set_bit(0, &ts->check_clocks); 1184 } 1185 1186 /** 1187 * Check, if a change happened, which makes oneshot possible. 1188 * 1189 * Called cyclic from the hrtimer softirq (driven by the timer 1190 * softirq) allow_nohz signals, that we can switch into low-res nohz 1191 * mode, because high resolution timers are disabled (either compile 1192 * or runtime). 1193 */ 1194 int tick_check_oneshot_change(int allow_nohz) 1195 { 1196 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1197 1198 if (!test_and_clear_bit(0, &ts->check_clocks)) 1199 return 0; 1200 1201 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1202 return 0; 1203 1204 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1205 return 0; 1206 1207 if (!allow_nohz) 1208 return 1; 1209 1210 tick_nohz_switch_to_nohz(); 1211 return 0; 1212 } 1213